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1 Introduction

Since long economists have been interested in the study of the distribution
of economic activities across the geographical space. The building of the
Furopean Union and the several regional policy issues which come along,
have undoubtely contributed to boost interest in the field. As an illustration
of this is the flourishing development of works in the so-called new economic
geography - surveyed lately by Ottaviano and Puga (1998) and by Fujita
and Thisse (1996) - as well as in the regional labor market literature - see
Blanchard and Katz (1992), Fatas (1998) and Hojvat (1998) -.

Recent works by Krugman (1991a, 1993, 1996) have been particularly
useful for understanding how increasing returns and labor mobility affect re-
gional convergence. The basic framework is the following. There are two sec-
tors: manufacturing and agriculture. Manufacturing employs mobile workers
and agriculture immobile peasants. Consumers buy the manufacturing vari-
eties on monopolistically competitive regional markets and the agricultural
good on a competitive national market. Scale returns at the firm level con-
tributes to regional divergence. This is because the more workers in a region,
the more varieties in that region, and the higher their utility as they value
variety, see Fujita et al. (1999). In turns this triggers additional inflows
of workers in the region. On the other hand, the immobility of peasants
contributes to regional convergence because firms locate close enough to the
local markets they supply, so as to avoid prohibitive transport costst when
supplying the immobile peasants in the unagglomerated areas.

In the case of a two-region model, conditions leading to convergence or
divergence are related to the relative importance of increasing returns, trans-
port costs and the labor proportion in the total population as shown by
Krugman (1991a). In a multi-location version of the same model, numeri-
cal simulations suggest that multiple agglomerations systematically emerge
and are roughly evenly spaced across the landscape, see Krugman (1993).
In a continuous location version of his model, Krugman (1996) showed that
the economy always displays regional divergence. The continuous spatial ap-
proach used by Krugman is crucial in that it allows to determine the size of
emerging agglomerations which undoubtedly is one the main relevant spatial
features of an economy. In his work, Krugman characterized the shape of
the emerging agglomerations by performing numerical computations of the
preferred wavelength.

The work of Mossay (2003) differs from Krugman (1996)’s work in one



respect only: the type of spatial adjustment. While migration is assumed to
be local in Mossay (2003), it is assumed to be global in Krugman (1996).
Under global spatial adjustments, the size of the emerging agglomeration is
determined in terms of the taste for variety, the proportion of the manufac-
turing population and the transport cost. In contrast with this, under local
spatial adjustments, the spatial modes of which the amplification factors are
the highest, turn out to be small spatial scale modes. Specifically, the am-
plification factor is the highest for the spatial mode with infinite frequency.
Though the spatial adjustments differ in these two continuous spatial mod-
els, both spatial economies always diverge. It results that scale economies at
the firm level and free mobility (either local or global) of workers contribute
to spatial divergence. This means that the spatial divergence result holds,
regardless of the spatial foresight ability of agents.

Works such as Krugman (1996) or Fujita and al. (1999) show how to de-
rive central features of a global economy such as what a flow depends on, or
endogenous spatial scales, ... They also make clear the need to develop appro-
priate methods to deal with the Partial Differential Equations (PDEs) which
govern the evolution of a spatial economy. These studies are undoubtedly a
step towards the comprehension of the functioning of a global economy. Yet,
in this literature, myopic behavior is assumed on behalf of agents. Migra-
tion is based on current available returns. A consequence is that migration
flows are positively correlated with spatial return differentials. However, in
reality, agents are interested not only in current available returns but also in
the returns they expect in the future, see Krugman (1991b). The role of ex-
pectations turns out to be crucial. It has been shown in two-country models
that expectations can give rise to self-fulfilling propheties: when discounting
is low enough, that is when future matters, the steady-state of the economy
is determined by the expectations that agents make, see Krugman (1991b),
Ottaviano (1999), or Ottaviano and Thisse (2000).

Though the temporal role of the rational expectation assumption has been
somewhat explored in the literature concerning two-country models, we are
not aware of any attempt to explore the spatial role that rational behavior
may have. So as to fill up this gap, we build a model of rational workers
who choose what to consume over time, as well as which spatial itinerary to
follow.

Our results are the following. We show that, like in Krugman (1996) and
Mossay (2003), spatial divergence always occur. This reemphasizes the role
of the local market structure on the convergence process: scale economies
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at the local level and free mobility contribute to spatial divergence. However,
unlike in the corresponding myopic case studied by Mossay (2003), the size
of agglomerations increases with the taste for variety and the proportion of
the manufacturing population, and decreases with transport costs. The role
of rational adjustments with respect to myopic adjustments is thus to distort
the relationship between the amplification factor and the wavelength.

In much of the existing economic literature, geography is summarized
by two or a finite number of countries, ie. Krugman (1991a, 1993). In the
framework developed here, a field approach - or equivalently, a continuous
spatial approach - is used to describe spatial flows. The need to rely on a
spatio-temporal description of the economy has been re-emphasized lately in
the new economic geography by Krugman (1996), Fujita and al. (1999), and
in the regional labor market literature by Quah (1996). As well described
by Quah, regions are geographical units spread out on a two-dimensional
map. Their economic performance can be represented as a distribution - a
mathematical surface - over their physical geography. In this context, the
field approach consists in describing the evolution of this distribution over
time. While Krugman relies on the field approach to describe the emergence
of agglomerations, Quah uses it to describe the distribution dynamics of
FEuropean regions. Here, the field approach will allow us to describe not
only cross-political-border flows as it is done in discrete models, but also
internal flows of people. More importantly, we will derive how these flows
are generated in a continuous spatial economy. Empirical work supports
the idea that contiguous geographical interactions play an important role in
explaining local variations, see Quah (1996). So as to incorporate that aspect
into our model, migration is assumed to be local. This implies that migration
flows are dependent on contiguous return differentials.

In this paper, trade modelling is built on the continuous version of Krug-
man’s model (1996). Along a one dimensional geographical space, there is a
monopolistically competitive manufacturing sector employing mobile work-
ers and a perfectly competitive agricultural sector employing immobile peas-
ants. Flows of goods take place on the international scene. Chamberlinian
imperfect competitive economies are allowed to trade and product differen-
tiation makes trade desirable. Specifically, product differentiation leads to
gains from trade even when economies have identical consumptions tastes,
production technology, and factor endowments.

We believe that there is a sharp distinction between consumption and
migration decisions. While adjusting consumption is costless, migration is
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costly. So as to capture this distinction, prices on markets will form in-
stantaneously as in the Walrasian tradition and magration is modeled as an
adjustment process. Here, the migration decision is an investment decision,
so that agents choose to migrate up to the point where the marginal cost
of moving is equated to the marginal present value of moving, see Sjaastad
(1962). In this sense, it constrasts with existing continuous spatial models,
where the migration decision is based on current returns only.

