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Abstract
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of origin, and only 9% outside the country of origin. However, knowledge in highly technological sectors

flows substantially farther and knowledge generated by technological leaders does also. If compared to

trade flows, knowledge flows reach much farther. Moreover, external accessible knowledge has very strong
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1 Introduction

What do we know about the flows of technological and scientific knowledge within and across countries?

What do we know about the externalities of Research and Development (R&D from now on) within and

across countries? Thanks to the attention devoted to these issues by economists in the last ten years we

know a fair amount. Economists have improved their empirical methodology to analyze spillovers, they

have sharpened their theoretical understanding of the phenomenon of innovation and, most of all, they have

collected and made available for electronic use, large, detailed and comparable data set on Patents and R&D

both for the U.S. and other OECD countries. However, the large number of studies has not yet produced a

robust consensus on the quantitative assessment of knowledge flows and of R&D spillovers. Often different

traditions and different methods of research seem somewhat at odds with each other and hard to reconcile.

Two strands of the literature have failed to share their insights and to compare each other on quantitative

findings in part for lack of a common frame of analysis and in part for some hesitance in looking seriously at

each other’s data and methods. One branch of the literature that looks at knowledge flows and spillovers has

focussed on data at the firm-level, considering in great detail few sectors within a country and has developed

the analysis of spillovers in technological space. The roots of this literature were more in the empirical

analysis than in the theoretical modelling and Zvi Griliches can be identified as the ”father” of this line of

research. We refer to this branch as the ”micro-productivity” literature. Another branch has looked at flows

and spillovers across large aggregate units such as countries or country-sectors emphasizing the geographical

aspect of these flows. Differently from the other branch of research, the interest for international R&D

spillovers was mainly generated by the theoretical analysis introduced by the ”new growth” and the ”trade

and growth” literature. The idea of knowledge flows and R&D spillovers as key determinants of growth and

international trade was developed and popularized by Krugman [48], Romer [56], Aghion and Howitt [2]

and Grossman and Helpman [37]. Helpman had also a key role as initiator of the empirical literature. We

call this branch the ”trade-growth” literature. This paper, while more related to the trade-growth tradition,

talks to both lines of analysis and establishes a bridge between those two approaches.

Both traditions agree on general statements such as ”Knowledge flows are localized in space” (for some

definition of technological or geographical space) or ”R&D externalities are positive and significant”. How-

ever, the large variance of estimates produced, the large variety of methods adopted and the large differences

in assumptions make consensus on parameters’ estimates hard to achieve. Our goal in this paper is to frame

the issue of knowledge flows and R&D externalities in a simple empirical specification, acceptable both to

the micro-productivity and to the trade-growth tradition. We use this empirical model to define and to

estimate separately the intensity of knowledge flows on one hand and of R&D Spillovers on the other. Each
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of these two concepts corresponds to the estimates of some specific parameters.

We use a very large and very detailed data set on Patents in order to capture inventions and their linkages,

the NBER Patent and Citations Data. These data have been hardly used at all by the trade-growth literature.

However they have been extensively used and analyzed by the micro-productvity literature1. We aggregate

the information from these patents into 147 sub-national regions covering the whole Western Europe and

North America, and we merge these data with regional R&D and other regional data from OECD and

national sources. This allows us to analyze sub-national regions as units and to obtain parameter estimates

that are comparable to aggregate estimates of R&D spillovers from the trade-growth literature. However, the

sub-national nature of our analysis and the detailed treatment of sectors and technological distance, as well

as the use of patent data, allows us to compare results with cross-firms estimates from the micro-productivity

literature as well.

The rest of the paper is organized as follows. Section 2 clarifies a key distinction between knowledge flows

and R&D spillovers. Section 3 frames such distinction in a simple empirical specification. It also analyzes,

in the light of this specification, the existing literature that is surveyed by grouping existing works into the

”micro-productivity” literature and the ”trade-growth” literature and distinguishing between estimates of

”knowledge flows” and those of ”R&D Externalities”. Section 4 presents the data and discusses specification

and measurement issues. In particular we consider R&D as input of the innovation process, patents as

output of the innovation process and patents’ citations as measure of knowledge flows. Section 5 presents

the estimates of aggregate knowledge flows across the 147 European and North American regions. We

qualify our results by looking at different sectors, different periods, different specifications and comparing

localization-diffusion of knowledge flows to localization-diffusion of trade flows. Section 6 uses the estimates

of ”external accessible R&D” across regions to calculate its impact on aggregate innovative output. Section

7 concludes the paper.

2 Knowledge Flows and R&D Spillovers

It is useful, at this point, to introduce a distinction between what we call ”Knowledge Flows” and what we

call ”R&D Spillovers”. This distinction helps us to classify the recent developments of the micro-productivity

and of the trade-growth literature. It also allows us to point out the innovative contribution of the present

paper. In formal models knowledge flows (sometimes referred to as knowledge diffusion or flows of ideas)

and ”R&D spillovers” (sometimes referred to as externalities) are distinct phases of one phenomenon. They

are two distinct steps in a sequence and should be analyzed separately, where possible. Knowledge flows

1More on this later.
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are the first step and they take place whenever an idea generated by a certain institution is learned by

another institution. These flows denote a process of learning from someone else’s ideas. Learning creates

a stock of so called ”accessible knowledge” (Griliches [34]), or ”borrowed knowledge”. ”R&D spillovers”

(or externalities), however, are the second step and they exist only if this ”accessible knowledge”, learned

through learning, has a positive impact on productivity. While knowledge flows are needed to generate R&D

spillovers they do not automatically generate them. We may have a lack of R&D spillovers due to a lack of

knowledge flows or due to an insignificant effect of accessible knowledge on productivity. Particularly, when

we estimate quantitative parameters such as elasticities we need a precise distinction and estimation of each

of these two phenomena. The present paper does exactly this by carefully decomposing these two steps: we

analyze the process of R&D accumulation, the propagation of knowledge through learning and we estimate

R&D spillovers. We do this by analyzing R&D spending in 113 sub-national regions of Western Europe and

North America over 22 years (1975-1996). These regions cover about 50% of world GDP, 83% of world R&D

and 85% of world patented innovation. We estimate the effect of R&D on innovation, we measure the flows

of knowledge across 147 regions as revealed by patent to patent citation and we estimate the external effect

of R&D (R&D spillovers).

The analysis of knowledge flows as defined above has been privileged by the micro-productivity literature.

Researchers in this tradition have directed their attention to the understanding of learning relations in

technological space. They constructed matrices of technological flows between sectors from input-output

matrices (Terlecky [62], Wolf and Nadiri [63]), from invention-use matrices (Scherer [60]) or they defined

concepts of angular distance between firms or regions (Jaffe [39]) based on their sector specialization. More

recently this branch of literature has cleverly used data on patent to patent citations collected for the whole

universe of U.S. patented discoveries granted between 1975 and 19992. These citations provide an excellent

piece of information tracking knowledge flows exactly as defined above. A citation establishes a link between

the citing idea in firm r at time t + n and the cited idea in firm s at time t. With some caveats, discussed

later in detail, citations provide the ”trail in the sand” left by the act of learning and can be used to assess

its intensity.

The trade-growth literature on the other hand has been hesitant to incorporate information from the

Patent citations data or to devote much attention to technological space in its analysis of international

knowledge flows. Two alternatives have been preferred instead. Following Coe and Helpman [21], trade

flows have been considered as a good proxy for knowledge flows (for instance Keller [47]). Alternatively,

data on flows have been omitted altogether and R&D externalities have been inferred, jointly with knowledge

flows , based on cross-countries or cross region productivity correlations (Keller [47], Bottazzi and Peri [7])

2These data are described and analyzed in detail in the recently published Jaffe and Trajtenberg [41]
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or assuming a common pool of accessible R&D within a country across sectors or within a sector across

countries (Frantzen [30]).

Interestingly, the theoretical trade-growth literature has emphasized in several influential studies the

importance of analyzing international knowledge flows as channel of growth. Many theoretical studies have

explicitly emphasized the deference between trade flows and knowledge flows, arguing that the second, rather

than the first, are responsible for development and growth. Rivera Batiz and Romer [55] show that under

some assumptions ”... trade in goods has no effect on the long-run rate of growth” while ”...allowing flows

of ideas (i.e. knowledge flows) results in a permanently higher growth rate”. They go on stating that

”[f ]lows of ideas deserve attention comparable to that devoted to flows of goods”. Grossman and Helpman

[37] in Chapter 9 of their very influential book ”Innovation and Growth” point out that ”[T]he growth effect

of knowledge spillovers and those of commodity trade are conceptually distinct” and they develop models

that show how ”the most important benefit to a country from participating in the international economy

might be the access that such integration affords to the knowledge base in the world at large”. Feenstra [27]

argues that convergence in growth rates across countries takes place only if ”...trade occurs simultaneously

with international diffusion of knowledge” while if no diffusion of knowledge occurs trade could actually

generate divergence. Moreover, scientific and technological knowledge has been recognized for a long time

as an important factor of production on par with labor and capital (Solow [58] ) and its growth regarded as

the propellant of economic growth (Solow [59]).

Stimulated by these theoretical speculations one would think that the empirical trade-growth literature

has made an effort to develop better measures of international knowledge flows, explicitly differentiating

them from trade flows, and explicitly analyzing their effect on productivity growth. This has not happened

in a significant way, yet. Certainly knowledge flows are hard to define, observe and measure and our

understanding of knowledge flows is still in its infancy if compared to the analysis of trade flows. This is

why it is extremely interesting to use the very large and detailed NBER patent citation data set, containing

more than 2 million patents (1975-1999) and about 6 million citation links, to get information on regional

flows of knowledge.

Large part of the skepticism within the trade-growth literature for the citation data comes from doubts

on the real information contained in citation links. It is very important, therefore, to discuss and analyze

extensively the estimates of knowledge flows generated by these data, comparing them across sectors, over

time, across regions and with flows of goods. We do this in the first part of our paper. We also show the

importance of accounting properly for differences in the technological specialization of regions even if our

main concern is the diffusion of knowledge in space.

The second part of the paper uses the estimates of knowledge flows in order to construct measures of
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”accessible external R&D” for each of the considered regions. For a region j at time t this is the amount

of R&D conducted elsewhere and filtered (weighted) by the flows of knowledge learned by region j from all

other regions. ”Own R&D” as well as ”accessible external R&D” are treated as an input in an aggregate

production function of innovation that is estimated at the regional level. In order to have a stringent analysis

of learning externalities, without polluting it with problems of pecuniary externalities and price effects, we

analyze the impact of external accessible knowledge on aggregate innovation, measured as weighted patent

count. While the impact of knowledge flows on aggregate production is very important we leave it for

further research and we concentrate here on spillovers on the innovative output. A host of other issues arises

when we measure total factor productivity (TFP). In particular, the theoretically clean distinction between

technological externalities, channeled by learning from others, and pecuniary (or rent) externalities channeled

through input-output linkages, would be clouded by the difficulty of measuring prices precisely and adjusting

them for quality improvements. Increased R&D in region i may generate increased TFP in region j because

region i exports better quality of intermediate goods to j and the prices of intermediate goods and capital

stock in region j do not properly adjust for quality improvements (Griliches [34]) or because imperfectly

competitive prices fail to fully capture the marginal contribution of intermediate goods (Basu and Fernald

[6]). As production of innovation (patents) does not require intermediate inputs and is not evaluated using

prices but simply the quantity of patents, we minimize the role of pecuniary externalities.

3 Basic Framework and Existing Literature

Consider the measure Qit as an index of the technological development of economic unit i at time t. Fre-

quently in the literature some measure of total factor productivity has been used to capture Qit. Total factor

productivity determines how much output could be generated keeping the quantity and quality of labor and

capital inputs constant. To avoid all the measurement issues of growth accounting and to keep our focus

on knowledge flows and R&D externalities we use the measure of innovation activity of unit i at time t as

our Qit. In particular we use the (citation weighted) count of Patents granted to unit i as a measure of

its innovative output. The units chosen are sub-national regions. Assuming that R&D activity is the main

source of technological knowledge then the innovative output Qit is produced as follows:

Qit = (Ait)
γ (Aait)

µ (1)

Ait is the stock of past accumulated R&D resources invested yearly in region i (we indicate them as

R&Dit). A
a
it is the stock of past accumulated R&D resources invested in regions other than i and ”accessible”

(hence the a superscript) to region i at time t. The objective of our analysis is to construct a measure of the
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two stocks Ait and A
a
it for European and North-American regions and to estimate their impact, captured by

γ and µ, on the regional innovative output. Equation (1) can be seen as the production function of innovation,

whose inputs are Ait and A
a
it. The accumulation of Ait is simply described as ∆Ait = R&Dit − δAit where

the depreciation rate of R&D capital is equal to δ.We apply such ”perpetual inventory method” to calculate

the value of such stock.

Our main focus and contribution, however, is on the construction of Aait and on the estimate of µ. In the

presence of complete and immediate diffusion of knowledge from any region of origin into any other region

the total external knowledge stock (or knowledge ”pool” as defined by Griliches [34]) available in i would be

Aait =
P

j 6=iAjt. However, considering less than perfect diffusion of knowledge across regions, total accessible

knowledge in region i would be given by Aait =
P
j 6=i φjiAjt. In this expression φji ∈ [0, 1] is the percentage of

knowledge stock generated in region j by time t and accessible to region i. Substituting this last expression

for Aait into equation (1), taking logs on both sides and re-arranging we have the following equation:

ln(Qit) = γ ln(Ait) + µ ln(
X
j 6=i

φjiAjt) (2)

Expression (2) contains the key parameters that capture ”R&D Externalities” and ”Knowledge Flows”.

This equation says that the log level of innovative output ln(Qit), depends on the log level of the stock of

regional knowledge ln(Ait) and on the log level of the stock of external accessible knowledge ln(
P
j 6=i φjiAjt).

