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Abstract

A framework which allows for the joint testing of the adaptive and rational
expectations hypotheses is presented. We assume joint normality of expectations,
realizations and variables in the information set, allowing for parsimonious
interpretation of the data; conditional first moments are linear in the conditioning
variables, and we can easily recover regression coefficients from them and test
simple hypotheses by imposing zero restrictions on these coefficients. The nature
of the data, which are responses to business surveys and are all categorical,
requires simulation techniques to obtain full information maxiI11-um likelihood
estimates. We use a latent variable model which allows for the construction of a
simple likelihood function. However, this likelihood contains multi­
(four)dimensional integrals, requiring simulators to evaluate. Simulated
maximum-likelihood estimation is carried out using the Geweke-Hajivassilou­
Keane (GHK) method, which is consistent and has low variance. The latter is
crucial when maximizing the log-likelihood directly. Identification of the
parameters is achieved by placing restrictions on the response thresholds and/or
the variances. We find that we can reject both hypotheses.



I. Introduction

How expectations are formed is an issue of profound importance in economic
theory, and m'odels of expectation formation have a long history. Testing theories
of expectation formation, however, requires that we find data on this intangible
object called an expectation,. Direct observations are rare. Usually, the effects of
changing expectations can only be inferred indirectly through observations of the
aggregated outcomes of individual decisions. Ideally we would like micro-level
data on both expectations and realizations. The quarterly business surveys, such as
the one conducted by the ~onfederation of British Industries of UK manufacturing
firms or the Konjunkturforschungstelle of Switzerland, contain questions about both
expectations and realizations of such variables as demand, prices, and production.

The importance of using surveys to test empirically models of expectation
formation is succinctly expressed by Pesaran (1987, p. 207): "Only when direct
oDservations on expectations are available is it possible to satisfactorily compare
and contrast alternative models of expectations formation." But not all the
difficulties associated with indirect testing disappear and several new ones emerge.
The principal new difficulty is the categorical nature of almost all tl;1e data available.
Our primary focus in this paper is on how to analyze qualitative data on
expectation's.

In business surveys, firms are asked questions about observed changes in
their demand, production and prices, their expectations of future changes in these
variables, and other aspects of the firm's behavior. Their responses are primarily
ordered and categorical; that is, they answer "increase", "remains the same", or
"decrease" in comparison with the previous month or quarter. As a result, standard
time series techniques applied directly to the categorical data are not appropriate for
testing expectations hypotheses.

Traditionally, business survey data have been analyzed by means of
conditional log-linear probability models (CLLP) (Nerlove, 1983). CLLP models
permit reduction of the parameter space to manageable size, but they essentially
treat the data as truly discrete and unordered and are perhaps best suited for data
analysis. Nerlove (1988) proposed an alternative approach of treating the survey
responses as being triggered by continuous latent structural variables as they cross
certain thresholds.' The data are arranged in a JQ contingency table, where J is the
number of categories (for the business survey model, J=3) and Q the number of
variables under consideration. A standard tool in the econometrician's kit for

I Nerlove (1988) compares the latent variable regression to a regression of a continuous variable
y on two continuous variables XI and X2 and uses this to illustrate the use of correlations for
determining the structural relationship among latent variables under the assumption of
multivariate normality.



contingency table analysis is the method of minimum chi-square.2 While this··
method may be appealing on grounds of familiarity, maximum likelihood is
preferable in the present application. 3 The relationships among the latent variables
can be summarized in a covariance matrix that can theoretically be estimated by
maximum likelihood. However, standard ML procedures are not feasible even in
small models due to problems involving the computation of multi-dimensional
integrals. This is not to say that such models have not been estimated. However,
conventional econometric techniques, either the pairwise calculation of polychoric
correlations (Pearson and Pearson, 1922, and Olsson, 1979) by maximum likelihood
(Poon and Lee, 1987) or the two-step method (Martinson and Hamdan, 1971)
ignore the true multivariate nature of the data and thus bias the usual tests. The
second method, although simpler, has the disadvantage of not necessarily producing
a matrix of estimated correlations that is positive definite.4

In this paper we formulate a method for testing jointly the rational and
adaptive expectations hypotheses using business survey data from two countries:
Switzerland and the United Kingdom. We use data on demand in the form of
responses about incoming orders rather than data on prices. Since the majority of
firms surveyed are in manufacturing, it is unlikely that they operate in anything near
to a perfectly competitive market. Thus these firms are likely to be price setters
rather than price takers. Demand is less under their direct control and therefore less
endogenous to their own actions than are prices.

