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I. Introduction

Panel data refers to data sets consisting of multiple observations on each sampling unit.

This could be generated by pooling time-series observations across a variety of cross-sectional

units including countries, states, regions, firms, or randomly sampled individuals or households.

Two well known examples in the U.S. are the Panel Study of Income Dynamics (PSID) and the

National Longitudinal Survey (NLS).  The PSID began in 1968 with 4802 families, including an

over-sampling of poor households.  Annual interviews were conducted and socioeconomic

characteristics of each of the families and of roughly 31000 individuals who have been in these

or derivative families were recorded.  The list of variables collected is over 5000.  The NLS,

followed five distinct segments of the labor force.  The original samples include 5020 older men,

5225 young men, 5083 mature women, 5159 young women and 12686 youths.  There was an

oversampling of blacks, hispanics, poor whites and military in the youths survey.  The list of

variables collected runs into the thousands.  Panel data sets have also been constructed from the

U.S. Current Population Survey (CPS) which is a monthly national household survey conducted

by the Census Bureau.  The CPS generates the unemployment rate and other labor force statistics.

Compared with the NLS and PSID data sets, the CPS contains fewer variables, spans a shorter

period and does not follow movers.  However, it covers a much larger sample and is

representative of all demographic groups.  European panel data sets include, the German Social

Economic Panel, the Swedish study of household market and nonmarket activities and the Intomart

Dutch panel of households.

Some of the benefits and limitations of using panel data sets are listed in Hsiao (1986).

Obvious benefits are a much larger data set with more variability and less collinearity among the

variables than is typical of cross-section or time-series data.  With additional, more informative

data, one can get more reliable estimates and test more sophisticated behavioral models with less



2

restrictive assumptions. Another advantage of panel data sets are their ability to control for

individual heterogeneity.  Not controlling for these unobserved individual specific effects leads

to bias in the resulting estimates.  Panel data sets are also better able to identify and estimate

effects that are simply not detectable in pure cross-sections or pure time-series data.  In particular,

panel data sets are better able to study complex issues of dynamic behavior.  For example, with

cross-section data set one can estimate the rate of unemployment at a particular point in time.

Repeated cross-sections can show how this proportion changes over time.  Only panel data sets

can estimate what proportion of those who are unemployed in one period remain unemployed in

another period.  

Limitations of panel data sets include the following:  problems in the design, data

collection and data management of panel surveys, see Kasprzyk, Duncan, Kalton and Singh

(1989).  These include the problems of coverage (incomplete account of the population of interest),

non-response (due to lack of cooperation of the respondent or because of interviewer error), recall

(respondent not remembering correctly), frequency of interviewing, interview spacing, reference

period, the use of bounding to prevent the shifting of events from outside the recall period into

the recall period and time in sample bias.  Another limitation of panel data sets are the distortions

due to measurement errors.  Measurement errors may arise because of faulty response due to

unclear questions, memory errors, deliberate distortion of responses (e.g., prestige bias),

inappropriate informants,  missrecording of responses and  interviewer effects.  Although these

problems can occur in cross-section studies, they are aggravated in panel data studies.  Duncan

and Hill (1985) in a validation study on the PSID data set compare the records of a large firm with

the response of its employees and find the ratio of measurement error variance to true variance

to be of the order of 184% for average hourly earnings.  These figures are for a one-year recall,
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i.e., 1983 for 1982, and are more than doubled with two years' recall. Panel data sets may also

exhibit bias due to sample selection problems.  For the initial wave of the panel, respondents may

refuse to participate or the interviewer may not find anybody at home.  This may cause some bias

in the inference drawn from this sample.  While this non-response can also occur in cross-section

data sets, it is more serious with panels because subsequent waves of the panel are still subject to

non-response.  Respondents may die, or move, or find that the cost of responding is high.  The

rate of attrition differs across panels and usually increases from one wave to the next, but the rate

of increase declines over time.  Becketti, Gould, Lillard and Welch (1988) studied the

representativeness of the PSID, 14 years after it started.  They find that only 40% of those

originally in the sample in 1968 remained in the sample in 1981.  Typical panels involve annual

data covering a short span of time for each individual.  This means that asymptotic arguments rely

crucially on the number of individuals in the panel tending to infinity.  Increasing the time span

of the panel is not without cost either.  In fact, this increases the chances of attrition with every

new wave and increases the degree of computational difficulty in the estimation of qualitative

limited dependent variable panel data models, see Baltagi (1995b).

II. The Error Components Regression Model

Although, random coefficient regressions can be used in the estimation and specification

of panel data models, see Swamy (1971), Hsiao (1986) and Dielman (1989), most panel data

applications have been limited to a simple regression with error components disturbances

yit = xNit$ + µi + 8t + <it i=1,.., N ; t=1,.., T (1)

where i denotes individuals and t denotes time.  xit is a vector of observations on k explanatory

variables, $ is a k vector of unknown coefficients, µi is an unobserved individual specific effect,

8t is an unobserved time specific effect and <it is a zero mean random disturbance with variance
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F2
<.  The error components disturbances follow a two-way analysis of variance (ANOVA). If µi

and 8t denote fixed parameters to be estimated, this model is known as the fixed effects (FE)

model. The xit's are assumed independent of the <it's for all i and t.  Inference in this case is

conditional on the particular N individuals and over the specific time-periods observed.

Estimation in this case amounts to including (N-1) individual dummies and (T-1) time dummies

to estimate these time invariant and individual invariant effects.  This leads to an enormous loss

in degrees of freedom.  In addition, this attenuates the problem of multicollinearity among the

regressors.  Furthermore, this may not be computationally feasible for large N and/or T.  In this

case, one can eliminate the µi's and 8t's and estimate $ by running least squares of

 on the  similarly defined, where the dot indicates summation over thatỹ it ' yit& ȳi.& ȳ.t % ȳ.. x̃ it's

index and the bar denotes averaging.  This transformation is known as the within transformation

and the corresponding estimator of $ is called the within estimator or the FE estimator.  Note that

the FE estimator cannot estimate the effect of any time invariant variable like sex, race, religion,

or union participation.  Nor can it estimate the effect of any individual invariant variable like

price, interest rate, etc., that vary only with time.   These variables are wiped out by the within

transformation.

If µi and 8t are random variables with zero means and constant variances F2
µ and F2

8, this

model is known as the random effects model.  The preceding moments are conditional on the xit's.

In addition, µi, 8t and <it are assumed to be conditionally independent. The random effects (RE)

model can be estimated by GLS which can be obtained using a least squares regression of 

 on x*
it similarly defined, where 21, 22 and 23 are simple functionsy (

it ' yit&21ȳi.&22ȳ.t % 23ȳ..

of the variance components F2
µ, F2

8 and F2
<, see Fuller and Battese (1974). The corresponding GLS

estimator of $ is known as the RE estimator. Note that for this RE model, one can estimate the
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effects of time invariant and individual invariant variables.  The Best Quadratic Unbiased (BQU)

estimators of the variance components are ANOVA type estimators based on the true disturbances

and these are Minimum Variance Unbiased (MVU) under normality of the disturbances.  One can

obtain feasible estimates of the variance components by replacing the true disturbances by OLS

residuals, see Wallace and Hussain (1969).  Alternatively, one could substitute the fixed effects

residuals as proposed by Amemiya (1971).  In fact, Amemiya (1971) shows that the Wallace and

Hussain (1969) estimates of the variance components have a different asymptotic distribution from

that knowing the true disturbances, while the Amemiya (1971) estimates of the variance

components have the same asymptotic distribution as that knowing the true disturbances. Other

estimators of the variance components were proposed by Swamy and Arora (1972) and Fuller and

Battese (1974). Maximum Likelihood Estimation (MLE) under the normality of the disturbances

is derived by Amemiya (1971).  The first-order conditions are non-linear, but can be solved using

an iterative GLS scheme, see Breusch (1987).  Finally one can apply Rao's (1972) Minimum

Norm Quadratic Unbiased Estimation (MINQUE) methods.  These methods are surveyed in