If the stock of external accessible knowledge has a positive impact on productivity (i.e. if µ > 0) then there

are positive R&D Spillovers. However, in order to calculate the stock of external accessible knowledge Aait

we need to estimate the intensity of knowledge flows (learning) between regions, captured by the parameters

φji. The above parametrization allows us to draw a very clear distinction between knowledge flows and R&D

externalities. The parameters φji capture the intensity of knowledge flows, they could depend on several

bilateral characteristics of the regions, their technological differences, their location and so on. They should

be estimated using the data on patent citations that reveal what part of knowledge generated in a region

at some point in time has been learned in another region by some later point in time. The parameter µ,

on the other hand, captures the R&D externalities, namely the impact of ”accessible external research”

on production. These two parameters are conceptually and empirically very different and separating them

would be important for our understanding of the knowledge-productivity link as well as for our ability of

prescribing policy implications. For instance finding a small effect of research in country j on productivity of

country i could be due to little knowledge flows between the two countries (small φji) or to a small impact

of accessible external knowledge on productivity in country i (small µ). In the first case removing hurdles

of communication between the two countries would result in higher innovative output of country i, in the
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second case it would not. While the above simple frame does not make justice of some more complex and

structural approaches to the issue of knowledge flows and R&D Spillovers we can use it for a selective and

limited, while still useful, review of the literature. We organize the review distinguishing between studies

coming from the micro-productivity tradition and focusing on firms and studies within the trade-growth

tradition focussing on international R&D spillovers.

3.1 The Micro-Productivity Literature

A little more than a decade ago Zvi Griliches ([34]) made the point and set the agenda of ”the search for R&D

spillovers”. Several pieces of empirical research followed that seminal paper and improved our understanding

of the process of knowledge diffusion and of R&D spillovers. In actuality, the micro-productivity studies were

simply the continuation and the refinements of an empirical tradition that had analyzed R&D spillovers for

a long time3. We consider here mostly work produced during the last ten years4.

A first simple method used to proxy knowledge flows across firms assumed that only firms within the

same ”technological group” (for instance two or three digit SIC sector) have knowledge flows with each other.

In this case φij = 1 for firms in the same group while φij = 0 for firms in different groups. This approach

was used, for instance, by Bernstein and Nadiri [9], [10] for the U.S. high tech industries, Bernstien and

Mohen [8] for U.S. and Japan, Bernstein and Yan [11] for Canada and Japan. Similar to this discrete type of

weighting are also those methods that use geographical information to establish location of a firm within or

outside a certain area. These studies impose φij = 1 for firms in the same county, region or within a certain

radius of distance and φij = 0 outside that (see for instance Anselin et al. [4]).

More sophisticated measures of knowledge flows define technological distance as a truly bilateral concept

and allow for different φij for each pair of firms. Jaffe [39] describes each firm as the vector of shares of R&D

(or innovative activity) of the firm in each sector. The flow φij is calculated as the uncentered correlation

coefficient between the vector of firm i and the vector of firm j. Perfect coincidence in the sectors’ shares

results in a correlation of 1 between firm i and j while perfect complementarity in R&D sectors would

generate a value of 0 of the correlation coefficient. Using a similar methodology Branstetter [16] analyzes the

impact of domestic and foreign R&D spillovers for U.S. and Japanese firms. Still trying to proxy φij with

some technological distance other authors have used ”flows” connecting firms (or sectors) i and j. Among

these Wolf and Nadiri [63] used input-output matrices, Terlecky [62] used flows of intermediate capital goods

and Scherer [60] constructed a matrix of origin-use of patents. Recently Kaiser [43] has tried to establish

3Bresnahan ([17]), Griliches and Lichtenberg ([36]), Mansfield et al.([51]), Scherer([60]), Terlecky [62], Wolf and Nadiri ([63])
are some notable examples of earlier studies.

4Far from being a complete survey the present overview of the literature is meant to give a sense of the large body of
work existing on this topic. Excellent surveys of the literature in the proper sense exist (notably Griliches[34], Mohnen [53],
Branstetter [14], Cincera [20]).
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some comparisons among the above described methods. Once φij have been used to construct A
a
it most of

the articles analyze the impact of the accessible stock of knowledge on total factor productivity or on the

innovation output of firms. There is a wide range of estimates but most of the studies find an elasticity to

external accessible R&D (µ) between one half and two times as large as the elasticity to own R&D (γ).

Finally and notably in the most recent years, thanks to the availability of new data, from the U.S.

patent office and also from the European patent office, the parameters φij have been estimated using patent

citations. This method stands out because it is the only one in which ”signs” of the presence of learning

flows are actually observed in the data. Patent citations provide evidence on learning flows without making

any a-priori assumption on their determinants (such as technological or geographical proximity). Using these

data Jaffe et al. [40] test that distance matters for knowledge flows within the U.S., Jaffe and Trajtenberg

([41], Chapter 8 and 9), Adams [1] and Jozefowicz [42] compare knowledge flows originating in Universities,

Federal Labs and or firms, Globerman et al. [32] analyze knowledge flows for Swedish firms, Maruseth and

Verspagen [50] analyze knowledge flows across European regions and Jaffe and Trajtenberg ([41], Chapter

7) analyze knowledge flows across countries. While certainly more accurate and superior in estimating

knowledge flows (φij) these studies rarely use these estimates in order to assess the impact of these flows on

productivity.

3.2 The Trade-Growth Literature

As already mentioned, large part of the tradition in the trade-growth literature followed the practice of

Coe and Helpman [21] and measured φij using trade (imports or exports) shares between country i and j.

Several ”improvements” to that paper followed. Keller [45] raised some doubts on the methodology of the

Coe and Helpman [21] study, Edmond [25], Funk [31], Kao et al. [44] applied panel cointegration techniques

to the analysis. Frantzen [29] added human capital and some estimation improvements. Coe et al. [22]

extended the analysis of R&D spillovers to seventy-seven developing countries and Madden et al. [49] to

six Asian countries. Most of these studies confirmed the original findings of strong R&D externalities (µ

as large as γ) especially from developed to developing economies. A natural extension to the use of trade

is to use flows of foreign direct investments to proxy for knowledge flows. FDI’s have long been consider

as a mean of technological transfer and imply movement of capital and know-how. Several studies such as

Braconier and Sjoholm [13] find that FDIs facilitate spillovers (found within sectors across countries but not

across sectors). Blomstrom and Kokko [12] review the main contributions of this literature. A distinctive

line of analysis pursued by Eaton and Kortum [24] adopts a more complete and structural model of trade

and growth across countries. They identify φij using flows of cross-country patenting. In particular the

share of inventions originated in country i and patented in country j is used to estimate φij .

9



Finally, some recent studies on international R&D spillovers often do not use any information on flows

in order to estimate φij but they estimate it simultaneously with µ by exploiting the correlation structure

of data on R&D, productivity and growth. Conley and Ligon [23] analyze the correlation across long-term

growth rates and find that it positively depends on ”economic distance” while Keller [47] identifies φij and

µ by estimating the effect on TFP of domestic R&D and R&D from the G5 countries. Identification relies

on the specified functional form and on the dependence of φij on geographical distance. Again, the overall

message from this literature is that µ is positive, its estimates however, vary widely.

4 Specification, Measurement and Data

Our goal is to estimate the parameters φij , γ and µ. In particular we want to characterize φij , the flow

of knowledge between region i and j as depending on a host of bilateral characteristics. Then we use the

estimated values of φij to measure the accessible external R&D for each region, Aait and we include it as

factor in the innovation function (2) to estimate the elasticity µ . In order to convince the reader that we

are using appropriate data, that our specification is robust and that we are addressing adequately several

measurement issues we describe and discuss each step of our procedure in some detail .

4.1 Knowledge Flows, Patents and Citations

We indicate the probability that a non-obsolete5 idea generated in region i at time t0 is learned in region j by

time t1 = t0+τ as φij(τ). This notation emphasizes the fact that such probability depends on characteristics

of the couple of regions i, j, and on τ , the time elapsed between the invention and the act of learning. If

there is a large number of ideas created in a region then, for the law of large numbers φij(τ) is the share of

ideas learned in region j out of those generated in region i within interval τ since their invention. Inspired

by what is done in the ”micro-productivity” literature, in particular by Jaffe and Trajtenberg ([41] chapter

6 and 7) and by Caballero and Jaffe [18], we model the share φij(τ) as follows:

φij(τ) = κef(i,j)
¡
1− e−βτ¢ (3)

The term 1− e−βτ captures the fact that ideas generated in region i become available in larger share to
any other location j as time passes. If the event of learning an idea happens with a constant probability

over time then this term captures the cumulative density of probability of learning the idea within τ years 6.

5Obsloescence of knowledge is incorporated in the depreciation used in calculating the stock of R&D of each region.
6If the event of learning of an idea has a Poisson distribution with hazard rate β then the CDF of the elapsed time before

learning has the negative exponential form of expression 3.
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However the term ef(i,j) where the function f(i, j) depends on a whole set of bilateral regional characteristics,

indicates that the intensity of learning from each sending region i to each receiving region j differ. The

main simplifying assumption embedded in (3) is that the effect of bilateral characteristics f(i, j) and the

effect of time τ interact in a multiplicative way in determining knowledge diffusion. This implies that

the relative flows of ideas across regions (not the absolute) does not depend on time elapsed τ , formally:

φij(τ0)/φkl(τ0) = φij(τ1)/φkl(τ1) = e
f(i,j)−f(k,l), for any i, j, k, l, τ0 and τ 1. In words this means that, as

time passes, more ideas that originated in region i are learned in any region, including itself, but such an

increase is proportionally the same for any region so that the relative absorption of ideas originated from

region i is constant over time. In our empirical analysis we experiment with different time intervals between

generated and learned ideas τ = 2, 4, 6 and 10.

Differently from the micro-productivity literature, in order to characterize diffusion of knowledge in a

relatively simple form we do not parametrize excessively equation (3). In particular we assume that the

share of ideas flowing from region i to j does not depend on the date (or cohort) of the sending (t0) or

of the receiving (t1) idea. Again, we explore this dimension in the empirical analysis and we find that the

assumption of constant flows for different calendar dates is supported by the data. We fix the same interval

of time τ for all regions, we collect the constant terms (including those depending on τ ) and we explicitly

express the function f(i, j) as depending on a host of geographical and technological characteristics and we

obtain the following relation:

φij = Cef(i,j) = exp[a+ b1(out region)ij + b2(out next)ij + b3(out country)ij (4)

+b4(out lang)ij + b5(out trbl)ij + b6(dist)ij + γ(Controls)ij ]

Equation (4) states that the (time-invariant) relative intensity of knowledge flows from region i to region

j depends on an exponential function of several bilateral regional characteristics. We explicitly consider six

geographic characteristics which we want to analyze in detail, while the others, concerning technological

and productive characteristics of the regions are bundled in the vector of Controls and will be considered

explicitly in the empirical sections. The bilateral characteristics considered here as determinants of the

intensity of learning from i to j are mostly dummies. (out region)ij is a dummy which equals zero if i

= j and one otherwise and indicates whether ideas crossed one regional border. (out next)ij is equal to

zero if i = j or if region i and j share a border and 1 otherwise, it indicates whether ideas crossed two

regional borders. (out country)ij is zero if the two regions belong to the same country and zero otherwise,

it indicates whether ideas passed a national border. (out lang)ij is zero if the two regions speak the same
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language and 1 otherwise. It indicates whether ideas passed a linguistic border. (out trbl)ij is one if the two

regions belong to the same trade block and one otherwise. It indicates whether ideas passed a trading-block

border. Finally (dist)ij is simply the geographical distance between region i and region j. Estimates of the

parameters b1-b6 and of γ would provide a detailed characterization of how geographic, technological and

productive characteristics affect the flows of ideas across regions. While we do not observe φij directly we

do observe patents and citations between patents. We discuss in the remaining of this section how patents

map into ideas and how citations map into flows of ideas.

There is a strict relation between the number of new ideas and the number of patents generated by

a firm or a country. Following a long tradition we identify one patent with a bundle of ideas that fulfil

the requirements of originality, non obviousness and economically profitable use. These are the standards

of patentability as defined by the U.S. patent office and since the early work by Schmookler [61] many

economists, such as Zvi Griliches, Ariel Pakes, Mark Shankerman and several others, have drawn from the

large and rich pool of patent data, considering them a measure of ”new ideas” (see Griliches [33] for a

survey). As for assigning a patent to a region, we choose the region of residence of its first inventor. This

method, as documented by Jaffe et al.[40], allows to locate each patent to the region where the idea was

actually developed by its inventor(s) rather than to the region where the paperwork for the filing procedure

was prepared (headquarters of the assignee company). The regions considered in our analysis are sub-

national territorial units in eighteen countries in Europe and North America. They correspond to areas with

some territorial unity and identity as well as administrative and policy autonomy. They are fifty federal

states plus D.C., Puerto Rico, Guam and Virgin Islands for the U.S., ten federal provinces plus Yukon and

Northwestern Territories for Canada and the so-called ”NUTS 17” regions within each of sixteen European

countries (EU15 plus Switzerland) for a total of 147 regions covering the whole Western European and

North American continents8. If each patent corresponded to one idea, the count of patents granted to region

i (denoted as Pi.) would be equal to the number of ideas generated in that region (denoted as Υi). However

different patents may have extremely different ”importance” (see, for instance, Jaffe and Trajtenberg [41]

Chapter 2). Counting all patents as containing one idea could generate distortions. This problem is much

reduced in our study as we rely on a very large number of patents in each region (Total of 1.4 million of

patents and almost 100,000 per region on average) and differences in value for single patents are of much

smaller relevance for such large aggregates. However, we allow different regions to generate patents with

different average ”importance”. Defining βi (not observable) as the average number of ideas per patent

generated in region i the relation between count of patents and number of ideas generated in region i is:

7Nomenclature Units Territorial Statistics, level 1.
8Names and distribution of these regions across countries are found in the Appendix.
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Υi = βiPi.

There is also a close relationship between learning of ideas (knowledge flows) and patent citations. Patent

applicants are required to identify the ”prior art” used in order to produce their innovative idea. They do so

by including citations to previous patents that had some relevance in developing the idea. These citations

inform us that the researcher knew about the cited idea and that such idea had some relevance in the research

process leading to the new discovery. For our purposes if we had only the citations included by the authors

of the patent we would have the best information available to establish the existence of knowledge flows9.