When looking at economic geography problems, economic theorists and
geographers generally adopt two different approaches. The economic theo-
rist wants to make a description of the spatial economy which is consistent
with the rational choice of individual agents. So as to provide microeco-
nomic foundations to economic geography models, economists rely on an
agent-description of the economy. This leads to a temporal description of
the behavior of agents. The model of Townsend and Wallace (1982) is very
illustrative of the agent-description used in general equilibrium models when
addressing spatial issues. In our context, this corresponds to knowing how
the consumption of a worker evolves over time and how his migration costs
are balanced over time. On the other hand, when describing a spatial econ-
omy, the crucial point for geographers is to describe it within its geographic
scope. When describing what happens in a location, geographers rely on a
space-description of the economy. This leads to a temporal description of lo-
cations. The model of Tobler (1981) relies on a field approach to describe how
geographic mobility may affect the distribution of people over space. This is
very illustrative of the spatial-decription used in geography. In our context,
this corresponds to describing how migration flows in a given location evolve
over time, and how the consumption of workers in a given location evolves.
Thus, according to the microeconomic or geographic feature we want to fo-
cus on, one approach a priori seems more appropriate than the other. In the
field models mentioned above [Krugman (1996) or Mossay (2003)], the role
of the local market structure on spatial convergence is studied by relying on
a space-description of the economy. In these works, the space-description is
obtained in a straightforward manner because of the myopic behavior -lack
of foresight- assumption. Agents relocate in terms of the current state of
the spatial economy only. In contrats with this existing literature, it turns
out that both the agent- and the space- descriptions are needed to analyze
the role of expectations on spatial convergence. So as to provide microeco-
nomic foundations, i.e. to state the consumption-migration problem at the
individual level, we rely on the agent-description of the economy, referred to



as the Lagrangian approach. Because the spatial convergence issue is clearly
a geographic feature of the spatial economy, the spatial-description of the
economy, referred to as the Fulerian approach, seems more appropriate when
dealing with convergence.! Even though the formalisms used in these two ap-
proaches differ, they should be two ways to describe the same physical spatial
economy. What follows is a heuristic argument supporting this equivalence.
Suppose that the agent-description of the economy is known, or equivalently
that the temporal behavior of all workers in the economy in terms of their
consumption and their location at any time, is known. You can then easily
imagine what happens in a given location. To do so, perform the following
operation. At any time, count the number of workers who are in that loca-
tion. You can then describe the temporal flows in that location, how the
number of workers varies over time, and, since the consumption for each
worker is known, what consumption is made in that location over time. Re-
peat this operation for all locations, and you get the spatial-description of
the economy.

To study the convergence/divergence process in a continuous space, we
need an adequate tool to analyze the spatial stability of the uniform long-
run equilibrium. We will apply the normal mode method which a standard
linear stability method in the hydrodynamic stability literature, see Drazin
and Reid (1991). The general idea is to find the conditions under which a
small spatial perturbation is stable or not. To do so, the spatial perturbation
is decomposed as a sum of elementary periodic perturbations. We then study
whether each of the elementary periodic perturbation grows or is damped
over time. If at least one of these elementary perturbations grows over time,
then the long-run equilibrium is unstable. This technique has been applied
by Krugman and Venables (1996) to study a spatial model of international
specialization, and by Krugman (1996) to perform numerical computations of
the preferred wavelength of emerging agglomerations, that is the wave-length
of the dominant unstable perturbation. The corresponding discrete technique
has also been used by Papageorgiou and Smith (1983). Their purpose was
to find the conditions under which some spatial externality may lead the
spatial uniform equilibrium to be unstable. In this paper we will use the
normal mode method to determine how agglomerations emerge from local
instability of a uniform long run equilibrium.

IThe Lagrangian and Eulerian terminology is borrowed from the physics of continuum
media. In that literature, they refer respectively to a particle, and a space-description.



The rest of this paper is organized as follows. Section 2 lays out the
economic environment. We describe the short-run equilibrium of the spatial
economy in section 3. The worker’s intertemporal decision problem is de-
scribed in section 4. We describe the temporal behavior of a worker across
locations, in terms of given spatio-temporal prices. In section 5 we discuss
the spatial description of the economy and introduce the Fulerian formalism
to describe the temporal evolution of a location, in terms of given spatio-
temporal prices. In section 6 we define a market equilibrium of the spatial
economy. In section 7 we define long-run equilibria and study spatial diver-
gence away from a long-run equilibrium. Finally, section 8 summarizes the
main results.

2 The Economic Environment

In this section, the economic environment is described. We consider a spatial
economy with a continuum of locations s € |—00, +oo[. Time is denoted by
t € Jto,0[. There are two types of consumers: mobile workers and immobile
peasants. The densities of workers and peasants in location s at time ¢ are
denoted respectively by L(s,t) and A. There are two sectors in the economy :
the manufacturing sector, which exhibits increasing returns, and agriculture,
which has constant returns.

Assumption 1 (Preference) Consumers have a Cobb-Douglas utility func-
tion.

A consumer (either a worker or a peasant) at location s and time ¢ enjoys
a Cobb-Douglas utility from two types of goods

U (s,t) = Chy(s,0)C4 " (s,1) (1)

where g is the share of manufactured goods in expenditure, C4 the consump-
tion of the agricultural good, and C'; the consumption of the manufactured
aggregate which is defined by

+o0 n(z,t) oy o—1
Cu(s,t) = / (/ ci(z,8,t) = di)dz
= 0

o0

where n(z,t) is the density of manufactured varieties available at location z
at t, ¢;(z,s,t) is the consumption of variety i produced at z, and ¢ > 1 is
the elasticity of substitution among manufactured varieties.
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In the model below, our intention is to focus on how location and con-
sumption decisions are taken simultaneously. We will follow the approach
widely used in the economic geography literature by disregarding issues re-
lated to intertemporal trading, see Krugman (1991a) or Ottaviano (1998),
and in related domains, see Matsuyama (1991) or Krugman (1991b).

Assumption 2 (Intertemporal Trade) There is no intertemporal trade.

FEquivalently, this means that agents spend all their current income on
current consumption.

Farming Activity

Farming is an activity that takes place under constant returns to scale

Qa(s,t) = A(s,t)

where A(s,t) is the density of peasants needed in location s at time t to
produce ()4 units of the agricultural good in s at {. The profit-maximizing
behavior leads to

Wasz

where p4 is the price of the agricultural good.

Manufacturing Activity

Manufacturing variety 7 involves a fixed cost and a constant marginal
cost. Ficonomies of scale are thus realized at the firm level

Li<8, t) = o+ ﬂQM’Z(S,t)

where L;(s,t) is the amount of labor used in location s at time ¢ to produce
() n,; units of variety 7 in s at ¢.

Transportation costs affect manufactured goods and take the Samuelson
iceberg form. More precisely, when the amount 7 of some variety is shipped
from location z to location x, then the amount X of that variety which is
effectively available at location x is given by

X =Zexp|—7|z—z||

where 7 is the tranport cost per unit of distance, and |z — z| the distance
between locations z and x.

