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Abstract

Value at risk (VaR) has become a standard measure of portfolio risk over the last decade. It even

became one of the corner stones in the Basel II accord about banks’ equity requirements. Nevertheless,

the practical application of the VaR concept suffers from two problems: how to estimate VaR and how

to optimize a portfolio for a given level of VaR? For the first problem, several approaches have been

suggested including the historical simulation method. The optimization problem can be tackled using

recent advances in heuristic optimization algorithms. However, our application to bond portfolios shows

that a solution to the two aforementioned problems gives raise to a third one: the actual VaR of bond

portfolios optimized under a VaR constraint might exceed its nominal level to a large extent. Thus,

optimizing bond portfolios under a VaR constraint might increase risk. This finding is of relevance not

only for investors, but even more so for bank regulation authorities.
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1 Motivation

Value at risk (VaR) has become a standard measure of portfolio risk over the last

decade. Given a portfolio with an initial value ofV0, the VaR for a given probabil-

ity α until time τ are the losses which will not be exceeded untilτ with probabilityα.

The success of this concept might be attributed to three causes. First, this risk measure

is highly intuitive and closely related to investors’ goals. Second, VaR does not depend

on any specific assumptions about return distributions or risk aversion. Third, and this

might have been the crucial factor, VaR has been imposed on banks and other financial

institutions by the Basel II accord about banks’ equity requirements.1 Consequently,

VaR can be considered as a standard instrument in assessing portfolio risk and credit

risk.2

Unfortunately, the implementation of VaR is hampered by two major problems.

First, though easy to interpret, it turns out to be at least as difficult to estimate as any

other more “traditional” risk measure. Second, when used as a constraint in portfolio

optimization, the resulting optimization problem cannot be dealt with using standard

routines.

In order to deal with the first problem, three different approaches have been sug-

gested and are used in practice:3 (i) using parametric models by assuming certain

distributional properties of asset returns, (ii) historic simulation, i.e. using an empiri-

cal distribution of asset returns based on past returns, and (iii) Monte Carlo approaches

which typically combine (i) and (ii). These three methods are also explicitly sanctioned

by the rules imposed in the Basel II accord,4 i.e. banks are free to choose and imple-

ment one of the methods for assessing the VaR of their asset portfolios. The quality

of the risk measure obtained through the different methods depends on the extent to

which the underlying assumptions are satisfied. In particular, for (i) the distributional

assumption (often normality) has to be met by the data, and for (ii) the joint distribu-

1See Basel Committee on Banking Supervision (2003). For a critique of the Basel II proposals, see

e.g., Daníelsson et al. (2001).
2For an introduction to VaR and alternative risk measures for assessing credit risk, see, e.g., Sauners

& Allen (2002).
3See, e.g., Jorion (2000).
4Basel Committee on Banking Supervision (2003), §490 (c) states: “No particular type of VaR

model (e.g. variance-covariance, historical simulation, or Monte Carlo) is prescribed. However, the

model used must be able to capture adequately all of the matrial risks exposure of the institution’s

equity portfolio.”
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tion of asset returns should be stable such that the past empirical distribution provides

a reasonable approximation to the future distribution.

When returns are perfectly normally distributed the myopic portfolio optimization

problem under a VaR constraint is equivalent to the one under a constraint on the port-

folio’s volatility.5 However, the distribution of asset returns is not well described by a

normal distribution. In particular, fat tails and excess peakedness are typical features

of asset returns difficult to deal with using parametric distributions. Hence, the use

of empirical distributions is an accepted or even favoured alternative both in theory6

and practice.7 Nevertheless, we will also provide evidence on the stability of return

distributions required for using empirical distributions in VaR measures. Furthermore,

we will provide evidence to what extent the portfolio selection process is influenced

by the method chosen to estimate risk.

The second problem results from the functional form of the risk constraint when us-

ing VaR in an optimization context.8 This problem arises naturally from requirements

imposed by the Basel II accord on institutional investors such as banks. According to

the minimum capital requirements, banks have to underlie each investment with a cer-

tain amount of equity depending on the risk class of the assets considered. Therefore,

banks might want to (i) lock as little equity as possible, or (ii) construct a yield maxi-

mizing portfolio that is (just) possible given the existing equity with regard to the VaR

limit. We focus on the second case assuming that banks’ equity is fixed in the short

run. Hence, utility based considerations whether slightly higher VaR might result in

significantly higher returns or utility, respectively, are not relevant in this case as the

VaR limit is regarded as binding in the short run.