What introduces noise for our use of citations is the fact that reviewers added citations to the patent. These

added citations do not necessarily reveal ideas known to the author. Jaffe et al. [40] argue that the reviewers

are expert in the area and they do a systematic search in the field so that these ”added” citations should

not have any (or much less of) geographical pattern. We assume that they simply add noise to the relation

between knowledge flows and patent citations. A survey study (Jaffe and Trajtenberg [41], Chapter 12)

confirms that while citations are not a perfect measure of the inventors’ learned knowledge they contain a

large amount of information about it. Again we rely on the extremely large amount of citation couples used

(about 4.5 millions in total implying an average of about two hundreds citations for each regional couple) to

reduce the random noise. We explicitly model, however, such random component. Defining as cij the count

of citations from patent in region j to patents in region i and as Φij the actual flow of ideas from region i

to region j we assume the following relationship between citations frequency and knowledge flows:

cij = ψjΦije
εij . (5)

As the total number of citations contained in a patent is not informative of any real characteristic of

knowledge flows we include ψj to be a citing-region specific effect that allows the average number of citations

to differ across citing regions. Φij is the effective number of ideas flowed from region i to region j and eεij

is a randomly distributed disturbance where εij is zero mean random noise. Using the relationship between

patents and ideas and (5) we can derive the following relationship between the unobservable variable of

interest φij and the observable patent and citation counts:

φij =
Φij
Υi

=
cij

ψjβiPie
εij
= Cef(i,j) (6)

9Jaffe et al. [40] argue that citations not only establish a ”learning” relation but also that they are limited to those ideas
that had strict relevance to the development of the current innovation. This is because the inventors do not want to include
irrelevant citations which would be dropped by the reviewer or would excessively restrict their claims on the use of the patent.
For our purposes this restriction is not crucial. We only care that patents establish a learning relation between citing and cited
idea. The fact that the cited idea was strictly relevant or not is not so crucial to us as we do not assume (but we estimate later)
whether knowledge flows have positive effect in generating new ideas.
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The first equality comes from the definition of φij : the share of ideas learned in region j from region i is

the number of ideas learned ,Φij relative to total ideas produced in i, Υi. The second equality derives from

the relationship assumed between patents and ideas and between flows and citations, the last equality comes

from the first part of equation (4). Substituting the second part of equation (4) in (6) and rearranging we

obtain the following estimable specification:

cij = exp[ϑi + ϕj + b1(out region)ij + b2(out next)ij + b3(out country)ij (7)

+b4(out lang)ij + b5(out trbl)ij + b6(dist)ij + γ(Controls)ij + εij ]

This equation has an easy interpretation and some features that appeal both to the micro-productivity

literature and to the trade-growth literature. The dependent variable is the count of citation links calculated

for region j as citing region and region i as cited region. Such measure is clearly a proxy for the flow of ideas

learned by region j from region i. However we allow for citing region fixed effects ϕj = ln(ψj) as well as

cited region fixed effects ϑi = ln(βiPi). The first set of effects controls for different propensity to cite across

regions while the second set of controls cleans for different ”importance” and number of potentially cited

patents across regions. More in general the fixed effects control for any region-specific characteristics. Once

we control for these effects and we allow for a random error εij, we can estimate the parameters b1-b6 and γ

as the other independent variables are all observable. Such regression is familiar to the micro-productivity

literature and is often estimated using a non linear least squares regression (e.g. Jaffe and Trajtenberg

[41], Chapter 7) or, more frequently, due to the count-data nature of citations, using the negative binomial

regression (Branstetter [15]) or, given the mass of observation at 0, using a Tobit regression (e.g. Maruseth

and Verspagen [50]).

On the other hand if we take logs on both sides of (7) we obtain a linear regression. Such regression is

reminiscent of one that is heavily used in the trade-growth literature, mainly to analyze trade and is known

as ”gravity equation”10. In such equation a flow (of knowledge in this case) between region i and region j is

regressed on ”sending regions” and ”receiving regions” characteristics and on a measure of distance between

them as well as some other bilateral characteristics (such as belonging to the same country or sharing a

border). Our specification is the most general form of a gravity equation as we control very generally for

any sending and receiving regional fixed effect and we estimate parameters relative to the crossing of several

geographical borders and relative to traveling geographic and technological distances. Typically, the trade

literature estimates such equation using linear regression and omits (as logs are taken on both sides) the

10For a derivation of the gravity equation in the trade literature and a review of the main estimates obtained using it see
Feenstra [28], Chapter 5.
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couple of regions for which a zero trade link is present. In section 5 we estimate several variations of equation

(7) using all the methods mentioned above. Luckily different estimation methods give very similar coefficient

estimates.

4.2 Own R&D and Accessible External R&D Stock

While the analysis of the direction, intensity and determinants of knowledge flows is interesting in its own

right we also use it to perform a further step. We can construct bφij , the estimated share of knowledge
flowing from i to j by substituting the estimated parameters b1-b6 and γ from regression (7) into equation

(4). Such ”weights” plus the measure of the stock of non-obsolete R&D capital in each region, Ajt, are used

to construct the estimated stock of ”accessible external R&D” for each region i: Aait =
P

j 6=i bφjiAjt. One
standardization is needed in (4) to get rid of the constant a and we assume that bφii = 1. By definition the
non-depreciated stock of R&D generated in region i, Ait is fully accessible for learning to region i where it

has been generated.

Estimation of equation (2) is performed using patent count as measure of Qit. In particular in our

preferred specification we use patents weighted by the citations received during the four years after they

have been granted, in order to adjust for their relative importance. We construct the R&D stock Ait in

each region for the period 1975-1996 by using the perpetual inventory method. R&D stocks are initialized

for year 1975 assuming constant growth of R&D spending during the previous years. Specifically Ai1975 =

(R&D)i1975/(δ + gi) where δ is the depreciation rate of R&D capital and gi is the growth rate of R&D

spending in the country to which region i belongs for the period 1975-80. For the following periods the

recursive formula Ait = (1− δ)Ait−1 + R&Dit is applied. The value chosen for δ, the depreciation of R&D

capital, is 10%, as preferred by most of the literature (see Keller [47]). Finally country by time fixed effects

are allowed in the estimate. The exact form of the panel estimation for the innovation function is:

ln(Pit) = Dct + γ ln(Ait) + µ ln(
X
j 6=i

φjiAjt) + uit (8)

Pit is the citation weighted count of patents, Dct are (country by time) dummies, Ait is the ”own

stock of R&D”
P

j 6=i φjiAjt is the ”external accessible stock of R&D” and uit are zero-mean random errors

uncorrelated with the regressors.
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4.3 Regional Data

The patent and citation data used are from the NBER Patent and Citation Dataset, which is publicly

available and described in detail in Jaffe and Trajtenberg [41], Chapter 13. This data-set contains all the

patents granted by the U.S. patent office and, since 1975, all the citations made by each patent. It includes

information on the technological class of the patent and several data on the applicant and inventor. We

choose the sample of patents granted between 1975-1996 whose inventor is resident of one of the eighteen

countries considered and listed in the Appendix (all in Europe and North America). From the address of

the first inventor we assigned patents to sub-national regions. While the data set contains a code to locate

inventors in U.S. states it does not contain a code for regions in Canada or in European Countries. Using the

city and the zip code of the residence of the inventor we manually located patents in Canadian Provinces and

European NUTS1 regions with the help of Gazzetteers and of research assistants from each of the European

countries that we considered. Our final sample contains about 1.5 million patents and about 4.5 million

citation couples, distributed across 147 regions. We use all the bilateral relationships among the 147 regions

(total of 21,609 pairs some of which with 0 citations) when we estimate the ”gravity-like” equation (7). Table

1 reports some summary statistics at the regional level. Panel A shows average and standard deviation for

the number of patents granted each year to residents of the 147 regions. The average region had 426 patents

granted per year (clearly large variation over time is hidden in this table) but very large disparities across

regions exist. The least innovative region was granted a patent every four years (0.27 yearly) and the most

innovative was granted 6,434 patents per year. Panel B and C show the identity and some characteristics

of the most and of the least innovative regions in our sample. The top innovator, with a very large lead on

the second region, is California, that was granted more than 6,000 patents per year. High in the ranking

are also some German, French and British regions (mostly the regions corresponding to large cities such as

London, Paris and Hannover). They all have one thousand or more patents granted each year. The bottom

of the list is taken by Greek, Spanish and East German regions that are granted one or less than one patent

per year.

Data on R&D for the period 1975-1996 are not available for all regions. From national statistical agencies

we obtain the share of total national R&D in the business sector that is performed in each region of 9 main

countries. We then use the ANBERD data on business enterprise R&D intramural, measured in 1990

constant U.S. $ and we allocate the national aggregates according to the regional shares. This choice of

data ensures the best comparability across countries. Missing years were filled by using interpolation. This

method allows us to obtain a balanced panel for regions in all the main countries, namely the USA, United

Kingdom, Canada, Germany, France, Italy, United Kingdom, Spain and the Netherlands. These countries
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count 113 regions altogether and all of the major innovators. Most of the countries we end up not considering

in estimating equation (8) are countries made of a single region in the NUTS1 classification (Ireland, Norway,

Portugal, Sweden, Luxemburg, Finland) or countries providing very small contribution to innovation (Greece,

Austria). Again in terms of R&D intensity Table 1 shows that the regions we consider spend an average

of 1.77% of their gross product in R&D but we have some regions spending a quarter of a percentage point

(0.25%) and others spending more than 7% of their product in R&D. In general Panel B and C in Table

1 show that important innovators (top regions) spend between 2 and 4% of their GDP in business R&D,

while the regions least active in innovation spend less than 1% in R&D. The last column of Panel B and C

also show that innovation tends to be positively correlated with output per worker (data are yearly income

in thousands of 1990 U.S. $) as output per worker in top-innovative regions is roughly twice as large as in

regions at the bottom of the ranking.

Finally data on geographic distance among regions, are reported in the last row of Panel A of Table 1 and

they are expressed in thousands of Km. These distances have been calculated as the shortest air distance

between the capital cities of each region. The average distance among the sample of 147 regions is 4,400

Kilometers with maximum distance between Hawaii (USA) and Kriti (Greek Island) equal to 13,700 Km.

The average distance between a region in Europe and one in North America (i.e. the average ”transatlantic”

distance) is about 6,000 Kilometers.

5 Estimates of Knowledge Flows

5.1 Aggregate Flows, Geographical Determinants

We present in this section the results of estimating the basic specification (7). At first we consider all patents

together without differentiating across sectors. These estimates provide a measure of aggregate knowledge

flows which could depend also on the sector- composition of regional ideas. We devote the following two

sections to a detailed treatment of technological distance and of differences across technological categories.

Specification I in Table 2 is the baseline regression for this section. We estimate equation (7) taking logs

of both sides and using OLS with 147 citing-region and 147 cited-region fixed effects and we report the

heteroskedasticity robust standard errors. The dependent variable is the log of the count of citation links,

omitting self-citations11, between patents of region i and patents of region j generated within the first 10

years since the cited patent is granted. In the notation of Section 4.1 we choose t0 = 10. We are confident

11Self-Citations are citations between patents assigned to the same institution. Those citations denote, arguably, knowledge
flows, but probably should not be included in the analysis of pure R&D externalities. Companies may reward their inventors
for citing each other and for knowing about each other work. We estimated specifications including self-citations and the only
difference is that the coefficient on ”Crossing Region Border” is increased by roughly 10-15%.
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that this time-span is long enough to capture the most relevant part of knowledge diffusion. If an idea has

not been learned in ten years it is likely that it will not be very useful for innovation. However, we analyze

flows also after 2, 6 years and after the longest available period in our sample (more on this below). As some

regional couples have no citations, we simply drop those observations. This is why of the 21,609 possible

couples (147 by 147) the first specification is only estimated on 15,839. The equation and the estimation

method are akin to what the trade literature calls a ”generalized ” gravity equation used for trade flows.

We choose this as basic specification for its simplicity and for the comparability of the coefficients to those

obtained by the trade literature. Each coefficient captures the drop in knowledge flows as we move out of

the region of origin and as we pass several borders. For instance the first coefficient says that in moving out

of the region of origin average knowledge flows drop to (e−1.9) = 0.15 of their initial level. Another way of

saying it is that 85% of knowledge generated in the average region is not learned outside it but remains local.

The second coefficient says that only (e−0.43) = 65% of the 15% of knowledge flowing out of the regional

border passes the next regional border. Only 9.75% (=15%*65%) of the initial knowledge, that is, flows

outside the regions that share a border with the original one. Another 20% (= 1− e−0.20) is lost passing the
country-border leaving about 8% of the initial knowledge. Crossing a trade block border has basically no

effect, while passing a linguistic border further cuts the flow by 17%. On top of these effects, geographical

distance adds a 5% decrease for each 1,000 kilometers traveled. Each coefficient is very precisely estimated,

they are all very significantly negative (except for the effect of crossing a trade block border that is essentially

zero) and extremely robust across specifications. The estimated drop in learning as consequence of geography

is quite substantial. For instance only about 5% of the ideas generated in Connecticut are learned in Paris

which is in a different region, country, linguistic area and 6,000 Km away. On the other hand, by far the

most drastic drop takes place as we move out of the region itself, proving the very large local component of

learning.

In order to gain confidence that the count-data nature of citations and the relatively large number of

zeroes do not distort our linear estimates we use in column II and III the techniques that handle these

issues explicitly. In Column II we report estimates of equation (7) in levels and using a negative binomial

regression. The advantage of this method is that we include the zeroes and that, by assuming a generalized

Poisson process as generating the data, we account for the fact that citations are ”count data”. The method

used to estimate this model is maximum likelihood. Column III uses a Tobit regression. In particular, as

there is a large mass of data at 0, we assume that log flows have a linear dependence on their geographical

determinants but, for observation smaller than 0, we observe the variable truncated at 0. This specification

is estimated using maximum likelihood. Column II and III of Table 2 show that these two methods of

estimation deliver coefficient estimates almost identical to the simple log linear regression. In particular all
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coefficients are literally identical up to a 2% difference except for the first one (regional border effect) that

is slightly higher in absolute value when estimated with the negative binomial regression (−2.1) or with the
Tobit (−1.98). Even for this coefficient, however, both estimates are within two standard deviations of the
linear one, and quantitatively they make very little difference12. We perform negative binomial estimates

of our coefficients throughout the paper and when they are significantly different from OLS, due to the

treatment of the zero observations, we report and prefer them. However it is normally the case that these

estimates are rather similar to the OLS basic specification in which case we report only the OLS estimates.

Column IV in Table 2 investigates whether flows within a sector of technological innovation are more

or less localized than flows across them. In this specification we select only citation links within the same

3-digit class (in the International Patent Classification code). These classes are rather specific, and there

are about 400 of them13. We may think that diffusion of knowledge within a narrow field is farther reaching

than diffusion across fields. Estimates of column IV are very similar to the baseline, providing evidence that

diffusion of knowledge across fields does not exhibit significantly different localization pattern from diffusion

within fields. Such feature was already pointed out by Jaffe, Trajtenberg and Henderson (see Jaffe and

Trajtenberg [41] page175 ) when they found that within class citations do not have more tendency to be

co-located than across-class citations.