Assumption 3 (Monopolistic Competition)
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We assume that there is a large number of manufacturing firms. Each of
them produces a single variety, and faces a demand with a constant elasticity
0. The optimal pricing behavior of any firm at location s and time ¢ is
therefore to set the price p;(s,t) of variety i at a fixed markup over marginal
cost

pi(s,t) = ﬁgww) 2)

where W (s,t) is the worker wage rate prevailing at location s at time ¢.
Firms are free to enter into the manufacturing sector so that their profits
are driven to zero. Consequently, their output is given by

o
Quils, t) = (0 —1) (3)
g
Since all varieties are produced at the same scale, the density n(s,t) of man-
ufactured goods produced at each location is proportional to the density
L(s,t) of workers at that location,

n(s,t)
L(s,t) = /0 Li(s,t)di = aon(s,t) (4)

This relationship is crucial. When some workers move to a new location,
they no longer produce the same mix of products but other differentiated
products. As a result, varieties produced in one location are different from
those produced in any other location. Since consumers are characterized by
a preference for variety, they will buy from all locations so that frade of
varieties between any location pair will arise.

In addition to enjoying consumption of goods, each worker can travel
along the real line s as time evolves. We believe that there is a sharp dis-
tinction in costs in adjusting consumption and location over time. While
adjusting consumption is costless, migration is costly. This distinction makes
the migration decision quite distinct from the consumption decision. So as
to capture this distinction, prices on markets will form instantaneously as
in the Walrasian tradition and maigration will be modelled as an adjustment
process. Furthermore, we suppose that when dealing with the migration de-
cision, workers consider only local migration opportunities, as is the case in
Hotelling (1921) or Mossay (2003). By local migration we mean that workers
are more likely to migrate to nearby neighbhorhoods than to more distant
locations.



Assumption 4 (Migration) Migration is local.

FEquivalently, this means that, in our model, agents cannot have instan-
taneous access to a location which is at a finite distance from where they
are, unlike in Krugman (1996) or Krugman and Venables (1995). The local
migration behavior is consistent with empirical findings according to which
the intensity of migration flows declines with the increasing distance between
origin and destination, see Ravenstein (1885), Shaw (1975), or Wheeler et al.
(1998). By making the local migration assumption we tend to focus on what
we believe to be the most important part of migration flows.

FEven though long range and international migrations play an important
role in explaining the growth of large cities, the local aspect of migration is
found back in many migratory patterns in world history. A first illustratory
case is the westward movement of Anglo-Saxons and other Furopeans in the
United States during the 19th century. They gradually moved away from
the Fast coast towards the West coast. This movement was a slow and
continuous westward process.? Another case where the local aspect is found,
is the rural migratory patterns in France during the 18th and 19th centuries,
see Aries (1979). Peasants migrated over short distances and gave rise to
numerous small-size cities (called ”bourgs” in French) spread all over France.
In view of the westward migration in the US and the early phase of the rural
exode in France, assumption 4 does not appear completely unrealistic.

Let us denote the location of a worker at time ¢ by s(¢). An implication of
assumption 4 is that the spatial itinerary s(t) followed by each worker in the
spatial economy, is continuous. The time derivative ds/dt can be interpre-
tated as the travelling speed of a worker. The travelling speed assesses how
fast a worker adjusts his itinerary over time, and therefore can constitute a
natural measure for migration costs. In our analysis, costs are assumed to
be a quadratic function of the travel speed. This corresponds to the migra-
tion cost assumption usually made in the adjustment dynamics literature,

see Mussa (1978), Krugman (1991b), Baldwin and Venables (1994).

Assumption 5 (Migration Costs) Migration costs are a quadratic func-
tion of the travel speed.

2 A field-approach was proposed by Hotelling (1921) to describe these migration flows.
Migration was assimilated to a pure diffusion process. However, no microeconomic foun-
dation was proposed by Hotelling.
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As pointed out in the adjustment dynamics literature, concavity of the
cost function facilitates the existence of a solution to the optimization prob-
lem. In that literature, adjustment takes place between two countries and
aggregate migration costs are a quadratic function of the aggregate migration
flows between the two countries. The microeconomic foundations which are
consistent with this aggregate modelling, are the following. When moving
from one country to the other, a migrant incurs a cost which depends on the
intensity of migration flows and imposes a negative externality on the other
migrants by congesting the migration process. So the larger the number of
migrants, the larger the migration cost. Furthermore, sufficient heterogene-
ity among migrants is needed so as to explain why migrants are not moving
all at the same time from one country to the other. In contrast with this ap-
proach, we do require neither the presence of externality nor of heterogeneily
in the migration process. In our model we follow the standard microeconomic
approach. We formulate the decision problem at the individual level, and
the homogeneity of workers, is assumed. The total intertemporal migra-
tion cost for a worker following the itinerary s(t), is thus proportional to
fOT [ds/dt]2 exp(—rt)dt, where r denotes the discounting factor..

In the present model, workers are interested not only in current returns
but also in the returns they expect in the future. Although the role of expec-
tations has been examined in economic geography two-country models [e.g.,
Ottaviano (1999), Ottaviano and Thisse (2000), Mussa (1978), or Baldwin
and Venables (1994)], the forward-looking approach has never been dealt
with in a continuous spatial setting, at least to our knowledge. So far, only
myopic behavior has been studied in models involving continuous spatial
economies, see Sonnenschein (1981, 1982), Mossay (2001, Chapters 2 and 3),
Krugman (1996) or Krugman and Venables (1995). Here, in our model, we
endow workers with forward-looking and rational expectation abilities.

Assumption 6 (Expectations) Workers are forward-looking and have ra-
tional expectations.

In our context, since there is no uncertainty, the rational expectation
assumption corresponds to perfect foresight.
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3 Short-Run Equilibrium

Before moving to the worker’s intertemporal decision problem, and thereafter
to the dynamic equilibrium, let us make precise what we mean by a short-
run equilibrium of the spatial economy (E). Following Krugman (1996), we
suppose that workers are immobile so that the spatial distribution L(s,t) is

fixed.

Total income Y at location s and time ¢ is given by
Y (s,t) = Ap™ + L(s,t)W (s, 1) (5)

where A is the constant density of peasants, L(s,t) the density of workers,
and p? the price of the agricultural good.

