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This article estimates a dynamic structural model of discrete Research and Development (R&D)
investment and quantifies its cost and long-run benefit for German manufacturing firms. The
model incorporates linkages between R&D choice, product and process innovations, and future
productivity and profits. The long-run payoff to R&D is the proportional difference in expected
firm value generated by the investment. It increases firm value by 6.7% for the median firm in
high-tech industries but only 2.8% in low-tech industries. Simulations show that reductions in
maintenance costs of innovation significantly raise investment rates and productivity, whereas
reductions in startup costs have little effect.

1. Introduction

B Firminvestment in R&D is a key mechanism generating improvements in firm performance
over time. Estimating the ex post return to the firm’s R&D investment has been a major focus of
empirical studies for decades, with most of the empirical literature built around the knowledge
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production function developed by Griliches (1979). In this framework, firm investment in R&D
creates a stock of knowledge that enters into the firm’s production function as an additional input
along with physical capital, labor, and materials. The marginal product of this knowledge input
provides a measure of the return to the firm’s investment in R&D and has been the primary focus
of the empirical innovation literature.

The goal of this article is to estimate the expected payoff to R&D investment at the firm
level. Unlike most of the empirical literature that relies on the knowledge production function,
we focus on the firm’s R&D investment decision. The discrete decision to invest in R&D contains
information on the costs of innovation and the expected long-run payoff to the firm from engaging
in R&D investment. We develop a dynamic structural model of the firm’s choice to invest in
R&D, estimate the model using microdata on German manufacturing firms, and summarize the
implicit expected long-run payoft to R&D that rationalizes the firm’s observed R&D investment
decision.

Our model of the firm’s dynamic R&D choice captures five important features of the R&D
investment process. The first is the impact of R&D on the probability that the firm realizes
a product or process innovation. The second is the effect of these realized innovations on the
firm’s revenue productivity and short-run profitability. Third, these effects can be long lived,
affecting the incentives of the firm to invest in the future and impacting the long-run value of
the firm. Fourth, there is uncertainty surrounding the effect of R&D on innovation and the effect
of innovation on productivity. Fifth, the cost of generating innovations is likely to differ between
firms based on their size and whether they are spending to maintain ongoing R&D activities
or establishing new R&D programs. Incorporating these features into the model, the structural
parameters characterize the linkages between R&D, innovation, and productivity as well as the
costs of producing innovations.

We use the model to estimate the long-run payoft to R&D for a sample of German manufac-
turing firms across a range of high-tech and low-tech industries. The data source is the Mannheim
Innovation Panel (MIP) collected by the Centre for European Economic Research (ZEW). This
is the German contribution to the Community Innovation Survey (CIS) that is collected for most
countries within the Organisation for Economic Co-operation and Development (OECD). The
key features of the MIP survey that we utilize are questions on product and process innovations
realized by the firm, R&D input measures, production expenditure, capital stocks, and firm sales.

The structural estimates can be briefly summarized. First, firms that invest in R&D have a
substantially higher probability of realizing product or process innovations; but R&D investment
is neither necessary nor sufficient for firm innovation. The group of high-tech manufactur-
ing industries has a higher probability of innovation, given R&D, than the group of low-tech
industries. Second, product as well as process innovations lead to increases in future firm pro-
ductivity; but product innovations are more important for the high-tech industries, whereas
process innovations are more important for the low-tech industries. Third, firm productivity is
highly persistent over time, which implies that innovations that raise productivity have long-
run effects on firm performance. Fourth, the cost of generating innovations is significantly
smaller for firms that are maintaining ongoing R&D investment rather than beginning to in-
vest in R&D. This means that firm R&D history is an important determinant of current R&D
behavior.

Using the structural parameters, we estimate the expected payoff to firm R&D as the pro-
portional difference in the expected future value of a firm when it invests in R&D versus when
it does not. This expected payoff varies with the productivity, capital stock, age, and industry of
the firm and can be constructed for all firms, not just firms that choose to invest. We find that the
expected payoff varies substantially across industries and across firms within each industry. For
the five high-tech industries, a firm with the median productivity, capital stock, and age has an
expected payoff equal to 6.7% of firm value. In the seven low-tech industries, the corresponding
payoftis 2.8%. Our results show that the difference between the high-tech and low-tech industries
arises from differences in the magnitude of the effect of innovation on the firm’s productivity
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and profits and differences in the probability of realizing an innovation, given that they invest in
R&D.

The estimated dynamic structural model of R&D choice is used to simulate how a change in
the cost structure of innovation arising from, for example, a tax break or direct subsidy for R&D
investment, affects the firm’s investment choice and future productivity growth. We find that, in
the high-tech industries, a 20% reduction in the maintenance cost of R&D for firms with R&D
experience leads to, after 10 years, an average increase of 9 percentage points in the probability a
firm invests in R&D and a 1.4% increase in mean productivity. The same proportional reduction
in the innovation cost faced by firms just beginning to invest in R&D has very little impact on
the probability of investing or the level of productivity. In the low-tech industries, a reduction of
the maintenance cost increases the R&D investment rate by 7 percentage points, but there is little
effect on mean productivity. A 20% reduction in the startup cost has a larger effect, raising mean
productivity by 2.1% after 5 years and 7.0% after 10 years. The simulations also illustrate that the
two changes in cost have very different impacts on firm incentives. Reducing maintenance costs
encourages firms to continue or begin investing in R&D. In contrast, the reduction in startup costs
encourages new firms to begin investing but also reduces the option value of investing, leading
some firms to stop or delay their R&D.

In the next section of the article, we review some key ideas from the empirical literature
estimating the private return to R&D. Section 3 develops the theoretical model of R&D in-
vestment. Section 4 discusses some important features of the data, and Section 5 develops the
empirical model and estimation strategy. Sections 6 and 7 discuss the empirical results and report
counterfactual simulations of the model. Section 8 provides concluding remarks.

2. The private return to R&D investment

B The expected private return to a firm’s R&D investment is one of the main factors driving
the firm’s decision to invest. Understanding the magnitude and determinants of the private return
is key to explaining the observed patterns of R&D investment and the likely response of firm
investment to changes in the economic environment, in particular, policies that subsidize the cost
of R&D activities. Estimating the private return to R&D has been a major focus of empirical
research for decades, with most of the literature utilizing the knowledge production function
framework developed by Griliches (1979).! In this framework, firm investment in R&D, or more
broadly defined innovation input, creates a stock of knowledge or expertise within the firm that
enters into the firm’s production function as an additional input along with physical capital, labor,
and materials. The key concept of interest in this framework is the partial derivative of output
with respect to the knowledge stock, which is estimated as either the elasticity of output with
respect to the knowledge stock or the marginal product of the knowledge stock.?

This knowledge production function model has been extended in several ways, including
incorporating R&D spillovers across firms or industries, using firm market value or Tobin’s q as a
long-run output measure, and incorporating innovation outcomes as an intermediate step between
R&D investment and output.* With respect to the last extension, the Community Innovation
Surveys (CIS) have been developed to collect firm-level information on R&D expenditures and

! Surveys of the empirical literature are given by Hall (1996), and Hall, Mairesse, and Mohnen (2010).

2 The knowledge stock can also depreciate as new products, materials, and production processes make the firm’s
existing expertise irrelevant. The marginal product can be interpreted as the gross rate of return to R&D, whereas the net
rate of return is defined as the marginal product minus the rate of depreciation.

3 See Griliches (1992) for a discussion of spillovers and Hall, Mairesse, and Mohnen (2010) for a recent review of
the empirical evidence. Cohen (2010) provides a broad-ranging review of the empirical literature on innovative activity
and performance, including numerous studies linking R&D investment with underlying firm characteristics. Czarnitzki,
Hall, and Oriani (2006) review the literature that measures the effect of the knowledge capital stock on firm market value.
A large empirical literature has been built around the model of Crépon, Duguet, and Mairesse (1998) to incorporate
innovation outcomes into the R&D-productivity process. This literature is reviewed in Hall (2011) and Mohnen and Hall
(2013).
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innovations, including the development of new products and the adoption of new or improved
production processes.* Even with these extensions, the primary focus of the literature remains
the estimation of either the output elasticity or marginal product of the knowledge capital stock.

An alternative approach to incorporating R&D in the firm’s production process has been
implemented by Aw, Roberts, and Xu (2011) and Doraszelski and Jaumandreu (2013). They
model the firm’s productivity as a Markov process that is altered by the firm’s endogenous deci-
sion to invest in R&D. Conceptually, the stochastic productivity and knowledge capital models
are very similar, they explain current output as a function of past R&D investment and past
productivity shocks. There are, however, two main advantages of the stochastic productivity ap-
proach in the implementation. The basic form of the knowledge capital model treats the stock
of knowledge as the undepreciated sum of past R&D expenditures. In practice, it is difficult
to precisely estimate distributed lag coefficients on past R&D expenditures, and researchers
generally assume a fixed depreciation rate which imposes a lag structure on past R&D. Ad-
ditionally, it is difficult to estimate the stock of knowledge in the initial time period the firm
is observed, and this leads to measurement error in this variable, which may be particularly
important when the data contains only short time series of expenditures, as is the case in this
application. In contrast, the stochastic productivity framework models current productivity as
a function of prior-period productivity, the current period investment in R&D, and a stochas-
tic shock. The effect of distant past R&D expenditures is captured in prior-period productivity
and the level of productivity and the persistence in the productivity process can be estimated
even with short time series of firm-level data. A second advantage of the stochastic framework
is that it allows random shocks to current productivity to carry over into future productivity.
This captures an element of the uncertainty in the productivity process and allows for two firms
with the same past R&D expenditure path to have different productivity levels.’ Doraszelski and
Jaumandreu (2013) implement hypothesis tests that allow them to discriminate between differ-
ent variations of the knowledge capital and stochastic productivity specifications. Their results
favor the endogenous stochastic productivity model. In this article, we incorporate a stochastic
productivity process as one component of the dynamic model of R&D choice.

Griliches (1979) raises concerns about the ability of the knowledge production function
model to clarify the simultaneity between output and R&D expenditure. Current R&D expen-
ditures increase the future knowledge stock, which then increases future output through the
production function. That is the mechanism of interest, but estimating it is complicated by the
fact that current R&D expenditures are determined by past output and the firm’s expectation of
future output. Griliches warns that without careful attention to model specification and formula-
tion, estimates of the effect of R&D on output in this framework may largely reflect the effect of
output on R&D (Griliches, 1979). In this article, we develop an alternative approach that deals
with the simultaneity issues by modelling and estimating the firm’s dynamic decision to invest
in R&D rather than just the production function.® In doing so, we model the simultaneous and
intertemporal linkages between R&D and output that are identified by Griliches.

4 See Hall (2011) for a survey of the empirical studies and Mairesse and Mohnen (2010) and Mairesse, Mohnen,
and Kremp (2005) for a discussion of the estimation issues that arise in using the CIS data. Roberts and Vuong (2013)
provide a comparison of the structural model of R&D investment that we develop in this article and the framework from
Crépon, Duguet, and Mairesse (1998).