Column V to VIII explore the robustness of our estimates when we allow shorter or longer interval of

time between the citing and the cited patents. Column V and VI include citations within the first 2 years,

column VII within the first 6 years, and column VIII all citations couples in the 1975-1996 period so that

ideas generated early in the period include learning up to 20 years from their invention. Column VII and

VIII show estimates basically identical to column I. Only for the 2-year interval there is some difference,

which is probably driven by the larger number of zeroes omitted in the OLS regression, as the negative

binomial regression is extremely similar to the 10-year one. In any case even the OLS estimates do not

exhibit any important difference with the basic 10-year case, and certainly not stronger localization for the

2-year interval. Knowledge flows maintain their relative spatial distribution as time elapses, so that while

knowledge of an invention becomes more available over time it does not become relatively more available far

away than it is in the region. The pattern of regional diffusion within 2 years is pretty much representative of

the overall pattern allowing for longer delays. The way we chose to model space and time diffusion keeping

them multiplicatively interactive seems reasonably good to analyze our data. This is very fortunate as we

can focus here on geographic diffusion without risking to have a very different analysis depending on the lag

that we consider.

12The coefficient estimate using the Negative Binomial would imply 13% and the Tobit 14% of regional knowledge learned
outside the region. This as opposed to 15% estimated using the linear regression.
13Some examples of these classes are ”Robots” or ”Distillation: Apparatus” or ”Batteries”
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Before moving to further specifications it is useful to summarize the results of this section using a couple

of pictures. Figure 1 and 2 represent the estimated decay of knowledge flows as one moves from a region,

out of it, out of its neighbor, out of the country, out of the linguistic area, out of the trade block and travels

by steps of 1000 Km. In Figure 1 the total of knowledge generated in a region is standardized to 100. As we

move from left to right the lines show the fall in knowledge flows as we pass borders and as we travel farther

and farther. Six lines are reported and they correspond to the values obtained using estimates in column

I, II, III, V, VI and VII of Table 2 respectively. What is clear is the predominance of the first drop (when

moving out of the region) relative to all others and the extreme similarity of rate of decay estimated using

any specification. In order to have a better visual sense of the further decay out of the region, in Figure

2 we simply consider only what we call ”Exported Knowledge”, i.e. knowledge flows once the own regional

border has been crossed. We standardize that level to 100 and we track the decay from there on. Again we

report six lines corresponding to the estimates I, II, III, V, VI and VII in Table 2. We can still appreciate

the extreme similarity in patterns across different estimates. Now we see that out of the exported knowledge

a very significant percentage (about one half of it) flows all the way out of the trade block.

5.2 Aggregate Flows, Technological Determinants

The estimates of the previous section provide a very interesting characterization of the effect of geography and

borders on average knowledge flows, once we have controlled for citing and cited region effects. However, some

important bilateral determinants of knowledge flows are missing. In particular, some measure of distance

in technological space capturing the difference in technological fields of specialization and the difference in

technological advancement should certainly be included. As we noted above the trade-growth literature has

focused on aggregate flows and productivity and has not paid much attention to the relevance of technological

space. However there is a huge body of evidence from the micro-productivity literature analyzing this issue.

In particular, as regions with similar level of technological advancement and with similar technological fields

of specialization could be located close to each other, failing to control for ”technological distance’ may result

in overestimating the effect of geography. Table 3 shows the estimation of the basic specification with three

proxies for technological differences added as control. The first two (introduced in specification I) are meant

to capture differences in technological advancement. If it is easier to learn from regions at a similar level of

technological development, rather than from regions much more or much less advanced, these indices should

have a negative impact. The first index is simply the difference (in absolute value) of the log output per

worker (average 1991-1996). This is a coarse measure of technological development. The second index is the

difference (in absolute value) of log average real spending in R&D per worker (1991-1996). Only the second

difference has significant impact on knowledge flows. The estimated coefficient implies that a difference
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in R&D per worker between two regions of 100% would reduce flows by 21%. Very similar estimates are

obtained in Column IV that uses only citations within 2 years rather than within 10 years, as the baseline

does. Technological advancement is relevant for knowledge flows, however the estimated coefficients on all

the ”geography” variables are very similar to the basic specification in Table 2. Interestingly, the difference

in log output per worker has a significant effect when introduced by itself (regression not reported, coefficient

of 0.15). As difference in R&D per worker is probably a much better measure of technological advancement,

once we add that as a control, income differences have no further effect.

More striking is the impact of an index that proxies for technological distance. This index is constructed

following Jaffe [39] and had a very large use in the micro-productivity literature. Specifically all patents

granted to a region (call it region i) are grouped into 36 technological classes. These classes constitute

specific areas of research, are defined following international patent classification and are reported in the

appendix. The shares of regional patents (1975-1996) generated by region i in each technological class s is

calculated. A vector of shares Shi = (shi1, shi2...shi36) is then associated to each region. The uncentered

correlation coefficient (or angular distance) between the vector of region i and j, calculated as(TecCorr)ij =

(Sh0iShj)/
£P

s(shis)
2
P

s(shjs)
2
¤1/2

is a measure of ”similarity” in technological space. Its value is between

0 and 1 and it is closer to one the larger is the ”overlap” in technological classes of specialization. For perfect

overlap the index is 1, for no overlap at all the index is 0. We use (TecDis)ij = 1− (TecCorr)ij as a control
in specification II, III, V and VI of Table 3 as proxy of the technological distance between region i and region

j.

The estimates of the effect of this variable is statistically and economically extremely significant. The

OLS estimates for both the ten and two year delay specifications (Column II and V) produce similar results.

The flow between two regions specialized in totally different areas is 87-90%14 lower than the flow between

two regions with identical technological specialization. As the standard deviation of (TecDis)ij is 0.17

increasing the difference in specialization by one standard deviation reduces learning by 31-33%. Even

more dramatically, the negative Binomial estimates imply a decay of knowledge flows between 95 and 97%

going from identical to completely different specialization. Moreover the inclusion of proxies of technological

differences reduces the geographical effects. Particularly the effect of crossing the own region border and

the next region border are reduced, respectively from 1.8-1.9 to 1.3-1.5 and from 0.4 to 0.3. About twenty

percent of the previously estimated attrition in learning when moving out of the originating region and

attributed to geographical factors is, in reality, the result of technological distance.

140.87 = (1− e−2.01), 0.90 = (1− e−2.27).
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5.3 Sectors, Periods and Continents

While our focus is on aggregate knowledge flows, as technological specialization plays an important role

in determining what flows a region would get we analyze in greater detail here, the geographical behavior

of flows dividing them in large technological sectors. Moreover, as we assumed stable behavior of these

region to region flows over the years and across the two analyzed continents (Europe and North America) we

explore here to what extent the data support such assumptions. Table 4 reports the estimates of distance and

crossing borders on knowledge flows within each of six sectors. As we are only analyzing flows within a sector

we omit the controls for differences in technological specialization. We choose only patents and citations

within each sector (within ten years from the originating patent) and we perform OLS estimation including

citing and cited region effects and we report heteroskedasticity-robust standard errors. The sector estimates

are reported in column I to VI. Interestingly, the negative effect of the first two dummies (crossing regional

border and crossing next region border)on knowledge flows grows in absolute value moving from Computers

to ”Other Sectors”. The Computer sector exhibits by far the large geographical diffusion of knowledge.

Close to 40% of computer-related knowledge generated in a region is learned outside of it and 25% of it

flows all the way out of the country and linguistic area. In contrast the mechanical sector seems much more

localized with only 18% of knowledge flowing out of the originating region and a slim 7% making it out of

the country and linguistic area. Table 4 and Figure 3 (that represents graphically those estimates) provide a

representation of the ”degree of globalization” of each sector. If we think that the sector ”Others” contains

technological classes such as ”Agriculture”, ”Apparel”, ”Furniture” and ”Heating” we find that knowledge in

”hotter” technological fields, such as Computers or Biotech (contained in the category Drugs) reaches further

than knowledge in more ”traditional” technologies, such as Mechanical or Chemical. Interestingly almost all

of the geographical hurdles seem to cause a stronger attrition as we move from Computer to ”Others”. Of

the ”exported knowledge”, i.e. of that share of knowledge learned outside the region of origin, fully 50% of

computer-related knowledge reaches regions as far as 10,000 Kilometers out of the country and linguistic area.

To the contrary for knowledge in ”Other” sectors only 25% of the ”exported knowledge” reaches 10,000 Km

of distance outside the country and language area. While in the remainder of the work we analyze aggregate

flows of knowledge the above discussed results make us aware that certainly the technological composition

of knowledge affects the geographical reach of its flows.

As for the geographical reach of knowledge flows across different decades or in different continents (Europe

versus North America) Table 5 provides us some reassurance that the assumption of stability of coefficients

is reasonably good. All estimates use maximum likelihood negative binomial method because the handling of

zeroes seems to make some difference in this case. Column I and II of Table 5 show estimates for knowledge

22



flows (within 2 years) for the 1975-86 period and for the 1986-96 period, respectively. The only coefficients

that are somewhat different across the two decades are the effect of crossing the own regional border (-1.33

versus -1.45) and the effect of crossing the country border (-0.12 versus -0.20). Let’s remind the reader that

the estimates in each subperiod, using fewer observations than the overall estimates, are less precise. Given

that differences are not very significant and are in the direction of slightly larger localization of knowledge

flows in the later period (while we would expect, if anything the opposite), we interpret the differences as

due to noise and we confirm our assumption of basically identical effects. Column III and IV of Table 5

report the estimates of the effects of geographical characteristics on knowledge flows of the computer sector,

also splitting the period between 1975-86 and 1986-96. The computer sector has been the one whose share

of innovation has increased most in this period. The reader may be worried that if the geographical reach of

knowledge flows for this sector has changed, this could affect the perspectives of knowledge flows and their

future behavior. Although some small differences exist, there is no clear pattern of stronger localization

in the earlier period. Even for this sector our simplifying assumption of similar geographical diffusion

before and after 1986 seems reasonable. Finally Column V and VI compare the impact of geographical

characteristics on knowledge flows in Europe and North America. As probably expected, there is a slightly

stronger localization in Europe. Moving out of the region and its neighbors reduces learning flow by 83% of

their initial value relative to a reduction of 79% for north American regions. However these differences are

small, and it appears that linguistic borders play more of a role in Europe tan in North America15. On the

other hand the effect of ”technological distance” and of crossing a country border on learning flows appears

larger for north American regions.

5.4 Flows from Leading Innovators

Our specification appears rather robust and effective in capturing knowledge flows across regions. So far,

however, we have treated these flows as very symmetric across regions. We controlled for any region-specific

factor that affects learning flows into and out of the region, we controlled for many bilateral characteristics

that affect these flows and we analyzed differences across sectors. It is reasonable to think, however, that

technological leaders not only generate larger flows overall (fully controlled for in the regional effect), but

also generate flows with larger geographical reach, relative to other regions. When we analyze data on

innovation and research across countries, as well as across regions, we notice a very large concentration of

these activities: few regions are really main players and the others are much smaller actors. In our data, for

instance, the top 20 regions (out of 147) perform 60% of total R&D in the sample (which is about 50% of the

15Notice that the Language Effect for North America is very imprecisely estimated as it is based on two regions only (Quebeck
and Puerto Rico) that do not speak english.
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world R&D) and California, the top innovator spends in R&D ten times what the Berlin region (Germany),

which occupies a very respectable 25th place in R&D spending, does. The technological leaders, therefore,

may serve as learning source for farther regions more than an average region does. To explore this aspect we

focus on the top twenty regions in our sample, for R&D spending and we consider the learning flows from

these regions to all the others. Using average real R&D spending in the period 1992-1996 we select the top

twenty regions. Interestingly, while eleven of them are in the U.S. there are regions from many countries:

four of them are in Germany, one is in Canada, one is in France, one in the United Kingdom, one in the

Netherlands and one in Italy.

Table 6 shows the estimates of knowledge flows attrition considering only the top 20 R&D regions as

source of learning (i.e. of cited patents)16. Column I to IV repeat the estimation using patents cited within

a 2 year lag (I and II) or within a 10 year lag (III and IV), and for each of the two alternatives we report the

OLS (column I and III) and the Negative Binomial Estimates (II and IV). Very consistently and robustly

these estimates show much less geographic localization of knowledge. Ideas generated in leading regions

travel much farther in space than average ideas. In particular the first two coefficients are much smaller

than for the average knowledge specification. Even considering the most conservative estimate (Column I)

we obtain that 46% of original knowledge flows out of the region and of its neighbors, up from an estimate of

16% for the average knowledge. Also differences in technological development (difference in R&D spending)

play much less a role while, on the other hand, technological specialization has still a comparable effect to

the one estimated for average knowledge flows. Knowledge generated by technological leaders may have a

quality and importance that make it of use and relevant across the world and, for this reason, it travels

further in space than other knowledge. To convince the reader that it is not some other characteristic of the

chosen top 20 regions to drive the results, such as the fact that more than half of them are located in the U.S.,

we repeat the analysis, choosing as ”sending regions” the top 20 innovators outside the U.S. While the effect

of crossing the regional border and the country border increases slightly, the overall estimates confirm that

these flows are much more far reaching than the average flows. Such finding strengthen our confidence in the

idea that learning from technological leaders to other regions is probably a key phenomenon to understand

R&D externalities. Finally we report the usual visual representation of learning decay as borders are crossed

and distance is travelled in Figure 4. Estimates from specifications I, III and V in Table 6 are reported and

the decay of learning from the technological leaders (top three lines) is represented vis a vis the decay of

knowledge from the average region (lower line, estimated from Table 3 Column III). The visual impression

confirms a strikingly broader reach of knowledge out of the technological leaders relative to the average

region.

16We performed the same exercise using the top 15 and the top 25 regions and we obtained very similar results.
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5.5 Comparison with Flows of Trade

Our frame provided us with several very robust estimates of the effect of geographical variables on knowl-

edge flows. While our estimates reveal a high degree of localization of knowledge flows the reader may be

wondering if such degree is reasonable. How localized are these flows, relative to trade flows that we know

and understand much better? If our estimates reveal that knowledge flows are more geographically localized

than trade flows we may be rather skeptical of their validity. Knowledge flows do not require movement of

goods or people and therefore their lower cost should allow them to reach further. To our knowledge no one

in the literature has performed an empirical comparison in the geographical scope of knowledge and trade

flows.

The trade literature has extensively estimated the effect of geographical variables on total trade flows.