Baltagi (1995b).  Wallace and Hussain (1969) compare the RE and FE estimators of $ in the case

of nonstochastic (repetitive) xit's and find that both are (i) asymptotically normal (ii) consistent and

unbiased and that (iii)  has a smaller generalized variance (i.e., more efficient) in finite$̂  RE

samples.  In the case of nonstochastic (nonrepetitive) xit's they find that both  and  are$̂  RE $̃  FE

consistent, asymptotically unbiased and have equivalent asymptotic variance-covariance matrices,

as both N and T64.  Under the random effects model, GLS based on the true variance components

is BLUE, and all the feasible GLS estimators considered are asymptotically efficient as N and

T64.  Maddala and Mount (1973) compared OLS, FE, RE and MLE methods using Monte Carlo

experiments.  They found little to choose among the various feasible GLS estimators in small
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samples and argued in favor of methods that were easier to compute.  MINQUE was dismissed

as more difficult to compute and the applied researcher given one shot at the data was warned to

compute at least two methods of estimation.  If these methods give different results, the authors

diagnose misspecification.  Taylor (1980) derived exact finite sample results for the one-way error

component model ignoring the time-effects.  He found the following important results.  (1)

Feasible GLS is more efficient than the FE estimator for all but the fewest degrees of freedom.

(2) The variance of feasible GLS is never more than 17% above the Cramer-Rao lower bound.

(3) More efficient estimators of the variance components do not necessarily yield more efficient

feasible GLS estimators.  These finite sample results are confirmed by the Monte Carlo

experiments carried out by Baltagi (1981a).

One test for the usefulness of panel data models is their ability to predict.  For the RE

model, the Best Linear Unbiased Predictor (BLUP) was derived by Wansbeek and Kapteyn (1978)

and Taub (1979).  This derivation was generalized by Baltagi and Li (1992) to the RE model with

serially correlated remainder disturbances.  More recently, Baillie and Baltagi (1995) derived the

asymptotic mean square prediction error for the FE and RE predictors as well as two other

misspecified predictors and compared their performance using Monte Carlo experiments.

III. Test of Hypotheses

Fixed versus random effects has generated a lively debate in the biometrics literature.  In

econometrics, see Mundlak (1978).  The random and fixed effects models yield different

estimation results, especially if T is small and N is large.  A specification test based on the

difference between these estimates is given by Hausman (1978).  The null hypothesis is that the

individual and time-effects are not correlated with the xit's.  The basic idea behind this test is that

the fixed effects estimator FE is consistent whether the effects are or are not correlated with the$̃ 
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     1For the one-way error components model with individual effects only, Hausman and Taylor
(1981) show that Hausman's specification test can also be based on two other contrasts that yield
numerically identical results.  Kang (1985) extends this analysis to the two-way error components
model.

xit's.  This is true because the fixed effects transformation described by  wipes out the µi andỹ  it

8t effects from the model.  However, if the null hypothesis is true, the fixed effects estimator is

not efficient under the random effects specification, because it relies only on the within variation

in the data.  On the other hand, the random effects estimator RE is efficient under the null$̂ 

hypothesis but is biased and inconsistent when the effects are correlated with the xit's.  The

difference between these estimators  = FE - RE tend to zero in probability limits under theq̂ $̃ $̂ 

null hypothesis and is non-zero under the alternative.  The variance of this difference is equal to

the difference in variances, , since  under the nullvar(q̂ ) ' var($̃ FE)&var($̂ RE) cov( q̂ , $̂ RE) ' 0

hypothesis. Hausman's test statistic is based upon m =  and is asymptoticallyq̂ N[var(q̂ )]&1q̂ 

distributed a P2 with k degrees of freedom under the null hypothesis.1  The Hausman test can also

be computed as a variable addition test by running y* on the regressor matrices X* and   testingX̃ 

that the coefficients of  are zero using the usual F-test.  This test was generalized by ArellanoX̃ 

(1993) to make it robust to heteroskedasticity and autocorrelation of arbitrary forms.  In fact, if

either heteroskedasticity or serial correlation is present, the variances of the FE and RE estimators

are not valid and the corresponding Hausman test statistic is inappropriate. Ahn and Low (1995)

show that the Hausman test statistic can be obtained as (NT)R2 from the regression of GLS

residuals on  and  where the latter denotes the matrix of regressors averaged over time.  Also,X̃ X̄

an alternative Generalized Method of Moments (GMM) test is recommended for testing the joint

null hypothesis of exogeneity of the regressors and the stability of regression parameters over

time.  If the regression parameters are nonstationary over time, then both  and   are $̂  RE  $̃  FE
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inconsistent even though the regressors may be exogenous.  Ahn and Low perform Monte Carlo

experiments which show that both the Hausman and the alternative GMM test have good power

in detecting endogeneity of the regressors.  However, the alternative GMM test dominates if the

coefficients of the regressors are nonstationary.  Li and Stengos (1992) propose a Hausman

specification test based on -consistent semiparametric estimators.  They apply it in the contextN

of a dynamic panel data model of the form

yit = *yi,t-1 + g(xit) + uit i=1,...,N; t=1,...,T (2)

where the function g(.) is unknown, but satisfies certain moment and differentiability conditions.

The xit observations are IID with finite fourth moments and the disturbances uit are IID(0,F2) under

the null hypothesis.  Under the alternative, the disturbances uit are IID in the i subscript but are

serially correlated in the t subscript.  Li and Stengos base the Hausman test for Ho: E(uit*yi,t-1) =

0 on the difference between two -consistent instrumental variables estimators for *, under theN

null and the alternative respectively.

For panels with large N and small T, testing for poolability of the data amount to testing

the stability of the cross-section regression across time.  In practice, the Chow (1960) test for the

equality of the regression coefficients is popular.  This is proper only under the spherical

disturbances assumption.  It leads to improper inference under the random effects specification.

In fact, Baltagi (1981a) shows that in this case, the Chow-test leads to rejection of the null too

often when in fact it is true.  However, applying the F-test for the equality of slopes accounting

for the random effects variance-covariance matrix performs well in Monte Carlo experiments.

Recently, Baltagi, Hidalgo and Li (1995) derive a non-parametric test for poolability which is

robust to functional form misspecification.  In particular, they consider the following

nonparametric panel data model 
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yit = gt(xit) + ,it (i=1,...,N ; t=1,...,T) (3)

where gt(.) is an unspecified functional form that may vary over time. xit is a kx1 column vector

of predetermined explanatory variables with (p$1) variables being continuous and k-p($0).

Poolability of  the  data over  time is  equivalent to  testing that gt(x) = gs(x) almost everywhere

for all t and s=1,2,..,T; versus gt(x)…gs(x) for some t…s with probability greater than zero.  The

test statistic is shown to be consistent and asymptotically normal and is applied to a panel data set

on earnings.

In choosing between pooled homogeneous parameter estimators versus non-pooled

heterogeneous parameter estimators, some Mean-Square Error (MSE) criteria can be used as

described in Wallace (1972) to capture the tradeoff between bias and variance.  Bias is introduced

when the poolability restriction is not true.  However, the variance is reduced by imposing the

poolability restriction.  Hence, the MSE criteria may choose the pooled estimator despite the fact

that the poolability restriction is not true.  Ziemer and Wetzstein (1983) suggest comparing pooled

and non-pooled estimators according to their forecast risk performance.  They show for a

wilderness recreation demand model that a Stein-rule estimator gives better forecast risk

performance than the pooled or individual cross-section estimates.  More recently, the fundamental

assumption underlying pooled homogeneous parameters models has been called into question.  For

example, Robertson and Symons (1992) warned about the bias from pooled estimators when the

estimated model is dynamic and homogeneous when in fact the true model is static and

heterogeneous.  Pesaran and Smith (1995) argued in favor of heterogeneous estimators rather than

pooled estimators for panels with large N and T.  They showed that when the true model is

dynamic and heterogeneous, the pooled estimators are inconsistent whereas an average estimator

of heterogeneous parameters can lead to consistent estimates as long as both N and T tend to
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infinity.  Using a different approach, Maddala, Srivastava and Li (1994) argued that shrinkage

estimators are superior to either heterogeneous or homogeneous parameter estimates especially for

prediction purposes.  In this case, one shrinks the individual heterogeneous estimates toward the

pooled estimate using weights depending on their corresponding variance-covariance matrices.