3 Klette (1996), Griliches (1998), and Rogers (2010) extend the basic knowledge capital model by also incorporating
an exogenous stochastic process for productivity. Doraszelski and Jaumandreu (2013) discuss the differences between the
two approaches.

© Aw, Roberts, and Xu (2011) estimate a dynamic demand curve for R&D by Taiwanese manufacturers. Xu (2008)
estimates a dynamic demand curve which includes a private return to R&D and an across-firm spillover that generates
potential social benefits from R&D. Hashmi and Van Biesebroeck (2016) estimate a model of dynamic R&D competition
among firms in the automobile industry. Peters, Roberts, and Vuong (2017) estimate a dynamic model of R&D demand
that allows for differences in financial resources across firms. Bernstein and Nadiri (1989, 1991) estimate a demand curve
for R&D using a dynamic cost function model. Their model of R&D investment is analogous to an investment model for
physical capital, and they estimate an Euler equation for the knowledge capital stock.
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An important contribution of our dynamic framework is that it leads to a more comprehensive
measure of the benefit of R&D. Rather than defining it as the marginal product of knowledge
capital in the production function, we define it as the impact of the firm’s R&D choice on
the expected future value of the firm. This benefit depends on how R&D affects productivity
and output in the subsequent period, which is the focus of the knowledge production function
literature, but also on how the change in productivity impacts the discounted sum of future firm
profits, including its effect on the firm’s incentives to invest in R&D in the future.

3. Theoretical model

B This section develops a theoretical model of a firm’s dynamic decision to undertake R&D
investment. In the model, the firm’s current productivity is a state variable that impacts the firm’s
decision to invest in R&D and then evolves endogenously as a result of that decision. The specific
mechanism we model is that the firm’s decision to invest in R&D alters the probability of the
firm realizing a product or process innovation in the future. If the firm realizes an innovation,
this shifts the distribution of future productivity and, ultimately, the future profits they earn.
The firm chooses to invest in R&D if the expected long-run payoff resulting from this R&D-
innovation-productivity process is greater than the current investment cost. This is analogous
to the firm deciding in each period whether or not to exercise the option of buying a possible
productivity improvement. The expected long-run payoff of the investment reflects the firm’s
valuation of the productivity improvement and will vary across firms with differences in their
characteristics, in particular their capital stock, productivity level, age, and industry affiliation.
The cost of generating innovations also varies across firms with differences in their size and prior
R&D experience.

The model contains four structural components. The first is the firm’s profit function linking
productivity and profits, 7 (w;), where w,, is firm i’s productivity in year ¢. The second links
the firm’s R&D decision with the probability it realizes either a product or process innovation
in the future. This component is represented by a cdf F(d;, ., zi;41|rd;), where d, z,rd are
measures of product innovation, process innovation, and R&D choice, respectively. This specifi-
cation captures the uncertainty surrounding whether or not the firm’s R&D efforts will produce
innovation. The third component describes the process of productivity evolution, in which prod-
uct and process innovations affect the probability distribution of the firm’s future productivity,
G(wii41 Wi, diyyy s zi+1).” This component leads to variability and uncertainty in the firm’s future
profits. The final structural component is the cost function for innovation, C(rd;,_;). This cost is
either a sunk startup cost or a fixed maintenance cost, depending on the firm’s prior history of
R&D participation. The next subsections discuss each of these components in more detail.

O  Productivity and the firm’s short-run profits. The firm’s short-run marginal cost is
given by

¢y = Bo + Bk + Buay + Buw, — Vi, (l)

where c; is the log of marginal cost, k;, is the log of firm capital stock, a,, is firm age, and w;, is
a vector of market prices for variable inputs that every firm faces in period . The firm-specific
production efficiency y,, captures differences in technology or managerial ability and is known
by the firm but not observable to the econometrician.® The capital stock is treated as a fixed factor

7Olley and Pakes (1996) and the empirical applications that follow from them assume an exogenous Markov
process for firm productivity, G(w;,+1|w;). Doraszelski and Jaumandreu (2013) endogenize productivity evolution by
including a measure of R&D investment, G(w;, 1 |w;;, rd;). Aw, Roberts, and Xu (2011) let productivity evolution depend
on the firm’s R&D and export market participation, G(w;, 11 |w;, rdy, ex;).

§ Variation in input quality, which leads to variation in input prices, across firms is also captured in y. We model
this source of quality variation as part of the unobserved firm efficiency.
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in the short run. Thus, there are three sources of cost heterogeneity across firms: capital stock,
age, and unobserved production efficiency.’

The demand for firm i’s product g, is given by

Y
qu = 0O, (Fn) exp(¢i) = P,(pi)"exp(¢i), (2)
t

where Q, is the aggregate industry output in period ¢ and P, is the industry price index, which are
combined into the industry aggregate ®,. The firm-specific variables are the firm’s output price
pi and a demand shifter ¢, that reflects product desirability or quality. The demand shifter is
known by the firm but not observed by the econometrician. The elasticity of demand 7 is negative
and assumed to be constant for all firms in the industry.

Assuming the firm operates in a monopolistically competitive market, it maximizes its
short-run profit by setting the price for its output equal to a constant markup over marginal cost:
P = (ﬁ) exp(c;). Given this optimal price, the log of the firm’s revenue r;, is:

Ui
ry = (1+n)n <m> +1In®, + (1 + n)(Bo + Biki + Baay + Buw, — wy). 3)
Revenue productivity is denoted by w,, and is defined as w;, = ¥, — :‘ndaﬁ. Equation (3) implies

that, for a given capital stock and age, heterogeneity in the firm’s revenue is driven by differences in
production efficiency v and the demand shifter ¢p. We refer to the unobserved revenue productivity
w;, simply as productivity.'” Given the form of the firm’s pricing rule, there is a simple relationship
between the firm’s short-run profits and revenue:

7 = (@) = —% exp(r). @)

The link between productivity @ and short-run profits is an important determinant of the firm’s
decision to invest in R&D.

O R&D investment and endogenous productivity. A key component of our framework
is that the firm can endogenously affect the evolution of productivity and profits over time
by choosing whether or not to participate in R&D activities. We model this linkage in two
components. First, the firm makes a discrete decision to invest in R&D, rd;, € {0, 1}, and this
affects the probability the firm realizes a product or process innovation. Innovations are denoted
as z;,,, and d;,,,, which are discrete variables equal to 1 if firm i realizes a process or product
innovation in year ¢ 4+ 1 and 0 otherwise. The linkage between R&D and innovation is represented
by the cumulative joint distribution of product and process innovations, conditional on whether
or not the firm invests in R&D, F(d;,.1, zi.11|rd;). We expect that firms that invest in R&D will
be more likely to realize product and process innovations in the next period.

We choose to treat the firm’s R&D decision as a discrete choice for several reasons. In
our data, there are substantial differences in the probabilities of product and process innovation
between firms that invest in R&D and firms that do not (evidence is provided in Table 3), but

° Equation (1) implies that, in the short run, the firm can expand or contract output at constant marginal cost. This
is a reasonable assumption if, along with the variable inputs, the firm can also adjust the utilization of its fixed capital
stock in order to expand or contract its output in the short run. In addition, in micropanel data of the type we utilize, most
of the variation in firm sales is in the across-firm rather than within-firm dimension. To account for this, our marginal cost
model relies on three factors, the capital stock, age, and production efficiency that primarily vary across firms. Economies
or diseconomies of scale are unlikely to be the source of the firm sales variation we observe in the data.

1" Empirical measures of revenue productivity are also likely to reflect differences in markups, which are not
included in the theoretical model. To estimate our model of R&D demand, we only need to quantify the effect of w;, on
firm sales and profit and do not need to separate it into components reflecting v and ¢ or markups. Studies that identify
cost and demand shocks using quantity and price data are Foster, Haltiwanger, and Syverson (2008) and Roberts, Xu,
Fan, and Zhang (2012).
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fluctuation in the level of R&D spending has little effect on these probabilities. This indicates
that there are basically two innovation regimes in the data, one for firms that invest in R&D
and the other for firms that do not. As R&D in our framework works through the probability
of an innovation, it is important to capture the difference between firms that invest in R&D and
firms that do not, but there is little additional gain from treating R&D as a continuous variable.
Furthermore, measurement error in the level of R&D expenditure is more substantial than the
error in the discrete participation variable, and this can result in small estimated impacts of R&D
expenditure on the probability of innovation.!' Overall, the discrete R&D participation variable is
a robust indicator of the firm’s investment strategy and clearly distinguishes the firms that choose
to invest in uncertain R&D projects from those that do not. The focus of our empirical model
is on measuring the long-run difference in firm value between firms that adopt these different
investment strategies.

This specification of F(d;,.1, zi.11|rd;) also recognizes that firms may direct their R&D
activity in different ways, including improving their production processes and developing new or
improved products. For example, in industries with extensive product differentiation across firms,
R&D may be heavily focused on new product development, whereas in large-scale homogeneous-
product industries, R&D may be focused on reducing cost through process innovations. This
specification also captures one aspect of the uncertainty that firms face when investing in R&D:
the technological uncertainty surrounding the innovation process. The cdf must be general enough
to recognize that R&D investment is neither necessary nor sufficient for innovation. A firm with
R&D investment might not realize any product or process innovations, whereas another firm
may realize one or both innovations, even without R&D investment. The latter can result from
luck, the effect of expenditures on R&D in the more distant past even if the firm is not currently
investing, ideas that are brought to the firm by hiring experienced workers or other spillover
channels, or changes in the production process that result from learning-by-doing without formal
R&D investment.

The second component of the R&D-productivity linkage is modelled with the cdf
G(wii1|wy, diiy1, zirs1), Where firm productivity is a stochastic variable that is affected by the
firm’s past productivity and the current realizations of product and process innovations. This
formulation captures a second aspect of the uncertainty that firms face when investing in R&D:
uncertainty surrounding the economic value of an innovation. Even when they realize an innova-
tion, the exact impact of that innovation on future productivity and profits is unknown. It may also
be the case that product and process innovations have different impacts on future productivity
because each works through different channels on the demand and cost sides. We assume that
firm productivity evolves as:

Wirr1 = (@i, digy1s Ziss1) + Eirgr- %)

The function g(-) is the conditional expectation of future productivity and ¢ is a zero mean
stochastic shock. This captures several important aspects of productivity evolution. First, the
firm’s productivity is assumed to persist over time. This intertemporal persistence is an important
feature of firm-level data on productivity. Second, innovations are allowed to systematically shift
the mean of the distribution of future firm productivity. Expected future productivity evolves
only in those cases in which the firm realizes a product or process innovation, capturing the fact
that R&D expenditures alone are not sufficient to generate productivity improvements. Third,
the specification recognizes that productivity change is affected by stochastic shocks ¢;,,, which
reflect the inherent randomness in the productivity process. We assume that the productivity
shocks ¢;,,, are i.i.d. across time and firms and are drawn from a normal distribution with zero
mean and variance o’. Because of the persistence in productivity, the shocks in any period are
incorporated into future productivity levels rather than having transitory effects.