In particular the effect of two variables has been studied in great detail: the effect of distance and the

effect of crossing a country border. As we have precise estimates of these effects on learning flows too we

concentrate on these two. The trade literature has used the ”gravity” specification in order to estimate

these effects and, as we noted above, our specification is similar and easy to compare to a gravity equation.

Table 7 reports the estimates of the effect of distance and crossing the country border on knowledge flows.

To ensure maximum comparability with the existing trade estimates we enter distance linearly (rather than

exponentially) in equation (7), so that in the OLS estimates distance enters in logs as is commonly done in

the trade specification. We omit citation linkages of the region with itself (as trade data do not have those

links) and we include the whole set of citing and cited region fixed effects. Again to increase comparability we

do not include other controls (such as proxies for technological distance) as they are normally not included

in trade estimates. Column I, II and III show the estimates for knowledge flows considering the computer

sector only, flows from the technological leaders and average flows respectively. Column IV and V report the

estimates of border effect and distance on trade from recent estimates of the gravity equation. In particular

equation IV uses the estimates from Anderson and Van Wincoop [3] and equation V from Feenstra [27].

These estimates are improvements, as they fully control for regional fixed effects, on the original Mc Callum

[52] estimates that are reported in Column VI. Figure 5 shows what effect on decay of knowledge flows these

estimates imply. While it is confirmed that knowledge flows from technological leaders and in the computer

sector are significantly more mobile than average knowledge flows, the most evident feature from the picture

is that all knowledge flows reach much farther than trade flows. According to the most recent estimates

(defined as Trade I and II in figure 5) crossing a country border decreases trade by 80% while at 10,000 Km

distance only 5-6% of the initial volume of trade is left. To the contrary fully 80% of original knowledge

(85% for computer knowledge) is learned outside a country and 50% of it (65% for computers) is learned

25



as far as 10,000 Km away. Both the effect of country borders and of distance are 4 to 5 times smaller on

average knowledge flows than on trade flows and the effect on knowledge flows from the technological leaders

is 40 to 50% smaller than for average knowledge.

5.6 Comparison with Existing Estimates of Knowledge Flows

Our estimates could be compared with some existing estimates of the geographical reach of knowledge flows.

First we compare them to existing estimates that use same citation data in characterizing domestic (Jaffe et

al. [40] ) or international (Jaffe and Trajtenberg [41] Chapter 7) diffusion of knowledge. Then we compare

them to similar estimates that use European Patent data (Maruseth and Verspagen [50]). Finally we compare

them with important recent estimates in the trade-growth literature that use only productivity data and

distance to infer R&D spillovers (Keller [47]).

The initial and influential work that assessed the degree of localization of knowledge flows using citations

across patents was Jaffe et al. [40]. They used a much smaller sample limited to the U.S. and a very

different method to estimate localization. However from the coefficients reported in their Table III we can

recover some effects that could be compared to ours. Considering their sample without self-citations and

with originating cohort 1980 (Column 4,5 and 6 in the ”Matching by State” panel) they estimate a drop of

citation flows moving out of the state17 (corresponding to our ”region” for the U.S.) of 50-60%. Our most

comparable estimates (for North America only, column VI Table 5) give a drop of about 70% moving out

of the region. For the country border effect, Jaffe et al. [40]18 estimate a drop by 12-15% of citation flows

and our preferred estimate put that drop at 12% for the period 1975-1986 (Column I Table V) or 18-20%

for the 75-96 period overall (Column III and VI, Table 3).

Jaffe and Trajtenberg [41] Chapter 7 reports some estimates of knowledge diffusion across US, UK,

Germany, France and Japan. The authors insist on the interaction between geographical diffusion and

citation lags and their estimates are hard to compare to ours and to reconcile to the ”trade-growth” estimates

in general. However their figures 2-6 (pages 221-223) provide some reassurance to our assumption. During

the first 10 years after granting a patent, when the bulk of citation to a patent takes place, the relative

frequency of citation to patents in different countries remains quite stable. All citation frequencies tend to

peak at 3-4 year lag and then decrease but the relative ranking of citing countries for each cited country tends

to remain remarkably stable. To a first degree of approximation the passing of time affects total frequency

(i.e. total knowledge flows) but not the relative frequency of country to country citations.

The most comparable work to ours in terms of geographical units considered and methods is certainly

17We obtain this effect by comparing their matching fraction within SMSA relative to the matching fraction of the control
group.
18Panel ”Matching by Country”, Column 3,4 and 5 of their table III
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Maruseth and Verspaghen [50]. They use Citations between European-granted patents located in 112 Euro-

pean regions. From their Table 2, page 541, we read their estimated effects of (log) distance, of crossing a

linguistic border and a country border. The first estimate ranges between 0.29 and 0.38, the second between

0.20 and 0.28 and the third between 1.53 and 1.56. The first two effects are rather similar to our estimates.

We estimate the effect of Log distance (Column III, Table 5) on average knowledge flows at 0.20 and the

effect of a linguistic border (Column III Table 3) at 0.18. To the contrary our estimate of the country-border

effect is significantly smaller than theirs (ranging between 0.12 and 0.20). As their estimates of country

border effects are as high as those estimated in the literature for trade flows (See our Table 7 column IV

and V) we wonder if the process of patent revision at the European Patent Office generates an excessive

own-country bias in the citation procedures. Confirming our worries, the authors warn us in their article

that, contrarily to what is done in the U.S., the majority of citations are added by reviewers rather than by

inventors in the European Patent Process19.

Finally let us compare our estimates to an estimate of geographical reach of R&D spillovers from the

recent trade-growth literature. Let us warn the reader that we are almost comparing apples and oranges

here. We consider Keller [47] estimates of the effect of R&D in a G5 country on productivity in other

9 countries. Such method uses simply the correlation over time between sector productivity in a country

and the stock of own and external R&D. Flows (of knowledge or trade) are not considered as carrier

of externalities. Keller finds that the available external knowledge stock is reduced by 50% traveling 162

Kilometers in space. This effect should be compared to our country-border plus distance effect when we

estimate a specification comparable with the trade estimates (Table 7). From Figure 4 we see that our

estimates imply that only at 8,000 Km of distance from a region, the original knowledge is reduced by one

half. Even the existing estimates of distance effect on trade imply a 50% decrease in flows only at 2,000 Km

distance. Keller’s estimates reveal a degree of spatial localization of external effects on productivity that

seems much stronger than what characterizes knowledge and even trade flows. We may think that those

estimates capture localization of other characteristics correlated to R&D and productivity (institutions or

sectorial business cycles) or that diffusion of R&D spillovers is not really channeled by trade or knowledge

flows but by some more localized process. In summary our estimates seem to reveal a degree of localization

of learning consistent with what revealed by other studies of patent citation but significantly lower than

localization of trade or localization of productivity levels.

19Maruseth and Verspaghen [50], page 534.
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6 Estimates of R&D Spillovers

The final task of this article is to analyze R&D spillovers, i.e. the effect of external accessible knowledge on

the generation of new ideas. We do this by estimating equation (8) after constructing the external accessible

R&D (Aait) using the estimates of knowledge flows obtained in the previous section. To convince the reader of

the robustness of our results and to best address some endogeneity issues we use four different specifications

of Aait and two different panel estimation methods.

6.1 R&D Spillovers on Innovation

We showed that flows of knowledge out of the top 20 innovators reach substantially farther than average

knowledge flows. We consider, therefore, as source of relevant spillovers these top 20 regions. Our basic

specifications considers as accessible external knowledge only that flowed out of top 20 innovators. We

use estimates of flows within 10 years as benchmark for long-run knowledge diffusion but we also consider

flows within two years. In our first two estimates we use the following constructions as external accessible

knowledge: (Aait)
Top20
10yrs =

P
j∈Top20(bφ10yrsji Ajt) and (A

a
it)
Top20
2yrs =

P
j∈Top20(bφ2yrsji Ajt−2). The first variable

captures external accessible knowledge estimated using bφ10yrsji which are the weights obtained using coefficient

in specification IV, Table 6. Alternatively the second variable uses bφ2yrsji which are the weights obtained using

coefficient in specification II, Table 6. The only difference is that the first specification considers the intensity

of knowledge flows as estimated after 10 years, while the second specification uses them after two years only.

As we pointed out in the previous section the relative flows are not very different across years, however using

flows in the ”short run” (2 years) can be important when we identify the externality on the year to year

variation of the innovation function. Table 8 reports the long run estimates of elasticities of innovation to

own R&D and accessible external R&D measured as described above. In this analysis we are limited to

113 regions for the period 1975-1996. The regional composition of R&D spending can be recovered for the

whole period only for regions of the U.S., U.K., Germany, France, Canada, Italy, the Netherlands and Spain.

Moreover, in order to minimize endogeneity problems of the variable ”accessible external R&D” we do not

include the top 20 regions in the analysis as ”receivers” of R&D spillovers. Estimates of Table 8 include

innovation generated in the other 93 regions considering their own R&D and external accessible R&D from

top 20 regions as inputs. The measure of innovation (dependent variable) is ln(Pit) where Pit is the count

of patents granted to region i in year t and weighted for the citations received during the first 4 years

after granting for Column I and II while it is the simple count of patents for column III and IV. Weighting

patents for citations received helps accounting for the ”importance” of patents as new ideas (see Jaffe and

Trajtenberg [41] Chapter 2), however the estimates are rather similar using weighted or unweightd patents.
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We fully control for country by year fixed effects. This allows different countries to have different balanced

growth paths in their ”innovation function”. We identify the parameters on the cross-regional differences

within a country. Such method estimates what we can consider as ”long run” elasticities of innovation to

R&D, or ”between” estimates.

Columns I to IV of table 8 show very similar elasticity estimates. The elasticity of innovation to own

R&D is estimated between 0.60 and 0.64 while the elasticity of innovation to accessible external R&D is

estimated at 0.94-0.97. The first estimate is extremely precise (robust standard errors around 0.01) while

the externality is a bit less precisely estimated (robust standard errors are 0.10-10.11). The estimates of

elasticity of innovation to R&D are similar to those found in Branstetter [16] (0.72), Pakes and Griliches

[54] (0.61) and Bottazzi and Peri [7] (0.7-0.8). The estimates of the external effect of R&D are roughly 50%

larger than the own effect. This value is roughly at the median of the existing estimates from the micro

literature (see Griliches [34]). If we do a formal test the hypothesis that the elasticity to own R&D is smaller

than elasticity to external R&D is not rejected by the data. As external accessible R&D originates in top

innovating regions we may expect this larger effect to be due to higher quality of R&D in those regions.

Table 9 checks that limiting our attention to external R&D from top 20 regions is a very reasonable

strategy. In Columns I to IV we include as external accessible R&D, flows of knowledge from all regions (not

only top 20). Again we repeat the analysis for knowledge flows within 10 years (estimates Column I and III)

and within 2 years ( estimates in Column II and IV). The correlation of the measures of external R&D using

all regions and using top 20 regions only is extremely large (0.99) confirming that flows from top regions

capture most of the action. While the estimate of elasticity to own R&D increases somewhat (0.68-0.73),

the estimate of externalities decreases slightly (0.70-0.84). Now we cannot reject the hypothesis that own

and external accessible R&D have the same impact on innovation. The estimates of elasticity to external

R&D using all regions confirm that learning from non-leaders does not play such a big role in generating

R&D externalities, in fact including those regions ”dilutes” the externality somewhat.

Table 10 shows estimates of our panel, controlling for region effects and year effects. Such estimates

identify the ”year to year” within region elasticity of innovation to own and external accessible R&D. We

consider this as ”short run” estimates of the elasticity of innovation to R&D. Given that the strategy focuses

on year to year variation we only use the stock of available R&D constructed using the ”short-run” knowledge

flows (within 2 years). Column I and II present the estimates considering weighted patents as measure of

innovation and externalities from the top 20 or from all regions. The short-run elasticity of innovation to

R&D is 0.26-0.30. Such value is about a half of the long run elasticity and the external effect is around

0.45-0.5. Using the preferred specification in Column I, we have that external accessible knowledge stock

from top 20 innovators has an impact on innovation 50% larger than own R&D. Moreover adding other
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regions as sources of external accessible knowledge (from column I to II) dilutes the estimated impact of

accessible R&D (elasticity decreases from 0.49 to 0.43). It is a very common occurrence to find a much

smaller effect of R&D on productivity or patenting when we consider the time-series variation rather than

cross-sectional analysis. While some people include lagged values of R&D in order to capture lagged effects

we use the present specification to provide an estimate of the short-run effect while we believe that our

previous estimates of Tables 8 and 9 capture the long run effect. Column III and IV report the results

obtained using unweighted patent count as measure of innovation. Probably the year to year variation of

this variable is an extremely noisy measure of innovation. The estimates of R&D elasticity are slightly

reduced and the external R&D effect is strongly reduced. However, considering the specification of flows out

of the top 20 regions, we still have positive and significant effect of external R&D, of the same magnitude as

the own R&D elasticity. As expected, these estimates based on the short run variation are less precise and

more variable than the long run estimates. All specifications provide evidence or R&D externalities between

the same level and 50% larger than the effect of own R&D.

6.2 Examples

The estimated elasticities provide evidence that external accessible knowledge is extremely important for

innovation, that the role of top innovators in generating the relevant external knowledge is predominant.

Our method of calculating knowledge flows and testing for R&D learning externalities confirms the existence

and importance of these. Few examples of the effect of R&D on innovation would convince us that in spite

of the large elasticity to external accessible R&D the impact of one region’s R&D stock on innovation of

another region is quite small. The only exception being California, which spends for R&D and patents

overwhelmingly more than any other. Some examples will help to provide an idea of the magnitude of these

effects. For instance if the stock of R&D in California, the largest innovator in our sample, were to double

in year 1996 of our sample, innovation in California would increase by 30% immediately and by 71% in the

long run. The region most affected by this change would be Arizona whose external accessible R&D would

increase by 30% (calculated using estimates Column III, table 6) so its innovative activity would increase by

13% in the short run and by 36% in the long run in Arizona. The effect of such an increase on, say, the Berlin

region (Germany) would be to increase accessible external knowledge by 12% and innovation by 5.2% in the

short run and 8.5% in the long run. The effects are large, due to the overwhelming importance of California

in the world R&D. Considering other important but not so prominent regions gives much smaller effects. A

100% increase of stock of R&D in a region like Paris (France) would increase external accessible R&D in,

say, New York by only 3% and even in Berlin by only 7%, having a long-run impact on their innovation of

4.8% and 8.4% respectively.
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7 Conclusions

The importance of R&D externalities has been recognized by the trade-growth literature for awhile, however,

due to the lack of data on learning and knowledge flows trade has been considered as the international carrier

of these externalities. We believe that there is much to be learned by using a very large and detailed data set

on citations across patents, developed and used extensively by the micro-productivity literature. The present

work uses data on 4.5 million citations across patents generated in Europe and North America to construct

knowledge flows across 147 regions and to estimate how learning depends on geographical, technological and

other regional characteristics. We obtain very robust estimates that show only 15% of average knowledge

flowing out of the average region and being learned elsewhere. Moreover, another 36% drop in learning takes

place when crossing the next regional border and a further 20% drop when passing the country border. If this

is true, on average we find that technological specialization and development make a huge difference. First

we find that ”hotter” technologies such as Computer or Drugs, are learned much farther than the average.