Baltagi and Griffin (1995) compare the short-run and long-run forecast performance of the pooled

homogeneous, individual heterogeneous and shrinkage estimators for a dynamic demand for the

gasoline across eighteen OECD countries.  Based on one, five and ten year forecasts, the results

support the case for pooling.  Alternative tests for structural change in panel data include Han and

Park (1989) who used the cumulative sum and cusum of squares to test for structural change based

on recursive residuals.  They find no structural break over the period 1958-1976 in U.S. foreign

trade of manufacturing goods.  

Testing for random individual effects is of utmost importance in panel data applications.

Ignoring these effects lead to huge bias in estimation, see Moulton (1986). A popular Lagrange

Multiplier test for the significance of the random effects Ha
o; F2

µ = 0 was derived by Breusch and

Pagan (1980).  This test statistic can be easily computed using least squares residuals.  This

assumes that the alternative hypothesis is two-sided when we know that the variance components

are non-negative.  A one-sided version of this test is given by Honda (1985). This is shown to be

a uniformly most powerful and robust to non-normality.  However, Moulton and Randolph (1989)

showed that the asymptotic N(0,1) approximation for this one-sided LM statistic can be poor even

in large samples.  They suggest an alternative Standardized Lagrange Multiplier (SLM) test whose

asymptotic critical values are generally closer to the exact critical values than those of the LM test.

This SLM test statistic centers and scales the one-sided LM statistic so that its mean is zero and

its variance is one.
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For Hb
o; F2

µ = F2
8 = 0, the two-sided LM test is given by Breusch and Pagan (1980), and

is distributed as P2
2 under the null.  Honda (1985) does not derive a uniformly most powerful one-

sided test for Hb
o, but he suggests a ̀ handy' one-sided test which is distributed as N(0,1) under Hb

o.

Later Honda (1991) derives the SLM version of this 'handy' one-sided test.  Baltagi, Chang and

Li (1992) derive a locally mean most powerful (LMMP) one-sided test for Hb
o and its SLM version

is given by Baltagi (1995b).  Under Hb
o; F2

µ = F2
8 = 0, these Standardized Lagrange Multiplier

statistics are asymptotically N(0,1) and their asymptotic critical values should be closer to the

exact critical values than those of the corresponding unstandardized tests.  Alternatively, one can

perform a likelihood ratio test or an ANOVA-type F-test.  Both tests have the same asymptotic

distribution as their LM counterparts.  Moulton and Randolph (1989) find that although the F-test

is not locally most powerful, its power function is close to the power function of the exact LM test

and is therefore recommended.  A comparison of these various testing procedures using Monte

Carlo experiments is given by Baltagi, Chang and Li (1992).  Recent developments include a

generalization by Li and Stengos (1994) of the Breusch-Pagan test to the case where the remainder

error is heteroskedastic of unknown form.  Also, Baltagi and Chang (1995) who propose a simple

ANOVA F-statistic based on recursive residuals to test for random individual effects.

For incomplete (or unbalanced) panels, the Breusch-Pagan test can be easily extended, see

Moulton and Randolph (1989) for the one-way error components model and Baltagi and Li (1990)

for the two-way error components model.  For non-linear models, Baltagi (1996) suggests a simple

method for testing for zero random individual and time effects using a Gauss-Newton regression.

In case the regression model is linear, this test amounts to a variable addition test, i.e., running

the original regression with two additional regressors.  The first is the average of the least squares
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residuals over time, while the second is the average of the least squares residuals over individuals.

The test statistic becomes the F-statistic for the significance of the two additional regressors.

Baltagi and Li (1995) derive three LM test statistics that jointly test for serial correlation

and individual effects.  The first LM statistic jointly tests for zero first-order serial correlation and

random individual effects, the second LM statistic tests for zero first-order serial correlation

assuming fixed individual effects, and the third LM statistic tests for zero first-order serial

correlation assuming random individual effects.  In all three cases, Baltagi and Li (1995) showed

that the corresponding LM statistic is the same whether the alternative is AR(1) or MA(1).  In

addition, Baltagi and Li (1995) derive two simple tests for distinguishing between AR(1) and

MA(1) remainder disturbances in error components regressions and perform Monte Carlo

experiments to study the performance of these tests.  For the fixed effects model, Bhargava,

Franzini and Narendranathan (1982) derived a modified Durbin-Watson test statistic based on FE

residuals to test for first-order serial correlation and a test for random walk based on differenced

OLS residuals.  Chesher (1984) derived a score test for neglected heterogeneity, which is viewed

as causing parameter variation.  Also, Hamerle (1990) and Orme (1993) suggest a score test for

neglected heterogeneity for qualitative limited dependent variable panel data models.

Holtz-Eakin (1988) derives a simple test for the presence of individual effects in dynamic

(auto-regressive) panel data models, while Holtz-Eakin, Newey and Rosen (1988) formulate a

coherent set of procedures for estimating and testing VAR (vector autoregression) with panel data.

Arellano and Bond (1991) consider tests for serial correlation and over-identification restrictions

in a dynamic random effects model, while Arellano (1990) considers testing covariance restrictions

for error components or first-difference structures with White noise, MA or AR schemes.



13

Chamberlain (1982, 1984) finds that the fixed effects specification imposes testable

restrictions on coefficients from regressions of all leads and lags of the dependent variable on all

leads and lags of independent variables.  These over-identification restrictions are testable using

minimum chi-squared statistics.  Angrist and Newey (1991) show that, in the standard fixed effects

model, this over-identification test statistic is simply the degrees of freedom times the R2 from a

regression of within residuals on all leads and lags of the independent variables.  They apply this

test to models of the union-wage effect using five years of data from the National Longitudinal

Survey of Youth and to a conventional human capital earnings function estimating the return to

schooling.  They do not reject a fixed effect specification in the union-wage example, but they do

reject it in the return to schooling example.

Testing for unit roots using panel data has been recently reconsidered by Quah (1994),

Levin and Lin (1996) and Im, Pesaran and Shin (1996).  This has been applied by MacDonald

(1996) to real exchange rates for 17 OECD countries based on a wholesale price index, and 23

OECD countries based on a consumer price index, all over the period 1973-1992.  The null

hypothesis that real exchange rates contain a unit root is rejected.  Earlier applications include:

Boumahdi and Thomas (1991) who apply a likelihood ratio unit root panel data test to assess

efficiency of the French capital market.  Using 140 French stock prices observed weekly from

January 1973 to February 1986 (T=671) on the Paris Stock Exchange, Boumahdi and Thomas

(1991) do not reject the null hypothesis of a unit root.  Also, Breitung and Meyer (1994) who

apply panel data unit roots test to contract wages negotiated on firm and industry level in Western

Germany over the period 1972-1987.  They find that both firm and industry wages possess a unit

root in the autoregressive representation.  However, there is weak evidence for a cointegration

relationship.
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IV. Generalizations of the Error Components Model

The error components disturbances are homoskedastic across individuals. This may be an

unrealistic assumption and has been relaxed by Mazodier and Trognon (1978) and Baltagi and

Griffin (1988).  A more general heteroskedastic model is given by Randolph (1988) in the context

of unbalanced panels.  Also, Li and Stengos (1994) who proposed estimating a one-way error

component model with heteroskedasticity of unknown form using adaptive estimation techniques.

The error components regression model has been also generalized to allow for serial

correlation in the remainder disturbances by Lillard and Willis (1978), Revankar (1979), MaCurdy

(1982) and more recently Baltagi and Li (1991, 1995) and Galbraith and Zinde-Walsh (1995).

Chamberlain (1982, 1984) allows for arbitrary serial correlation and heteroskedastic patterns by

viewing each time period as an equation and treating the panel as a multivariate set up.  Also,

Kiefer (1980), Schmidt (1983), Arellano (1987) and Chowdhury (1994) extend the fixed effects

model to cover cases with an arbitrary intertemporal covariance matrix.