This paper extends Horvath, Nerlove and Willson (1992), who test (and
reject) only rationality of British manufacturing firms' expectations for several
periods using numerical (not simulation) full-information maximum-likelihood
(FIML) methods; it builds on Nerlove and Schuermann's earlier paper (1995).
Horvath, Nerlove and Willson did not provide a specific alternative to rational
expectations, as we do here. We also formulate a lower dimensional version of the
rational expectations hypothesis test, which can in fact be computed numerically,
and compare the results with the higher dimensional version which requires
simulation-based estimation. The lower (3) dimensional version of the model
eliminates the future value of expectations, and thus the effects of overlapping
information sets discussed below. Since our finding that future expectations are
correlated with current ones is one of the most significant of OUI: results, with far
reaching implications for all work on testing models of expectation formation, we
emphasize the results based on the 4-dimensional model, the estimation of which
requires a more elaborate technique.

See Rao (1955).
For a discussion of first-order asymptotic equivalence of minimum chi-square and maximum
likelihood, see Rao (1961, 1963). For a direct comparison of these two methods in a simulation
context, see Schuermann (1993).

4 See Nerlove, Ross and Willson (1991).
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Simulation techniques, developed by McFadden (1989), Pakes and Pollard
(1989) and Hajivassiliou et al. (1990), lend themselves naturally to the estimation of
latent-variable models. In these seminal papers, it is shown how various simulators

, can be used to calculate multivariate integrals in the context of limited dependent
variable (LDV) models. In this paper, we employ the smooth recursive
conditioning simulator of Geweke, Hajivassiliou and Keane (GHK) to obtain
simulated maximum likelihood (SML) as a way of testing the joint hypotheses. The
GHK has low variance which is crucial when maximizing the likelihood function
directly.s A recent related papeli by Pesaran and Samiei (1995) examines limited
dependent variable rational expectations models using simulation-based estimators
similar to those proposed here.

The latent variable framework as proposed originally by Nerlove (1988) is
introduced in Section II. The rational and adaptive expectations hypotheses are

- formulated in this framework and are presented in Section III. We then present
formulation for joint testing.

In Section IV, we discuss maximum likelihood estimation for contingency
tables where we will demonstrate the inf~asibility of numerical FIML procedures
and show how simulation methods may be used.

In Section V, we test the joint hypothesis formulation with Swiss monthly
and UK quarterly surveys of manufacturing firms.

Section VI concludes with some remarks about the general implications of
our results for studies of expectation formation.

II. A Latent Variable Framework

When building models using data arranged in contingency tables, it is often
useful to think of the categorical variables as being generated by underlying
continuous latent variables. Specifically, the business survey model is part of a
general class of latent variable models with an observation rule

y = 't(y*)

where y* is the unobserved latent random variable, and 't() is the many-to-one
mapping from y* to the discrete observed variable y. In the case of business
surveys we have 't:9\ ~ {I ,2,3 }. In other words, 't() maps the entire real line into
the integer set {1,2,3 }. Another better known example is the binary response model

S We do not describe the simulators themselves. See Hajivassiliou and Ruud (1994).
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(seen in probit and logit models) where 't( ) is just the indicator function. The
model appropriate to business surveys differs from the standard LOY model in that
both the left and right hand side observations are the result of the mapping 't( ).

Let z* = (y;.X;I.X;" .... x~,) be a ((k+l)xl) vector of latent dependent and
independent variables that satisfies the following linear relationship

(1)

where ~ is a (kx I) vector of coefficients, Et is a disturbance term and t is a time
subscript. It is assumed that E(Et) = 0 and that Et and x' are uncorrelated. For firm i
we observe categorical indicators Zit = (Yit.Xil) of the unobservable latent variables
z*t = (Y*t.x*t) such that

. k 7where J=l, ... ,k, +1.

z" = {

I if Z;I :::; a 1jr

2 if a1jl < Z;I :::; a2jr

3 if a2jl < <I
(2)

We assume further that y; and x; are jointly normally distributed with

covariance matrix. It is in general not possible to identify all elements of e = (L ;
aijt. i = I, 2, j = I".., k, k+ 1) separately from a single cross-section of data. In
particular, consider the contingency table obtained from the bivariate latent variable
distribution h(y*,x*) with thresholds {ay\, a,z, ax\, axz}. This table will be identical
to the one generated by the distribution hey leI ,x*/czJ and thresholds { ayl/c\, ayz/c\,
av,/c". a.,,/c~}, where Cl and C~ are arhitr~ry r(mst?T!t~ 9 Tht:'fefore, we may normalize
each z* to have arbitrary location and variance. One common identifying
restriction is to let z*i have unit variances; then L is simply a matrix of (k)(k+I)/2
correlations.