Second we find that technological leaders (top 20 regions in R&D) generate knowledge that is learned further

and in larger shares. Third we find that differences in technological specialization are a huge hurdle to such

knowledge flows. These features would be lost if we were to assimilate knowledge flows to trade flows.

The advantage of our approach is that knowledge flows are estimated using a gravity equation, very

popular among trade economists and could be quantitatively compared to trade flows. It turns out that

knowledge flows, although localized, are much less reduced by distance and country borders than trade flows.

Finally, to confirm that the identified learning flows are relevant to regional innovative activity we estimate

the impact of accessible external knowledge on innovation. We find that R&D spillovers from top 20 regions

have an impact on innovation of regions often larger than own R&D stock in the short run as well as in the

long run.
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A List of Regions

Austria: OSTOSTERREICH, SUDOSTERREICH,WESTOSTERREICH.Belgium: BRUXELLES, VLAAMS

GEWEST, REGIONE WALLONNE. Canada (Provinces): NEW FOUNDLAND, PRINCE EDWARDS IS-

LAND, NOVA SCOTIA, NEW BRUNSWICH, QUEBECK, ONTARIO, MANITOBA, SASKATCHEWAN,

ALBERTA, BRITISH COLUMBIA. Denmark: DENMARK. Finland: FINLAND. France: ILE DE

FRANCE, BASSIN PARISIENNE, NORD-PAS DE CALAIS, ESTE, OUESTE, SUD-OUEST, CENTRE-

EST, MEDITERRANEE. Germany (Landers): BADEN-WURTTEMBERG, BAYERN, BERLIN, BRAN-

DENBURG, BREMEN, HAMBURG, HESSEN, MECKLENBURG-VORPOMMERN, NIEDERSACHSEN,

NORDRHINE-WESTFALIA, RHEINLAND-PFALZ, SAARLAND, SACHSEN, SACHSEN-ANHALT, SCHLESWIG-

HOLSTEIN, TURINGEN.Greece: VORAIA ELLADA, KENTRIKI ELLADA, ATTIKI, NISIA AIGAIOU,

KRITI. Ireland: IRELAND. Italy: NORD OVEST, LOMBARDIA, NORD-EST, EMILIA ROMAGNA,

CENTRO, LAZIO, ABRUZZO-MOLISE, CAMPANIA, SUD, SICILIA, SARDEGNA. Luxemburg: LUX-

EMBURG. Norway: NORWAY. Portugal: PORTUGAL. Spain: NOROESTE, NORESTE, COMU-

NIDAD DE MADRID, CENTRO, ESTE, SUR, CANARIAS. Sweden: SWEDEN. Switzerland: RE-

GIONE LEMANIQUE, ESPACE MITTELAND, NORTHWESTSCHWEITZ, ZURICH, OSTCHWEITZ,

ZENTRALSCWEITZ, TICINO.United Kingdom: NORTH, YORKSHIRE AND THE HUMBER, EAST

MIDLANDS, EAST ANGLIA, SOUTHEAST, SOUTHWEST,WESTMIDLANDS, NORTHWEST,WALES,

SCOTLAND, NORTHERN IRELAND. USA (States): ALABAMA, ALASKA, ARIZONA, ARKANSAS,

CALIFORNIA, COLORADO, CONNECTICUT, DELAWARE, D.C., FLORIDA, GEORGIA, HAWAII,

IDAHO, ILLINOIS, INDIANA, IOWA, KANSAS, KENTUCKY, LOUISIANA, MAINE, MARYLAND,

MASSACHUSSETS, MICHIGAN, MINNESOTA, MISSISSIPI, MISSOURI, MONTANA, NEBRASKA, NEVADA,

NEW HAMPSHIRE, NEW JERSEY, NEW MEXICO, NEW YORK, NORTH CAROLINA, DAKOTA,

OHIO, OKLAHOMA, OREGON, PENNSYLVANIA, RHODE ISLAND, SOUTH CAROLINA, SOUTH

DAKOTA, TENNESSEE, TEXAS, UTAH, VERMONT, VIRGINIA, WASHINGTON, WEST VIRGINIA,

WISCONSIN, WYOMING.

B List of Patent Categories

CHEMICAL {Agriculture, Food, Textile, Coating, Gas, Organic Compounds, Resins, Miscellaneous Chem-
icals}, COMPUTERS {Communications, Computers Hardware and Software, Computer Peripherals, Infor-
mation Storage}, DRUGS {Drugs, Surgical and Medical Instruments, Biotechnology, Mischellaneous medi-
cal}, ELECTRONICS {Electrical Devices, Elactrical Lighting, Measuring and Testing, Nuclear and X-Rays,
Power Systems, Semiconductors, Miscellaneous Electronics}, MECHANICAL {Material Processing and Han-
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dling, Metal Working, Motor and Engines, Optics, Transportations, Miscellaneous Mechanical}, OTHERS
{Agriculture Husbandry and Food, Amusement Devices, Apparel, Earth Working and Wells, Furnitures,
Heating, Pipes and Joints, Receptacles, Miscellaneous others}

C Patent and R&D Data

• Europe:

Main Source for Data on R&D: Eurostat Regio Database

(http://europa.eu.int/comm/eurostat)

For Italy, France and Germany we referred to national statistical agencies.As there were some missing

values for some regions we interpolated existing values or we imputed regional values using the share of

national R&D in the region from a previous year applied to the national Figure for the year. The following

is the detailed description of the interpolated and imputed data:

France shares available from Eurostat 89-94;1975-1988: used regional shares from 1989. 1995-96:used

regional shares from 1994

Germany’s shares available from Eurostat 88,87,89,91,93. 1975-1984,1986: used regional shares from

1985

1988 used regional shares from 1987.1990used regional shares from 1989 1994-1996, used regional shares-

from 1993

Spain’s shares available From Eurostat 86-94; 1975-1985:used regional shares from 1986. 1995-96:used

regional shares from 1994.

Italy’s shares available from Eurostat 91-94 and from ISTAT 95-69;1975-1990:used regional shares from

1991

UK’s shares available from Eurostat 93-95; 1975-1992: used regional shares from 1993. 1996 used regional

shares from 1995

• U.S.A.:

Main Source: National Science Foundation/Division of Science Resources Studies, Survey of Industrial

Research and Development: 1998.

• Canada:

Main Source: The document Cat No. 88F0006XIB01001” Estimates of Canadian Research and De-

velopment Expenditures(GERD), Canada, 1979 to 2000, and by Province 1979 to 1998.” obtained from

www.statcan.org.
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For all regions we used the national data to determine for the available years the distribution within a

country. We used then the ANBERD data on real business R&D spending 1975-96 and divided it across

regions using the regional shares calculated as above.
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Tables and Figures  
 

 
 

Table 1 
Descriptive statistics relative to 147 regions in Europe and North America 

 
 

Panel A: Summary Statistics 
Variable Mean Std. 

Deviation 
Min Max 

Number of  average yearly granted patents 
1975-1996 

426 830 0.27 6,434 

Share of GDP spent in R&D 
Average 1975-1996 

1.77% 1.23% 0.27% 7.69% 

Number of total region to region citations without 
self, c(r,s) 

171 1147 0 99,137 

Geographical distanceb (d1) 4.44 3.22 0 13.70 
 
 
 

Panel B: Top Patenting Regions in Top Countries 
Region Country Yearly 

patents 
(average 75-
96) 

R&D 
spending 
(% GDP, 
75-96) 

GDP per 
worker, 
average 91-96 

California (overall rank: 1) USA 6434 3.86% 52,000 
New York (overall rank: 2) USA 3856 2.00% 59,200 
New Jersey (overall rank: 3) USA 2978 3.59% 59,200 
NorthRhine Westfalia (overall rank: 10) GER 1507 1.86% 63,900 
Baden –Wurtenberg (overall rank: 11) GER 1423 2.93% 63,600 
Ile de France (overall rank: 16) FRA 1104 3.51% 83,000 
Southwest UK (overall rank: 17) UK 976 3.45% 61,300 

 
 
 

Panel C: Bottom Patenting Regions 
Region Country Yearly patents 

(average  
75-96) 

R&D spending 
(% GDP, 75-
96) 

GDP per 
worker, 
average 91-96 

Sachsen-Anhalt GER 1.00 1.50% 30,200 
Mecklenburg-Vorpommern GER 0.91 1.14% 29,400 
Prince-Edwards Island CAN 0.86 0.71% 31,600 
Centro Espana SPA 0.64 0.44% 40,400 
Kentriki Ellada GRE 0.41 0.27% 28,500 
Kriti GRE 0.27 0.53% 28,000 

 
 
 
 
Notes: Citation frequencies are calculated omitting self-citations, i.e. citations between patents whose first authors belong to the same 
company-institution.  
a: Millions of 1993 U.S. $ 
b: Thousands of Kilometers 
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Table 2 

Geographical Determinants of Average Knowledge Flows 
 

Specification I 
Baseline: 
Within  
10 year 

II 
Negative 
Binomial  
Within  
10 year 

III 
Tobit 
Within  
10 year 

IV 
Same  
3-digit 
Within  
10 year 

V 
Within  
2 years 

VI 
Negative 
Binomial  
Within 2 
years 

VII 
Within  
6 years 

VIII 
All 
couples 

Crossing  
Region Border 

-1.91* 
(0.07) 

-2.05* 
(0.04) 

-1.98* 
(0.06) 

-1.91* 
(0.02) 

-1.80* 
(0.05) 

-2.05* 
(0.05) 

-1.91* 
(0.07) 

-1.90* 
(0.07) 

 Crossing  
next-Region Border 

-0.43* 
(0.02) 

-0.45* 
(0.02) 

-0.45* 
(0.03) 

-0.44* 
(0.03) 

-0.37* 
(0.03) 

-0.40* 
(0.03) 

-0.42* 
(0.02) 

-0.43* 
(0.02) 

Crossing  
Country Border 

-0.19* 
(0.02) 

-0.18* 
(0.01) 

-0.19* 
(0.02) 

-0.19* 
(0.02) 

-0.21* 
(0.02) 

-0.18* 
(0.02) 

0.20* 
(0.02) 

-0.20* 
(0.02) 

Crossing  
Trade-Block Border 

0.05 
(0.03) 

0.06* 
(0.03) 

0.05 
(0.03) 

0.05 
(0.03) 

0.06 
(0.03) 

0.05 
(0.03) 

0.06 
(0.03) 

0.04 
(0.03) 

Crossing  
Linguistic Border 

-0.19* 
(0.01) 

-0.20* 
(0.01) 

-0.19* 
(0.02) 

-0.17* 
(0.02) 

-0.11* 
(0.02) 

-0.20* 
(0.02) 

-0.18* 
(0.01) 

-0.17* 
(0.01) 

1000 Km farther  -0.05* 
(0.002) 

-0.05* 
(0.001) 

-0.05* 
(0.002) 

-0.05* 
(0.002) 

-0.05* 
(0.002) 

-0.05* 
(0.002) 

-0.05* 
(0.002) 

-0.05* 
(0.002) 

Citing Region 
 Fixed Effects 

Yes Yes Yes Yes Yes Yes Yes Yes 

Citied Region 
 Fixed Effects 

Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 15378 21609 21609 14,395 12807 21609 14019 15839 
Log-Likelihood  -65584.92       
R2 0.91 na na 0.89 0.86 na 0.89 0.92 
Original Total Number of 
Citations 

2,864,298 2,864,298 2,864,298 1,589,958 528,829 528,829 1,977,435 4,710,215 

 
 

Notes: Citations  are calculated omitting self-citations, i.e. citation within the same institution. Heteroskedasticity-robust standard errors in 
parenthesis.  
*= significant at 1% confidence level. 
Specification I:  Dep. Variable ln(citations), Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 
1984-1996, Cited Years 1975-1996. Some region-couples have 0 citations links and they have been omitted from the regression. This is 
consistent with what done by the trade gravity model. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification II:  Dep var: number of citations. Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 
1984-1996, Cited Years 1975-1996. All couples of citing-cited regions in the period 1975-1996 were included. Method of estimation: Maximum 
Likelihood,  negative binomial regression. Asymptotic standard errors in parenthesis. 
Specification III:  Dep. Var ln(citations+1), data as in Specification II. Method of Estimation is Maximum Likelihood Tobit with data censored 
at 0. Asymptotic standard errors in parenthesis. 
Specification IV: Dep var: ln(citations). Same 3-digits Class couples of citing and -cited patents.  Citing years 1984-1996, Cited Years 1975-
1996. Some region-couples have 0 citations links and they have been omitted from the regression. This is consistent with what done by the trade 
gravity model. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification V: Dep. Variable ln(citations), Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 
1976-1996, Cited Years 1975-1996. Some region-couples have 0 citations links and they have been omitted from the regression. This is 
consistent with what done by the trade gravity model. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification VI: Dep var: number of citations. Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 
1976-1996, Cited Years 1975-1996. Method of estimation: Maximum Likelihood , negative binomial regression. Asymptotic standard errors in 
parenthesis. 
Specification VII: Dep. Variable ln(citations), Only citing-cited links less than 6 years apart (from citing to cited) are included. Citing years 
1982-1996, Cited Years 1975-1996. Some region-couples have 0 citations links and they have been omitted from the regression. This is 
consistent with what done by the trade gravity model. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification VIII: Dep. Variable ln(citations), All citing-cited are included. Citing years 1974-1996, Cited Years 1975-1996. Some region-
couples have 0 citations links and they have been omitted from the regression. This is consistent with what done by the trade gravity model. 
Method of estimation: OLS with heteroskedasticity- robust std. errors. 
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Table 3 
Robustness Checks 

 
 

Notes: Citations  are calculated omitting self-citations, i.e. citation within the same institution.  Heteroskedasticity-robust standard errors in 
parenthesis.  
 