The normality assumption on the error components disturbances may be untenable.

Horowitz and Markatou (1996) show how to carry out nonparametric estimation of the densities

of the error components.  Using data from the Current Population Survey, they estimate an

earnings model and show that the probability that individuals with low earnings will become high

earners in the future are much lower than that obtained under the assumption of normality.  One

drawback of this nonparametric estimator is its slow convergence at a rate of 1/(logN) where N

is the number of individuals.  Monte Carlo results suggest that this estimator should be used for

N larger than 1000.

Micro panel data on households, individuals and firms are highly likely to exhibit

measurement error, see Duncan and Hill (1985) who found serious measurement error in average
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hourly earnings in the Panel Study of Income Dynamics.  Using panel data, Griliches and

Hausman (1986) showed that one can identify and estimate a variety of errors in variables models

without the use of external instruments.  Griliches and Hausman suggest differencing the data j

periods apart, (yit-yi,t-j), thus generating ‘different lengths' difference estimators.  These

transformations wipe out the individual effect, but they may aggravate the measurement error bias.

One can calculate the bias of the ‘different lengths' differenced estimators and use this information

to obtain consistent estimators of the regression coefficients.  Extensions of this model include Kao

and Schnell (1987 a,b), Wansbeek and Koning (1989), Hsiao (1991), Wansbeek and Kapteyn

(1992) and Biorn (1992).  See also Baltagi and Pinnoi (1995) for an application to the productivity

of the public capital stock.  

The error components model has been extended to the seemingly unrelated regressions

case by Avery (1977), Baltagi (1980), Magnus (1982), Prucha (1984) and more recently Kinal and

Lahiri (1990).  Some applications include Howrey and Varian (1984) on the estimation of a system

of demand equations for electricity by time of day, and Sickles (1985) on the analysis of

productivity growth in the U.S. Airlines industry.

For the simultaneous equation with error components, Baltagi (1981b) derives the error

component two-stage (EC2SLS) and three-stage (EC3SLS) least squares estimators, while Prucha

(1985) derives the full information MLE under the normality assumption.  These estimators are

surveyed in Krishnakumar (1988).  Monte Carlo experiments are given by Baltagi (1984) and

Mátyás and Lovrics (1990).  Recent applications of EC2SLS and EC3SLS include: (i) an

econometric rational-expectations macroeconomic model for developing countries with capital

controls, see Haque, Lahiri and Montiel (1993), and (ii) an econometric model measuring income

and price elasticities of foreign trade for developing countries, see Kinal and Lahiri (1993).
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Mundlak (1978) considered the case where the endogeneity is solely attributed to the

individual effects.  In this case, Mundlak showed that if these individual effects are a linear

function of the averages of all the explanatory variables across time, then the GLS estimator of

this model coincides with the FE estimator.  Mundlak's (1978) formulation assumes that all the

explanatory variables are related to the individual effects.  The random effects model on the other

hand assumes no correlation between the explanatory variables and the individual effects.  Instead

of this `all or nothing' correlation among the xit's and the µi's, Hausman and Taylor (1981)

consider a model where some of the explanatory variables are related to the µi's. In particular, they

consider the following model:  

yit = xNit$ + zNi( + µi + <it (4)

where the zi's are cross-sectional time-invariant variables.  Hausman and Taylor (1981), hereafter

HT, split the matrices X and Z into two sets of variables: X = [X1;X2] and Z = [Z1;Z2] where

X1 is nxk1, X2 is nxk2, Z1 is nxg1, Z2 is nxg2 and n = NT.  X1 and Z1 are assumed exogenous in

that they are not correlated with µi and <it while X2 and Z2 are endogenous because they are

correlated with the µi's, but not the <it's.  The within transformation would sweep the µi's and

remove the bias, but in the process it would also remove the Zi's and hence the within estimator

will not give an estimate of the ('s.  To get around that, Hausman and Taylor (1981) suggest an

instrumental variable estimator that uses   and Z1 as instruments.  Therefore, the matrixX̃ 1,X̃ 2,X̄1

of regressors X1 is used twice, once as averages and another time as deviations from averages.

This is an advantage of panel data allowing instruments from within the model. The order

condition for identification gives the result that the number of X1's (k1) must be at least as large

as the number of Z2's (g2).  With stronger exogeneity assumptions between X and the µi's,

Amemiya and MaCurdy (1986) and Breusch, Mizon and Schmidt (1989) suggest more efficient
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instrumental variable estimators.  Cornwell and Rupert (1988) apply these IV methods to a returns

to schooling example based on a panel of 595 individuals drawn from the PSID over the period

1976-1982.  Recently, Metcalf (1996) shows that for the Hausman-Taylor model given in (4),

using less instruments may lead to a more powerful Hausman specification test.  Asymptotically,

more instruments lead to more efficient estimators.  However, the asymptotic bias of the

inefficient estimator will also be greater as the null hypothesis of no correlation is violated.  The

increase in bias more than offsets the increase in variance.  Since, the test statistic is linear in

variance but quadratic in bias, its power will increase.

Cornwell, Schmidt and Wyhowski (1992) consider a simultaneous equation model with

error components that distinguishes between two types of exogenous variables, namely singly

exogenous and doubly exogenous variables.  A singly exogenous variable is correlated with the

individual effects but not with the remainder noise, while a doubly exogenous variable is

uncorrelated with both the effects and the remainder disturbance term.  For this encompassing

model with two types of exogeneity, Cornwell, Schmidt and Wyhowski (1992) extend the three

instrumental variable estimators considered above and give them a GMM interpretation.

Wyhowski (1994) extend these results to the two-way error components model, while Revankar

(1992) establishes conditions for exact equivalence of instrumental variables in a simultaneous

equation two-way error components model. 

V. Dynamic Panel Data Models

The dynamic error components regression is characterized by the presence of a lagged

dependent variable among the regressors, i.e.,

yit = *yi,t-1 + xitN $ + µi + <it     i=1,...,N; t=1,...,T (5)
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     2In particular, the assumptions made on the initial values are of utmost importance, see
Anderson and Hsiao (1982), Bhargava and Sargan (1983) and Hsiao (1986).  Hsiao (1986)
summarizes the consistency properties of the MLE and GLS under a RE dynamic model
depending on the initial values assumption and the way in which N and T tend to infinity.

where * is a scalar, xitN is 1×k and $ is k×1.  This model has been extensively studied by

Anderson and Hsiao (1982) and Sevestre and Trognon (1985).2  Since yit is a function of µi, yi,t-1

is also a function of µi.  Therefore, yi,t-1, a right hand regressor in (5), is correlated with the error

term.  This renders the OLS estimator biased and inconsistent even if the <it's are not serially

correlated.  For the fixed effects (FE) estimator, the within transformation wipes out the µi's, but

 will still be correlated with  even if the <it's are not serially correlated.  In fact, the withinỹ i,t&1 <̃ it

estimator will be biased of O(1/T) and its consistency will depend upon T being large, see Nickell

(1981) and more recently Kiviet (1995) who shows that the bias of the FE estimator in a dynamic

panel data model has an O(N-1T-3/2) approximation error.  The same problem occurs with the

random  effects  GLS  estimator. In order to apply GLS, quasi-demeaning is performed, and y*
i,t-1

will be correlated with u*
it.  An alternative transformation that wipes out the individual effects, yet

does not create the above problem is the first difference (FD) transformation.  In fact, Anderson

and Hsiao (1982) suggested first differencing the model to get rid of the µi's and then using )yi,t-2

= (yi,t-2-yi,t-3) or simply yi,t-2 as an instrument for )yi,t-1 = (yi,t-1-yi,t-2). These instruments will not

be correlated with )<it =<i,t-<i,t-1, as long as the <it's themselves are not serially correlated.  This

instrumental variable (IV) estimation method leads to consistent but not necessarily efficient

estimates of the parameters in the model because it does not make use of all the available moment

conditions, see Ahn and Schmidt (1995) and it does not take into account the differenced structure

on the residual disturbances ()<it).  Arellano (1989) finds that for simple dynamic error

components models the estimator that uses differences )yi,t-2 rather than levels yi,t-2 for instruments
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     3Bhargava (1991) gives sufficient conditions for the identification of both static and dynamic
panel data models with endogenous regressors.