! See Mairesse, Mohnen, and Kremp (2005) for a discussion and evidence on this point using firm data from the
French innovation survey.
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Combining these two stages captures the uncertainty and the endogeneity of the productivity
process. By making investments in R&D, the firm alters the probability of receiving a product
or process innovation, which in turn alters the distribution of productivity that it faces in future
periods. We refer to the first step as the innovation process and the second step as the productivity
evolution process. By including the innovation process in the model, rather than linking R&D
directly to productivity as in Aw, Roberts, and Xu (2011) and Doraszelski and Jaumandreu
(2013), we can gain some additional insight into whether R&D is working to improve productivity
through the demand side or cost side of the firm’s operations. In this framework, productivity
improves with either cost reductions or demand expansions that lead to higher firm sales.
Although we cannot measure the impact of R&D on the separate demand and cost components,
¢, and r;,, if we find that the overall linkage between R&D and productivity is primarily due to
product innovations, it suggests that R&D is working through the demand side, whereas a finding
of a more important role for process innovations suggests R&D is working through the cost side.

O  The firm’s dynamic decision to invest in R&D. This subsection develops the firm’s
decision rule for whether or not to invest in R&D. The benefits of investing depend on the effect
of R&D on the firm’s expected future productivity and profits, as developed in the last two
subsections. The firm’s decision also depends on the cost of improving its productivity. In this
model, the firm’s cost is the expenditure it must make to generate a productivity improvement.
This cost varies across firms for many reasons, such as the nature of the project or number
of projects the firm invests in, the firm’s expertise in the innovation process, its possibilities
to access financial resources, and its prior R&D experience. The fact that some firms have
higher innovation capabilities or have a larger set of technological opportunities for innovation is
captured in this model by lower innovation costs. Similarly, it is likely that a firm that performs
R&D continuously over time is able to generate an innovation with lower expenditures than a
firm that is just beginning to invest in R&D, because it can rely on past expertise or synergy
effects from previous projects. To capture heterogeneity in innovation costs, we model a firm’s
innovation cost C;, as a draw from an exponential distribution where the mean of the distribution
varies with the firm’s size, measured by its capital stock, and its prior R&D experience. Defining
the discrete indicator variable rd;,_; to equal one if the firm invested in R&D in year + — 1 and
zero if it did not, the innovation cost C;, of firm i in year ¢ can be represented by:

Cy~ eXP(Vm xrd;_y x ky + VS * (1 - rdi/—l) * kil)- (6)

A firm with prior R&D experience has to pay a maintenance cost drawn from a distribution with
a mean of y”k; and a firm with no prior experience has to pay a startup cost drawn from a
distribution with a mean of y’k;. The parameter vector y = (y”, y*) captures differences in the
maintenance and startup cost distributions. This innovation cost is observed by the firm prior to
their investment decision and acts as an additional source of unobserved heterogeneity (to us)
that drives the firm’s investment behavior.

We assume that, at the start of period ¢, the firm observes its current productivity level w;,
knows its short-run profit function, and the processes for innovation and productivity evolution
F and G. The firm’s state variables s; = (wy, rd;,_;) evolve endogenously as the firm makes its
decision to conduct R&D, rd;, € {0, 1}."? Given its state vector and discount factor 8, the firm’s
value function V' (s;,), before it observes the maintenance or startup cost, can be written as:

Vi(sy) = m(wy) + / I/n(%)?)(ﬁEt V(siiilwg, rdyy = 1) — Ci; BE V (Si1 |y, ¥d;, = 0))dC,  (7)
(‘jt rael,

12 Each firm is characterized by three exogenous variables: age a;;, which enters the profit function, capital stock k;,
which enters the profit function and innovation cost function, and industry, which enters all of the structural components.
To simplify the notation, we suppress these exogenous characteristics and explain the dynamic decision to invest in R&D,
focusing on the endogenous variables in the model, @ and rd. In the empirical model, we treat the firm’s capital stock,
age, and industry as defining an exogenous firm type and solve the firm’s value function V(s;) for each firm type.
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where the expected future value of the firm is defined as an expectation over the future levels of
productivity and innovation outcomes:

E V(i |wy, I"d[,) = Z V(Sn+l)dG(wiz+l |y, diz+1, Z[1+l)dF(diz+la Zit+1 |rdiz)~ (8)

dz)“?

Equation (7) shows that the firm will choose to invest in R&D if the discounted expected
future profits from investing, BE, V (s;;11|ws, rd;; = 1), net of the relevant maintenance or startup
cost, are greater than the expected future profits from not investing, BE, V (s, 41 |w;, rdi; = 0).
What differentiates these two expected future profits is the effect of R&D on the firm’s future
productivity. Using this specification, we can define the marginal benefit of conducting R&D as:

AEV (wy) = BEV (Sir1 oy, rd, = 1) - BE, V(S[H—l |y, rd;, = 0). 9)

The firm will choose to invest in R&D if AEV(w;) > C;(rd;,_;). This is the condition used in the
empirical model to explain the firm’s observed R&D choice.

Overall, this model endogenizes the firm’s choice to undertake R&D investments as a
comparison between the net expected future profits of the two alternatives. Using the empirical
model we develop in Section 5, we estimate the innovation function, productivity evolution
process, and distributions of startup and maintenance costs of innovation faced by the firm, and
quantify AEV (w,), the expected long-run payoff to investing in R&D.

4. Data

O  Firm sample. The data we use to analyze the role of R&D in the productivity evolution
of German firms are contained in the Mannheim Innovation Panel (MIP) survey collected by
the Centre for European Economic Research (ZEW) on behalf of the German Federal Ministry
of Education and Research. The survey is conducted every year for firms in the manufacturing,
mining, energy, water, construction, and service sectors. Samples are drawn from the Creditre-
form database according to the stratifying variables firm size, region, and industry.'* These are
representative of firms with German headquarters and at least five employees.

The manufacturing survey begins in 1993 and contributes to the Community Innovation
Surveys (CIS) that are administered in many OECD countries. The survey adheres to the Oslo
Manual, which provides guidelines for the definition, classification, and measurement of innova-
tion (OECD, 1992; 1997; 2005). Every year, the same set of firms is asked to participate in the
survey and to complete the questionnaire sent to them via mail. The sample is updated every two
years to account for exiting firms, newly founded firms, and firms that developed to satisfy the
selection criteria of the sample. Participation in the survey is voluntary and the average response
rate is approximately 25%, resulting in approximately 5000 survey responses across all industries
in each year. A nonresponse analysis is performed via phone to check and correct for nonresponse
bias. Due to cost reasons, starting in 1998, the full questionnaire was only sent out every other
year to all firms in the full sample. However, information on variables of interest, such as sales,
capital stock, and variable costs, are asked retrospectively for the previous year to ensure the
annual coverage. In odd years, only short questionnaires with core questions are sent to a subset
of firms. Therefore, the number of firms in odd years in the panel is significantly lower than in
even years. This limits the ability to follow individual firms over long periods of time."

For the empirical analysis, we focus on two groups of manufacturing industries. The high-
tech (HT) industry group consists of firms in five aggregated two-digit manufacturing industries
(NACE codes"): chemicals (23, 24), nonelectrical machinery (29), electrical machinery (30, 31,

13 The Creditreform database is the largest credit rating agency in Germany and maintains a comprehensive database
of approximately 3.3 million German firms.

14 See Rammer and Peters (2013) for further details and summary statistics from the MIP.

15 The industry definition is based on the classification system NACE Rev. 1 (Nomenclature statistique des Activités
économiques dans la Communauté Européenne) as published by Eurostat (1996).
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32), instruments (33), and motor vehicles (34, 35). Based on OECD data, these industries all
have R&D-sales ratios that exceed 0.025. The low-tech (LT) industry group includes firms in
seven aggregated industries, food (15, 16), textiles (17, 18, 19), paper (20, 21, 22), plastic (25),
nonmetallic minerals (26), basic metals (27, 28), and miscellaneous manufacturing (36, 37), that
all have much lower R&D-sales ratios. We estimate the model separately for the high-tech and
low-tech groups and include dummy variables for the aggregated two-digit industries in the profit
function and innovation cost function. We also estimate the innovation probabilities separately
for each two-digit industry. Our final sample consists of observations between 1993-2008 on all
firms in these industries with at least two consecutive observations and nonmissing information
on the needed variables. There are a total of 3313 firm-year observations used for estimation
in the high-tech industries, 4290 observations for the low-tech industries, and an average of 2.6
observations for each firm.

The sample attrition that occurs is virtually all due to nonreporting and not due to firm death.
Beginning in 1999, we use codes in the Creditreform data set and the MIP questionnaire to identify
firms that disappear from our sample and are likely to be true firm deaths. Depending on the
stringency of our death criteria, we find that only between 1.77% and 5.20% of the observations
that disappear from our sample are true or likely firm deaths. We also find that, comparing the
firms that remain in the sample and those that exit the sample, there is no significant difference
in firm characteristics, particularly productivity, in their last year of observation. The sample
attrition in our data set is random and is not due to the death of low-productivity firms and does
not generate selection bias in the estimates of the revenue function.

00  Variable measurement. For the estimation, we use data on firm revenue, variable costs,
capital stock, age, innovation expenditures, and product and process innovations.'® Firm revenue
is the sum of domestic and export sales. Total variable cost is defined as the sum of expenditure on
labor, materials, and energy, and the firm’s short-run profit is the difference between revenue and
total variable cost. The firm’s value is the discounted sum of the future short-run profits and thus
measures the long-run resources available to pay its capital expenses plus the economic profits.
Firm age is measured using a set of four dummy variables distinguishing the age groups: 1-9
years, 10—19 years, 2049 years, and > 50 years.

A special feature of the Community Innovation Surveys is that they provide measures of
innovation input and innovation outputs. Innovation input is measured by the firm’s expenditure on
a set of activities related to innovation. This measure includes R&D spending but also spending on
worker training, acquisition of external knowledge and capital, marketing, and design expenditures
for producing a new product or introducing a new production process. The R&D variable we
analyze in the empirical model (rd;) takes the value one if the firm reports a positive level of
spending on innovation activities.

Innovation output captures the introduction of a new product or a new production process
by the firm."” The Oslo Manual defines a product innovation as a new or significantly improved
product or service. A process innovation refers to new or significant changes in the way products
are produced, delivered, or supplied. The main purpose of a process innovation is to reduce
production costs or to improve the quality of a product. For instance, the use of lasers to increase
the quality of products in metal processing or the introduction of automation concepts is process
innovations. The innovation does not have to be new to the market but only to the firm. A firm
could report an innovation if it adopted a production technology from a competitor or expanded
its product line, even if the product was already offered by other firms.