*= significant at 1% confidence level. 
a: difference in ln average real income per worker (1991-1996)   
b: difference in ln average real R&D spending per worker (1991-1996)   
 
Specification I: Dep. Variable ln(citations), Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 1984-
1996, Cited Years 1975-1996. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification II: Dep. Variable ln(citations), Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 1984-
1996, Cited Years 1975-1996. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification III: Dep. Variable: count of citations, Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing 
years 1984-1996, Cited Years 1975-1996. Method of estimation: maximum likelihood, Negative Binomial . 
Specification IV: Dep. Variable ln(citations), Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 1976-
1996, Cited Years 1975-1996. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification V: Dep. Variable ln(citations), Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 1976-
1996, Cited Years 1975-1996. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification VI: Dep. Variable: count of citations, Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 
1976-1996, Cited Years 1975-1996. Method of estimation: maximum likelihood, Negative Binomial . 
 

 
 
 
 
 

Specification I  
OLS  
Within  
10 years 

II  
OLS  
Within  
10 years 

III 
Neg. Bin.  
Within  
10 years 

IV 
OLS  
Within  
2 years 

V 
OLS  
Within  
2 years 

VI 
Neg. Bin. 
 Within  
2 years 

Crossing  
Region Border 

-1.80* 
(0.06) 

-1.34* 
(0.06) 

-1.50* 
(0.06) 

-1.75* 
(0.06) 

-1.30* 
(0.05) 

-1.45* 
(0.06) 

Crossing  
Next-Region Border 

-0.40* 
(0.02) 

-0.32* 
(0.02) 

-0.32* 
(0.02) 

-0.40* 
(0.02) 

-0.29* 
(0.02) 

-0.27* 
(0.02) 

Crossing  
Country Border 

-0.22* 
(0.02) 

-0.22* 
(0.02) 

-0.20* 
(0.02) 

-0.20* 
(0.02) 

-0.24* 
(0.02) 

-0.19* 
(0.02) 

Crossing  
Trade-Block Border 

0.05 
(0.04) 

0.05 
(0.03) 

0.04 
(0.02) 

-0.05 
(0.04) 

0.05 
(0.03) 

0.04 
(0.03) 

Crossing 
 Linguistic Border 

-0.17* 
(0.02) 

-0.16* 
(0.02) 

-0.18* 
(0.01) 

-0.15* 
(0.02) 

-0.15* 
(0.02) 

-0.17* 
(0.02) 

1000 Km farther  -0.05* 
(0.002) 

-0.05* 
(0.002) 

-0.04* 
(0.002) 

-0.05* 
(0.003) 

-0.05* 
(0.002) 

-0.05* 
(0.002) 

Income Differencea -0.01 
(0.03) 

-0.03 
(0.03) 

-0.06* 
(0.03) 

-0.07 
(0.04) 

-0.01 
(0.03) 

-0.01 
(0.03) 

R&D Differenceb -0.21* 
(0.01) 

-0.17* 
(0.01) 

-0.10* 
(0.01) 

-0.21* 
(0.01) 

-0.20* 
(0.01) 

-0.10* 
(0.01) 

Technological Distance 
 

 -2.27* 
(0.06) 

-2.86* 
(0.04) 

 -2.01* 
(0.07) 

-3.10* 
(0.06) 

Citing Region Fixed Effects Yes Yes Yes Yes Yes Yes 
Citied Region Fixed Effects Yes Yes Yes Yes Yes Yes 
Observations 15,361 15,361 21,609 14,065 14,065 21,609 
Log Likelihood   -56555.16   -36753.69 
R2 0.92 0.92 Na 0.85 0.87 Na 
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Table 4 

Knowledge Flows for six large technological sectors 
 

Specification I 
Computers 

10 years 

II 
Drugs 

10 years 

III 
Electronics 

10 years 

IV  
Chemical 

10 years 

V  
Mechanical 

10 years 

VI 
Others 

10 years 
Crossing  
Region Border 

-1.00* 
(0.07) 

-1.43* 
(0.06) 

-1.50* 
(0.07) 

-1.61* 
(0.06) 

-1.67* 
(0.05) 

-1.82* 
(0.06) 

Crossing  
next-Region 
Border 

-0.17* 
(0.04) 

-0.10* 
(0.03) 

-0.25* 
(0.03) 

-0.33* 
(0.03) 

-0.38* 
(0.03) 

-0.44* 
(0.03) 

Crossing  
Country Border 

-0.16* 
(0.03) 

-0.21* 
(0.03) 

-0.21* 
(0.02) 

-0.12* 
(0.03) 

-0.13* 
(0.03) 

-0.20* 
(0.02) 

Crossing  
Trade-Block 
Border 

0.06 
(0.03) 

0.01 
(0.03) 

0.06 
(0.04) 

0.05 
(0.04) 

0.04 
(0.04) 

0.06 
(0.04) 

Crossing 
Linguistic Border 

-0.07* 
(0.02) 

-0.04* 
(0.02) 

-0.07* 
(0.02) 

-0.12* 
(0.02) 

-0.08* 
(0.02) 

-0.12* 
(0.02) 

1000 Km farther  -0.04* 
(0.002) 

-0.04* 
(0.003) 

-0.04* 
(0.003) 

-0.04* 
(0.003) 

-0.05* 
(0.002) 

-0.06* 
(0.02) 

Citing Region 
 Fixed Effects 

Yes Yes Yes Yes Yes Yes 

Citied Region 
 Fixed Effects 

Yes Yes Yes Yes Yes Yes 

Observations 7,173 8,662 9,573 10,446 11,231 11,842 
R2 0.80 0.79 0.83 0.81 0.83 0.84 
Original Number 
of Citations 

243,563 243,902 333,637 342,572 356,614 486,513 

 
Notes: Citations  are calculated omitting self-citations, i.e. citation within the same institution. Heteroskedasticity-robust standard errors in 
parenthesis.  
*= significant at 1% confidence level. 
Specification I: Dependent Variable: log of citations between patents in Computer Class with citing and -cited patents less than 10 years apart. 
Citing Patent in the period 1985-1996, cited Patents in the period 1975-1996 were included. Some region-couples have 0 citations links and are 
dropped. Method of estimation: OLS with heteroskedasticity-robust standard errors. 
Specification II: Dependent Variable: log of citations between patents in Drugs Class with citing and -cited patents less than 10 years apart. 
Citing Patent in the period 1985-1996, cited Patents in the period 1975-1996 were included. Some region-couples have 0 citations links and are 
dropped. Method of estimation: OLS with heteroskedasticity-robust standard errors. 
Specification III: Dependent Variable: log of citations between patents in Electronics Class with citing and -cited patents less than 10 years 
apart. Citing Patent in the period 1985-1996, cited Patents in the period 1975-1996 were included. Some region-couples have 0 citations links 
and are dropped. Method of estimation: OLS with heteroskedasticity-robust standard errors 
Specification IV: Dependent Variable: log of citations between patents in Chemical Class with citing and -cited patents less than 10 years apart. 
Citing Patent in the period 1985-1996, cited Patents in the period 1975-1996 were included. Some region-couples have 0 citations links and are 
dropped. Method of estimation: OLS with heteroskedasticity-robust standard errors 
Specification V: Dependent Variable: log of citations between patents in Mechanical Class with citing and -cited patents less than 10 years 
apart. Citing Patent in the period 1985-1996, cited Patents in the period 1975-1996 were included. Some region-couples have 0 citations links 
and are dropped. Method of estimation: OLS with heteroskedasticity-robust standard errors 
Specification VI: Dependent Variable: log of citations between patents in Other Classes with citing and -cited patents less than 10 years apart. 
Citing Patent in the period 1985-1996, cited Patents in the period 1975-1996 were included. Some region-couples have 0 citations links and are 
dropped. Method of estimation: OLS with heteroskedasticity-robust standard errors 
Specification VII: Dependent Variable: log of citations between patents in Computer Class with citing and -cited patents less than 4 years apart. 
Citing Patent in the period 1980-1996, cited Patents in the period 1975-1996 were included. Some region-couples have 0 citations links and are 
dropped. Method of estimation: OLS with heteroskedasticity-robust standard errors 
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Table 5 
Knowledge Flows in different decades and different Continents 

         
 

Specification I  
Average 
Flows 
2 years lag 
1975-1986 
Negative 
Binomial 

II  
Average 
Flows 
2 years lag 
1986-1996 
Negative 
Binomial 

III 
Computers 
2 years lag 
1975-1986 
Negative 
Binomial 

IV 
Computers 
2 years lag 
1986-1996 
Negative 
Binomial 

V 
Average 
Sector  
10 years lag 
Europe 
Negative 
Binomial 

VI 
Average Sector  
10 years lag 
North America 
10 years 
Negative 
Binomial 

Crossing Region Border -1.33* 
(0.10) 

-1.49* 
(0.10) 

-0.85* 
(0.09) 

-0.94* 
(0.08) 

-1.50* 
(0.10) 

-1.30* 
(0.13) 

Crossing next-Region Border -0.28* 
(0.03) 

-0.26* 
(0.03) 

-0.18* 
(0.04) 

-0.07* 
(0.04) 

-0.26* 
(0.04) 

-0.23* 
(0.03) 

Crossing Country Border -0.12* 
(0.03) 

-0.20* 
(0.03) 

-0.06 
(0.04) 

-0.14* 
(0.04) 

-0.30* 
(0.04) 

-0.41* 
(0.05) 

Crossing Trade-Block Border 0.07 
(0.04) 

0.05 
(0.03) 

0.04 
(0.04) 

0.04 
(0.04) 

  

Crossing Linguistic Border -0.20* 
(0.02) 

-0.19* 
(0.02) 

-0.06 
(0.04) 

-0.05 
(0.04) 

-0.18* 
(0.02) 

-0.08 
(0.07) 

1000 Km farther  -0.05* 
(0.003) 

-0.05* 
(0.002_ 

0.04* 
(0.005) 

-0.05* 
(0.005) 

-0.04* 
(0.01) 

-0.05* 
(0.01) 

R&D Difference 
 

-0.12* 
(0.01) 

-0.09* 
(0.01) 

  -0.04* 
(0.02) 

-0.09* 
(0.02) 

Technological Distance 
 

-3.3* 
(0.11) 

-3.2* 
(0.10) 

  -2.67* 
(0.06) 

-4.01* 
(0.14) 

Citing Region Fixed Effects Yes Yes Yes Yes Yes Yes 
Citied Region Fixed Effects Yes Yes Yes Yes Yes Yes 
Observations 19,845 19,845 4062 4350 16,709.44 3,798 
Log Likelihood -23006.902 -27615.223 -24023.902 -23615.253 -44318.62 -13798.08 

 
Notes: Citations  are calculated omitting self-citations, i.e. citation within the same institution. Heteroskedasticity-robust standard errors in parenthesis.  
*= significant at 1% confidence level. 

 
Specification I:  Dependent  variable: number of citations. Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 1976-
1986, Cited Years 1975-1986. Method of estimation: Maximum Likelihood,  negative binomial regression. Asymptotic standard errors in parenthesis. 
Specification II: Dependent  variable: number of citations. Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 1986-
1996, Cited Years 1985-1996. Method of estimation: Maximum Likelihood,  negative binomial regression. Asymptotic standard errors in parenthesis. 
Specification III: :  Dep var: number of citations between patents in the Computer Class Only. Only citing-cited links less than 2 years apart (from citing to cited) 
are included. Citing years 1976-1986, Cited Years 1975-1986. Method of estimation: Maximum Likelihood,  negative binomial regression. Asymptotic standard 
errors in parenthesis. 
Specification IV: Dependent  variable: number of citations between patents in the Computer Class Only. Only citing-cited links less than 2 years apart (from 
citing to cited) are included. Citing years 1986-1996, Cited Years 1985-1996. Method of estimation: Maximum Likelihood,  negative binomial regression. 
Asymptotic standard errors in parenthesis. 
Specification V: :  Dependent  variable: number of citations between European Region only. Only citing-cited links less than 10 years apart (from citing to cited) 
are included. Citing years 1984-1996, Cited Years 1975-1996. All couples of citing-cited regions in the period 1975-1996 were included. Method of estimation: 
Maximum Likelihood,  negative binomial regression. Asymptotic standard errors in parenthesis. 
Specification VI: Dependent  variable: number of citations between North-American Regions only. Only citing-cited links less than 10 years apart (from citing to 
cited) are included. Citing years 1984-1996, Cited Years 1975-1996. All couples of citing-cited regions in the period 1975-1996 were included. Method of 
estimation: Maximum Likelihood,  negative binomial regression. Asymptotic standard errors in parenthesis. 
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Table 6 
Knowledge Flows from the 20 World Technological Leaders 

         
 

Specification I 
2 years 
Top 20 
World R&D 
OLS 

II 
2 years 
Top 20 
World R&D 
Negative 
Binomial 

III 
10 years 
Top 20 
World R&D 
OLS 

IV 
10 years 
Top 20 
World R&D 
Negative 
Binomial  

V 
10 years 
Top 20  
 non-US 
world R&D 
OLS 

VI 
10 years 
Top 20 
non-US 
world R&D 
Negative 
Binomial 

Crossing  
Region Border 

-0.60* 
(0.08) 

-0.59* 
(0.09) 

-0.54* 
(0.07) 

-0.50* 
(0.07) 

-0.77* 
(0.12) 

-0.77* 
(0.12) 

Crossing  
next-Region Border 

-0.17* 
(0.04) 

-0.15* 
(0.03) 

-0.15* 
(0.04) 

0.14* 
(0.04) 

-0.14* 
(0.06) 

-0.13* 
(0.05) 

Crossing  
Country Border 

-0.15* 
(0.04) 

-0.11* 
(0.03) 

-0.11* 
(0.04) 

0.11* 
(0.04) 

-0.21* 
(0.03) 

-0.22* 
(0.05) 

Crossing  
Trade-Block Border 

0.05 
(0.04) 

0.05 
(0.04) 

0.06 
(0.04) 

0.05 
(0.04) 

0.02 
(0.03) 

0.03 
(0.04) 

Crossing  
Linguistic Border 

-0.20* 
(0.04) 

-0.25* 
(0.03) 

-0.24* 
(0.04) 

-0.24* 
(0.04) 

-0.23* 
(0.03) 

-0.20* 
(0.03) 

1000 Km farther  -0.03* 
(0.004) 

-0.03* 
(0.003) 

-0.03* 
(0.004) 

-0.03* 
(0.003) 

-0.03* 
(0.006) 

-0.03* 
(0.005) 

R&D Difference 
 

-0.04 
(0.03) 