has a singularity point and very large variances over a significant range of parameter values.  In

contrast, the estimator that uses instruments in levels, i.e., yi,t-2, has no singularities and much

smaller variances and is therefore recommended.  Additional instruments can be obtained in a

dynamic panel data model if one utilizes the orthogonality conditions that exist between lagged

values of yit and the disturbances <it, see Holtz-Eakin (1988), Holtz-Eakin, Newey and Rosen

(1988) and Arellano and Bond (1991). Based on these additional moments, Arellano and Bond

(1991) suggest a GMM estimator and propose a Sargan-type test for over-identifying restrictions.3

Arellano and Bover (1995) develop a unifying GMM framework for looking at efficient IV

estimators for dynamic panel data models.  They do that in the context of the Hausman and Taylor

(1981) model given in (4).  Ahn and Schmidt (1995) show that under the standard assumptions

used in a dynamic panel data model, there are additional moment conditions that are ignored by

the IV estimators suggested by Arellano and Bond (1991).  They show how these additional

restrictions can be utilized in a GMM framework.  Ahn and Schmidt (1995) also consider the

dynamic version of the Hausman and Taylor (1981) model and show how one can make efficient

use of exogenous variables as instruments.  In particular, they show that the strong exogeneity

assumption implies more orthogonality conditions which lie in the deviations from mean space.

These are irrelevant in the static Hausman-Taylor model but are relevant for the dynamic version

of that model.

An alternative approach to estimating dynamic panel data models have been suggested by

Keane and Runkle (1992).  Drawing upon the forward filtering idea from the time-series literature,

this method of estimation first transforms the model to eliminate the general and arbitrary serial
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correlation pattern in the data. By doing so, one can use the set of original predetermined

instruments to obtain consistent parameter estimates of the model.  First differencing is also used

in dynamic panel data models to get rid of individual specific effects and the resulting first

differenced errors are serially correlated of an MA(1) type with unit root if the original <it's are

classical errors.  In this case, there will be gain in efficiency in performing the Keane and Runkle

filtering procedure on the first-differenced (FD) model.  Underlying this estimation procedure are

two important hypotheses that are testable.  The first is HA; the set of instruments are strictly

exogenous.  In order to test HA, Keane and Runkle propose a test based on the difference between

fixed effects 2SLS (FE-2SLS) and first difference 2SLS (FD-2SLS). FE-2SLS is consistent only

if HA is true.  In fact if the matrix of instruments contain predetermined variables then FE-2SLS

would not be consistent.  In contrast, FD-2SLS is consistent whether HA is true or not.  If HA is

not rejected, one should check whether the individual effects are correlated with the set of

instruments.  In this case, the usual Hausman and Taylor (1981) test applies.  However, if HA is

rejected, the instruments are predetermined and the Hausman-Taylor test is inappropriate.  In this

case, the test will be based upon the difference between FD-2SLS and 2SLS.  Under the null, both

estimators are consistent, but if the null is not true, FD-2SLS remains consistent while 2SLS does

not.  These two tests are Hausman (1978) type tests except that the variances are complicated

because Keane and Runkle do not use the efficient estimator under the null, see Schmidt, Ahn and

Wyhowski (1992).  Keane and Runkle (1992) apply their testing and estimation procedures to a

simple version of the rational expectations life-cycle consumption model. See also Baltagi and

Griffin (1995) for another application to liquor demand.

Alternative estimation methods of a static and dynamic panel data model with arbitrary

error structure are considered by Chamberlain (1982, 1984).  Chamberlain (1984) considers the
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panel data model as a multivariate regression of T equations subject to restrictions and derives an

efficient minimum distance estimator that is robust to residual autocorrelation of arbitrary form.

Chamberlain (1984) also first-differences these equations to get rid of the individual effects and

derives an asymptotically equivalent estimator to his efficient minimum distance estimator based

on 3SLS of the (T-2) differenced equations.  Building on Chamberlain's work, Arellano (1990)

develops minimum chi-square tests for various covariance restrictions.  These tests are based on

3SLS residuals of the dynamic error component model and can be calculated from a generalized

linear regression involving the sample autocovariance and dummy variables.  The asymptotic

distribution of the unrestricted autocovariance estimates is derived without imposing the Normality

assumption.  In particular, Arellano (1990) considers testing covariance restrictions for error

components or first-difference structures with white noise, moving average or autoregressive

schemes.  If these covariance restrictions are true, 3SLS is inefficient and Arellano (1990)

proposes a GLS estimator which achieves asymptotic efficiency in the sense that it has the same

limiting distribution as the optimal minimum distance estimator.  More recently, Li and Stengos

(1995a) derived a  estimator for a semi-parametric dynamic panel data model, whileN & consistent

Li and Stengos (1995b) proposed a non-nested test for parametric versus semi-parametric dynamic

panel data models. 

VI. Incomplete Panel Data Models

Incomplete panels are more likely to be the norm in typical economic empirical settings.

For example, if one is collecting data on a set of countries over time, a researcher may find some

countries can be traced back longer than others.   Similarly, in collecting data on firms over time,

a researcher may find that some firms have dropped out of the market while new entrants emerged

over the sample period observed.  For randomly missing observations, unbalanced panels have
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     4Other methods of dealing with missing data include:  (i) imputing the missing values and
analyzing the filled-in data by complete panel data methods, (ii) discarding the nonrespondents and
weighting the respondents to compensate for the loss of cases, see Little (1988) and the section
on non-response adjustments in Kasprzyk, et. al. (1989).

     5Chowdhury (1991) showed that for the fixed effects error component model, the within
estimator based on the entire unbalanced panel is efficient relative to any within estimator based
on a sub-balanced pattern.  Also, Mátyás and Lovrics (1991) performed some Monte Carlo

been dealt with in Fuller and Battese (1974), Baltagi (1985), Wansbeek and Kapteyn (1989) and

Baltagi and Chang (1994).4  For the unbalanced one-way error component model, GLS can still

be performed as a least squares regression.  However, BQU estimators of the variance components

are a function of the variance components themselves.  Still, unbalanced ANOVA methods are

available, see Searle (1987). Baltagi and Chang (1994) performed extensive Monte Carlo

experiments varying the degree of unbalancedness in the panel as well as the variance components.

Some of the main results include the following:  (i) As far as the estimation of regression

coefficients are concerned, the simple ANOVA type feasible GLS estimators compare well with

the more complicated estimators such as MLE and MINQUE and are never more than 4% above

the MSE of true GLS.  (ii) For the estimation of the remainder variance component F2
<, these

methods show little difference in relative MSE performance.  However, for the individual specific

variance component estimation, F2
µ, the ANOVA type estimators perform poorly relative to MLE

and MINQUE methods when the variance component F2
µ is large and the pattern is severely

unbalanced.  (iii) Better estimates of the variance components, in the MSE sense, do not

necessarily imply better estimates of the regression coefficients. This echoes similar findings in

the balanced panel data case. (iv) Extracting a balanced panel out of an unbalanced panel by either

maximizing the number of households observed or the total number of observations lead in both

cases to an enormous loss in efficiency and is not recommended.5  For an empirical application,
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experiments to compare the loss in efficiency of FE and GLS based on the entire incomplete panel
data and complete sub-panel.  They find the loss in efficiency is negligible if NT>250, but serious
for NT<150.

see Mendelsohn, et. al. (1992) who use panel data on repeated single family home sales in the

harbor area surrounding New Bedford, Massachusetts over the period 1969 to 1988 to study the

damage associated with proximity to a hazardous waste site.  Mendelsohn, et. al. (1992) find a

significant reduction in housing values, between seven and ten thousand (1989 dollars), as a result

of these houses proximity to hazardous waste sites.  The extension of the unbalanced error

components model to the two-way model including time effects is more involved.  Wansbeek and

Kapteyn (1989) derive the FE, MLE and a feasible GLS estimator based on quadratic unbiased

estimators of the variance components and compare their performance using Monte Carlo

experiments.