Workers are not interested in nominal wages but rather in utility lev-
els. In order to consume at x, one unit of variety ¢ produced at location
s, exp[T |x — s|] units must be shipped so that the delivery price is p;(s,t)
exp[7 |z — s||. The price index of manufactured aggregate to consumers at lo-
cation z, ©(z,1), is obtained by computing the minimum cost of purchasing
one unit of the manufactured aggregate Cys(z,1)

+oo  pn(z,t) 7ﬁ
G)(aj?t) = [/ / pi<37t>7(071) eXp[_T<U - 1) ’S - aj’]ds]
— 00 0

Using the pricing rule (2) and relation (4), ©(z,t) may be rewritten as

Oz, t) = ﬂa/(o—l)(ozo)l/(gfl)
Sy

U+°° L(s, )W (s, )" Vexp[—1(c —1)|s — g;y]dsl (6)

o0

The consumption of variety i € [0,n(s,t)] produced at s may be expressed
for workers and peasants located at x as follows

c(s,z,t) = pW(z, t)pi(s,t) 7 exp[—7(0c — 1) |s — 2|]0(z, )"}
C?(‘S? Z, t) = MpApi<37 t>70 eXp[—T(U - 1) ’3 - a:]]@(a:, t)gil

The total demand for variety i produced at s is obtained by integrating the
demand for that variety of all the consumers along the real line,
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“+o00

QJ\DLZ-(s,t) = / [L(z,t)ef (s, x,t) + Acd(s, z,t)|dx

o0

_ / - p(L(w, )W (2, 1) + Ap™)pi(s, )7

o0

exp[—7(0 — 1) |s — z|]0(z,t)" 'dx

By the total income expression (5), we get

“+o0

QJ\DLZ-(S, 1) = / pY (z,8)pi(s,t) 7 exp[—7(0 — 1) |s — x| O(x, )" *dz (7)

— 00

The market-clearing condition for variety 7 produced at s is obtained by
equating the demand QJ\DM (7) and the supply Qari(s,t) (3) of that variety,

ps.t) = e | Y ()0 )7 explor(o — 1) |s - aflda]!

o0

Because of the pricing rule (2),

g—1 ﬂ ]1/0

W(s,t) = (ﬂg )[ua<0_1)

[/W Y (2, 0)0(x, )" exp[—r(0 — 1) |s — af)da]"  (8)

o0

The manufacturing wage W(s,t) is the wage prevailing at location s and
time ¢ such that firms at s break even given the income levels Y (z,t), price
indices ©(x,?) in all locations and the transportation cost technology.
The indirect utility Q(s,t) of a worker located at s is then obtained

through (1) by

= (uW(s,0)/0(s,1))[(1 — W)W (s, ) /"]

= (L= p) ) e (s, )W (s, 1) (9)
Definition 1 A short-run equilibrium at location s and time t, is defined,
taking L(s,t) as given, by equations (5), (6), (8), (9).
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4 The Worker’s Decision Problem

In this section we introduce the worker’s decision problem. We want to study
how consumption and migration decisions are simultaneously taken in terms
of given intertemporal prices - that is in terms of a spatial distribution of
prices which evolves over time -. Therefore we will follow a worker along the
itinerary he chooses and describe his behavior. By doing so we introduce the
Lagrangian description.

Consider a worker initially located in s¢ at time tg. Since he cares about
the consumption Ci(t), Ca(t) he gets at time t € [to,T], he is willing to
choose the local markets s(t) where to trade. From time ¢y on, because
prices can vary across locations, he may find it advantageous to move across
locations.

The problem that a worker initially located in sg faces, is to choose an
optimal stream of consumption Cy(t), C4(t) and to select an optimal spatial
itinerary s(t), so as to maximize his intertemporal well-being subjected to
his budget constraint

max /OO lU(CM(t), Cal(t)) — L g (t)| exp (—rt) dt

S(t)acM (t)acA(t) to 2]{:

st. ©(s(t),t)Cu(t) + pa(s(t),t)Ca(t) = W(t), Vt € [to, 0]
s(to) = so (P)

where k measures the migration cost incurred by a worker and U = CY,(¢) C’i(“ (t)

Definition 2 (Lagrangian Description) The Lagrangian description of
the spatial economy is an agent description. Il describes the behavior of a
given agent as time evolves.

So as to see how we can use the Lagrangian approach to solve the problem
for all workers. Consider the situation at time tg. Workers are distributed
along the real line according to the initial distribution Lg(s). Then consider
a location s. By solving problem (IP) with sq = s, one obtains the behavior
of workers who were initially located in s. By doing so, we can describe the
itinerary path and the demand function of these workers, moving initially
from s. By applying the same procedure to workers initially located in other
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initial locations, we can get describe the behavior of any worker over time.
Note that to identify a worker, we need to know his initial location sy. Our
reasoning, so far, has relied on an agent-description. It has aimed at describ-
ing what happens to a given worker identified by his initial location, as time
evolves.

In what follows, we may decompose the consumer’s problem (P) into two
sub-problems (P;) and (IPy): a pure consumption problem and a pure migra-
tion problem. While the pure consumption problem concerns the choice of
an optimal consumption in a given local market, the pure migration problem
concerns the choice of an optimal spatial itinerary to follow, conditionally
on the fact that local consumption is optimal. The reason for which the
decomposition is possible, is the no saving assumption.

The Pure Consumption Problem

This problem may be stated as following. What is the optimal consump-
tion a worker should choose when he is in a given local market at a given date
? To address this question, consider a worker located in the local market s(t)
at time ¢. He makes his consumption decision Cy(t), Ca(t) taking the price
O(s(t),t) which prevails in the local market he is in, as given. IHence, his
optimal local consumption Cy;(t), C4(t) at time ¢ is determined as follows

max U(Cu(t),Ca(t))

O (8),Ca(t)

st O(s(1),0)Cu(t) + paCalt) = W (D) (P1)

The optimal demand functions are written

Cull) = Cu(O(s(t),1))
Ca(t) = Ca(O(s(t),1)) (10)

The Pure Migration Problem

This problem may be stated as following. What is the optimal spatial
itinerary a worker should choose once local consumption is supposed to be
optimal 7 To address this question, suppose that local consumption is opti-
mal - that is, determined by (10). By selecting a trajectory along the real
line s, a worker goes through some local markets, enjoying optimal local con-
sumption, and incurring migration costs associated with how fast he moves
along his trajectory. Hence the clear dependence of his intertemporal well
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being upon the itinerary he chooses. Consequently, a worker will select his
spatial itinerary s(t) so as to

max /t {U(C’M [©(s(t),t],Ca[O(s(t),t)]) — % 5 (t)} exp(—rt)dt

s(t)

st.  s(to) = so (P)

Timing of the consumption and migration decisions

The decomposition of problem (P) into the two sub-problems (IP;) and
(Py) emphasizes the distinction between consumption and migration deci-
sions. These decisions can be considered as being made in a sequential order.
In a local market, adjusting consumption is costless. This makes the con-
sumption decision the ”easiest” one to make. Because of this, the choice of
consumption Cy(t), Ca(t) is the first an agent makes by solving (Py). In
contrast, migration is costly, and requires balancing migration costs s (¢)? in
an optimal way over time. This is why the choice of the optimal itinerary
s(t) is made thereafter by solving (Ps).

Remark The pure migration problem (P2) for a worker may be rewritten
as

T
max / L(t, s, s)dt
t

s(t) o
with 8<t0) = S0 (1]_>

where we have defined the Lagrangian function by L(t, s, 5) = exp(—rt)[U [s, t]—
1/(2k) (8) 2]. The migration decision (Py) can be identified as a problem in
the calculus of variations where the end-point is variable. In problem (Ps),
the Lagrangian function I is non-autonomous but separable in s, s. For
economic problems of the same canonical form as (11), see for instance the
Ramsey neoclassical growth model in Ekeland (1986), or Tabuchi’s optimal
spatial planning (1986).

