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III.  OPTIMAL ECONOMIC POLICY

We now endogenize tax policy, θ . To do so, we consider a benevolent government

which maximizes the sum of all households’ well-being.16 The government plays Stackelberg

vis-a-vis the private economy. In other words, the government takes into account the DCE

characterized above. We assume commitment technologies so that the government chooses

its policy once-and-for-all.

The government maximizes the sum of all i ’s utility functions [see equations (4a)-

(4b)] subject to each individual’s i optimal decision rules in a DCE [this is summarized by

equations (5), (6), (9) and (10d)] and its own budget constraint [this is summarized by

equations (10a) and (10b)]. The current-value Hamiltonian, H , of this problem is:
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where γ i  and λi  are the multipliers associated with (5) and (6) respectively for each

individual i . That is, γ i  is the social marginal value of capital for individual i , and λi  is the

social marginal value of the private marginal utility of assets for individual i . Note that in the

problem above, we have used (10d), i.e. the sum of profit shares across individuals is zero.

The first-order conditions for iiii kc ,,,, γλθ  are respectively:
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16 Alternatively, we could use the median-voter approach. Our approach (i.e. benevolent government) is
more general (see below). Note that we assume that all individuals are given the same weight by the
government. Alternatively, we could assume that the weight given to poor people is higher than the one
given to rich people, by appropriately using the relevant multipliers (see Bewley [1982] and Kehoe et al
[1990]).
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where ∆( )θ > 0  has been defined in (9) above, and ∆
∆

θ θ
α θ
αθ
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These necessary conditions are completed with the addition of the transversality

condition:

[ ]( ) ( ) ( )1 1
1

− − − − <θ θ ρ δ ρ∆
N

                                                                          (11f)

which follows from (11c) and ensures utility is bounded.17

It can be easily shown that the utility function and the constraints are strictly concave

in θ , if ( )1 0− − <a θ  (this is a sufficient condition for concavity). Then, since the utility

function and the constraints are continuous and bounded, and since the utility function is

strictly concave in the controls ( , )c i θ  and the constraints are linear in c i  and strictly

concave in θ , existence is assured. Further, since the utility function and the constraints are

both jointly concave in the controls ( , )c i θ  and the state variable ( )k i , the necessary

conditions in (11a)-(11f) are also sufficient for optimality. This establishes existence of a

solution of the optimal control problem.

We point out four features of the model. First, the second-order conditions imply

( )1 0− − <a θ . That is, the optimal tax rate is within the subset 0 1 1< − < <α θ .  The

optimal tax rate is higher than 1 − α  (which is the productivity of public production

                                                                
17 Capital cannot grow faster than consumption in steady state. Hence, the utility from public
consumption services is also bounded if (11f) is satisfied.



12

services), because the government provides - in addition to public production services -

public consumption services and transfer payments. This implies that when policy is

endogenous, we can only be on the downward-sloping part of the growth-tax rate relation

(compare it with the case in which policy is exogenous at the end of previous section).

Therefore, along the optimal path, tax increases always reduce growth. This is an intuitive

result: tax policy is not optimal when a higher tax rate can increase growth (which happens

when αθ −<< 10 ).

Second, when public consumption services are absent (i.e. ν = 0 ), equation (11a)

implies θ α= −1  in all time periods.18 That is, the optimal tax rate is constant over time,

and equal to the productivity of public production services. This special case gives Barro’s

[1990] flat tax rate. In this case there are no transitional dynamics. This is also the case in

Alesina and Rodrik [1994].19

Third, when both public consumption and production services are absent (i.e. ν = 0

and α = 1), θ = 0  in all time periods. That is, the optimal tax rate is zero all the time. This

implies zero tax revenues, and hence zero transfer payments. It also implies that the

equilibrium return to capital is not bounded below (i.e. ∆( )θ = 0 ), and hence long-run

growth is not optimal (see (11c)). Therefore, the government finds it optimal to redistribute

income from the rich to the poor only when it can also provide public production services; it

is the latter that generates long-run growth.

Fourth, for given aggregate values of consumption, capital and their shadow

prices, total differentiation of (11a) implies that the tax rate, θ , increases with ( )k k i− .

Thus, individuals with relative low (resp. high) capital stock prefer high (resp. low) tax rates.