Rotating panels attempt to keep the same number of households in the survey by replacing

the fraction of households that drop from the sample in each period by an equal number of freshly

surveyed households.  This is a necessity in surveys where a high rate of attrition is expected from

one period to the next.  For the estimation of general rotation schemes as well as maximum

likelihood estimation under normality, see Biorn (1981).  Estimation of the consumer price index

in the U.S. is based on a complex rotating panel survey, with 20% of the sample being replaced

by rotation each year, see Valliant (1991). With rotating panels, the fresh group of individuals that

are added to the panel with each wave provide a means of testing for time-in-sample bias effects.

This has been done for various labor force characteristics in the Current Population Survey.  For

example, several studies have found that the first rotation reported an unemployment rate that is

10% higher than that of the full sample, see Bailar (1975).  While the findings indicate a pervasive
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     6Blundell and Meghir (1990) also argue that pseudo panels allow the estimation of life-cycle
models which are free from aggregation bias.  In addition, Moffitt (1993) explains that a lot of
researchers in the U.S. prefer to use pseudo panels like the Current Population Survey because
it has larger more representative samples and the questions asked are more consistently defined
over time than the available U.S. panels.

effect of rotation group bias in panel surveys, the survey conditions do not remain the same in

practice and hence it is hard to disentangle the effects of time-in-sample bias from other effects.

For some countries, panel data may not exist.  Instead the researcher may find annual

household surveys based on a large random sample of the population.  Examples of some of these

cross-sectional consumer expenditure surveys include: the British Family Expenditure Survey

which surveys about 7000 households annually.  Examples of repeated surveys in the U.S. include

the Current Population Survey and the National Crime Survey.  For these repeated cross-section

surveys, it may be impossible to track the same household over time as required in a genuine

panel.  Instead, Deaton (1985) suggests tracking cohorts and estimating economic relationships

based on cohort means rather than individual observations.  One cohort could be the set of all

males born between 1945 and 1950.  This age cohort is well defined, and can be easily identified

from the data.  Deaton (1985) argued that these pseudo panels do not suffer the attrition problem

that plagues genuine panels, and may be available over longer time periods compared to genuine

panels.6  For this psuedo-panel with T observations on C cohorts, the fixed effects estimator ,$̃FE

based on the within `cohort' transformation, is a natural candidate for estimating $.  However,

Deaton (1985) argued that these sample-based averages of the cohort means can only estimate the

unobserved population cohort means with measurement error.  Therefore, one has to correct the

within estimator for measurement error using estimates of the errors in measurement variance-
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covariance matrix obtained from the individual data.  Details are given in Deaton (1985).  There

is an obvious trade-off in the construction of a pseudo panel.  The larger the number of cohorts,

the smaller is the number of individuals per cohort.  In this case, C is large and the pseudo panel

is based on a large number of observations.  However, the fact that the average cohort size nc =

N/C is not large implies that the sample cohort averages are not precise estimates of the population

cohort means.  In this case, we have a large number C of imprecise observations.  In contrast, a

pseudo panel constructed with a smaller number of cohorts and therefore more individuals per

cohort is trading a large pseudo panel with imprecise observations for a smaller pseudo panel with

more precise observations.  Verbeek and Nijman (1992b) find that nc64 is a crucial condition for

the consistency of the within estimator and that the bias of the within estimator may be substantial

even for large nc. On the other hand, Deaton's estimator is consistent for $, for finite nC, when

either C or T tend to infinity.  

Moffitt (1993) extends Deaton's (1985) analysis to the estimation of dynamic models with

repeated cross-sections.  Moffitt illustrates his estimation method for the linear fixed effects life-

cycle model of labor supply using repeated cross-sections from the U.S. Current Population

Survey (CPS).  The sample included white males, ages 20-59, drawn from 21 waves over the

period 1968 to 1988.  In order to keep the estimation problem manageable, the data was randomly

subsampled to include a total of 15,500 observations.  Moffitt concludes that there is a

considerable amount of parsimony achieved in the specification of age and cohort effects.  Also,

individual characteristics are considerably more important than either age, cohort or year effects.

Blundell, Meghir and Neves (1993) use the annual U.K. Family Expenditure Survey covering the

period 1970-1984 to study the intertemporal labor supply and consumption of married women.

The total number of households considered was 43,671.  These were allocated to ten different
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cohorts depending on the year of birth.  The average number of observations per cohort was 364.

Their findings indicate reasonably-sized intertemporal labor supply elasticities.  More recently,

Collado (1995) propose a GMM estimator corrected for measurement error to deal with a dynamic

pseudo-panel data model.  This estimator is consistent as C tends to infinity, for a fixed T and nC.

VII. Limited Dependent Variables and Panel Data 

In many economic studies, the dependent variable is discrete, indicating for example that

a household purchased a car or that an individual is unemployed or that he or she joined the union.

For example, let yit = 1 if the i-th individual participates in the labor force at time t.  This occurs

if , the difference between the i-th individual's offered wage and his unobserved reservationy (

it

wage is positive.  This can be described more formally as follows:

yit = 1 if >0 (6)y (

it

       = 0 if #0y (

it

where 

 = xitN$ + µi + <it (7)y (

it

i.e.,  can be explained by a set of regressors xit and error components disturbances.  In thisy (

it

case: 

Pr[yit = 1] = Pr[ >0] = Pr[<it>-xitN$-µi] = F (xitN$+µi)y (

it

The last equality holds as long as the density function describing the cumulative distribution

function F is symmetric around zero.  For panel data, the presence of individual effects

complicates matters significantly.  For the one-way error component model with random

individual effects E(uituis) =  for any t,s = 1,2,...,T, and the joint likelihood of (y1t,...,yNt) canF2
µ

no longer be written as the product of the marginal likelihoods of the yit's.  This complicates the

derivation of maximum likelihood and will now involve bivariate numerical integration.  On the
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other hand, if there are no random individual effects, the joint likelihood will be the product of

the marginals and one can proceed as in the usual cross-sectional limited dependent variable case.

For the fixed effects model, with limited dependent variable, the model is non-linear and it is not

possible to get rid of the µi's by taking differences or performing the FE transformation, as a

result $ and F2
< cannot be estimated consistently for T fixed, since the inconsistency in the µi's is

transmitted to $ and F2
<, see Hsiao (1986).  The usual solution around this incidental parameters

(µi's) problem is to find a minimal sufficient statistic for the µi's which does not depend on the

$'s.  Since the maximum likelihood estimates are in general functions of these minimum sufficient

statistics, one can obtain the latter by differentiating the log likelihood function with respect to µi.

For the logit model, this yields the result that yit is a minimum sufficient statistic for µi.E
T

t'1

Chamberlain (1980) suggests maximizing the conditional likelihood function 

Lc = Pr(yi1,...,yiT/ yit) (8)A
N

i'1
E
T

t'1

rather than the unconditional likelihood function.  For the fixed effects logit model, this approach

results in a computationally convenient estimator.  However, the computations rise geometrically

with T and are excessive for T>10.

In order to test for fixed individual effects one can perform a Hausman-type test based on

the difference between Chamberlain's conditional maximum likelihood estimator and the usual

logit maximum likelihood estimator ignoring the individual effects.  The latter estimator is

consistent and efficient only under the null of no individual effects and inconsistent under the

alternative.  Chamberlain's estimator is consistent whether H0 is true or not, but it is inefficient

under Ho because it may not use all the data.  Both estimators can be easily obtained from the

usual logit maximum likelihood routines.  The constant is dropped and estimates of the asymptotic

variances are used to form Hausman's P2 statistic.  This will be distributed as  under Ho.  ForP2
K
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     7In cases where the conditional likelihood function is not feasible as in the fixed effects probit
case,  Manski (1987) suggests a conditional version of his maximum score estimator which under
fairly general conditions provides a strongly consistent estimator of $.

an application studying the linkage between unemployment and mental health problems in Sweden

using the Swedish Level of Living Surveys, see Björklund (1985).