4.1 Necessary Conditions

In this section we derive necessary conditions the spatial itinerary should
meet so as to solve program (IP2). Examples where these necessary conditions
are also sufficient, and thus lead to an optimal itinerary, are largely discussed
in Mossay (2001, Chapter 4). The existence issue as well as the derivation of
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the FEuler-Lagrange conditions and other regularity considerations can also
be found in Mossay (2001, Chapter 4).

What we would like to determine is how a worker chooses his spatial
itinerary, conditionally on optimal local demand in any location at any time.
Or equivalently, we are interested in how, over time, a worker balances the
benefits of moving to higher utility level locations and the associated mi-
gration costs. Does he choose a monotonic spatial itinerary or is he about
to go back and forth. As migration is motivated by higher utility levels,
the worker’s utility level is about to be "relatively” high at the end of his
lifetime. One could think a priori that a worker should incur the migration
costs during the corresponding life period.

4.1.1 First Order Condition

The worker’s decision concerning migration is to select an itinerary s(.) which
is a function of time. The integrand depends on the itinerary s(.) and the
displacement speed V'(.) = ds/dt. The first order condition (FOC) associated
with (Ps) corresponds to the Fuler-Lagrange equation

d | lds _dU_I_Tds_O
dt | kdt| ds kdt
which may be rewritten as
d? B dU N ds
a’ " Ve T
s (t) = —koU +r s (1) (12)

Equation (12) is a second-order ordinary differential equation (ODE).
Typically, two additional conditions are required to determine a solution.

When a worker decides to migrate, he is ready to incur some migration
costs because he expects to benefit from higher utility levels in the future.
Therefore there is no reason for a worker to decide to incur migrations costs
when ¢ — oco. This is stated in the following additional necessary condition.

4.1.2 Terminal Condition
The free terminal condition associated with (Py) is

tlirg V(t) exp(—rt) =0 (13)
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Equation (13) tells us that at the end of his lifetime, a worker does not
want to migrate anymore, since migrating is no longer beneficial.

4.1.3 Economic Interpretation

At any time during his lifetime, a worker selects his displacement speed V()
so that migration is carried out to the point where its marginal cost is equated
to its marginal value

Marginal Cost ~ Marginal Value t € [to, T
of Migration ~  of Migration ’ »

Proof. Integrate the Euler-Lagrange equation (12) from ¢ to T, and use
the free terminal condition (13). W

The time derivatives s and $ are respectively the displacement speed
and the acceleration of the agent. When there is no discounting (r = 0),
equation (12) means that a worker decelerates in the direction of the spatial
gradient of utility <7 sU. This result is strongly in contradiction with myopic
migration behavior where the migration speed V(.) is proportional to the
spatial gradient of utility /7,U, see Sonnenschein (1981, 1982), or Mossay
(2001, Chapters 2 and 3).

Many examples of the intertemporal problem (P, Py, Py) and their closed-
form solutions are studied in Mossay (2001, Chapter 4).

5 From an Agent Description to a Location
Description

So far, we have described what happens to workers who are initially at a
given location sg. We have described the optimal itinerary s(t) they follow
over time, and the optimal demand function Cy; Cy they choose in terms of
the time-evolving price distribution ©(s,t). We know where these workers
are located at any time, and what their demand function in each local market
they go through, is. To solve the entire problem, we need to tell what happens
to each worker in the economy at any time. To do so, two approaches are
possible. The first one is an agent-description, referred to as the Lagrangian
approach. It tells you how the behavior of a given agent evolves over time.
The second one is a space-decription, referred to as the Eulerian approach.
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It tells you what happens in a given location as time evolves. We will see
that a link exists between the two approaches.?

The Lagrangian description is the one which first enters one’s mind, in
the sense that it describes explicitely what decisions a given agent is about to
make over time. This approach is particularly appropriate when one wants
to focus on the agent dynamics. For instance, patterns of consumption or
migration during the lifetime are within this scope. Beside these agent-based
issues, other characteristics of the economy are of great interest, namely the
spatial features of an economy. Among these, the spatial convergence issue
and the emergence of agglomerations are of major importance. The following
related recurrent questions must be put. Will the economy converge toward
a long-run equilibrium? If so, will the convergence process be monotonic
or cyclical? When this happens, is the long-run equilibrium uniform or are
agglomerations about to emerge. Furthermore, in this latter case, what can
be said about the agglomerations (ie. about their size). To deal with these
questions, we need to assess how all the individual actions about migration
interact through the market mechanism to give rise to a spatial order, or
eventually to an apparent complexity. In order to address these issues, it
seems natural to rely on a space-description of the economy. To do so, we
will formulate our problem in terms of spatial distributions describing the
workers L(s,t), their migration speeds V(s,t), their consumptions Chps, Ca
and the price system ©(s,t). This will lead to the Eulerian description of the
economy.

Definition 3 (Eulerian Description) The Fulerian description of the econ-
omy 18 a spatial description. It describes what happens in a given location as
lime evolves.

To make this clear, suppose that we are interested in describing what is
going on, in location s. In this case, we may want to tell how the number of
workers changes over time in that location, or how the optimal demand of
workers in s vary over time in terms of ©(s,t). Let us observe how this de-
scription differs from the Lagrangian one. In the Eulerian description, we do
not describe the evolution of agents during their lifetime, but what happens
in a given location. To further illustrate this, imagine that we describe the

3The Lagrangian and Eulerian terminology is borrowed from the physics of continuum
media. In that literature, they refer respectively to a particle-description, and a space-
description.
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time-evolution of the consumption of workers in s. By doing so, we actually
refer to consumption patterns of different workers. This is because the worker
population in s changes as time evolves.

5.1 The Lagrangian and the Eulerian Approaches: the
Link

From Lagrange to Euler

Indeed, both the Lagrangian and the Fulerian approaches should be
equivalent. Suppose the problem is solved in the Lagrangian formalism. Then
the time-behavior of each worker is known. So as to deduce the Fulerian de-
scription of the spatial economy, we need to describe what happens in a given
location as time evolves. According to the Lagrangian approach, we know
at time ¢ where each worker identified by its inital location sp, decides to
locate. We can deduce from this how many of them are actually in location
s, by summing up all workers in s at . By doing so, we can describe how the
number of workers varies in location s. What we have got is precisely the
Eulerian description of the evolution of workers in s.

Lagrangian and Eulerian Variations

The migration speed of a worker, who is located in s at time ¢, is denoted
V(s,t). There are two ways to describe time-variations of V. The most
natural way is probably to tell how the migration speed of this given worker
varies over time: this is the Lagrangian derivative dV/dt(s,t). Another way,
is to tell how the migration speed for workers located in s evolves over time:
this is the Fulerian derivative 9,V (s,t). More generally, we will use the
Lagrangian and the FEulerian derivatives to refer to time-variations occuring
respectively during the lifetime of a worker and in a given location.