Not least because of the Basel II accords, but also because of its popularity in the

industry, VaR has attracted a considerable amount of theoretical research. It was found

that VaR has some undesired properties as it is not what Artzner et al. (1999) call

a coherent risk measure. In particular, the lack of sub-additivity is seen as a major

shortcoming: depending on the included assets’ distributions, a portfolio can display a

higher VaR than its components Hence, a risk reduction could be achieved when split-

ting the portfolio and assessing the individual securities – which contradicts the usual

5See De Giorgi (2002) and also the results in Maringer & Winker (2003).
6See, e.g. Jorion (2000), Pritsker (1997) or Lucas & Klaasen (1998).
7cf. footnote 4.
8In this context, see also Basak & Shapiro (2001) and Alexander & Baptista (2003).
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principle of risk diversification that should be reflected by the risk measure.9 As a

consequence, the displayed risk (in terms of VaR) could be lowered when unbundling

portfolios or assessing a bank’s divisions separately rather than as a whole. This and

other shortcomings are meanwhile well-known and are already addressed in most text-

books on risk management and VaR;10 a more detailed presentation can therefore be

left out in the sense of brevity.

As a consequence, a number of modifications on VaR and alternative risk measures

related to VaR have been suggested. Arguably the most prominent amongst them is the

Conditional Value-at-Risk (CVaR) or Expected Shortfall, which indicates the expected

loss on theα worst days where the VaR limit is reached or exceeded. CVaR can be

shown to have more desirable theoretical properties11 yet is not as popular as theVaR

for various reasons, and it is unlikely that it (or some other variant) will replace VaR

in the near future. It therefore appears desirable to understand VaR and its influencing

factors as good as possible. In this light and with the institutional requirement to use

VaR as prime risk measure, this contribution will concentrate on VaR.

The portfolio optimization problem with a given constraint on the Value at Risk

is formalized in Section 2.1. In contrast to the mean–variance approach, quadratic

programming will not provide a solution in this case. Likewise, other standard opti-

mization methodologies would demand either simplifications of the problem specifica-

tion or are designed for a Expected Shortfall setting.12 Nevertheless, recent advances

in the application of optimization heuristics to portfolio optimization problems13 al-

low to tackle this problem efficiently. We make us of a modified version of Memetic

Algorithms which is described in Section 2.3.

After providing a solution approach to the two problems of portfolio optimization

under VaR, we realize a third problem with important implications for investors and

bank regulation. When an investor is required to have enough equity to cover the loss in

her investments that might occur within a given (short) period and with a given (low)

probability, than she will have an incentive to construct a portfolio that maximizes

the expected (utility of the) return that meets the shortfall constraints with the given

amount of equity. Such a behaviour corresponds to the standard profit maximization

9See also Szegö (2002).
10See, e.g., Crouhy et al. (2001).
11See Pflug (2000) on the coherence of VaR and CVaR.
12See, e.g., Rockafellar & Uryasev (2000) (extended in Krokhmal et al. (2001)) or Uryasev (2000).
13See, e.g., Gilli & Këllezi (2002b) or Maringer & Winker (2003).
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assumption if we assume that there are cost of equity. When choice is left to the

portfolio manager / investor, she will have an incentive to choose the method that

allows highest returns, especially when this method is supposedly more reliable than

other methods and is used for ex post evaluation.14 In our setting this method turns

out to be the historic simulation. While this method is useful to provide an ex post

assessment of historic value at risk and also expected VaR for a given portfolio, it

fails in a portfolio optimization setting. In fact, the optimization procedure results in

high return portfolios just meeting the VaR constraint on the historic data. However,

the actual VaR of these portfolios out of sample turns out to be much higher than its

nominal level. In fact, optimizing portfolios under a VaR constraint typically results

in portfolios with a VaR much higher than the defined constraint. This effect can be

described as the hidden risk of optimizing portfolios under VaR. To our knowledge,

this is the first paper to provide empirical evidence on this issue based on optimized

portfolios.

The rest of this paper is organized as follows. Section 2 introduces the optimiza-

tion problem, the data used for the empirical analysis, and the optimization heuristic

to solve the complex portfolio optimization problem under VaR. In Section 3, we sum-

marize the main findings. First, we provide some statistics on the distribution of asset

returns and their stability, before turning to the actual VaR of the optimized portfolios.

Section 4 concludes.