-0.04* 
(0.02) 

-0.04 
(0.03) 

-0.05 
(0.03) 

-0.03 
(0.03) 

-0.03 
(0.02) 

Technological 
Distance 

-2.65* 
(0.12) 

-3.11* 
(0.10) 

-2.58* 
(0.10) 

-2.81* 
(0.10) 

2.48* 
(0.14) 

-2.65* 
(0.11) 

Citing Region  
Fixed Effects 

Yes Yes Yes Yes Yes Yes 

Citied Region  
Fixed Effects 

Yes Yes Yes Yes Yes Yes 

Observations 2556 2961 2784 2961 1651 1833 
Log Likelihood na -9822.51 na -14505.51 na -7769.89 
R2 0.96 na 0.98 na 0.94 na 

 
Notes: Citations  are calculated omitting self-citations, i.e. citation within the same institution. Heteroskedasticity-robust standard errors in parenthesis.  
*= significant at 1% confidence level  
Specification I: Dep. Variable ln(citations), Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 1976-1996, Cited Years 
1975-1996.  Only top 20 regions for R&D spending included as “cited regions”. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification II: Dep. Variable: count of citations, Only citing-cited links less than 2 years apart (from citing to cited) are included. Citing years 1976-1996, Cited 
Years 1975-1996. Only top 20 regions for R&D spending included as “cited regions”.  Method of estimation: maximum likelihood, Negative Binomial . 
Specification III: Dep. Variable ln(citations), Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 1986-1996, Cited 
Years 1975-1996.  Only top 20 regions for R&D spending included as “cited regions”. Method of estimation: OLS with heteroskedasticity- robust std. errors. 
Specification IV: : Dep. Variable: count of citations, Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 1986-1996, 
Cited Years 1975-1996. Only top 20 regions for R&D spending included as “cited regions”.  Method of estimation: maximum likelihood, Negative Binomial . 
Specification V:. Dep. Variable ln(citations), Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 1986-1996, Cited 
Years 1975-1996.  Only top 20 regions. for R&D spending outside the U.S  included as “cited regions”. Method of estimation: OLS with heteroskedasticity- robust 
std. errors. 
Specification VI:. Dep. Variable: count of citations, Only citing-cited links less than 10 years apart (from citing to cited) are included. Citing years 1986-1996, 
Cited Years 1975-1996. Only top 20 regions for R&D spending  outside the U.S  included as “cited regions”.  Method of estimation: maximum likelihood, Negative 
Binomial . 
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Table 7 
Flows of Knowledge and Flows of Goods: 

Distance and Border effects  
 

Specification I 
Computers’ 
Knowledge 
Flows:  
10 years 

II 
Knowledge Flows 
from Top 20 
Technological 
leaders 
10 years 

III 
Average 
Knowledge 
Flows:  
10 years 

IV 
Trade 
Flows 
Estimate I 

V 
Trade 
Flows 
Estimate 
II 

VI 
Trade 
Flows: 
Estimate III 

Crossing  
Country Border 

-0.16* 
(0.03) 

-0.17* 
(0.03) 

-0.22* 
(0.02) 

-1.65* 
(0.08) 

-1.55* 
(0.08) 

-3.09* 
(0.04) 

Ln(distance) -0.10* 
(0.01) 

-0.14* 
(0.01) 

-0.19* 
(0.01) 

-0.79* 
(0.03) 

-1.25* 
(0.03) 

-1.42* 
(0.08) 

Sending Region  
Fixed Effects 

Yes Yes Yes No Yes No 

Receiving Region 
Fixed Effects 

Yes Yes Yes No Yes No 

Percentage of Flows 
passing the Country 
Border 

85% 84% 80% 19% 21% 4.5% 

Observations 7075 2851 14395 1511 1511 683 
R2 0.80 0.96 0.90 n.a. 0.66 0.81 

 
Notes: Citations are calculated omitting self-citations, i.e. citation within the same institution. Heteroskedasticity-
robust standard errors in parenthesis.  
*= significant at 1% confidence level. 
Specification I: Dependent Variable: log of Region to Region Citations between patents in the class of “Computers and 
Communications” with citing patent and cited patent within 10 years. Citing 1975-84, Cited 1974-1996. Regions with 0 
citations are dropped. 
Specification II: Dependent Variable: log of Region to Region Citations between patents within 10 years. Citing 
regions are all regions for the period 1975-84, Cited regions are the top 20 innovators only for the period 1974-1996. 
Regions with 0 citations are dropped. 
Specification III: Dependent Variable: log of Region to Region Citations between patents in the same class with citing 
patent and cited patent within 10 years. Citing 1975-84, Cited 1974-1996. Regions with 0 citations are dropped. 
Specification III: Estimates of Border and Distance Effect from a gravity equation for trade, from Andreson and Van 
Wincoop (2001)  
Specification IV: Estimates of Border and Distance Effect from a gravity equation for trade from Feenstra (2003)  
Specification VI: Estimates of Border and Distance Effect from a gravity equation for trade from McCallum (1995)  
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Table 8 
Estimates of R&D Externalities from Top Innovators in the Long Run 

 
Specification I 

Flows from Top 
20 Innovators, 
10 years 

II 
Flows from Top 
20 Innovators,  
 2 years 

III 
Flows from 
Top 20 
Innovators,  
10 years 

IV 
Flows from 
Top 20 
Innovators,  
 2 years 

Dependent Variable Citation-Weighted Patent Count Unweighted Patent Count 
ln(Ait) , Own R&D 
 

0.64* 
(0.01) 

0.65* 
(0.01) 

0.60* 
(0.01) 

0.60* 
(0.01) 

ln(Aa
it) , External 

Accessible R&D 
0.97* 
(0.11) 

0.95* 
(0.10) 

0.96* 
(0.10) 

0.94* 
(0.10) 

Country x Time Effects Yes Yes Yes Yes 
Region Effects No No No No 
Time effects No No No No 

Period 1975-1993 1977-1993 1975-1996 1977-1996 

R2 0.84 0.84 0.83 0.83 

Observations 1674 1488 2024 1840 
 
 

Heteroskedasticity-Robust standard errors in parentheses.  
*= significant at 1% confidence level. 
Specification I: Dependent Variable: log of patents weighted by citation in first 4 years since granted. External Accessible R&D 
constructed using the estimated intensity of knowledge flows from Table 6 Column II. These estimates capture geographical flows of 
knowledge within 10 years (long run). Only the Top 20 world innovators were included as “senders”. Only the remaining 93 regions were 
included as “receivers”. Countries covered: USA, West Germany, UK, Italy, Spain, France, the Netherlands and Canada.  
Specification II: Dependent Variable: log of patents weighted by citation in first 4 years since granted. External Accessible R&D 
constructed using the estimated intensity of knowledge flows from Table 6 Column IV. These estimates capture geographical flows of 
knowledge within 2 years (short run). Only the Top 20 world innovators were included as “senders”. Only the remaining 93 regions were 
included as “receivers”. Countries covered: USA, West Germany, UK, Italy, Spain, France, the Netherlands and Canada. 
Specification III: Dependent Variable: log of count of patents. External Accessible R&D constructed using the estimated intensity of 
knowledge flows from Table 6 Column II. These estimates capture geographical flows of knowledge within 10 years (long run). Only the 
Top 20 world innovators were included as “senders”. Only the remaining 93 regions were included as “receivers”. Countries covered: 
USA, West Germany, UK, Italy, Spain, France, the Netherlands and Canada.  
Specification IV: Dependent Variable: log of count of patents. External Accessible R&D constructed using the estimated intensity of 
knowledge flows from Table 6 Column IV. These estimates capture geographical flows of knowledge within 2 years (short run). Only the 
Top 20 world innovators were included as “senders”. Only the remaining 93 regions were included as “receivers”. Countries covered: 
USA, West Germany, UK, Italy, Spain, France, the Netherlands and Canada. 
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Table 9 

Estimates of R&D Externalities from all regions in the Long Run 
 

Specification I 
Flows from All 
regions 
 10 years 

II 
Flows from All 
regions,  
 2 years 

III 
Flows from 
All regions,  
10 years 

IV 
Flows from 
All regions,  
 2 years 

Dependent Variable Citation-Weighted Patent Count Unweighted Patent Count 
ln(Ait) , Own R&D 
 

0.72* 
(0.01) 

0.73* 
(0.01) 

0.68* 
(0.01) 

0.68* 
(0.01) 

ln(Aa
it) , External 

Accessible R&D 
0.84* 
(0.09) 

0.83* 
(0.09) 

0.73* 
(0.08) 

0.70* 
(0.09) 

Country x Time Effects Yes Yes Yes Yes 
Region Effects No No No No 
Time effects No No No No 

Period 1975-1993 1977-1993 1975-1996 1977-1996 

R2 2034 1808 2373 2147 

Observations 0.88 0.88 0.87 0.87 
 
 
 

Heteroskedasticity-Robust standard errors in parentheses.  
*= significant at 1% confidence level. 
Specification I: Dependent Variable: log of patents weighted by citation in first 4 years since granted. External Accessible R&D 
constructed using the estimated intensity of knowledge flows from Table 3 Column III. These estimates capture geographical flows of 
knowledge within 10 years (long run) from all regions. All 113 regions included as “senders” as well as “receivers”. Countries covered: 
USA, West Germany, UK, Italy, Spain, France, the Netherlands and Canada.  
Specification II: Dependent Variable: log of patents weighted by citation in first 4 years since granted. External Accessible R&D 
constructed using the estimated intensity of knowledge flows from Table 3 Column VI. These estimates capture geographical flows of 
knowledge within2  years (short run) from all regions. All 113 regions included as “senders” as well as “receivers”. Countries covered: 
USA, West Germany, UK, Italy, Spain, France, the Netherlands and Canada.  
Specification III: Dependent Variable: log of patents’ count. External Accessible R&D constructed using the estimated intensity of 
knowledge flows from Table 3 Column III. These estimates capture geographical flows of knowledge within 10 years (long run) from all 
regions. All 113 regions included as “senders” as well as “receivers”.  Countries covered: USA, West Germany, UK, Italy, Spain, France, 
the Netherlands and Canada.  
Specification IV: Dependent Variable: log of patents’ count. External Accessible R&D constructed using the estimated intensity of 
knowledge flows from Table 3 Column VI. These estimates capture geographical flows of knowledge within2  years (short run) from all 
regions. All 113 regions included as “senders” as well as “receivers”. Countries covered: USA, West Germany, UK, Italy, Spain, France, 
the Netherlands and Canada.  
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Table 10 
Estimates of R&D Externalities on Innovation in the Short Run 

 
Specification  I 

Flows from Top 
20 Innovators,  
2 years 

II 
Flows from All 
Regions  
2 years 

III 
Flows Top 20 
innovators,  
2 years 

IV 
Flows from all 
regions,  
2 years 

Patent Count 
(Dependent Variable)  

Citation Weighted Unweighted 

ln(Ait) , Own R&D 
 

0.26* 
(0.08) 

0.30* 
(0.07) 

0.21* 
(0.06) 

0.24* 
(0.06) 

ln(Aa
it) , External 

Accessible R&D 
0.49* 
(0.08) 

0.43* 
(0.07) 

0.17* 
(0.06) 

0.10* 
(0.05) 

Country x Time Effects No No No No 
Region Effects Yes Yes Yes Yes 

Time Effect Yes Yes Yes Yes 

Period 1977-1993 1977-1993 1977-1996 1977-1996 
R2 0.95 0.96 0.96 0.96 
Observations 1472 1808 1472 2147 

 
 
Heteroskedasticity-Robust standard errors in parentheses.  
Specification I: Dependent Variable: log of citation-weighted patent count. Weight= citations in the 4 years after the patent was granted. 
External Accessible R&D constructed using the estimated intensity of knowledge flows from Table 6 Column II. These estimates capture 
geographical flows of knowledge within 2 years from the generation of ideas. ). Only the Top 20 world innovators were included as 
“senders”. Only the remaining 93 regions were included as “receivers”. Countries covered: USA, West Germany, UK, Italy, Spain, 
France, the Netherlands and Canada. 
Specification II: Dependent Variable: log of citation-weighted patent count. Weight= citations in the 4 years after the patent was 
granted. External Accessible R&D constructed using the estimated intensity of knowledge flows from Table 3 Column VI. These 
estimates capture geographical flows of knowledge within 2 years from the generation of ideas. All 113 regions considered as “senders” 
as well as  “receivers”. Countries covered: USA, West Germany, UK, Italy, Spain, France, the Netherlands, Canada.  
Specification III: Dependent Variable: log of citation count. External Accessible R&D constructed using the estimated intensity of 
knowledge flows from Table 6 Column II. These estimates capture geographical flows of knowledge within 2 years from the generation of 
ideas. Only the Top 20 world innovators were included as “senders”. Only the remaining 93 regions were included as “receivers”. 
Countries covered: USA, West Germany, UK, Italy, Spain, France, the Netherlands and Canada. 
Specification IV: Dependent Variable: log of citation count. External Accessible R&D constructed using the estimated intensity of 
knowledge flows from Table 3 Column VI. These estimates capture geographical flows of knowledge within 2 years from the 
generation of ideas. All 113 regions considered as “senders” as well as  “receivers”. Countries covered: USA, West Germany, UK, 
Italy, Spain, France, the Netherlands and Canada.  
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Figure 1 

Decay of Knowledge Flows 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

In
 R

eg
io

n

Out
 o

f R
eg

io
n 

Bor
de

r

O
ut

 o
f n

ex
t R

eg
io

n 
Bor

de
rs

Out
 o

f C
ou

nt
ry

 B
or

de
r

Out
 o

f T
ra

de
-B

lo
ck

Out
 o

f L
an

gu
ag

e 
Bor

de
r

10
00

 K
m

 a
way

20
00

 K
m

 A
way

30
00

 K
m

 a
way

40
00

 K
m

 a
way

50
00

 K
m

 a
way

60
00

 K
m

 a
way

70
00

 K
m

 a
way

80
00

 K
m

 a
way

90
00

 K
m

 a
way

10
00

0 
Km

 a
way

Borders and Distances

P
er

ce
n
ta

g
e 

o
f 
kn

o
w

le
d
g
e

10 years
Negative Binomial
Tobit
2 years
2 years neg. bin. 
6 years

 
 

Figure 2 
Decay of "Exported" Knowledge Flows
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Figure 3 
Knowledge Flows in different sectors
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Figure 4 

Knowledge Flows from the Technological Leaders
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Figure 5 
Knowledge and Trade Flows
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