In contrast to the fixed effects logit model, the conditional likelihood approach does not

yield computational simplifications for the fixed effects probit model.  In particular, the fixed

effects cannot be swept away and maximizing the likelihood over all the parameters including the

fixed effects will in general lead to inconsistent estimates for large N and fixed T.7  Heckman

(1981b) performed some limited Monte Carlo experiments  on a  probit  model  with a  single

regressor.  For N = 100, T = 8,   = 1 and  = 0.5, 1 and 3, Heckman computed the biasF2
<

F2
µ

of the fixed effects MLE of $ using 25 replications.  He found at most 10% bias for $ = 1 which

was always towards zero.  

Although the probit model does not lend itself to a fixed effects treatment, it has been

common to use it for the random effects specification.  For the random effects probit model,

maximum likelihood estimation yields a consistent and efficient estimator of $.  However, MLE

is computationally more involved.  Essentially, one has to compute the joint probabilities of a T

variate normal distribution which involves T-dimensional integrals, see Hsiao (1986).  This gets

to be infeasible if T is big.  However, by conditioning on the individual effects, this T dimensional

integral problem reduces to a single integral involving the product of a standard normal density

and the difference of two normal cumulative density functions.  This can be evaluated using the

Gaussian quadrature procedure suggested by Butler and Moffitt (1982).  This approach has the

advantage of being computationally feasible even for fairly large T.  For an application, see
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Sickles and Taubman (1986) who estimate a two equation structural model of the health and

retirement decisions of the elderly using five biennial panels of males drawn from the Retirement

History Survey.  For a recent Monte Carlo study on the random effects probit model, see Guilkey

and Murphy (1993).  Underlying the random effects probit model is the equicorrelation

assumption between successive disturbances belonging to the same individual. In a study of labor

force participation of married women, Avery, Hansen and Hotz (1983) reject the hypothesis of

equicorrelation across the disturbances, and suggest a method of moments estimator that allows

for a general type of serial correlation among the disturbances.  Chamberlain (1984) applies both

a fixed effects logit estimator and a minimum distance random effects probit estimator to a study

of the labor force participation of 924 married women drawn from the Panel Study of Income

Dynamics.  Lechner (1995) suggests several specification tests for the panel data probit model.

These are generalized score and Wald tests employed to detect omitted variables, neglected

dynamics, heteroskedasticity, non-normality and random-coefficient variations.  The performance

of these tests in small samples is investigated using Monte Carlo experiments.  Also, an empirical

example on the probability of self-employment in West Germany is given using a random sample

of 1926 working men selected from the German Socio-Economic Panel and observed over the

period 1984-1989.

Heckman and MaCurdy (1980) consider a fixed effects tobit model to estimate a life cycle

model of female labor supply.  They argue that the individual effects have a specific meaning in

a life cycle model and therefore cannot be assumed independent of the xit's.  Hence, a fixed effects

rather than a random effects specification is appropriate.   For  this  fixed  effects  tobit  model,

the  model is  given  by (7), with <it ~ IIN(0, ) andF2
<

yit = yit
* if   yit

*  > 0 (9)
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     8Researchers may also be interested in panel data economic relationships where the dependent
variable is a count of some individual actions or events.  For example, the number of patents filed,
the number of drugs introduced or the number of jobs held.  These models can be estimated using
Poisson panel data regressions, see Hausman, Hall and Griliches (1984).

    = 0 otherwise.

where yit could be the expenditures on a car.  This will be zero at time t, if the i-th individual does

not buy a car.  In the latter case all we know is that yit
* # 0.8  As in the fixed effects probit model,

the µi's cannot be swept away and as a result $ and  cannot be estimated consistently for TF2
<

fixed, since the inconsistency in the µi's is transmitted to $ and .  Heckman and MaCurdyF2
<

(1980) suggest estimating the log-likelihood using iterative methods.  Recently, Honoré (1992)

suggested trimmed least absolute deviations and trimmed least squares estimators for truncated and

censored regression models with fixed effects.  These are semiparametric estimators with no

distributional assumptions necessary on the error term.  The main assumption is that the remainder

error <it is independent and identically distributed conditional on the xit's and the µi's, for

t=1,...,T.  Honoré (1992) exploits the symmetry in the distribution of the latent variables and

finds that when the true values of the parameters are known, trimming can transmit the same

symmetry in distribution to the observed variables.  This generates orthogonality conditions which

must hold at the true value of the parameters.  Therefore, the resulting GMM estimator is

consistent provided the orthogonality conditions are satisfied at a unique point in the parameter

space.  Honoré (1992) shows that these estimators are consistent and asymptotically normal.

Monte Carlo results show that as long as N$200, the asymptotic distribution is a good

approximation of the small sample distribution.  However, if N is small, the small sample

distribution of these estimators is skewed.  Honoré (1993) extends his analysis to the dynamic

Tobit model with fixed effects, i.e., 
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     9 For good surveys of simulation methods, see Hajivassiliou and Ruud (1994) for limited
dependent variable models and Gourieroux and Monfort (1993) with special reference to panel
data.  The methods surveyed include simulation of the likelihood, simulation of the moment
functions and simulation of the score.

(10)y (

it ' *yi,t&1 % xN it$ % µi % <it

with yit = max{0, } for i=1,...,N; t=1,...,T.  The basic assumption is that <it is IID(0, ) fory (

it F2
<

t=1,...,T, conditional on yi0, xit and µi.  Honoré (1993) shows how to trim the observations from

a dynamic Tobit model so that the symmetry conditions are preserved for the observed variables

at the true values of the parameters.  These symmetry restrictions are free of the individual effects

and no assumption is needed on the distribution of the µi's or their relationship with the

explanatory variables.  These restrictions generate orthogonality conditions which are satisfied at

the true value of the parameters.  The orthogonality conditions can be used in turn to construct

method of moments estimators.  Using Monte Carlo experiments, Honoré (1993) shows that MLE

for a dynamic Tobit model fixed effects performs poorly, whereas the GMM estimator performs

quite well, when * is the only parameter of interest.

Recently, Keane (1994) derived a computationally practical simulation estimator for the

panel data probit model.  Simulation estimation methods replace intractable integrals by unbiased

Monte-Carlo probability simulators.  This is ideal for limited dependent variable models where

for a multinominal probit model, the choice probabilities involve multivariate integrals.9  In fact,

for cross-section data, McFadden's method of simulated moments (MSM) involves an M-1

integration problem, where M is the number of possible choices facing the individual.  For panel

data, things get more complicated, because there are M choices facing any individual at each

period.  This means that there are MT possible choice sequences facing each individual over the

panel.  Hence the MSM estimator becomes infeasible as T gets large.  Keane (1994) side-steps this
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problem of having to simulate MT possible choice sequences by factorizing the method of

simulated moments first order conditions into transition probabilities.  The latter are simulated

using highly accurate importance sampling techniques.  This method of simulating probabilities

is referred to as the Geweke, Hajivassiliou and Keane (GHK) simulator because it was

independently developed by these authors.  Keane (1994) performs Monte Carlo experiments and

finds that even for large T and small simulation sizes, the bias in the MSM estimator is negligible.

When maximum likelihood methods are feasible, Keane (1994) finds that the MSM estimator

performs well relative to quadrature-based maximum likelihood methods even where the latter are

based on a large number of quadrature points.  When maximum likelihood methods are not

feasible, the MSM estimator outperforms the simulated maximum likelihood estimator even when

the highly accurate GHK probability simulator is used.  Keane (1993) applies the MSM estimator

to the same data set used by Keane, Moffitt and Runkle (1988) to study the cyclical behavior of

real wages.  He finds that the Keane, Moffitt and Runkle conclusion of a weakly procyclical

movement in the real wage appears to be robust to relaxation of the equicorrelation assumption.