2 Model

2.1 The Optimization Problem

The investor for our problem has an initial endowment ofV0 that can be either invested

in bonds or kept as cash; without loss of generality, the rate of return of the latter is

assumed to be zero. Given that the losses until timeτ must not exceed a (fixed) value

of δVaR·V0 with a given probability ofα, and that this VaR constraint is the only

constraint, a manager of a bond portfolio will be inclined to find a combination that

has maximum expected yield that does not violate this VaR constraint.

14cf. Basel Committee on Banking Supervision (2003) §§149 and 151 – 152.
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The optimization model can therefore be written as

max
ni

E (rP) = ∑
i

ni ·Li ·Di,0

V0
· r i

s.t.

ni ∈ N+
0 ∀i

∑
i

ni ·Li ·Di,0≤V0

prob
(
Vτ ≤V0 ·

(
1−δVaR

))
= α

whereLi andDi,0 are lot size (in CHF) and current clean price (in per cent), respec-

tively, of bond i, andr i is its yield to maturity. ni is the number of lots kept in the

portfolio which has to be non-negative. Moreover, the cash position must also be non-

negative.Vτ is the value of the portfolio at timeτ (consisting of the value of the bonds

including accrued interest from time0 to τ) plus cash.

For estimatingVτ , we apply the following methods:

• Assumingnormal distribution, the VaR constraint can be rewritten as

E (Vτ)−uα ·σVτ ≥V0 ·
(

1−δVaR
)

whereuα is the respective quantile of the standard normal distribution. The

expected value forVτ and its volatility are alternatively estimated from past ob-

servations either in a standard way (“plain vanilla” or “pv” henceforth) or with

weighted values where more recent observations contribute stronger. The lat-

ter version turned out advantageous for stock portfolios in a similar setting15

with decay factor of 0.99 which is applied here, too. The weights are therefore

ws = 0.99(S+1)−s

∑S
t=10.99t where the simulations are ordered chronologically ands = 1 is

the simulation based on the oldest,s= Son the most recent of theSobservations.

• Assumingempirical distribution, the VaR constraint can be rewritten as

S

∑
s=1

bs≤ α with bs =





1
S if Vs≤V0 ·

(
1−δVaR

)

0 otherwise

15See Maringer (2004).
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whereVs,τ is one out ofS simulations for the wealth at timeτ based on his-

toric (in sample) observations. To parallel the weighted version of the normal

distribution, the alternative is to weigh thebs’s correspondingly:

S

∑
s=1

bs≤ α with bs =





ws = 0.99(S+1)−s

∑S
t=10.99t if Vs≤V0 ·

(
1−δVaR

)

0 otherwise

where, again, simulations= S is based on the most recent observation.

For the main computational study presented in the following sections, the investor

will be endowed withV0 = CHF 1,000,000, and the VaR constraint will be that the next

day’s wealth will not be below 990,000 (i.e.,δVaR= 0.01) with a probability ofα =
[0.025;0.05;0.1]. These default probabilitiesα are higher than those usually applied

in practice with respect to the available data: whenT observations are available, then

by definitionτ = α ·T observations constitute the losses at or below the VaR level.

Whenα is lower, more observations ought to be available and hence the T ought to be

higher to have a sufficient number of shortfall observations. When keepingτ = 5(=
0.025·200) as a lower bound (as we do in our study), shortfall probabilities ofα =

0.01 and 0.001 would demandT = τ
α = 500 and 5,000 observations, respectively; with

more assets in the portfolio, the problem is even intensified as higherτ (and therefore

alsoT) ought to be used in order to avoid immediate data fitting. Usually (and for

our data), the necessary (or desired) number of observations exceeds the number of

actually observed data. This gap is often circumvent by generating artificial data.

However, as we want to make a clear distinction between actually observed (empirical)

data and generated data (based on some kind of assumption of their distribution), this

study prefers higher values forα that are manageable with the available empirical data.

In preliminary studies, longer data series were used and alternative values forα and

δVaR were investigated. The findings confirmed the qualitative results reported for the

main study and are therefore omitted in the sense of brevity.

2.2 Data

The computational study is based on the fixed coupon bonds quoted on the Swiss stock

exchange in local currency, i.e. CHF. From all quoted bonds, we chose randomly 42

Swiss and 113 foreign issuers, though it was sought that no industry sector or issued
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Figure 1: Quantiles for bonds’ yield to maturity over time.

volume is over- or under represented. For these bonds, we have daily (clean) clos-

ing prices (when traded) for the period January 1999 through June 2003. All included

bonds have a time to maturity of at least two years (typically five years) and the median

issued amount is CHF 100,000,000 and CHF 200,000,000 for domestic and interna-

tional bonds, respectively.