This is because those who are less capital-endowed than the average prefer higher

redistribution and so higher tax rates. In turn, since the growth rate is negatively affected by

the tax rate along the optimal path, it follows that more unequal societies grow faster. These

results are similar to those in the median-voter literature (see e.g. Persson and Tabellini

[1994a], Alesina and Rodrik [1994] and Benabou [1996]).

                                                                

18 This is because [( ) ( ) ( )]
( ) ( )

1
1

− − =
− −

θ θ θ
α θ θ

αθθ∆ ∆
∆

. See (11a).

19 Therefore, we extend Alesina and Rodrik [1994] in the following ways: (a) In our model, the
government provides public (production and consumption) goods and explicitly redistributive transfers;
(b) We have a moral hazard problem; (c) We have transitional dynamics.
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IV. LONG-RUN EQUILIBRIUM PROPERTIES

This section studies the steady state of (11a)-(11e). We will focus on a steady state

in which all individuals own ex post the same amount of capital. In other words, all

individuals are alike ex post.  This choice of the steady state follows naturally from the

assumption that all individuals have the same rate of time preference. By contrast,

heterogeneous rates of time preference would lead to a long-run equilibrium in which only

patient agents hold capital.20    

This implies that no actual transfers take place in long-run equilibrium. This is not

very restrictive. We have already shown how inequality affects the tax rate, and in turn the

growth rate, along the optimal path. The critical feature of redistribution is the anticipation

of transfers of wealth as opposed to actual transfers of wealth. And this has been already

captured in our model by moral hazard behavior. As Benabou [1996] points out, “the fight

over the pie does not necessarily lead to higher transfers, just to higher distortions”.

Therefore, we invoke the steady state conditions c ci ≡ , λ λi ≡ , γ γi ≡  and

k ki =  into the optimality conditions (11a)-(11e). Then, a careful observation of (11a)-

(11e) reveals that if we use the transformations z
c
k

≡  and ψ γ≡ k , we can reduce the

dimensionality of the system from five to three. In particular, Appendix A shows that the

dynamics of (11a)-(11e) are equivalent to the dynamics of (12a)-(12c) below, which

constitute a three-dimensional dynamic system in z, ,ψ θ . Thus,

z z z
•

= − +2 ( $)ρ δ                                                                                                  (12a)

ψ ρψ
ν νδ

θ θ
δψ ψ
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+ −
N b
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( ) ( )
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1 ∆
                                                              (12b)

                                                                
20 See also Yano [1981] and Bewley [1982]. If we use endogenous discount rates, they become identical
to all agents in long-run, and thereby agents own the same amount of capital (see Epstein [1987] and
Benhabib et al [1988]). Note that most of politico-economy models also use ex post homogeneity. By
contrast, see Fernandez and Rogerson [1995] and Greenwood and Jovanovic [1990] for ex post
heterogeneity.
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where $ ( )δ δ≡ − >1
1

0
N

 is the effective redistributive parameter, and

Φ
∆

( )
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<

1
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0
2

. The negative sign of Φ( )θ  follows from the negative sign

of [ ( )]1 2− − −θ α α , which in turn follows from the negative sign of ( )1 − −θ α  along the

optimal path.

We can now look for Balanced Growth Paths (BGPs ), i.e. steady states in which

consumption (c ) and capital ( k ) grow at constant positive rates. When this happens, (11c)

and (11d) imply that c  and k  must grow at the same rate, denoted by 0
~

>cG  (throughout

the paper, tildes over variables denote optimal steady state values). Hence, z
•

= 0  in (12a).

We also look for a tax policy (θ ) that does not change. Hence, θ
•

= 0  in (12c). Finally, we

assume that ψ  (where ψ γ≡ k ) grows at a constant rate, denoted by ψG~ . For a steady

state solution to exist, it must be that ψG~  is negative (see also equation (14) below).21 In

other words, in long-run equilibrium, the social value of the capital stock (ψ γ≡ k ) grows at

a constant negative rate. The intuition behind a negative ψG~  is as follows. In models of long-

run growth in general, equilibrium returns to capital should be decreasing in order to maintain

capital accumulation over time. Since our model includes public consumption, which requires

higher capital accumulation, we need a stronger condition. Hence, 0~ <ψG .22

The rest of this section solves for ~, ~z ψ  and 
~
θ . We start with ~z . Setting (12a)

equal to zero, we have:

~ $z = + >ρ δ 0                                                                                                         (13)

                                                                
21 Setting long-run variables exogenously (e.g. to be zero) is standard practice in growth models.
22 By contrast, when there is no redistribution ( $ )δ = 0 , the solution for the “actual” variables ( , )z θ
is independent of the value of shadow prices ( )ψ . See the system (12a)-(12c) above.
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so that the consumption-to-capital ratio, ~z , is unique and equals the discount factor, ρ > 0 ,

plus the effective redistributive parameter, $δ > 0 .