18 For 1999 and 2000, the panel does not contain information on the firms’ capital stock. We impute these missing
years using linear interpolation.

17 Beginning in 2005, the survey started to also include questions on organizational innovation, which is defined as
new business practices, workplace organization, or external relations, and marketing innovation, referring to changes in
product design, packaging, product placement or promotion, and pricing methods. The time-series information on these
variables is too short for them to be utilized in this study.
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TABLE 1  Innovation Rates By Industry—pooled over Firms and Years

Proportion with Proportion with Proportion with
Expenditure rd Product Innovation d Process Innovation z
High-Tech Industries
Chemicals 0.769 0.686 0.552
Machinery 0.757 0.692 0.524
Electronics 0.826 0.765 0.560
Instruments 0.828 0.783 0.534
Vehicles 0.714 0.621 0.534
Average HT Industries 0.780 0.713 0.539
Low-Tech Industries
Food 0.536 0.481 0.409
Textiles 0.476 0.416 0.311
Paper 0.480 0.355 0.386
Plastic 0.634 0.591 0.486
Minerals 0.580 0.536 0.452
Basic metals 0.582 0.469 0.472
Misc. manuf. 0.632 0.555 0.408
Average LT Industries 0.560 0.477 0.428

The timing assumptions in the theoretical model about the relationship between R&D
spending, innovation outcomes, and productivity are fairly general: R&D spending precedes
innovation outcomes, and innovations that are realized are assumed to affect productivity and
profits in the period they are introduced. In the survey in year ¢, the firms are asked whether they
introduced new or significantly improved products or services during the years (t — 2), ( — 1),
or t. The discrete variable product innovation d;, takes the value one if the firm reports yes to
the question. The discrete variable for process innovation z; equals one if the firm reports new
or significantly improved internal processes during the years (¢ — 2) to ¢. In the empirical model,
this outcome is related to R&D spending in the previous year (¢ — 1), so there is not a perfect
match between the timing of the R&D and the realization of the innovations. This may lead
us to overestimate the effect of R&D on innovation, because the innovation variable could be
capturing an outcome from one year before the R&D investment was made. Attempting to use
more distant lags of R&D spending exaggerates the problems caused by sample attrition and
reduces the number of observations containing the necessary current and lagged variables.

Table 1 summarizes the proportion of firms in the sample that report positive innovation ex-
penditures, successful product innovations, and successful process innovations for each industry.
The industries are aggregated into the high-tech and low-tech groups. In our sample, the majority
of firms report having expenditures on innovation activities, but the proportions differ across
industries. In the five high-tech industries, the proportion varies from 0.714 to 0.828, whereas, in
the seven low-tech industries, it varies from 0.476 to 0.634. The rate of product innovation is also
higher in the high-tech industries: between 0.621 and 0.783 of the firm-year observations report
having a new product innovation, whereas, in the low-tech group, the rate of product innovation
varies from 0.355 to 0.591. This same difference exists for process innovation, but the difference
in magnitude between the high-tech and low-tech industries is not as large. The high-tech indus-
tries vary in a narrow band between 0.524 and 0.560, and all but one of the low-tech industries
vary between 0.386 and 0.486. The model developed in the last section allows product and process
innovations to occur at different rates, given the firm’s R&D choice, and allows them to each
have a different impact on future productivity. This leads to differences in the expected benefits
of R&D across industries and helps to explain differences in the proportion of firms that choose
to invest in R&D.

Table 2 summarizes the difference in firm revenue, capital stock, and age by industry and
R&D status. The table reports the median values in each category. Differences in capital stock and
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TABLE 2 Firm Characteristics—Median over All Observations in the Category

Capital Stock” Age Revenue®

rd =1 rd =0 rd =1 rd =0 rd =1 rd =0

High-Tech Industries
Chemicals 8.181 4.474 23 33 32.000 30.768
Machinery 4.136 1.000 19 14 19.648 3.579
Electronics 2.272 0.271 16 14 12.871 3.337
Instruments 1.636 0.358 18 15 9.985 2.127
Vehicles 9.383 1.170 18 17 52.034 4.346

Low-Tech Industries
Food 5.113 2.700 20 16 15.200 9.076
Textiles 1.855 0.794 16 39 7.719 7.490
Paper 4.800 2.023 26 18 17.057 4.957
Plastic 3.380 1.425 16 20 11.468 4.090
Minerals 3.221 1.428 20 17 11.000 4.858
Basic metals 3.250 1.162 16 16 11.248 4.200
Misc. manuf. 3.926 1.023 18 17 12.265 3.059

2Millions of euros.

age will lead to differences in profits across firms. Differences in revenue, holding capital and age
fixed, will be reflected in differences in productivity in the empirical model. In the model, capital,
age, and productivity can all affect the expected benefit from investing in R&D. The second and
third columns show that firms that invest in R&D generally have much larger capital stocks than
firms that do not invest. The fourth and fifth columns indicate no substantial differences in median
firm age between investing and noninvesting firms. In most industries, the firms that invest are
equal in age or slightly older with the chemical, textile, and plastic industries being the exception.
The last two columns of the table show that firms that invest in R&D have larger sales, suggesting
there may be productivity differences between the two groups. Overall, the patterns in Table 2
suggest that firm capital and productivity are likely to be important sources of variation in the
benefits of R&D across firms.

5. Empirical model

O  Productivity evolution. In this subsection, we describe how we use the MIP data to
estimate the revenue function, the R&D-innovation, and the innovation-productivity relationships.
Given that the innovation and R&D variables are discrete and observed in the data, we estimate
the probability distribution F(d;; .1, z;;41|7d;) as the fraction of observations reporting each of
the four combinations of d;,,, and z;,,,, conditioning on rd;, = 0 and rd;, = 1. The innovation
probabilities are estimated separately for each of the 12 industries.

The demand elasticity for each industry is estimated using the fact that the model implies
the ratio of total variable cost to firm revenue equals 1 + 1/n. We use the mean variable cost-
revenue ratio of each of the 12 industries as an estimate of one plus the inverse industry demand
elasticity.

Estimates of the transition probabilities for productivity G(w;,.|wy, d;i11, zi1+1) are needed
to construct the value function. Unlike the innovation and R&D variables, the firm’s productivity is
not observable, and the process of productivity evolution is estimated jointly with the parameters
of the firm’s revenue function, B, and f,, using the data on firm sales. To estimate the process
of productivity evolution, we use the methodology developed by Doraszelski and Jaumandreu
(2013). Using the structure of our model, we can solve for the demand functions for the variable
inputs of labor and materials. The factor demand equation for the log of materials is:

my = B + (1 +n)Beki + (1 + n)Baaz — (1 + n)w. (10)
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In this equation, the intercept 8, depends on the common time-varying components in the model,
which include the intercept of the demand function and the variable input prices. The material
demand depends on the observed capital stock, age, and unobserved firm productivity. Following
the insight originally developed by Olley and Pakes (1996), this factor demand equation can be
solved for the unobserved productivity as a function of the firm’s material and capital inputs and
age. Solving equation (10) for productivity and lagging it one period gives:

1 1
it—-1 = \ T - (k,',, alliv—=1 — \ T it=1- 11
Wi (1"‘77)’3,]—}_,3/ 1+ Battii <1+n)m¢1 (11)

We parameterize the productivity evolution process as a cubic function of lagged productivity
and a full set of interactions between the dummy variables for product and process innovations:

2 3
W = o + Q- + w;, | F+ o3w;,_ |+ udy + a5z + 2edyzi + € (12)

The persistence in firm productivity over time is captured by the coefficients «;, o, and «;. The
effect of innovations on the mean of the distribution of future firm productivity is captured by the
coefficients o, o5, and «. The coefficient s allows for the possibility that the marginal effect
of either a product or process innovation on future productivity depends on whether the firm has
the other type of innovation.'® Substituting equation (11) into the productivity evolution equation
(12) and that into the revenue function gives the estimating equation for firm revenue:

Fi = Ao+ A+ (1 +0)Biki — o [Bo1 + (1 + m)Bikioy + (1 +n)Baaisoy —mi ] (13)

_ <1a2 ) [B—1 + (1 + mBiki—y + (1 + n)Battii—y — mi_ T
+n

o 3
- ((l + 77)2> (Bt + (L + ki + (1 + m)Butismy — misi]

— (1 + mlasdy + asz; + asz;dy] — (1 + 1)y, + v

The error term v, is a transitory shock to the firm’s revenue function, which is not observed by the
firm prior to choosing its variable inputs or making its R&D decision. For estimation, we utilize
the moment conditions implied by the fact that the error term —(1 + n)e;; + v, is uncorrelated
with all right-hand side variables, a;,_, ki, ki;_1, m;,_1, zy, dy;, and z;d;,. The intercept A, is a
combination of the intercepts of the revenue function and the productivity evolution equation
ay. We can separately identify the «, parameter from the revenue function intercepts using the
moment condition that &, has a zero mean. The time coefficients A, and §,_, are functions
of the common time-varying variables, including the demand intercept and factor prices. The
B, coefficients are identified, up to a base-year normalization, and can be distinguished from
the X, coefficients because of the higher-order powers on w;,_; in equation (12). We estimate
equation (13) separately for the high-tech and low-tech industry groups using nonlinear least
squares (NLLS). We allow the intercept A, to vary across the two-digit industries in each group,
reflecting industry differences in the revenue functions, and include the industry-specific estimate
of the demand elasticity as data. After estimation of the revenue function parameters, firm-level
productivity is constructed from the inverted material demand function equation (11). The final
parameter estimated is the variance of the error term in the productivity evolution equation o2,
and this is estimated from the residuals in the productivity evolution equation.

This process differs slightly from the methodology developed by Olley and Pakes (1996) in
two respects. First, as in Doraszelski and Jaumandreu (2013) and Aw, Roberts, and Xu (2011),
productivity evolution is not an exogenous process but is affected by the firm’s R&D choice. In

'8 This interaction term also allows for the possibility that new product introductions may also require new production
processes, which could potentially raise cost and reduce output, and thus offset some of the revenue gains from the product
innovations. In this case, we may observe smaller productivity gains for firms reporting both innovations, relative to firms
that report only one type of innovation.
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this case, it is affected by the firm’s innovations and, as a result, the innovation variables enter
into equation (13). Second, because we are modelling productivity using the revenue function, we
do not need to estimate the production function coefficients on the variable inputs of labor and
materials. This simplifies equation (13) by removing the need to instrument variable input levels,
which would appear on the right-hand side when using the production function as the starting
point.