6 The conditions under which the categorical survey responses for expectations and realizations
can be considered as independent draws from an aggregate distribution are developed in Theil
(1952). In addition to cross,sectional independence, the major requirement is that individual
firm's reporting thresholds are identical.

7 We do not consider the case of time-varying thresholds.
8 The same logic holds with respect to a non-zero mean of the latent variables. The contingency

table obtained from h(y*,x*) and thresholds {a} will be identical to that obtained from h(y*­
~y,x*-~x) and thresholds {a-~}. (See also Horvath, Nerlove and Willson (1992).)

9 Specific assumptions of thresholds and variances will be treated in section II.C. In some
instances, we can relax the unit variance assumption if we then restrict the thresholds to be
equal.
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Since the joint distribution of y and x, f(y,x), is normal, so is the conditional
distribution of y given x, fey I x). The parameter vector in (l) can be inferred from L
using

(3)

The estimated parameter ~ has the form

(4)

Maximum-likelihood estimates of e may be obtained using theory for the
J

estimation of polychoric correlation coefficients (Olsson, 1979), and estimates for ~

follow directly from (4) after replacing population with sample correlations.
Preferably we wold like to estimate evia full information maximum likelihood, but
this is not feasible fori(k+ I) > 3 latent variables due to problems associated with the
calculation of multi (k+ I) - dimensional integrals. We have two formulations of the
rational expectations hypothesis: one which involves three variables, in which
numerical integration is possible, and the other which involves four variables, in
which case we are forced to simulate.

The two-step estimator, developed by Martinson and Hamdan (1979),
estimates the thresholds first from the marginal frequencies by simply inverting the
univariate standard normal c.dJ. The second step calculates the correlations
pairwise by iteratingl~o a root of the sample score, conditional on the first stage
estimated thresholds. In achieving computational feasibility, this method ignores
the true multivariate nature of the data generating process.

10 Nerlove, Ross and Willson (1991) point out that the information matrix, evaluated at, provides
a biased estimate of the variance-covariance matrix of the estimator because it ignores the fact
that the thresholds are estimated in the first stage. Olsson (1979) presents Monte Carlo
evidence suggesting that the bias is not substantial.
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III. Rational and Adaptive Expectations

A. Expectation formation

We review briefly the rational and adaptive expectations hypotheses and
introduce some notation before formulating the joint testing procedure. I I Let
Y~l == E(YitIQil-') be the expectation formed at time t-l by firm i of variable y at time t
conditional' on the information set 0it-I .12 Therefore, Y~l+' == E(YIl+,IQit) is the
expectation formed at time t+1 by firm i conditional on the informtation set Oit.

One problem is immediately apparent: The world is not really discrete (at least not
with respect to quarterly periods of observation). Some news which occurs at the
end of period t-l and the beginning of t will affect not only Yit and Y~t but also Yit+l

and Y~I+" Thus, rational expectations in the '::urrent period can be expected to be
correlated with expectations in the next period. 13

Standard rationality tests usually consider one particular agent's expectations
using a time series of observations {Yit> y~, t =1,... , T}. These tests can be suitably
modified-for a time series of cross-sections, or, as the limitations of the data dictate,
to handle serial tests based on an aggregate across firms at each particular time. We
test the different hypotheses directly using cross-section techniques.

The essential assumption for rational expectations is that prediction errors are
uncorrelated with anything in the information set Ot_l. The regression equation
commonIy estimated is of the form

(5)

where Zf41 could be the lagged realization, Yt-I, or anything else in the information
set Ot-I. Rational expectations requires that the prediction error £t be orthogonal to
the entire information set (such as Zt-I)' If the prediction error is indeed correlated
with any variables in Ot-I> it implies that the forecaster has not used all available
information,. The problem with ovelapping information sets created by artificial
periods imposed on essentially continuous data is apparent here. y ~ depends on Ot_

I but, if some news spills over into next period, y ~ will 11;0t necessarily be

11 Unless otherwise specified, we will write the relationships in terms of the continuous latent
variables, not their discrete realizations.