In particular for the earlier part of this time series, thin trading causes many missing

data. When there was no current quote, the most recently quoted clean price plus exact

accrued interest was used for current bond valuation from which the current yield to

maturity was estimated. As can be seen from figure 1, the median yield to maturity of

the bonds moved from about 3% per annum (in 1999) up to approximately 4.3% (in the

year 2000) and later on down to approximately 1.4% per year (in 2003). As can also be

seen from this figure, the top 10% of bonds with highest returns have yields of at least

4% per year. Calculating the statistics for yields of the individual bonds by considering

the previous 200 trading days where available (which for most bonds is from December

1999 onwards), we find that the median for the standard deviations of the individual

bonds’ yields is 0.27%, and the lower and upper 10% percentiles for these individual

standard deviations are 0.15% and 0.51%, respectively. The distributions of these

individual yields are slightly left-skewed: the median skewness is−0.09, the 10%

percentiles are−0.87 and +0.79. Also, these yields have slightly negative excess

kurtosis (median:−0.67; 10% percentiles:−1.36 and +1.08, respectively) which

might partly be contributed to the (not uncommon) way of using recently paid clean

prices when the value of a portfolio or asset has to be estimated yet no current prices
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are available. It appears noteworthy, that the median excess kurtosis is positive from

summer 2001 until 2002 and negative otherwise.

From this data set, random selections of bonds were drawn by first choosing a

random date and then selectingN = 10 (20) different bonds. Any of these selections

was accepted only if a minimum number of different quotes within the in sample as

well as the out of sample time frames were observed (in sample frame: chosen date

plus 200 in sample days; out of sample frame: the subsequent 100 trading days). For

both values ofN, 250 of such case sets were generated independently.

2.3 Optimization Method

Due to the type of the risk constraint combined with the integer constraint on the

number of traded lots and the non-negativity constraint, the optimization problem can-

not be solved analytically, but it can be approached with heuristic optimization tech-

niques (HO). The recent literature holds several examples for successful applications

of HO to portfolio optimization, including optimization under different risk measures

(e.g., Dueck & Winker (1992)), cardinality constraints and integer constraints (e.g.,

Chang et al. (2000) or Maringer & Kellerer (2003)), index tracking (e.g. Gilli &

Këllezi (2002a)) or optimization under VaR constraints (e.g. Gilli & Këllezi (2002b)

or Maringer (2004)).

For our optimization problem, we use a modified version ofMemetic Algorithms16

where principles of heuristic local search are combined with evolutionary search strate-

gies. The basic idea of heuristic local search is to start with a random (and usually

sub-optimal, yet valid) solution and suggest slight modification for this solution. These

modifications are kept if they improve the current solution — or at least do not down-

grade it beyond a certain threshold.17 During the first iterations, this threshold is rather

generous (and therefore easily allows escaping local optima) but becomes more strict

in due course (and therefore promotes hill-climbing search during the last iterations

within a neighborhood that is supposedly close to the global optimum). Whereas tra-

ditional local search heuristics use just one agent that represents the current solution,

Memetic Algorithms enhance this local search strategy by introducing a whole pop-

ulation of agents (each representing a solution) which merely perform independent

local search, but which also “compete” and “cooperate” in regular intervals. In an

16See Moscato (1989).
17This concept is known asThreshold Acceptingalgorithm. See Winker (2001).
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evolutionary fashion, these interactions are to ultimately eliminate inferior solutions

(competition) and to combine different solutions (cooperation). The modified version

of the Memetic Algorithm used here has proofed useful and reliable in Maringer &

Winker (2003) where stock portfolios are optimized under Value at Risk and where

the algorithm and its characteristics are presented in more detail.

The implementation was done on two standard Pentium IV computers using Matlab

6. The different values for the shortfall probabilityα, the considered methods for

estimating a portfolio’s VaR, and the number of different case sets resulted in 6,000

different optimization problems for the main computational study. Each of these was

solved repeatedly and independently, and the best found solution of any of the runs was

used for the subsequent analyses. Depending on the problem size and distributional

assumptions, the computational time ranged approximately from 10 to 20 seconds per

run.