Heckman (1981a,b,c) emphasizes the importance of distinguishing between `true state

dependence' and `spurious state dependence' in dynamic models of individual behavior.  In the

`true' case, once an individual experiences an event, his preferences change and he or she will

behave differently in the future as compared with an identical individual that has not experienced

this event in the past.  In the `spurious' case, past experience has no effect on the probability of

experiencing the event in the future.  However, one cannot properly control for all the variables

that distinguish one individual's decision from another.  In this case, past experience which is a

good proxy for these omitted variables shows up as a significant determinant of the future

probability of occurrence of this event.  Testing for true versus spurious state dependence is
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therefore important in these studies, but it is complicated by the presence of the individual effects

or heterogeneity.  In fact, even if there is no state dependence, Pr[yit/xit, yi,t-R] … Pr[yit/xit] as long

as there are random individual effects present in the model.  If in addition to the absence of the

state dependence, there is also no heterogeneity, then Pr[yit/xit, yi,t-R] = Pr[yit/xit].  A test for this

equality can be based on a test for ( = 0 in the model

Pr[yit = 1/xit,yit-1] = F(xitN$ + (yi,t-1) (11)

using standard maximum likelihood techniques.  If ( = 0 is not rejected, we ignore the

heterogeneity issue and proceed as in conventional limited dependent variable models not worrying

about the panel data nature of the data.  However, rejecting the null does not necessarily imply

that there is heterogeneity since ( can be different from zero due to serial correlation in the

remainder error or due to state dependence.  In order to test for time dependence one has to

condition on the individual effects, i.e., test Pr[yit/yi,t-R,xit,µi] = Pr[yit/xit,µi].  This can be

implemented following the work of Lee (1987) and Maddala (1987). In fact, if ( = 0 is rejected,

Hsiao (1996) suggests testing for time dependence against heterogeneity.  If heterogeneity is

rejected, the model is misspecified.  If heterogeneity is not rejected then one estimates the model

correcting for heterogeneity.  See Heckman (1981c) for an application to married women's

employment decisions based on a three-year sample from the Panel Study of Income Dynamics.

One of the main findings of this study is that neglecting heterogeneity in dynamic models overstate

the effect of past experience on labor market participation.

In many surveys, non-randomly missing data may occur due to a variety of self-selection

rules.  One such self-selection rule is the problem of non-response of the economic agent.  Non-

response occurs, for example, when the individual refuses to participate in the survey, or refuses

to answer particular questions.  This problem occurs in cross-section studies, but it gets
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aggravated in panel surveys.  After all, panel surveys are repeated cross-sectional interviews.  So,

in addition to the above kinds of non-response, one may encounter individuals that refuse to

participate in subsequent interviews or simply move or die.  Individuals leaving the survey cause

attrition in the panel.  This distorts the random design of the survey and questions the

representativeness of the observed sample in drawing inference about the population we are

studying.  Inference based on the balanced sub-panel is inefficient even in randomly missing data

since it is throwing away data.  In non-randomly missing data, this inference is misleading because

it is no longer representative of the population.  Verbeek and Nijman (1996) survey the reasons

for non-response and distinguish between `ignorable' and `non-ignorable' selection rules.  This

is important because, if the selection rule is ignorable for the parameters of interest, one can use

the standard panel data methods for consistent estimation.  If the selection rule is non-ignorable,

then one has to take into account the mechanism that causes the missing observations in order to

obtain consistent estimates of the parameters of interest.  

We now consider a simple model of non-response in panel data.  Following the work of

Hausman and Wise (1979), Ridder (1990) and Verbeek and Nijman (1996), we assume that yit

given by equation (1) is observed if a latent variable r*
it $ 0.  This latent variable is given by

( + ,i + 0it (12)r (

it ' zN it

where zit is a set of explanatory variables possibly including some of the xit's. The one-way error

components structure allows for heterogeneity in the selection process.  The errors are assumed

to be normally distributed ,i~IIN(0, ) and 0it~IIN(0, ) with the only  non-zero  covariancesF2
, F2

0

being cov(,i,µi) = Fµ, and cov(0it,<it) = F0<.  In order to get a consistent estimator for $, a

generalization of Heckman's selectivity bias correction procedure from the cross-sectional to the

panel data case can be employed.  The conditional expectation of uit given selection now involves
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two terms.  Therefore, instead of one selectivity bias correction term, there are now two terms

corresponding to the two covariances Fµ, and F0<.  However, unlike the cross-sectional case, these

correction terms cannot be computed from simple probit regressions and require numerical

integration.  Fortunately, this is only a one-dimensional integration problem because of the error

component structure.  Once the correction terms are estimated, they are included in the regression

equation as in the cross-sectional case and OLS or GLS can be run on the resulting augmented

model.  For details, see Verbeek and Nijman (1996) who also warn about heteroskedasticity and

serial correlation in the second step regression if the selection rule is non-ignorable.  Verbeek and

Nijman (1996) also discuss MLE for this random effect probit model with selection bias. 

Before one embarks on these complicated estimation procedures one should first test

whether the selection rule is ignorable.  Verbeek and Nijman (1992a) consider a Lagrange-

Multiplier test for  Ho;  F<0 = Fµ, = 0.  The null hypothesis is a sufficient condition for the

selection rule to be ignorable for the random effects model.  Unfortunately, this also requires

numerical integration over a maximum of two dimensions and is cumbersome to use in applied

work.  In addition, the LM test is highly dependent on the specification of the selectivity equation

and the distributional assumptions.  Alternatively, Verbeek and Nijman (1992a) suggest some

simple Hausman-type tests based on GLS and within estimators for the unbalanced panel and the

balanced sub-panel.  All four estimators are consistent under the null hypothesis that the selection

rule is ignorable and all four estimators are inconsistent under the alternative.  In practice,

Verbeek and Nijman (1992a) suggest including three simple variables in the regression to check

for the presence of selection bias.  These are (i) the number of waves the i-th individual

participates in the panel, (ii) a binary variable taking the value 1 if and only if the i-th individual

is observed over the entire sample, and finally, (iii) a binary variable indicating whether the
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individual was present in the last period.  Testing the significance of these variables is

recommended as a check for selection bias.  Intuitively, one is testing whether the pattern of

missing observations affects the underlying regression.  Wooldridge (1995) derives some simple

variable addition tests of selection bias as well as easy-to-apply estimation techniques that correct

for selection bias in linear fixed effects panel data models.  The auxiliary regressors are either

Tobit residuals or inverse Mill's ratios and the disturbances are allowed to be arbitrarily serially

correlated and unconditionally heteroskedastic.

There are many empirical applications illustrating the effects of attrition bias, see Hausman

and Wise (1979) for a study of the Gary Income Maintenance experiment.  For this experimental

panel study of labor supply response, the treatment effect is an income guarantee/tax rate

combination.  People who benefit from this experiment are more likely to remain in the sample.

Therefore, the selection rule is non-ignorable, and attrition can overestimate the treatment effect

on labor supply.  For the Gary Income Maintenance Experiment, Hausman and Wise (1979) found

little effect of attrition bias on the experimental labor supply response.  Similar results were

obtained by Robins and West (1986) for the Seattle and Denver Income Maintenance Experiments.

For the latter sample, attrition was modest (11% for married men and 7% for married women and

single heads during the period studied) and its effect was not serious enough to warrant extensive

correction procedures.  More recently, Keane, Moffitt and Runkle (1988) studied the movement

of real wages over the business cycle for a panel data drawn from the National Longitudinal

Survey of Young Men (NLS) over the period 1966 to 1981.  They showed that self selection

biased the behavior of real wage in a procyclical direction.  

VIII. Further Readings
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Supplementary readings on panel data include Hsiao's (1986) Econometric Society

monograph.  This is the standard reference on the subject.  Maddala's (1993) two volumes

collecting some of the classic papers in the field.  A special issue of Empirical Economics edited

by Raj and Baltagi (1992) and a special issue of the Journal of Econometrics edited by Baltagi

(1995a).  Two recent books on panel data are Baltagi (1995b) and Mátyás and Sevestre (1996).
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