\2 Given cross-sectional independence, E(YitIQit-\) =E(YitlQt_\)' where Qt-\ = .
13 In a very important paper, Sims (1971) shows that basing a distributed lag on discrete data when

lilt wudJ is in fal:l cOlllinuous, or ~t !e::::;t characterized by a much finer time grid, can c~sily

lead to forward distributions of lag, which is, of course, the essence of the problem noted in the
text.

14 For a survey of empirical tests of the rational expectations hypothesis, see Lovell (1986).
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uncorrelated with Zt-I. The usual test for efficiency based on equation (5) with the
following parameter restrictions

is thus problematic. Alternatively, one may test the simpler hypothesis of
unbiasedness

(6)

which is not subject to this problem. However, such a test is not very powerful
either. By unbiasedness, we simply mean that agents do not make systematic errors,
which implies that forecast errors should have zero mean.

Under the null of rational expectations, one implication of (5) and (6) is that
var(Yt) =var(y~) + var(Ct) and hence var(Yt) ~-var(y~). In general for business
surveys, the variance of realizations has been observed to be greater than for
expectations.

The Adaptive Expectations model is a much simpler model of expectation
formation than the rational expectations model, although, of course, adaptive
expectations can be rational under certain circumstances. 15 Agents form their
expectations about tomorrow by looking at the mistake they made yesterday. They
revise their expectations upward or downward based on their most recent error.

(7)

where 0 ~ y <:: 1 is the adjustment factor.

Estimation of the adaptive expectations hypothesis is often done by
manipulating equation (7) to arrive at an expression which contains only directly
observable realizations. The parameter y then depends on changes in realizations.
It is the coefficient of past realizations in an equation explaining current
realizations. The residual Ut may include factors that affect short-term expectations.
This is consistent with the early formulation of the adaptive expectations hypothesis
in which the agent is presumed to form expectations of long term "normal" levels of
certain variables (such as prices, for example).

As shown in Muth (1960, 1961), the adaptive expectations in (7) are in fact
fully rational if

15 See, for example, Muth (1960). Muth' s formulation is generalized in Nerlove(l967) and
Nerlove, Grether and Carvalho (1979; 1995, pp. 73-76).
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so that

That is, if Yt is generated by a moving average of i.i.d. random variables, then the
agent's best forecast for Yt+l depends only on Yt.

B. Testing for rational expectations

Pesaran (1988, Chapters 7-8, pp. 162-244) gives an exhaustive account of the
problems of testing the REH and attempts to do so using direct observations on
expectations. When expectations ;li"":' !ivt directly observed, the problem of testill.:,
the REH is greatly complicated by the fact that only indirect tests are possible. As
Pesaran (1988, pp. 179-180) puts the matter: "From an hypothesis testing view­
point, the REH is best characterized as a peculiar type of cross-equation restriction,
relating reduced form parameters of the RE equation(s) to the parameters of the
equation(s) that generate the forcing variables....This characterization underlies
most indirect tests of the RE and suggests that one possible method of testing the
REH is to see whether the cross-equation restrictions implied by the hypothesis are
valid." And further (p.181): "It is important to bear in mind that the validity of
cross-equation tests as tests of the REH crucially depends on the validity of the
unrestricted model within which the REH is embodied. In general, the rejection of
the cross-equation restrictions does not necessarily lead to to the rejection of of the
REH. It can always be argued that the cross equation restrictions have been rejected
not because the REH is false, but due to mis-specification in the underlying
economic model." The problem of indirect testing of REH models is further
complicated when future expectations are included, as is the case in recent studies
of foreign exchange rate deternination, or when laggeged values of the dependent
variable are included, as in partial adjustment models, the problems of estimating
and testing RE models are greatly complicated by serial correlation which may be
induced in the reduced form disturbances of such models and identification
difficulties which may be severe. (See Pesaran, 1988, pp. 183-203.)

Thus, as Pesaran (p. 207) observes, "Only when direct 'observations on
expe~tations are available is it possible to satisfactorily compare and contrast
alternative models of expectations formation." But not all the difficulties associaed
with indirect testing disappear and several new ones emerge. The principal new
difficulty is the categorical nature of most of the data available. This is our primary
focus in this paper. Further complications, similar to those found in dynamic
behavioral models with future expectations, arise: a major source of serial
correlation among future and current expectations is overlapping information sets

8



due to temporal aggregation, as pointed out above. 16 We regard this as the most
significant problem we have encountered in this investigation and wish to
emphasize that it is likely to occur in general in all attempts to assess models of
expectations formation. An additional problem is the issue of the underlying
normality of the latent variables and stochastic disturbance. An assumption of
normality is crucial to our analysis and we do not relax it here. 17