The link between these two derivatives is formally*

di() = 8,() + V() (14)

The meaning of this relationship is that agents’ holdings are transported
by agents’ flows.
Remember the Lagrangian form of the Euler-Lagrange equation (12)

d d
%V(t) = —k:%U +rV(t) (15)

“See a general reference in fluid dynamics (i.e., Batchelor (2000)).
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By using the relationship (14) in equation (15), we can obtain the Fulerian
form of the Euler-Lagrange equation

OV (s,t) + V(s,4)05V (s,1) = —kdU [O(s,1)] +rV (s, t) (16)

Comparison of the Lagrangian and Eulerian forms

Consider a worker. Fquation (15) tells how this worker adapts his travel-
ling speed over time as a response to the spatial gradient of indirect utility in
the location he is in. This corresponds clearly to the Lagrangian description
of the spatial economy. In contrast, consider a location s. The first left-hand
side term 8,V of equation (16) tells how the travelling speed of workers com-
ing to that location, evolves over time. This term is given by the spatial
gradient of indirect utility in that location, and the transport term Vo,V
which reflects that, even a time-invariant field V(s) can involve individual
motion of workers. This corresponds clearly to the Eulerian description of
the spatial economy.

5.2 Evolution Law of Workers

In this section, we want to describe how the spatial density L(s,t) of workers
in s evolves over time in response to migration flows determined so far in (16).
We show that, once the distribution of migration speed V (s,t) is known at
time ¢, we can deduce how the density L changes at time ¢.

The evolution law for the worker distribution L will be shown below to

be

0L+ 0u(LV) =0 (17)

where V" is given by (16).
Interpretation of the evolution law
Equation (17) may be rewritten as

where ®(s,t) is defined by LV, thereby representing the flow of workers
through location s at time f. For a reason which will appear clear below,
equation (18) is called the conservative form corresponding to equation (17).

So as to interpret equation (17), consider a region I' = [s1, 5], and denote
its overall worker population at time ¢ by £(t). By integrating (18) spatially
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Figure 1: Conservation Law of Labor

over I', we have

d
—L(1) = —(@(s,1) — B(s1,1)) (19)

Equation (19) is the conservation law of the worker population. It has the
following meaning.

Conservation Law Equation (19) asserts that the rate of increase of the
worker population in region I' is equal to the flow of workers into I'
through its borders s; and sy; see Figure ?77.

To be even more illustrative, approximate (19) for small time variations,

and get the net increase of the worker population in region I' during time
span [t,t + dt] in terms of flows of workers through borders s; and sy

L(t+dt)— L(t) ~ —(D(sg,t) — D(sy,1))dt
= (V(s1,t)L(s1,t) — V(s9,t) L(s9,1))dt
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6 Market Equilibrium

In this section, we precise what we mean by a market equilibrium in our con-
text. So as to avoid the difficulties concerning the optimality of extremals,
the time horizon under study should be small enough in order for the FEuler-
Lagrange conditions to be also sufficient, see Mossay (2001, Chapter 4). In-
deed this will be the case in section 7 where the time interval under study will
turn out to be very small due to the local nature of the performed stability
analysis.

Consider a time-sequence of spatial distributions of workers L(s, t), migra-
tion speed V'(s,t), income Y (s, t), manufacturing price index ©(s, t), worker’s
wage W (s, t) and indirect utility level Q(s, 1), that is

{L(s,1),V(s,1),Y(s,1),0(s,t), W(s,1),Q(s, 1)

}te[to,oo[,se]foo,+oo[

This sequence constitutes a market equilibrium if the following conditions
are satisfied

Maximization

e the demand for workers and peasants are optimal in each location s, at
any time ¢

Cu(s,t) = Cu(©(s,t),W(s,1));Cals, t) = Ca(O(s, 1), W(s,t)) , Vs,t
C(s,t) = COn(0O(s,1); Ch(s,t) = Ca(O(s,t)) , Vs,t

e the migration speed for workers is optimal in each location s at any
time ¢

AV +VoV =—-kd,Q+rV | Vst

e the migration speed for workers satisfies the terminal condition in each
location s when ¢ tends to oo

lim V(s,t)exp(—rt) =0

t—o00

Vs

?

Evolution Law of Workers
e the density of workers in each location s at any time ¢ satisfies

OL+0,(VL)=0 , Vs,t

Market Clearing
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e the income, manufaturing price index, wage and indirect utility satisfy
the equilibrium conditions in any location s at any time ¢

Y(s,t) = Apa+ L(s,0)W(s,t)

o—1

T (ao)7T UM Lz )W (28) @ Dexp[—r(o — 1) |z — 5] dz]

o0

O(s,t) =

oc—1

Q=

Wis 1) — "ﬁ;l la@ﬁ 1)1% [/:OY(z,t)@(z,t)Ulexp —r(o — 1)]z—s]]dz1

Qs t) = p(1—p)' p, 0 (s, )W (s,1)

6.1 Evolution Equation

Let us make the following change of variables

Y (s,t) = Yy(s,1);0(s,t) = 00(s, t); W (s, t) = Ww(s, t); Q = Qu(s, t); L(s,t) = pl(s, t);

where Y, ©, W, Q are given by

pa = W;A=1—p
Y = Apy+ LW
— g 1 1 2 7ﬁ
—= HL o-1 D ——
© ﬂa — 1(040) W [T(U— 1)]
— o1 pf Vo= 2 177
e e R E]
Q= - w8 (s, W (s, 1)

We then can rewrite the partial differential equations (PDE) that distribu-
tions I(s,t), V (s, 1), y(s,t), 0(s,t), w(s,t) and w(s,t) should satisfy for being
a market equilibrium

y(s,t) = (1 —p)+pl(s, hw(s,?)

O(s,t) = [@/ ool(z,t)w(z,t)f(gfl) exp(—7(0 — 1) |z — s|)dz) 7

o0
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Q=

w(s,t) = [@/ ooy(z,t)@(z,t)(gfl) exp(—T7(0c — 1) |z — s])dz)

w(s, t) = 0 "(s,t)w(s,?)

I +0o,(Vl) = 0
oV +VoV = —KoQ+rV
lim V(s,t)exp(—rt) = 0 (20)

where K has been defined as

K=kQ

7 Behavior around a Uniform Long-Run Equi
librium

We now define long-run equilibria of the spatial economy (E).

Definition 4 A uniform long-run equilibrium (ULRE) is a set of constants
{,V,y,0,w,w} which satisfies the system (20).