O  Value function and the dynamic choice of R&D. As described in Section 3, the firm
bases its R&D investment decision on a comparison of the long-run payoff from undertaking
R&D, AEV (w;), with the realized maintenance or startup cost, C;;. The probability that the firm
chooses to invest in R&D is given by:

Pr(rd, = l|s;) = Pr[AEV(w;) > Cy(rd;,_)] (14)
=1—exp(—AEV(w))/(y" *rdy_y x kyy +y* (1 —rd;_) * ky)),

where the innovation cost is modelled as described in equation (6). In the empirical model, we
allow the cost function parameters y = (y”, y*) to vary by industry.

The final piece of the empirical model is the construction of the value functionand AE V (w;,),
equations (7) and (9), respectively. We apply the nested fixed-point algorithm developed by
Rust (1987) to estimate the dynamic discrete choice model. The state space s; = (w;, rd;;_;) is
discretized into 100 grid points for productivity and two values for lagged R&D choice, and we
use value function iteration to solve for the value function at each element of this discretized state
space. In addition, the firm value differs across firms based on capital stock, age, and industry.
We define a set of 4800 discrete firm types based on 100 values of the capital stock, four age
categories, and 12 industries, and construct the firm value and payoff to R&D for each firm type.
The payoff to R&D is computed for each data point by using a cubic spline to interpolate across
the productivity and capital grid points for each industry-age category.

Assuming the firm’s state variables s, are independent of the cost draws and that the costs
are i.i.d. across all periods and firms, the likelihood function for the firms’ R&D choice data is:

N T;
L(ylrd,s) = [ [] [ Prerdulsi; v)- (15)

The vectors rd and s contain every firm’s R&D choice and state variables for each period,
respectively. The total number of firms is denoted by N, and 7; is the number of observations for
firmi.

6. Empirical results

O  Estimates of the innovation and productivity process. Estimates of the probability of
an innovation conditional on the firm’s prior-period investment in R&D, Pr(d;; 1, z;;,1|rd;), are
reported for each industry in Table 3. There is a strong relationship between R&D investment and
innovation outcomes. Columns (2) through (5) show the probability of realizing each combination
of product and process innovation, given that the firm does not engage in R&D. Columns (6)
through (9) report these probabilities for firms that conduct R&D. Column (2) shows that, on
average, for firms that did not engage in R&D, the probability of having neither product nor
process innovation in the next year averages 0.771 in the high-tech industries and 0.792 in the
low-tech industries. This estimate is similar across all 12 industries, varying from a low of 0.710
in electronics to 0.820 in basic metals. What is more important to note is that approximately 22%
of the firms still realize innovations even if their R&D spending is zero, and the most common
outcome among the three combinations is the joint realization of product and process innovations
(d =1,z = 1). This result indicates that prior-period R&D is not necessary for the firm to realize
innovations.
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TABLE 3  Probability of Innovation Conditional on Past R&D: Pr(d,,,, 2,41| rd,)

rd, =0 rd, =1
Product Innovation d=0 d=1 =0 1 0 1 0 1
Process Innovation z=0 z=0 z=1 z=1 z=0 z=0 z=1 z=1

High-Tech Industries

Chemicals 0.776 0.049 0.049 0.126 0.107 0.224 0.048 0.621
Machinery 0.780 0.061 0.036 0.123 0.104 0.252 0.038 0.606
Electronics 0.710 0.084 0.028 0.178 0.094 0.268 0.031 0.607
Instruments 0.800 0.050 0.020 0.130 0.091 0.302 0.011 0.595
Vehicles 0.778 0.065 0.040 0.111 0.135 0.174 0.058 0.633

Average HT Industries 0.771 0.061 0.037 0.131 0.103 0.253 0.035 0.609
Low-Tech Industries

Food 0.756 0.047 0.047 0.150 0.239 0.178 0.046 0.537
Textiles 0.783 0.062 0.037 0.108 0.254 0.244 0.048 0.454
Paper 0.785 0.032 0.085 0.098 0.270 0.138 0.146 0.446
Plastic 0.793 0.077 0.017 0.111 0.145 0.171 0.040 0.644
Minerals 0.780 0.062 0.023 0.136 0.179 0.163 0.048 0.611
Basic metals 0.820 0.024 0.046 0.110 0.170 0.123 0.118 0.585
Misc. manuf. 0.780 0.083 0.038 0.098 0.167 0.259 0.051 0.523

Average LT Industries 0.792 0.047 0.046 0.114 0.196 0.168 0.082 0.555

Firms that invest in R&D are much more likely to report innovations. However, R&D is
not sufficient to produce innovations: as shown in column (6), the probability of no innovation
outcomes varies between 9.1% and 27.0% across the industries, and averages 0.196 in the low-
tech industry group and 0.103 in the high-tech industries. The difference in the probability of
innovation outcomes can reflect a combination of lower R&D effort in the low-tech industries,
even when the firm reports positive R&D spending, and fewer technological opportunities for
innovations. Among the three possible combinations of innovation outcomes, the most common
is that the firm reports a product and process innovation (d = 1,z = 1), with the probability
varying between 0.446 and 0.644. On average, the probability of realizing both innovations is
higher in the high-tech group than in the low-tech group, 0.609 versus 0.555. Among investing
firms, the success rate for introducing a new product is in general higher than the rate for a
new process. The only exception is the paper industry, which is an industry where large-scale
production is important and which could give a strong incentive for firms to invest in process
innovations. "

Table 4 reports the demand elasticity estimates for each industry in the high-tech and low-
tech sectors. In the chemical industry, the estimate of (1 + 1/7) is 0.675, implying a demand
elasticity 7 of —3.075. The demand elasticity is used to convert productivity into profit, as seen
in equations (3) and (4). The estimates vary substantially across industries, ranging from —2.991
in the food industry to —5.266 in metals.

Table 5 reports the estimates of the productivity evolution process for the high-tech and
low-tech sectors from equation (13). The double and single asterisks denote parameter estimates
different from zero at the 0.01 and 0.05 significance levels, respectively. The positive coefficient
estimates for z and d indicate that firms that realize innovations have, on average, higher future
productivity levels compared to those that do not have any kind of innovation. For firms in the
high-tech industries, a new product innovation d contributes, on average, a 3.6% productivity
gain, and a new process innovation z contributes 2.9%. There is no significant additional effect

19 1f we construct Table 3 using rd;,_; as the conditioning variable, so there is a two-year lag between R&D and
innovation, we get a very similar pattern of innovation rates. Among the firms with rd;,_; = 0, 73.6% in high-tech
and 76.4% in low-techreport no innovation. Among the firms with rd;,_; = 1, 22.5% in the low-tech sectors report no
innovation, which is twice as large as in the high-tech sectors. The estimates of innovation probabilities by industry are
not sensitive to the use of one- or two-period lags in R&D.
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TABLE 4 Demand Elasticity Estimates (standard error)

1+1/n n Sample Size

High-Tech Industries

Chemicals 0.675 (0.005)* —3.075 1350

Machinery 0.803 (0.002)* —5.078 2643

Electronics 0.731 (0.005)** —3.713 1403

Instruments 0.763 (0.005)** —4.213 1428

Vehicles 0.796 (0.005)* —4.891 892
Low-Tech Industries

Food 0.665 (0.007)* —2.991 1162

Textiles 0.697 (0.003)** —3.302 991

Paper 0.697 (0.003)* —3.296 1669

Plastic 0.798 (0.003)** —4.941 1396

Minerals 0.675 (0.005)* —3.080 960

Metals 0.810 (0.002)* —5.266 2763

Misc. manuf. 0.765 (0.004)* —4.253 872
**Significant at the 0.01 level.
TABLE 5  Productivity Evolution Parameters (standard error)

High-Tech Industries Low-Tech Industries
d 0.036 (0.008)* 0.015 (0.008)
z 0.029 (0.014)" 0.035 (0.010)*
dx*z 0.001 (0.016) —0.009 (0.013)
O 0.711 (0.020)* 0.707 (0.015)*
ol 0.211 (0.012)* 0.160 (0.010)*
o}, —0.056 (0.004)* —0.041 (0.003)*
k —0.065 (0.003)* —0.058 (0.003)*
a=(10-19) 0.009 (0.013) 0.017 (0.013)
a = (20 — 49) —0.058 (0.019)* —0.049 (0.020)*
a>50 —0.158 (0.025)* —0.101 (0.023)*
Intercept 0.866 (0.150)* 0.313 (0.182)*
Chemicals 0.061 (0.037) Food 0.022 (0.037)
Machinery 0.035 (0.030) Textiles —0.162 (0.036)*
Electronics 0.069 (0.034)" Paper —0.033 (0.033)
Instruments 0.072 (0.033)" Plastic —0.053 (0.033)
Minerals —0.001 (0.037)
Metals 0.006 (0.031)

SE(e) 0.189 0.203
Sample size 3313 4290

*Significant at the 0.05 level, " Significant at the 0.01 level.
Time dummies for A, and §,_; included but not reported.

from having both types of innovations jointly. The coefficient on the interaction term d * z is
0.001, which implies an average productivity increase of 6.6% in the next year if the firm has
both types of innovations.

In the low-tech industries, the magnitudes of these productivity effects are smaller, but their
difference is more pronounced. Firms that introduced a new product have, on average, 1.5% higher
future productivity, whereas a new process innovation raises productivity by 3.5%. One possible
reason for the weaker impact of product innovation on future productivity is that new or improved
products may represent less substantial changes over existing products in these industries.?’ If a
firm realizes product and process innovations, it has 4.1% higher future productivity.

% This interpretation is supported by data on products that are new to the market. In the MIP, the proportion of
firms introducing products that are new to the market varies from 39% to 51% in the high-tech industries compared to
16% to 31% in the low-tech industries.
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The effect of past productivity on the current productivity level is measured by the coefficients
of w,_y, its squared and cubic terms. Past productivity is highly persistent. There is a nonlinear
relationship between current and lagged productivity for both sectors, as seen by the statistically
significant effect of ? | and w? |. The persistence of the productivity process has a substantial
impact on the long-run payoff from R&D because it determines how quickly the productivity
gains from an innovation depreciate. Lower values of «; imply more rapid depreciation of the
productivity and profit gains from an innovation d or z, which lowers the long-run payoff to R&D.
Overall, large coefficients on the innovation variables and high persistence of the productivity
process results in a high level of AEV, the expected long-run payoff to R&D.

The remaining variables in the profit function, capital and age, also have significant effects.
The cost elasticity of capital in the high-tech sector is estimated to be 8, = —0.065 and —0.058
in the low-tech sector. Negative values of §, imply firms with a higher capital stock have lower
production costs because they use fewer variable inputs. We include three dummy variables
representing different age categories in the estimation, where firms between one and nine years
old are the omitted base group. The estimated coefficients for firms in the 10-19 category
implies that they have higher costs than the base group, but the difference is not significant in
either industry. The coefficients on the remaining two age groups are negative and statistically
significant, indicating that older firms have lower costs than the base group. The magnitude of
the estimates is higher for the oldest firms, indicating higher cost efficiency as the firm ages.?!