We continue with ~ψ . Using 
ψ
ψ

ψ

•

≡G~  and (13), we get from (12b):
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which makes clear that for ψ γ≡ k  to be positive , we need 0~ <ψG . Note that ψ > 0 ,

because both 0>γ  and 0>k .

Finally, by setting (12c) equal to zero, and using (13) and (14), we get:
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Equation (15) is an equation in the long-run tax rate, 
~
θ , only. Since

( ~)1 0− − <α θ , the right-hand side of (15) is negative, so that the left-hand side must be

also negative. Then, Appendix B shows:

Proposition 1: If the parameters satisfy the following conditions:
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then equation (15) implies that there exists a unique long-run tax rate,

0 1 1< − < <α θ
~

. This tax rate supports a unique Balanced Growth Path ( )BGP  for

consumption and capital.23

Although equation (15) cannot be solved analytically for 
~
θ , it implies that 

~
θ  is a

function of parameters α ν ρ δ, , , , $b  and the exogenous variable ψG~ . Denote this by

)~,ˆ,,,,(~
ψδρναθθ Gb= . It is of particular interest to study the effect of the redistributive

parameter,δ , on the optimal tax rate,
~
θ , where $ ( )δ δ≡ −1

1
N

. Recalling that

0 1 1< − < <α θ
~

, simple comparative static exercises in (15) can show that:

Lemma 1:  If the conditions of Proposition 1 hold, then:
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To understand (17a)-(17b), we consider (without great loss of generality) the

special case in which N → ∞ . Then, (17a) is reduced to 0
2

~
>−> ψδ

G
, and (17b) is

reduced to 
2

~
0 ψδ

G
−<< . In other words, if the redistributive parameter ( )δ  is high

enough relatively to the (absolute value of the) rate of change in the social value of capital

                                                                

23 If 0~
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N
, multiple steady states are possible. Note that if ∞→N , this cannot

happen. That is, when there is a large number of individuals, multiplicity cannot arise.
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)~( ψG , the long-run optimal tax rate increases with δ . On the other hand, if δ  is small

enough relative to ψG~ , the long-run optimal tax rate decreases with δ . Thus, the relation

between anticipated redistributive policy and the long-run optimal tax rate is not monotonic.

As far as the Balanced Growth Path )
~

( cG  is concerned, recall that 0~
~

<
θ∂

∂ cG
 (this

follows from (11c) which implies )]
1

1()
~

()
~

1[(
~

N
Gc −−−∆−= δρθθ ). Then, the relation

between δ  and cG
~

 is the inverse of the relation between δ  and 
~
θ , i.e. it is an inverted U-

curve. Namely, for low δ  relative to ψG~ , cG
~

 increases with δ , while for high δ  relative to

ψG~ , cG
~

 decreases with δ . All this can be summarized by the following Lemma:

Lemma 2: When the rate of redistribution is smaller than the fall in the social value of

capital, growth increases with redistribution, while when the rate of redistribution is

larger than the fall in the social value of capital, growth decreases with redistribution.

Note that the value of ψG~  is critical for this non-monotonicity. These results are

similar to those in Benabou [1996].

V. TRANSITIONAL DYNAMICS

We now move on to study local stability properties around the steady state. Ideally,

we would like to linearize (11a)-(11e) around (13)-(15). However, due to heterogeneity

along the optimal path, this is not a tractable problem. Since we cannot explicitly study the

transitional dynamics of the economy under both ex ante and ex post heterogeneity, we will

study the transitional dynamics in the special case there is a representative individual ex post,

and then give an informal argument for the general case in which individuals differ both ex

ante and ex post.

To study the case in which individuals are homogenous ex post, we linearize (12a)-

(12c) around (13)-(15). Then, the dynamics are approximated by the linear system:
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                                                                                (18)

where the elements of the Jacobian evaluated at the steady state are in Appendix C.