3 Results

3.1 Distribution

The decision of whether to estimate the VaR with the normal (or any other parametric)

rather than the empirical distribution depends on how well the main properties of the

observed data for the assets (or at least, via the CLT, the resulting portfolios) can be

captured with the parametric distribution. For the given data set, the portfolio values

appear far from normally distributed: regardless of the method for VaR estimation,

there is hardly any optimized portfolio where the null hypothesis of normal distributed

price changes cannot be rejected at the usual 5% level of significance both based on

a standard Jarque-Bera test (as can be seen in Table 1) and the Kolmogorov-Smirnow

test. Looking at the bond prices the null is rejected for virtually any of the assets in the

data set — the details can therefore be omitted in the sense of brevity. The main reasons

for the high rate of rejection are the leptokurtic and highly peaked distributions in the

portfolios: even when taking into account that the higher moments do not necessarily

exist (and therefore the Jarque-Bera test, using skewness and kurtosis, might not be

appropriate) and calculating the Selector statistics18 the picture remains more or less

unchanged (cf. Table 2).

18See Schmid & Trede (2003).
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N = 10,α = ... N = 20,α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

in sample

empirical 4 3 3 4 4 1

empirical, weighted 4 2 2 3 2 2

normal 4 3 3 4 4 3

normal, weighted 4 3 4 3 3 3

out of sample

empirical 24 26 22 25 23 21

empirical, weighted 26 22 26 23 25 24

normal 25 25 23 29 26 22

normal weighted 22 23 25 23 23 23

Table 1: Number of portfolios (out of 250): Do not rejectH0: normal distribution, 5%

level of significance

N = 10,α = ... N = 20,α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

in sample

empirical 6 3 3 8 0 0

empirical, weighted 3 2 3 4 0 0

normal 3 3 3 0 0 0

normal, weighted 3 3 3 0 1 0

out of sample

empirical 13 10 10 19 14 11

empirical, weighted 15 11 9 15 16 16

normal 14 12 14 19 18 21

normal weighted 13 11 12 14 19 15

Table 2: Number of portfolios (out of 250): Do not rejectH0: normal distribution, 5%

level of significance based on the Selector Statistics test for leptokurtosis
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At first sight, this seems to confirm the view that the normality assumption in the

optimization process might be inadequate and that the use of empirical distributions

might be the better choice: For most of the portfolios (see Table 3) and for an even

higher share of the included assets, the hypothesis of same in and out of sample dis-

tributions cannot be rejected, hence using past realizations for estimates of future out-

comes appears legitimate.

N = 10,α = ... N = 20,α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

empirical 200 191 199 178 169 174

empirical, weighted 204 199 200 176 173 170

normal 199 195 195 175 176 175

normal, weighted 199 199 195 178 177 172

Table 3: Number of portfolios (out of 250) theH0: same i.s. and o.o.s. distribution

(100 out of sample days)cannotbe rejected at the 5% significance level

To test whether the distributions are stable and allow reliable estimates of the VaR,

we repeatedly generated random weights for any portfolio in the two case sets where

the integer and the budget constraints are the only restrictions. Then, the share of port-

folios with out of sample losses higher than the expected VaR is determined. As can be

seen from Table 4 for the first out of sample day, the use of the empirical distributions

allows for estimations of the VaR such that the frequency of larger losses corresponds

more or less to the respective confidence level. Under the normality assumption, higher

values forα result in overly cautious estimations of the VaR — violations of which

occur less often than expected. In particular for higher values ofα, the empirical

distribution produces more reliable results than the normal distribution. This relative

advantage remains unaffected when longer out of sample periods are used for evalua-

tion; the respective statistics are therefore omitted in the sense of brevity.

To test the statistical significance of the deviations between the expected shortfall

probability,α, and the actually observed percentage of violations of the VaR limit as

reported in Table 4,̃α, a likelihood ratio test can be employed by computing the test
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N = 10,α = ... N = 20,α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

empirical 2.6 % 4.2% 9.1% 3.2% 5.6% 10.2%

empirical, weighted 2.4% 4.1% 8.2% 3.0% 5.4% 9.9%

normal 2.9% 4.1% 6.4%* 3.2% 5.3% 8.1%

normal, weighted 2.8% 4.0% 6.2%* 3.1% 5.1% 8.0%

Table 4: Percentage of portfolios with random asset weights exceeding the estimated

VaR limit on the first out of sample day for the two case sets with a confidence level

of α (* difference statistically significant at the 5% level)

statistics19

LR=−2· ln
(

αx · (1−α)(P−x)

α̃x · (1− α̃)(P−x)

)
(1)

whereP is the number of portfolios andx = α̃ ·P. The p value for this test statistic is

then determined from aχ2
1 distribution. As can be seen, statistically significant devia-

tions between accepted shortfall probability and actually realized portion of shortfalls

occur only for the portfolios withN = 10 andα = 10%. For all other instances, these

deviations (though mostly larger for the normal than the empirical distribution) are

statistically not significant.