In this section we analyze the spatial stability of a long-run equilibrium.
The idea is to find the conditions under which a small spatial pertubation
is stable or not. We will restrict our attention to perturbations which are in
some sense close to the long-run equilibrium. This allows us to focus on the
linearized equations of the system. In order to study the time evolution of
the spatial perturbation, we decompose it as a sum of elementary periodic
perturbations. The reason for doing so is that an arbitrary perturbation may
be expressed as a linear combination of periodic perturbations according to
Fourier decomposition. For the sake of simplicity, periodic perturbations may
be viewed as sin(vs). High (low) values of v correspond to high (low) fre-
quency perturbations. Later on, we need to introduce more general periodic
perturbations called normal modes. We then study whether each of these
elementary periodic perturbations grows or is damped over time. If at least
one of the elementary periodic perturbations is unstable, that is growing over
time, then the long-run equilibrium is unstable. More details concerning the
linear spatial stability analysis may be found in a general reference in the
hydrodynamic stability literature, see Drazin and Reid (1991). Our analysis
will allow us to examine how agglomerations emerge as well as the role that
expectations may have on the nature of agglomerations.
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7.1 Perturbation Linearized Equations

In order to perform the linearization of equations (20), we decompose the
variables into their steady state value and their corresponding deviation.
The steady state values 1 for variables I(s,t), y(s,t), 0(s,t), w(s,t), w(s,t)
and 0 for variable V(s,t). Let us denote the corresponding deviations by
U(s,t), y'(s,t), 0(s,t), w'(s,t), W' (s,1) and write

(s,0) = 144 (s,1);0(s,8) =14 0(s,1);
w(s,t) = 1+uw'(s,t);w(s,t) =1+d'(s,1);
(s,t) = 14+1(s,t);V(s,t) =04 V'(s,1) (21)

V)

The perturbation equations are then obtained by the substitution of (21) in
the PDE system (20). Neglecting second-order terms such as I'v’ leads to
the perturbation linearized equations

Y(s,t) = pll'(st) +uw'(s,t)]

0'(s,t) = —5/ N (z,t) + (1 — o)uw'(z,t)] exp(—7(0 — 1) |z — s|)d=

w'(s,t) = %/ h [y(z,t) + (6 — 1)0(z,t)] exp(—7(c — 1) |z — s|)dz
Wis,t) = w(s,t)— pd(s,t)

Bl +0,(V') = 0
OV + Ko, = V' (22)

7.2 Normal Mode Stability Analysis

The main idea in what follows is to study how periodic perturbations evolve
over time. For simplicity, you may think periodic perturbations as being like
sin(vs). High (low) values of v correspond to high (low) frequency pertuba-
tions. However, we need a more general approach in order to deal with our
problem.

Definition 5 A spatial mode is determined by its frequency v, and is defined
as exp|lvs|, with I? = —1.
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As suggested in the case of sinusoidal functions, high (low) frequency
modes have a low (large) spatial scale.

Our analysis consists in determining whether the spatial modes have a
damped or explosive behavior. A priori, there should be no reason for spatial
modes to have the same time behavior.

Since equations (22) are linear, we may construct a general solution to
these equations by an appropriate linear combination of the normal modes
(elementary solutions which constitutes a complete set). As these equations
are linear, this suggests that one looks for solutions where all perturbations
are proportional to exp|ét + Ivs].

So perturbations are assumed of the following type

_%@0_ _%_
0 (s,t 0
w/<<s,t>) B [& iy ] w?) (23>
Wst) | = exp vE w
I'(s,t) A
i V'(s,t) ] Ve ]

where for instance, ¥ is the constant amplitude of the density perturba-
tion associated with the variable /(s,t); and similarly for 0y, wy, wy, Iy, Vy-

Replacing (23) in (22) yields

Yo = p(lo+ wo) (24)
1

80 = —;hlo + hwo (25>
1 oc—1

Wy = —hyo + hg() (26>

o o

Wog = Wy — /,LQO (27>

0 = (Sl() + ]I/U() (28>

rvg = Ovg + Klvwg (29)

where h measures the spatial scale of the spatial mode v and is given by
h=[l+v*/(r(c—1)7]" (30)

Replacing (24) and (25) into (26), we get wo = wo(lp). Next 0y(lp) and
wo(lo) are obtained by using (25) and (27) respectively. By replacing wo(lp)
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in (29), and then vy(lp) in (28), we get
[@6” 4+ ras + blly = 0 (31)

where a = ((0 — 1)h* + ph — 0), b= K7*(0 —1)(1 = h)(u(1 — 20) + h(o(p* +
1) —1)).

Ignoring the trivial solution 1y = 0o = wy = wo = lp = 0, it follows that
a solution to (24), (25), (26), (27), (28), (29) only exists if the coeflicient of

lp in (31) is zero, that is, when

s(h) = = g(ﬂau) )
where
Flo,p) =12 — AKT% (0 —1)(1 = h)(u(1 — 20) + h{o(p? + 1) — 1))

(0 —1)h? 4+ ph—o

The above condition gives the possible values for 6 and h. By integrating
over the normal modes, one can get the most general solution, i.e. y(s,t) =

y [expl6(v)t + Ikv]dv.

7.3 Spatial Divergence
Definition 6 A spatial mode defined by h is unstable if Re 6(h) > 0.

Definition 7 A long-run equilibrium is unstable if there exists a spatial mode
h €]0,1] such that Reé6(h) > 0.

In what follows, spatial divergence always occur so that we are interested
in the shape the emerging agglomerations may have. So as to do so, we
compute the preferred wavelength, that is the spatial mode of which the
amplification factor is the highest.

Definition 8 The preferred wavelength hyy. characterizing the emerging ag-
glomeration is the spatial mode of which the amplification factor is the high-

est.

Defined as such, h., is the spatial scale of the emerging agglomeration,
and therefore constitutes a measure of the size of agglomerations.
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Proposition 1 (Preferred Wavelength) If the taste for variety and the
proportion of the manufacturing population are not too high (g(o,p) < 1),
then the preferred wavelength is given by hyre — p(20 — 1) /(op® + 0 — 1)
where the function g(o, ) is defined by

p— 0 —3pc + 0%+ 2u0” + p?o? — /(1 — p)P(1 + p)%(o — 1)20)
1+ (=2 =2 —p>+ pP)o + (1 4 p)?0?

glo,p) =

Conversely, if the taste for variety and the proportion of the manufacturing
population are relatively high (g(o, 1) > 1), then the preferred wavelength is
given by hye — 1.

Proof.