Before turning to the estimation of the dynamic parameters, we examine the reduced-form
relationship between R&D, the firm characteristics, capital, age, and industry, and the two state
variables, productivity and lagged R&D. Table 6 reports probit regressions of this relationship.
The second column of the table reports estimates for the high-tech industries without the lagged
R&D variable included. Capital and productivity are significant determinants of discrete R&D
choice, but age is not significant. When lagged R&D is included in the specification, it is, not
surprisingly, highly significant and the other coefficients drop substantially in magnitude, but
capital and productivity remain statistically significant. A similar pattern is found for the low-
tech industries. The main difference is that productivity is not significant when lagged R&D is
included. Also, the age coefficients are more important than in the high-tech industries and the
negative signs imply that older firms are less likely to invest in R&D. This age pattern is not
consistent with the role of age in the dynamic model, where we find that older firms have lower
production costs which will tend to increase their incentive to invest in R&D.

O  Estimates of the cost of innovation. The final sets of parameter estimates characterize the
innovation cost distributions. In the model, this is the expenditure the firm must incur to generate
a product or process innovation that, in turn, raises its productivity. Table 7 reports parameter
estimates for three different cost specifications. The standard errors are bootstrapped to account
for the variation in the first-stage parameter estimates. The first, labelled model A in the table,
is the specification described in equation (6), which allows the mean of the cost distribution to
differ with the firm’s capital stock and industry. Model B allows the mean of the cost distribution
to differ by industry, whereas model C allows it to differ across small-, medium-, and large-size

21 We also check if estimates of the revenue function and productivity process are affected by firm exit. Olley and
Pakes (1996) found that the use of a balanced panel of plants did result in selection bias in their production function
estimates, but once the observations on entering and exiting plants were included in the sample, the selection bias was very
minor. As explained in the first subsection of Section 4, virtually all of the attrition in our sample is due to nonreporting,
not firm death. To verify if sample attrition affects our results, we estimate probit models of exit and find that capital
stock, age, material expenditures, and industry have no explanatory power in the regressions. The pseudo R? in the exit
regression is 0.005 in the high-tech and low-tech models, with only a few industry dummies and age dummies being close
to statistically significant. Including the predicted probability of exit in the revenue function estimation, equation (13),
has no effect on the structural parameter estimates. The estimates of @ from a model that controls for the probability of
exit and a model that does not have a correlation above .99. There is no evidence of selection bias from sample attrition
in our estimates.
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TABLE 6 Reduced-Form Model of R&D Investment

High-Tech Industries Low-Tech Industries
rd;_ 2.048 (0.065)* 1.608 (0.046)*
k 0.192 (0.017)* 0.118 (0.020)* 0.167 (0.014) 0.088 (0.016)*
k* 0.003 (0.005) 0.002 (0.006) 0.014 (0.004)* 0.011 (0.005)"
® 0.313 (0.066)* 0.163 (0.081)" 0.130 (0.054)" 0.013 (0.060)
®* —0.203 (0.039) —0.134 (0.047)* —0.062 (0.028)" 0.004 (0.032)
a=(10-19) —0.003 (0.068) 0.023 (0.083) —0.091 (0.054) —0.101 (0.061)
a=(20—49) —0.083 (0.071) —0.099 (0.086) —0.232 (0.059) —0.141 (0.066)"
a>50 0.041 (0.080) —0.028 (0.096) —0.155 (0.056)* —0.093 (0.063)
Intercept 0.457 (0.084)* —0.729 (0.110)* Intercept —0.062 (0.075) —0.867 (0.087)*
Chemicals 0.090 (0.081) 0.026 (0.101) Food 0.020 (0.087) 0.066 (0.096)
Machinery 0.461 (0.092)* 0.254 (0.112)" Textiles —0.110 (0.078) —0.056 (0.086)
Electronics 0.568 (0.172)* 0.248 (0.115)" Paper 0.336 (0.085)* 0.235 (0.095)
Instruments —0.195 (0.100) —0.112 (0.123) plastic 0.149 (0.088) 0.115 (0.098)
Minerals 0.197 (0.077)" 0.179 (0.086)"
Metals 0.346 (0.096)* 0.284 (0.108)*
Sample size 3313 3313 4290 4290
Pseudo R? 0.104 0.422 0.070 0.301

*Significant at the 0.05 level, ™ Significant at the 0.01 level.

classes defined by the firm’s capital stock. All three cost specifications distinguish between the
distribution of startup and maintenance costs.

Focusing on specification A, the estimated maintenance costs are smaller than startup costs
in all industries. This means that, comparing two firms with the same productivity, capital stock,
age, and industry, and, hence the same expected payoff to R&D, the firm with previous R&D
experience will find it less expensive to generate an innovation than one with no prior experience.

In specification A, the positive coefficient implies that firms with larger capital stock draw
their innovation cost from a distribution with a higher mean. In the estimated model, the payoff to
conducting R&D increases with the capital stock. Holding productivity, age, and industry fixed, a
firm with a larger capital stock will have a larger benefit to investing in R&D and will be willing
to invest more resources to get an innovation. An analogous interpretation of the cost magnitude
applies to a comparison of the high-tech and low-tech industries. The higher expected payoft to
R&D in the high-tech industries allows these firms to invest more in the innovation process.

The two other cost specifications result in lower log-likelihood values. The results for model
B show that there are significant differences in mean costs across industries. These differences
are particularly large between the high-tech and low-tech industries. The estimates for model C
show a higher mean level of innovation costs for larger firms. Both of these patterns, industry
differences and variation with firm size, are incorporated in model A and we will focus on those
results in the remainder of this article.

We assess the goodness of fit of the dynamic model by simulating the firms’ investment
choices given their capital stock, age, productivity, and industry and compute the predicted R&D
transition rates. Table 8 reports the actual and predicted R&D transition rates, using the cost
estimates from model A. The model fits the data well for the firms that do not engage in R&D. In
the high-tech industry, the predicted startup rate is 0.291, whereas this rate is 0.245 in the data.
In the low-tech industry, the predicted rate is 0.233 and the observed rate is 0.219. For investing
firms in the high-tech industry, our model predicts a continuation rate of 0.862 versus 0.933 in
the data. For the low-tech industries, the prediction is 0.711 and the data is 0.824. Overall, the
model slightly underestimates the continuation rate and overestimates the exit rate.

O  Expected benefits of R&D. Using the estimates of innovation costs, innovation probabili-
ties, and the productivity process, we construct AEV (w), the expected long-run payoff to investing
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TABLE 8 Transition Rates for R&D

Data Model
rd, =0 rd, =1 rd, =0 rd, =1
High-Tech Industries
rd,_, =0 0.755 0.245 0.709 0.291
rd,_, = 0.067 0.933 0.138 0.862
Low-Tech Industries
rd,_; = 0.781 0.219 0.767 0.233
rd,_, =1 0.175 0.824 0.289 0.711

TABLE 9  Long-Run Expected Benefits of Conducting R&D (evaluated at median ®, median k, age = 2 in each

industry)
Pr(rd, = 1)

AEV(w)* rd,_, =1 rd,_, =

High-Tech Industries
Chemicals 4213 0.847 0.281
Machinery 4.708 0917 0.327
Electronics 2.691 0.975 0.244
Instruments 2.331 0.965 0.345
Vehicles 6.770 0.856 0.370
Average HT Industries 4.413 0.912 0.313

Low-Tech Industries
Food 0.470 0.440 0.163
Textiles 0.299 0.397 0.090
Paper 0.450 0.459 0.138
Plastic 1.272 0.755 0.226
Minerals 0.590 0.730 0.218
Metals 1.563 0.716 0.170
Misc. manuf. 0.833 0.804 0.246
Average LT Industries 0.782 0.614 0.179

*Millions of euros.

in R&D, from equation (9). This measures the difference in the present value of expected future
profits that accrue to the firm if it engages in R&D versus if it does not engage in R&D for a given
year. This benefit depends on the industry-level measures (profit function, demand elasticity,
productivity evolution, and innovation probabilities) and the firm-level variables (productivity,
capital stock, and age) and, therefore, varies across firms within an industry.

Table 9 focuses on differences in the expected benefits across industries. The second col-
umn reports the value of AEV(w) for a firm in age group 2 (1019 years old) with the median
level of productivity and capital stock in each industry, a “median” firm. In the high-tech indus-
tries, the expected payoff to R&D varies from 2.33 million euros in the instrument industry to
6.77 million euros in vehicles. Not surprisingly, given the earlier findings of lower innovation rates
and lower productivity impacts of innovation, the expected payoff to R&D investment by firms
in the low-tech sector is smaller. They vary from 0.299 million euros in the textile industry to
1.563 million in the basic metals industry.

These differences in expected benefits, when combined with the cost estimates, translate into
differences in the probability of investing in R&D. The last two columns of Table 9 summarize
these probabilities for the same “median” firm in each industry. The probabilities also vary with
the firm’s prior R&D experience because of the difference in maintenance versus startup cost.
In the high-tech industry, this “median” firm has a high probability of continuing to invest in
R&D. Given they are paying a maintenance cost (i.e., 7d,_; = 1), the probability of investing in
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R&D varies between 0.847 and 0.975. The probability of beginning an R&D program is much
smaller, varying from 0.244 to 0.370 across industries, reflecting the substantial startup costs that
are faced by firms beginning to invest in R&D. In the low-tech industries, continuing and starting
probabilities are smaller, reflecting the lower expected payoffs. For the “median” firm with prior
R&D experience, the investment probability varies from 0.397 to 0.804 and is particularly low
for the food, textile, and paper industries. The probabilities of starting R&D vary from 0.09 to
0.246 across industries. This indicates a substantial hurdle to R&D startup in these industries.

Table 10 focuses on how the other firm characteristics, productivity, capital stock, and age,
lead to variation in the expected benefit of R&D within each industry. The marginal effects of
changes in productivity, capital, or age on AEV (w) and the probabilities of investing in R&D are
difficult to gauge directly from the structural coefficients in Tables 3, 4, 5, and 7 because they are
nonlinear functions of model parameters and variables. In this table, we report estimates of the
change in AEV (w) and investment probabilities resulting from changes in the firm’s productivity,
capital, and age. Columns (2), (3), and (4) summarize the difference in outcomes between
firms with productivity levels at the 25th and 75th percentile of the productivity distribution,
holding capital stock fixed at the median level and age at category 2. Productivity impacts the
firm’s expected return and probability of investment directly through the profit function but also
through the persistence parameters in the productivity evolution process. High persistence, which
we observe in the Table 5 estimates, implies long-lived productivity differences across firms.
Therefore, a high-productivity firm is more likely to invest in R&D than a low-productivity
firm.