3.2 The Hidden Risks in Optimized Portfolios

Unlike portfolios without optimization, the value of portfolios that are optimized un-

der the empirical distribution will fall significantly more often belowV0 ·E
(
δVaR

)
, the

expected VaR20, than the chosen confidence levelα . On the first out of sample day

(Table 5) the actual frequency of excessive shortfalls will be 1.5 to three times the fre-

quency originally expected (depending onα and case set). When the same portfolios

are optimized under the normal distribution, however, the frequency will be underesti-

mated only for smallα ’s, for high confidence levels, on the other hand, the frequency

will be overestimated, i.e., the VaR is estimated too cautiously. The assumption of the

19See also Kupiec (1995).
20Due to the specification and the chosen assets, the critical VaR, the out of sample data were com-

pared to, is set toE
(
δVaR

)≤ δVaR, the loss actually expected with the planed probability ofα.
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normal distribution leads (for both optimized and random portfolios) to more cautious

estimates of the VaR whenα is high. The extreme leptokurtosis of the actual distribu-

tions cannot be captured by the normal distribution, and as a result it is hardly possible

to get reliable estimates for the VaR limit: For large values ofα , the VaR limit is es-

timated too far away from the expected value, for lower values, however, the actually

realized values are within the bandwidth of their accepted value.21 Based on the LR

statistics presented in equation (1), the empirical distribution virtually always leads to

highly significant deviations between accepted shortfall probability,α, and actual per-

centage of shortfalls – whereas under the normal, virtually all of the actually realized

shortfall probabilities are within the accepted range.

N = 10,α = ... N = 20,α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

empirical 5.2%** 7.6% 16.8%*** 8.8%*** 10.8%*** 16.9%***

empirical weighted 6.0%*** 8.0%* 15.2%*** 8.4%*** 10.8%*** 16.1%***

normal 3.2% 3.6% 7.2% 4.4% 6.8% 8.4%

normal weighted 3.2% 4.0% 6.0%** 3.6% 5.6% 6.8%

Table 5: Percentage of optimized portfolios exceeding the estimated VaR,V0 ·
E
(
δVaR

)
, on the first out of sample day for the two case sets with a confidence level

of α (difference statistically significant at the 5% (*), 2.5% (**) and 1%(***) level)

The smallerα, the more only extreme outliers contribute to the shortfalls — the

estimated frequencies for the first out of sample day are therefore more sensible to

the chosen sample. Table 6 therefore takes into account larger out of sample periods,

namely the first 50 and 100 out of sample trading days for theN = 10 and theN = 20

case sets, respectively. The basic conclusion from the first out of sample day that has

been drawn for the “empirically” optimized portfolios, however, remains unchanged:

the actual percentage of cases where the VaR is violated is significantly higher than

the accepted level ofα. For the optimization results under the normal distribution, the

frequencies of shortfalls increase; resulting figures are closer to or belowα whenα is

large, yet exceeding it whenα is low. In the light of the results from the previous’ sec-

21For very small values ofα the opposite can be observed: the VaR is underestimated, and the limit

is violated too often. With respect to the data set, however, tests with smaller values ofα than the ones

presented were not possible, a more detailed discussion of these effects has therefore be left to future

research.
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tions, one can conclude that the specification errors of the normal distribution become

more obvious in these cases. In short, longer out of sample periods reinforce the spec-

ification errors made by the normal distribution and increases the differences between

accepted and actually realized shortfall frequencies. Nonetheless, the deviations under

the normal are dramatically smaller than those caused by using the supposedly more

accurate use of the empirical distribution.