Remember that the interval under study for h is ]0,1]. Here we are
interested in the spatial modes h which satisfy the terminal condition as
given in (20), that is in modes h such that §(h) < r. In order to do so,
we will determine when the curve §(h) crosses the horizontal line r. TLike in
other continuous spatial models [ie. Krugman (1996), Fujita and al. (1999)],
there is no reason why these modes should behave in the same way over time:
some modes may be more amplified over time than others. The spatial mode
of which the amplification factor is the highest corresponds to the preferred
wevelength, see Krugman (1996), or Fujita and al. (1999). First note that
6(0) < r, 8(0) > 0 and 6(1) = r. This means that when the curve 6(h)
does not cross the horizontal line r at h < 1, all spatial modes satisty the
terminal condition, and hy,. — 1. See Figure 2. On the other hand, when
the curve 6(h) crosses the horizontal line r at h < 1, some modes are not
admissible. It turns out that the curve §(h) can cross the horizontal line r at
most once for h < 1. This actually happens when &'(h) gets to zero at some
h < 1, that is when g(o, ) < 1. The preferred wavelength is then given by
hpre — (20 — 1)/(op® + 0 — 1) for which 6(hyre) = 7. See Figure 3. W

The result of Proposition 1 is an extension of the works of Krugman (1996)
and Mossay (2003) to the case where workers have rational expectations.
When increasing returns at equilibrium are relatively low and the proportion
of the manufacturing population is relatively low, agglomerations emergence
and the preferred wavelength is given by hye — p(20 —1)/(op® + o — 1).
This arises when ¢ >> 1 and p is small. In this case, g(o, ) is smaller than
1, see Figure 4. On the other hand, when increasing returns at equilibrium
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Figure 2: Relationship between the amplication factor and the wavelength
when g(o, p) > 1.
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Figure 3: Relationship between the amplication factor and the wavelength
when g(o, p) < 1.
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Figure 4: Function g in terms of parameters o and p
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are relatively high and the manufacturing population relatively high, the pre-
ferred wavelength tends to infinity (hy. — 1). In this second case, g(o, 1)
is higher than 1, see Figure 4. See Table 1 for some numerical computations
of the preferred wavelength.

o\p 01 02 03 04

11 1 1 1
12 0,66 1 1 1
13 0,43 0,79 1 1

14 0,36 0,66 0,89 1
1.5 0,32 0,60 0,81 0,96

Table 1: Preferred Wavelength in terms of ¢ and p

While workers are assumed to be myopic in Mossay (2003) and Krugman
(1996), here, they are assumed to have rational expectations. Eventhough
expectations differ in these three works, agglomerations emerge in the three
cases: scale economies at the firm level and free mobility of workers con-
tribute to the emergence of agglomerations. This shows the predominant role
of the local market structure in determining the emergence of agglomerations.
We also note that unlike in the corresponding two-region model of Krugman
(1991), divergence always occur in continuous spatial models, see also Krug-
man (1996), Mossay (2003). In other words, in a continuous spatial setting,
iceberg transport costs can never balance the agglomeration force due to
scale economies. This is because when space is continuous there is always a
location toward which transporting the manufacturing good can be made as
cheap as wanted.

Since the local market structure drives the divergence result, what is then
the role of expectations in the emergence of agglomerations. To isolate the role
expectations may have on the spatial economy, we compare our results with
the ones obtained in Mossay (2003). This will make the comparison sensible
since that work differs from this work in one respect only: the expectation
formation. In Mossay (2003), where workers are myopic, we showed that
hpre 18 always equal to 0, meaning that the emerging agglomerations, which
have the higher amplification factor, have very small size. In contrast, here,
the preferred wavelength has a finite measure provided that g(o,p) < 1.
This shows how the type of expectation may distort the relationship between
the amplification factor and the wavelength, and thus affect the preferred
wavelength.
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We now see how the preferred wavelength varies with ¢ and p in the
following proposition.

Proposition 2 (Size of Agglomerations) Provided that the taste for va-
riety and the proportion of the manufacturing population are not too high
(9(o, 1) < 1), the size of agglomerations increases with the taste for variety
(inversely related to o) and the proportion of the manufacturing population,
and decreases with transport costs.

Proof.

As g(o,p) < 1, the preferred wavelength is given by hy.. — p(20 —
1)/(op? + 0 — 1) as of Proposition 1. We have 9,hy. = p(p? —1)/(c — 1 +
p?a)? < 0. Therefore, the higher the taste for variety (the lower o) , the larger
the size he, of agglomerations. Also 9,hpe = (1 —20) (1 +o(p? —1))/(o —
1+ op?)? > 0. This is because it can be shown that 1+ o(p? — 1) < 0 when
g(o,p) < 1. Therefore, the larger the proportion p of the manufacturing
population, the larger the size h.., of agglomerations. Finally, since h is always
positively related to transport costs (see how h has been rescaled {rom k in
equation (30), the higher the transport costs, the smaller the agglomerations.
|

Proposition 2 makes sense. If the taste for variety is high (o is low), then
increasing returns realized at equilibrium are high, and agglomerations are
large but not numerous (h,,. is large). Moreover the higher the proportion p
of the manufacturing population, the larger the agglomerations because then
there are less peasants to supply in the unagglomerated areas. On the other
hand, when transport costs are high, it is then sensible for firms to locate
closer to local markets in order to avoid prohibitive transport costs when
supplying immobile peasants in the unagglomerated areas. Finally, when
the taste for variety and the proportion of the manufacturing population are
relatively high, h,,. — 1 as given by Proposition 1, and space plays no role
on the spatial divergence process: the spatial mode of which the amplification
factor is the highest, is the uniform spatial mode.

& Conclusion

We have modeled migration as part of a rational decision over a continuous
set of locations. Therefore, it contrasts with all previous continuous eco-
nomic geography models [ie. Krugman (1996), Fujita and al. (1999), Mossay
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(2003)]. On the consumer’s side, we derived the first order conditions (FOCs)
characterizing an optimal spatial itinerary.

Some concepts were introduced to analyze the structure of the partial
differential equations (PDEs) which govern the evolution of the economy
over space and time. Among those, the normal mode analysis allowed us to
study the linear spatial stability of the uniform long-run equilibrium. As a
result of the analysis, like in Krugman (1996) and Mossay (2003), spatial
divergence always takes place. Spatial divergence is thus obtained under the
same conditions as the ones needed when adjustments are myopic, see Mossay
(2003). This shows how predominant is the role of the local market structure
in the convergence process: scale economies and free mobility of workers
contribute to spatial divergence, regardless of the temporal foresight ability
of agents. Furthermore, unlike in the corresponding myopic case studied by
Mossay (2003), the size of agglomerations increases with the taste for variety
(inversely related to ) and the proportion of the manufacturing population,
and decreases with transport costs. This actually happens provided that the
taste for variety and the proportion of the manufacturing population are not
too high. This shows that the spatial role of expectations is to distort the
relationship between the amplification factor and the wavelength, and thus to
affect the preferred wavelength.

In addition, continuous spatial economic geography models [Krugman
(1996) or Mossay (2003), as well as this paper| contrast qualitatively with
corresponding two-country models [Krugman (1991), Ottaviano (1999)]. In
continuous models, iceberg transport costs can never balance the agglomera-
tion force due to scale economies. The intuitive explanation is the following.
When space is continuous there is always a location toward which transport-
ing the manufacturing good can be made as cheap as wanted.

In Mossay (2001), we have identified four key elements which may affect
the spatial and temporal evolution of an economy: the local market structure,
the type of spatial adjustment (local/global), and the type of expectations
(myopic/rational). Further attention should be devoted to these different
aspects so as to identify their own or joined impacts on a spatial economy
even more clearly. Eventough they have not been included in our discussion,
other aspects deserve careful attention, namely intertemporal trading, asset
markets, and uncertainty. This work should thus be seen as part of a very
broad research program aiming at a better understanding of both spatial and
temporal fluctuations.
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