The determinant of the Jacobian, 0
)

~
(

~
)1(

)
~

()ˆ(ˆ
)det(

2

2

>
∆−
Φ+

−=
θθα
θδρδν

b
J , is positive

(because Φ( ~)θ < 0 ). Given the three-dimensional model, this sign of the determinant

indicates that there are two possibilities: either three positive eigenvalues, or two negative

eigenvalues and one positive. Recall that here all three variables ( , , )z ψ θ  are jump

variables. The first possibility, i.e. three positive roots, implies that the BGP  is locally

determinate (i.e. saddle-path stable). The second possibility, i.e. two negative roots and one

positive, implies that the BGP  is locally indeterminate (i.e. there exists a continuum of

equilibrium trajectories associated with a given initial condition and a unique BGP ).

The characteristic equation of the Jacobian in (18) is:

0)det(]
)ˆ(

)det(
)ˆ[()ˆ( 23 =−

+
+++++− J

J
JJ β

δρ
δρβδρβ θθθθ                                 (19)

where β  denotes the eigenvalues of the Jacobian evaluated at steady state. Observe that

what is crucial is the sign of Jθθ , which is ambiguous (see Appendix C).

If Jθθ > 0  (which happens when the effective redistributive parameter δ̂  is small

enough), Descartes’ Theorem implies that there are three positive roots (see Appendix D).

In this case, there is local determinacy.

If Jθθ < 0  so that 0]
)ˆ(

)det(
)ˆ[( <

+
++

δρ
δρ θθ

J
J  (which happens when the effective

redistributive parameter δ̂  is large enough), Descartes’ Theorem implies that there is only

one positive root (see Appendix D). In this case, there is local indeterminacy. Specifically,

this happens when:
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The above results are summarized by the following proposition:

Proposition 2: Under the conditions in Proposition 1, the unique BGP is locally

indeterminate (resp. determinate), when condition (20) does hold (resp. does not

hold), i.e. when the effective redistributive parameter δ̂  is high (resp. small) enough.

Observe that although the transitional dynamics are affected by various factors (see

the parameters in (20)), they depend critically on δ̂ . Thus, a sufficiently large δ̂  causes the

BGP  to be locally indeterminate. Also observe that since )
1

1(ˆ
N

−≡ δδ , as N  increases,

δ̂  also increases, so that the possibility of indeterminacy increases. That is, when the

number of individuals increases so that free-riding incentives become stronger, the possibility

of indeterminacy increases.

What does Proposition 2 mean? The anticipation of sufficiently large redistributive

transfers opens the door for multiplicity. That is, there are many possible equilibrium paths

for tax policy, consumption and capital accumulation, each of which is consistent with a

given initial condition and with convergence to a unique steady state. This result implies that,

in the presence of moral hazard behavior, individuals who start with similar endowments may

consume and save at different rates over time. In other words, the anticipation of

redistribution can itself generate income inequality over time.

We finally discuss the general case in which individuals are heterogeneous not only

ex ante but also ex post. As we said above, although we cannot explicitly study the

transitional dynamics of this general case, we can use Proposition 2 above, to give an

informal argument. It is obvious that when there is ex post heterogeneity, the dimensionality

of the dynamic system (11a)-(11e) increases. Hence, stability cannot become easier when

we move from the special case in which individuals are heterogenous ex ante to the general

case in which individuals are heterogenous both ex ante and ex post. Then, Proposition 2
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implies that the possibility of indeterminacy under a high enough δ̂  increases once

individuals differ both ex ante and ex post. In turn, Lemma 1 implies that this also increases

the possibility of long-run growth decreasing with redistribution.

VI. CONCLUSIONS AND EXTENSIONS

This paper has investigated the effects of redistributive transfers on desirable fiscal

policies and economic growth. Although we remained within the context of the conventional

wisdom (i.e. redistribution is basically bad for growth), we gave a more complex and

realistic view of the effects of redistributive and allocative policies on economic growth.

We close with three possible extensions. First, we have not managed to study

explicitly the properties of the model under ex-post heterogeneity. This was for technical

reasons. Thus, the task to study equilibria in which individuals differ both ex-ante and ex-

post still remains. A second limitation is that we have not taken a stand as to why

redistribution occurs. Recently, there has been a literature on how to rationalize

redistribution (see footnote 3 above). Here, we took redistribution as given. Third, it would

be interesting to add human capital as an engine of growth, and assume that households have

different human capital endowments (see Glomm and Ravikumar [1992], Perotti [1993] and

Fernandez and Rogerson [1995, 1996]). We leave these extensions for future work.