N = 10,α = ... N = 20,α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

Toos = 50

empirical 7.3%*** 9.9%*** 17.8%*** 9.8%*** 13.5%*** 19.7%***

empirical weighted 7.2%*** 9.8%*** 16.4%*** 9.3%*** 12.9%*** 18.8%***

normal 5.6%*** 6.8% 8.9% 7.2%*** 8.9%*** 11.6%

normal weighted 5.3%** 6.4% 8.5% 6.8%*** 8.4%** 11.0%

Toos = 100

empirical 7.8%*** 10.6%*** 18.6%*** 10.4%*** 14.0%*** 20.1%***

empirical weighted 7.8%*** 10.5%*** 17.2%*** 10.1%*** 13.4%*** 19.2%***

normal 6.2%*** 7.5% 9.6% 8.0%*** 9.6%*** 12.1%

normal weighted 6.0%*** 7.2% 9.3% 7.7% 9.2%*** 11.6%

Table 6: Average percentage of the firstToosout of sample days where the loss exceeds

the expected VaR for optimized portfolios (differences statistically significant at the

2.5% (**) and 1% (***) level)

The advantage of the empirical over the normal distribution that had been identified

for non-optimized portfolios and the statistical properties of the actual distribution,

seems therefore lost and in some cases even reverted into the opposite when a VaR

constraint is used in the optimization process. Despite its specification errors, the

normal distribution seems to cause less problems than empirical distribution that has

been shown to be closer to reality for the single assets and non-optimized portfolios.

The major reason for this is that VaR is a quantile risk measure and therefore fo-

cuses on the number of shortfalls rather than their magnitude.22 This can be exploited

when empirical distributions are used. When optimizing under an empirical distri-

bution, a number of excessive losses beyond the specified VaR limit will contribute

equally to the confidence levelα as would the same number of small losses; the opti-

mization process will therefore “favor” those losses that come with high yields. Since

22See also Artzner et al. (1999).
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it is usually the high yield bonds that exhibit massive losses in the past, these bonds

will be given high weights. The problems arising from this effect are reinforced when

the high yield of a bond comes from a small number of high losses rather than several

small losses: a loss beyond the specified VaR limit will be considered a rare event, and

the loss limit estimated with the confidence levelα will be distinctly below the ac-

cepted limit, i.e.,E
(
δVaR

)¿ δVaR. Out of sample, this expected limit might turn out

to be too optimistic and is therefore violated too often, hence the observed percentage

of days with out of sample losses beyond the expected VaR is distinctly higher than

the originally accepted level ofα.

In addition, there is a hidden danger of data fitting for the empirical distribution:

Slight in sample violations of the specified VaR limit ofδVaRcan (and will) sometimes

be avoided by slight changes in the combination of assets’ weights that have only a

minor effect on the portfolio yield. As a consequence, there might be more cases close

to the specified VaR than the investor is aware of since they are just slightly above

the limit and therefore do not count towards the levelα ; out of sample, however, this

hidden risk causes more shortfalls than expected.23

Both effects become more apparent from the scatter plots in Figure 2 where the

results for portfolios optimized under empirical distributions are directly compared

to the results when optimized under normal distribution. The magnitude of extreme

losses shows up when the risk is measured in terms of volatility: “empirical” portfolios

accept a standard deviation of up to CHF 20,000 and, on rare occasions, even more.

When optimizing under the normality assumption, the definition of VaR imposes an

implicit upper limit on the volatility ofσVτ ≤
E(Vτ )−V0·(1−δVaR)

uα
, which, forα = 0.1, is

below CHF 10,000 for any portfolio in the case set. The volatility will be (approxi-

mately) the same regardless of the assumed distribution only if the “normal” portfolios

have low volatility; when the optimal portfolios under normality actually make use of

the specified risk limit (in sample), then their empirical counterparts are very likely to

accept large variations in the respective portfolio’s value (see Figure 2(a)).

Figure 2(b) demonstrates that, at the same time, there is a considerable number of

portfolios which, when optimized under empirical distributions, are expected to have

a smaller loss than one would expect for the same portfolio when optimized under

23Because of the peakedness and the discussed effect, thatE
(
δVaR

)
< δVaR for larger values ofα,

this effect of data fitting does not show as often as for assets with other empirical distributions (see

Maringer (2004)).
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(a) Standard deviation of next day’s value of

the portfolio

(b) Loss expected with a probability ofα

Figure 2: Expected standard deviation and VaR of optimized portfolios for theN = 20

case set withα = 0.1 (gray: 45◦ line)

normal distribution. Whenα is chosen rather large, the peakedness of the empirical

distribution results in a VaR limit closer to the portfolio’s expected value than predicted

when the normal distribution is assumed: the rare, yet extreme in sample losses are

perfectly ignored by the empirical distribution. If these extreme losses are rare enough,

it might even happen that given a sufficiently large confidence level the estimated VaR

limit will be a gain rather than a loss. This can be observed already for some portfolios

in theα = 0.1 case. Under the normal distribution, on the other hand, they do show up.