The results in columns (2)—(4) show that productivity heterogeneity is a major driving force
of the difference in expected returns and investment probability across firms. In the high-tech
industries, a firm at the 75th percentile of the productivity distribution has an expected payoff
that is 3.5 to 15.3 million euros higher than that of a firm at the 25th percentile. The average
difference across industries is 8.899 million euros. There are also substantial differences in the
probability of R&D investment. In the chemical industry, the probability of investing is 0.686
(0.565) higher for a high-productivity firm paying a maintenance (startup) cost compared to a
low-productivity firm. The increase in investment probability is also substantial in the vehicle
industry. In the low-tech industries, the magnitude of the differences in expected returns is much
smaller, varying from approximately 1.0 to 2.5 million euros and averaging 1.608 million. The
smaller magnitude reflects lower overall expected returns in these industries. Despite a small
difference in expected returns, we observe a relatively large impact of productivity changes on
the probability of investing, particularly on the probability of continuing to invest. This probability
increase averages 0.594 across the seven industries, whereas the startup probability is higher by
an average of 0.329.

Columns (5), (6), and (7) provide the estimated impacts of changes in the firm’s capital
stock on expected payoffs and investment probabilities. These reported numbers summarize
the difference in outcomes between firms at the 25th and 75th percentile of the capital stock
distribution, holding productivity fixed at the median level and age fixed at group 2. Capital
differences impact these outcomes through two channels: through the firm’s short-run profit
function and through the cost of innovation. Although capital has a positive impact on profits,
it also increases innovation costs, and these effects are offsetting on the probability of invest-
ing. When compared with productivity heterogeneity, the differences across firms’ capital stocks
account for much smaller differences in expected returns and investment probabilities. This
is true in the high-tech and low-tech industries. Among the high-tech industries, the increase
in expected return averages 2.943 million euros and the probabilities of investing in R&D in-
crease by 0.062 and 0.080, on average, for the maintenance and startup groups, respectively. In
the low-tech industries, the average difference in expected returns is 0.443 million euros and
the probabilities differ by 0.043 and 0.027. In particular, in four of the low-tech industries, the
difference in investment probabilities between firms with large and small capital stocks is less
than one percentage point and is even negative in some cases.
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The final three columns examine the marginal effect of age. We compare the outcomes of
a firm in age group 4 (> 50 years) to the outcomes of a firm in age group 2 (10-19 years)
holding capital and productivity fixed at the median industry values. Firm age has an impact on
the expected returns and investment rates through its impact on the firm’s profit. The differences
in outcomes between age groups are slightly larger than those observed for capital heterogeneity
but much less than those for productivity heterogeneity. Averaging across industries, the mean
expected benefit of an older firm is 3.829 and 0.535 million euros higher in the high-tech and
low-tech groups, respectively. In the high-tech industry, the probability of starting to invest differs
more across the age categories than the probability of maintaining investment. In the low-tech
industries, the opposite pattern is observed. Age differences have a larger impact on the probability
of continuing to invest.

Overall, the results in Tables 9 and 10 show that there are substantial differences in the
expected return to R&D, particularly between firms in the low-tech and high-tech industries.
This contributes to the differences in R&D investment rates across industries. Within industry,
heterogeneity in productivity is particularly important in explaining differences across firms, with
high-productivity firms having substantially higher expected returns and investment probabilities.
Differences in capital stocks and age also contribute to within-industry differences in these
outcomes; however, the magnitude of their impact is smaller than the impact of productivity
differences.

O  The long-run and short-run return to R&D. The dynamic framework developed in this
article has the advantage of providing measures for the long-run and short-run benefits of R&D
investment that can be compared to each other. The short-run gain captures changes in sales and
profits in the subsequent period, whereas the long-run gain captures the changes in firm value
due to the firm being on a higher productivity path. The latter includes a higher profit stream and
different optimal future R&D choices. Both of these effects are induced by the productivity gain
resulting from R&D investment.

We define the long-run gain as the proportional impact of R&D on firm value. It is measured
as the log difference in the expected future value of the firm, equation (8), conditional on its R&D
choice, while holding the firm’s other characteristics fixed:

A EV = In(EV (st rdy = 1) = InEV (51,1l rdy, = 0)). (16)

This long-run gain can be constructed for every firm-year observation in the data, regardless of
whether or not the firm actually invested in R&D in that year. This allows us to characterize the
distribution of expected long-run gains over all firms, and not simply for firms that choose to
conduct R&D. The median value over all sample observations in each industry is reported in the
second column of Table 11, the 25th and 75th percentiles are reported in column (3). This table
also reports the median value of E V (s;,,|w;, rd; = 0), denoted E V0, which serves as the base
for interpreting the proportional change in firm value.

In the high-tech industries, the median value of the long-run gain varies between 0.057
in the instrument industry to 0.085 in vehicles. The 25th percentile varies between 0.024 and
0.048, whereas the 75th percentile varies from 0.079 to 0.109. Aggregating over all firms in the
high-tech industries, the median gain is 0.067, implying a difference in long-run firm value of
6.7% between firms that undertake R&D and those that do not. The 25th and 75th percentiles are
0.040 and 0.093, with much of the heterogeneity arising within industries.

In the low-tech industries, the proportional long-run gains are lower. The median varies from
a low of 0.017 in the food and textile industries to 0.390 in the metals industry and equals 0.028
when aggregating over firms in the low-tech industries. In three of the industries, the median gain
is less than 2.0% of firm value. The dispersion in long-run benefits within each industry is also
much smaller than in the high-tech industries. In four of the industries, the 25th percentile is less
than or equal to 0.01, and the 75th percentile is above 0.05 in only two cases, plastics and metals
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TABLE 11  Long-Run and Short-Run Proportional Gains from R&D

Long Run, Aln EV Short Run, Ar
Median 25th—75th Median EV0 Ar Median Revenue
High-Tech Industries
Chemicals 0.067 0.024-0.091 71.87 0.081 31.44
Machinery 0.071 0.048-0.091 80.06 0.158 12.40
Electronics 0.068 0.039-0.098 43.84 0.095 10.23
Instruments 0.057 0.037-0.079 45.79 0.127 6.21
Vehicles 0.085 0.040-0.109 104.88 0.151 30.11
All HT Industries 0.067 0.040-0.093 64.59 0.122 20.68
Low-Tech Industries
Food 0.017 0.007-0.030 30.13 0.035 12.78
Textiles 0.018 0.007-0.034 21.58 0.040 7.31
Paper 0.019 0.007-0.033 27.18 0.041 9.60
Plastic 0.037 0.023-0.056 37.67 0.095 6.90
Minerals 0.025 0.010-0.038 26.06 0.046 7.58
Metals 0.039 0.023-0.059 49.41 0.100 7.16
Misc. manuf. 0.032 0.016-0.045 30.90 0.067 8.47
All LT Industries 0.028 0.013-0.041 34.25 0.061 7.82

industries. Not surprisingly, given the results reported in Tables 3, 4, and 5, R&D investment has
a lower expected payoff in the low-tech industries relative to the high-tech industries.

As discussed in Section 2, the knowledge production framework focuses on the elasticity
of output (usually measured as firm revenue) with respect to R&D expenditure as a measure of
the return to additional R&D spending. Hall, Mairesse, and Mohnen (2010) report that revenue
elasticity estimates vary across studies from 0.01 to 0.25 and are centered around 0.08. Doraszelski
and Jaumandreu (2013) report estimates of the elasticity of output, not revenue, for 10 Spanish
manufacturing industries. The average value over all firms is 0.015, and the average at the
industry level varies from —0.006 to 0.046 across the 10 industries, with half of the industries
falling between 0.013 and 0.022.

Using the results reported in Tables 3, 4, and 5, we construct an analogous measure using the
discrete R&D variable: the proportional gain in firm revenue resulting when the firm moves from
not investing in R&D (rd, = 0) to investing in R&D (rd, = 1). The revenue increase resulting
from R&D depends on how R&D affects innovation, how innovation affects productivity, and
how productivity translates into revenue. The difference in log revenue whenrd = 1 andrd = 0
can be measured using our model as:

Ar=—(1+n) Z[g(a), d,z) — g(w, 0,0)][Pr(d, zlrd = 1) — Pr(d, zlrd = 0)] (17)

(d,z)

for all (d, z) € {(1,0), (0, 1), (1, 1)}.

Table 11 provides estimates of this shift on the log of future revenue for each industry.
These estimates are constant across firms in an industry. The final column of the table reports the
median value of firm sales, in millions of euros, to use as the basis for comparison. In the high-tech
industries, Ar varies from 0.081 in chemicals to 0.158 in machinery, and averages 0.122 across
the five industries. The latter number implies 12.2% higher revenue for firms that conduct R&D
relative to firms that do not. In the low-tech industries, the short-run revenue differences vary
from 0.035 to 0.100 and average 0.061. These are within the range reported by Hall, Mohnen,
and Mairesse (2010) in their review of the literature. In percentage terms, the short-run gains are
larger in magnitude than the median long-run gains reported in column (2). However, the long-run
gains A ln E'V apply to a larger base, the expected future firm value, than the short-run gains in
revenue. In monetary units, the short-run gains are always smaller than the long-run gains. This

© The RAND Corporation 2017.



PETERSET AL. / 433

TABLE 12 Effect of Technology Parameters on Productivity and R&D

HT industries with LT parameters LT industries with HT parameters
Productivity Innovation Productivity Innovation
Evolution Function Both Evolution Function Both

Change in R&D Prop.

S years —0.312 —0.080 —0.350 0.252 0.025 0.317

10 years —0.375 —0.093 —0.412 0.283 0.021 0.362
Prop. Change in @

5 years —0.063 —0.019 —0.072 0.051 0.001 0.069

10 years —0.104 —0.033 —0.111 0.082 0.009 0.110
Change in AEV

5 years —5.490 —1.825 —6.035 2.069 0.033 2.481

10 years —4.986 —1.765 —5.378 2.041 0.011 2.598

results because Ar does not consider the persistence of the productivity gains and the optimal
future investment choices motivated by this productivity gain.

7. Counterfactual analysis

B The results in the previous section reveal large differences in the long-run payoff to R&D,
which generates differences in the investment incentive between firms in the low-tech and high-
tech industries. We explore the source of these differences by focusing on the two technology
components, productivity evolution and the innovation probability, that contribute to AEV .
When investing in R&D, firms in the high-tech industries have a higher innovation success rate
and their innovations have a larger productivity impact than those in the low-tech industries, as
seen in Tables 3 and 5. Columns (2)—(4) of Table 12 report the average change in high-tech firm
R&D investment, productivity level, and A EV when facing low-tech productivity impact and
innovation process. In column (2), we show how the high-tech firms would be affected if they
had the o, a5, and « parameters of the low-tech industries. The proportion of firms investing
in R&D would drop by 0.312 after 5 years and 0.375 after 10 years. This reduction in R&D
investment shows up very quickly in response to the reduced economic impact of innovations.
The strong decline in R&D investment is followed by an increasing shortfall in the level of
industry productivity. Average industry productivity drops by 6.3% after 5 years and this drop
continues to fall to 10.4% after 10 years. The expected benefit of R&D decreases by approximately
5.0 million euros due to the lower productivity and smaller impact of innovations.