Under empirical distributions, the investor will therefore be more inclined to accept

extreme (in sample) losses without violating the risk constraint in sample, under the

normal distribution, the investor will be more reluctant. This explains why a portfolio

optimized under the empirical distribution will have a higher expected yield than the

same portfolio optimized under the normality assumption. Figure 3 illustrates these

differences. The larger the set of available assets, the more is the investor able to

make use of this fact. Not surprisingly, the deviations between acceptedα and actual

percentage of out of sample shortfalls therefore increases, whenN is larger, i.e., the

investor has a larger set of alternatives to choose from (see Tables 5 and 6).

The consequences of these effects are twofold: First, the “empirical” optimizer

underestimates the chances for exceeding the VaR limit since the scenarios where the

limit is narrowly not exceeded in sample have a fair chance of exceeding it out of

sample — hence the percentage of cases or days with losses beyondE
(
δVaR

) ·V0 is

higher thanα, i.e., the expected percentage. Second, since the “empirical” optimizer

does accept extreme losses in sample, she has a good chance of facing them out of

sample as well. The “empirical” investor will therefore not only encounter losses
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Figure 3: Expected portfolio yield depending on the distribution assumption for theN

= 20 case set andα = 0.1 (gray: 45◦ line)

exceeding the estimated VaR limit more frequently than the “normal” investor, the

“empirical” investor’s losses will also be higher.

To what extent the deficiencies of empirical distribution are exploited in the opti-

mization process depends on several aspects where the number of the in sample obser-

vations or simulations certainly is a very crucial one. Long time series, however, are

not always available nor can they be reliably generated,24 in addition the stability of

the distribution becomes a major issue, and including more historic data might bring

only diminishing contributions when weighted values (or alternative prediction models

such as GARCH models) are used. Detailed tests of these aspects, however, were not

possible with the available data and have therefore to be left to future research.

4 Conclusion

During the last years, Value at Risk has become an industry standard and has been

imposed by the Basel II accords on equity requirements. Meanwhile, the literature

has pointed out several shortfalls and theoretical caveats that are associated with the

nature of this risk measure. This paper adds another aspect to this discussion: the

pitfalls that might come when VaR is used not only for evaluation purposes of assets or

portfolios, but already as an explicit constraint on the risk in the portfolio optimization

process itself. Meant as answer to the problem of estimating the amount of capital that

is at stake with a given confidence level, the suggested solution causes serious new

problems.

24The problem of small sample sizes becomes even more apparent when, e.g., credit portfolios are

considered instead of publicly traded assets.
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Our findings from an empirical study are that exact methods for estimating the risk

(such as the use of empirical distributions) favor portfolios that actually have serious

hidden risk by exploiting the nature and definition of the risk constraint; on the other

side, inexact methods (such as the normality assumption) have less hidden risk, but are

error prone because of their specification errors. Hence, neither approach appears ca-

pable of justifying VaR as a sole risk measure in the context of portfolio optimization.

The advantages of the VaR concept when evaluating a given portfolio ex post are

diminished or even disappear when VaR replaces the “traditional” constraint in an

optimization procedure. It is therefore noteworthy that these “hidden risks” are not

the result from including securities with some fancy return distribution that obviously

exploit VaR’s not being a coherent risk measure. The hidden risks identified in our

computational study emerge only, when VaR with empirical distributions enters the

decision process: While it can be confirmed that (in principle) empirical distributions

are superior in measuring the VaR, it could be rejected that this would imply that

empirical distributions would make a superior choice for the optimization process.

With VaR having become a key figure for assessing risk, this paper focuses on this

risk measure and investigates whether there are additional potential shortcomings aside

from already known problems due to its incoherence. However, the presented evidence

brings up a series of new questions that ought to be investigated. One central issue

is to identify under what circumstances the disadvantages of the (otherwise inferior)

empirical distributions can be avoided within a Basel II framework. As this problem

is far from straightforward, it cannot be answered reliably with our results so far and

would be beyond the scope of this paper. Future research is therefore needed to find

whether additional measures, including the inclusion of higher moments, additional

risk constraints, and upper and lower bounds on asset weights, might be a remedy to

some of the current shortcomings of VaR as a risk constraint.
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