The third column of Table 12 shows the effect of lower innovation probabilities. If high-tech
firms faced the same probabilities as in the low-tech sector, the R&D investment rate would
drop by 0.080 and 0.093 over 5- and 10- year horizons, respectively. As a consequence, mean
productivity level declines by 1.9% after 5 years and 3.3% after 10 years. Comparing the effects
of these two technology factors on industry investment and productivity, the productivity impact
of innovations is the stronger driving force for the difference between the high-tech and low-tech
industry. Finally, the fourth column shows declines in R&D participation, mean productivity level,
and expected benefits if productivity impact and innovation probabilities were identical to those
of the low-tech sector. The declines are only slightly higher than those due to lower productivity
impact of innovations, reflecting the nonlinear effect of these factors in our model.

22 In the simulation exercises reported in this section, all observations are initialized with the observed industry,
age, capital stock, productivity, and lagged R&D status in the data. The firm’s cost, productivity shock, and innovation
outcome are then drawn from the appropriate distributions and the firm’s optimal R&D choice is calculated. The state
variables are updated and the process is repeated for 10 periods. The simulations are repeated 100 times and averaged. All
figures reported in Tables 12 and 13 are the differences in the simulated outcomes under alternative parameter choices
relative to the base case, using the estimated model parameters.
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TABLE 13  Counterfactual Reductions in Costs of Innovation

20% Reduction in Maintenance Cost 20% Reduction in Startup Cost
High-Tech Ind. Low-Tech Ind. High-Tech Ind. Low-Tech Ind.

Change in R&D Prop.

5 years 0.079 0.070 0.002 0.013

10 years 0.090 0.072 0.004 0.012
Prop. Change in @

5 years 0.008 0.005 0.002 0.021

10 years 0.014 0.006 0.003 0.070
Change in AEV

5 years 0.506 0.156 —0.455 —0.104

10 years 0.556 0.156 —0.373 —0.081

The last three columns of Table 12 report corresponding changes in R&D rate, productivity,
and expected benefit for firms in the low-tech industries when imposing the high-tech innovation
probabilities and productivity impact of innovations. Similar to the results found for high-tech
industries, the major impact comes from the productivity evolution parameters. The stronger
impact of innovation in the productivity process causes the R&D rate to increase by 0.252 after
5 years and 0.283 after 10 years. More favorable innovation probabilities, such as those faced by
the high-tech firms, however, only increase the R&D rate by 0.025 and 0.021, respectively. Con-
sequently, productivity changes attributed to the higher innovation impact are more pronounced
than those resulting from higher innovation probabilities. In summary, Table 12 shows that the
impact of innovation on firm productivity, and thus on firm sales and profits, plays a crucial role
in explaining the differences in firm performance and R&D investment between high-tech and
low-tech industries, more so than the impact of R&D on the innovation creation.

Another important component determining firm investment decisions is the cost of inno-
vation. Policy instruments such as R&D subsidies, grants, and tax relief directly alter this cost.
To assess the impact of tax relief or subsidies, we simulate firm R&D investment choices and
productivity development if there was a permanent reduction in maintenance or startup costs.
The second and third columns of Table 13 show the effect of lowering the maintenance cost
distribution parameter by 20% for high-tech and low-tech industries. We report these effects as
changes in R&D investment rates, mean productivity, and expected benefits AE V' after 5 and
10 years. The last two columns report the corresponding changes resulting from a 20% reduction
in startup costs.?

Five years after a maintenance cost reduction, the probability of investing in R&D has
risen, on average across the high-tech firms by 7.9 percentage points, and by 7.0 among the
low-tech industry firms. After 10 years, we see a small additional increase in the proportion of
firms investing, however, the largest increase in the investment rate resulted shortly after the cost
reduction. In addition, the cost reduction does not act affect all firms equally. Approximately 25%
of the firms in each industry group are not affected by the maintenance cost reduction because
their probability of investing was already close to either one or zero. The reduction in cost alters
the investment decision of firms that have costs near the threshold of AE V', whereas the decision
of firms with very low or very high initial costs remains unchanged.

The increased rate of investment in R&D leads to a shift in the distribution of productivity.
In the high-tech industries, the mean of the firm productivity distribution increases by 0.8%
and 1.4% after 5 and 10 years, respectively. The increases are smaller, 0.5% and 0.6% in the

% In our model, there are no R&D spillovers across firms and the benefit of a firm’s R&D investment is fully
internalized by the firm, so there is no reason that a subsidy is needed to induce the socially efficient level of R&D
investment. This counterfactual is simply summarizing how responsive firm R&D participation and productivity are to
a reduction in innovation costs. See Klette, Moen, and Griliches (2000) for a review of the literature on subsidies and
market failure.
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low-tech industries. The lower cost of an innovation also raises the expected long-run benefit of
investing in R&D. In the high-tech industries, the mean value of AE'V rises by slightly more than
0.5 million euros, whereas in the low-tech industries, it increases by 0.156 million euros.

The effects of a reduction in startup costs differ from what we observe for the maintenance
cost reduction. A startup cost reduction lowers the entry barrier into investment for firms with
no formal R&D previously. The results in Table 13 show there is virtually no effect of this cost
reduction on R&D investment or productivity in the high-tech industries and a modest positive
effect in the low-tech industries. In contrast to the maintenance cost reduction, which always raises
the expected benefit of investment and increases the firm’s probability of investing, a startup cost
reduction has two opposing effects on R&D choice, which can explain the smaller impact. First, it
lowers the entry cost for firms that were not investing, and this raises the probability of investment
for any level of expected benefits. Second, however, the lower startup cost also reduces the value
of investing today because it is now less expensive to wait and invest in the future. More precisely,
the lower startup cost in future periods will result in an increase in EV (s;,|w;, rd;, = 0), the
expected future value if the firm does not choose to invest in R&D. This leads to a reduction in
AEV, which reduces the firm’s incentive to invest. Table 13 shows that the estimated reduction
in AEV is 0.455 million euros after five years of cost reduction in the high-tech industry and
0.104 million euros in low-tech. The effect of the startup cost reduction on the expected benefit
of investing causes some firms to stop their R&D investments. Overall, the startup cost reduction
has a less powerful effect on investment incentives than the reduction in maintenance cost.’*
However, it is important to point out that the two cost changes are not equivalent in terms of the
overall cost of the subsidy. The maintenance cost reduction is applicable to all investing firms,
whereas the startup cost reduction only applies to the firms that begin to invest in R&D.

8. Conclusions

B Much of the empirical innovation and productivity literature focuses on measuring the
private return to R&D investment, with the knowledge production function model being used
as the primary framework. In this production model, firm R&D investments accumulate and
depreciate over time, creating a knowledge stock that enters as an additional input into the
production function. Estimates of the marginal product of this knowledge stock provide a measure
of the return to R&D.

In this article, we take a different approach to measure the expected long-run, private payoff
to R&D investment by estimating a model of the firm’s dynamic decision to invest in R&D. The
model allows the firm’s R&D investment to raise the probability of being on a higher future
productivity and profit path. Investment payoffs are realized in the future and subject to several
sources of uncertainty. The proportional difference in the expected value of the firm between
these two paths, therefore, is a crucial component of the firm’s R&D decision and provides a
natural measure of the expected payoff to the R&D investment.

The empirical model is designed to exploit the microdata collected in the Community
Innovation Surveys. For Germany, this includes firm panel data on R&D activity, their realized
product and process innovations, and variables to construct productivity and short-run profits. The
four key structural components of the model are: the firm’s profit function that relates productivity
to profit, the evolution of firm productivity, which depends on product and process innovations
realized by the firm, the probability of a product or process innovation given the firm’s R&D
choice, and the costs the firm must incur to generate an innovation.

The structural parameter estimates show firms that invest in R&D have a higher probability of
realizing a product or process innovation, but R&D investment is neither necessary nor sufficient

24In contrast to this finding, Gonzalez, Jaumandreu, and Pazo (2005) find that subsidies would have a substantial
impact on the R&D investment of Spanish manufacturing firms. They estimate that among firms that did not invest in
R&D, half of the large ones would begin investing with a 10% cost subsidy and one third of the small ones would begin
with a 40% subsidy.
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for firm innovation. On average, across the high-tech manufacturing industries, the probability a
firm has either a product or process innovation, given that they do not invest in R&D, is 0.229
but increases to 0.897 if they choose to invest. Firms in the low-tech industries have a lower
probability of realizing innovations. On average, the probability is 0.208 if they do not invest in
R&D and 0.804 if they do. Second, product innovation and process innovation lead to increases in
future firm productivity, but product innovations are more important in the high-tech industries,
raising productivity by 3.6%, whereas process innovations are more important for firms in the
low-tech industries, raising their productivity by 3.5%. Third, firm productivity is persistent over
time, hence, innovations that raise productivity have long-lived effects on firm value. Fourth, the
cost to generate an innovation is significantly smaller for small firms and firms that have prior
R&D investment.

We find that the expected payoff to investing in R&D varies across industries, averaging 4.4
million euros for the high-tech industries and 0.78 million euros for the low-tech industries. The
payoff also varies substantially across firms within an industry with differences in age, capital
stock, and productivity. Older, larger, and more productive firms have higher expected benefits
from R&D investment, with productivity differences generating the most substantial differences
across firms. We measure the expected long-run gain to investing in R&D as the proportional
impact on firm value. In the five high-tech industries, the median gain across firms varies from
0.057 in the instrument industry to 0.085 in the vehicle industry, and averages 0.067 across the
five industries. Across the seven low-tech industries, the median gain varies from 0.017 to 0.039
and averages 0.028.

Our structural model of firm R&D investment provides a decision rule for firm investment
choice, allowing us to conduct counterfactual experiments to study the effect of changes in the
economic environment on the R&D decision and future productivity. Additionally, we simulate
different subsidy policies by changing the cost of innovation. The effect of lower innovation costs
is at the heart of many policy discussions regarding the costs and benefits of public subsidies
for R&D investment. The results show that in the high-tech industries, a 20% reduction in the
innovation cost for an experienced R&D firm leads, after 10 years, to an average increase of
9.0 percentage points in the probability of investing in R&D, a 1.40% increase in mean firm
productivity, and an increase in the expected benefit of R&D of 0.5 million euros. The same
proportional reduction in the cost faced by high-tech firms that start to invest in R&D has
virtually no impact on the probability of investing or the level of productivity. In contrast, in the
low-tech industries, where there is a lower overall investment rate by firms, the startup margin is
more important. A 20% reduction in the startup cost raises the investment rate by 1.2 percentage
points and mean productivity by 7.0% after 10 years. The simulations illustrate that the effect of
innovation cost reduction on R&D decisions and productivity growth depends on industry, the
distribution of expected benefits, and, importantly, the target group of the subsidy. A structural
model of the long-run payoff to R&D is needed to assess the impact of cost subsidies on the
firms’ investment decisions.
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