We have data on four series from sequential pairs of surveys: Yt. Yt-I. y~+1 , and
y ~ , any of which may contain information about the others. We can put all of these
variables together to test jointly the hypotheses of adaptive and rational
expectations subject to the caveats and limitations noted above. It is important to
keep in mind exactly how the data are presented to us. All we have is a 3(k+l)

contingency table filled with observed frequencies. If one casts the model into a
latent variable framework as was done in Section II, one can recover estimates of
model parameters by assuming that all variables are jointly normally distributed and
then use properties of the multivariate normal distribution to find conditional
means. All that is necessary in order to construct these model parameters is an
estimate of the covariance matrix. This matrix is then partitioned to recover the
model parameters (see equation (4». In section IV.A. we show how maximum
likelihood can be used to estimate this covariance matrix. If we are to construct any
tests of hypotheses about expectation formation, we must write them in terms of
these variances and covariances, the elements of the covariance matrix L. What are
the implied moment restrictions of the rational and adaptive expectations
hypotheses?

We assume that the four variables are jointly normally distributed with mean
zero and covariance matrix L.

I
::] = [~:,] - N(O, L),
Y Yt+1

y 4 y~

(8)

Recall the problems of identification described in Section II. For a particular
variable in a multivariate latent variable model, one cannot separately identify both
the thresholds and the variance. Either one restricts both the thresholds to be the

16 In his review of tests of the REH using direct observations on expectations, Pesaran (1988, p.
243) points out that "... since under the REH the expectations errors ... could also be correlated
with the future values of the variables in the information set, the standard statistics used in
testing the orthogonality property may not be valid." Our analysis reported below is subject to
this caveat.

17 Pesaran and Samiei (1995) deal with models in which expectational and other variables may be
limited, which is a form of relaxation of strict normality, and devise computationally feasible
techniques for the estimation of such models along line similar to those developed here.
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same (in absolute value) and therefore identifies the variance, or the variance is
restricted (to unity) and the thresholds are free parameters.

Our identifying restrictions are very similar to those made in Horvath,
Nerlove and Willson (1992), although the problem here is more complex.
Expectations and realizations (Y~ and Yt respectively) of a variable are assumed to
have the same threshold but different variances. 18 Otherwise we restrict the
variance to be one and allow the thresholds to vary. At the individual firm level,
equivalence of thresholds for expectations and realizations means that firms use the
same "yardstick" when evaluating expected future movements in Yt as well as past

19
realizations. The covariance matrix L is somewhat simplified to

(9)

The test of the rational expectations hypothesis (REH) which we propose is
straight forward in the absence of complications resulting from overlapping
information sets. Since the joint distribution of the four variables is assumed to be
normal, so is their conditional distribution. We are interested in the following
conditional mean

(10)

The null hypothesis to be tested is

A maintained hypothesis is that ao, the intercept term, is equal to zero and is
required for identification of the model in latent variable form.

Expression (10) is a test of the REH based on a three-variable formulation of
the joint density of Yh Yt-}, and Y~' However, our assumption of the joint normality
of the four variables Yh Yt-], Y~+I' and y ~ implies linearity of '-the conditional
expectation.

(11)

18 For an alternative discussion of the threshold problem see Pesaran (1988, pp. 212-221).
19 The variance of the latent variable underlying the conditional expectations will be less than or

equal to that of the realization under rational expectations. It is therefore desirable to have those
variances be free parameters in the estimation.
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Thus, were it not for the problem of overlapping information sets referred to above,
an alternative test of the REH would be the joint hypothesis

The completely unrestricted model (11) is more general than the usual alt~rn~~iye to
the REH, and it has the advantage, as we shall see, that it nests t4~ aqamtye
expectations hypothesis as well. The problem is that in realistic situ~ti9~~,t 'iven
when the REH is true for the underlying data, temporal aggregati6n"'ancLthe
resulting overlap of information sets makes it inevitable that (X3 =/:. 0. B~IQ~~ ~{i.~st
whether this is in fact the case. We find strong evidence that it is, whicn pqin~i',!p
the generality of the problem in all studies of expectation formation. Then assuming
(X3 =/:. 0, wetest,i1'

in the three variable formulation. Our finding that this and, indeed, all restricted
models are rejected in favor of the completely unrestricted model simply means that
all simple models of expectation formation are misspecified. The e~is.t~,n.<t~",pf
overlapping information sets in the measured data thus precludes a' definitIve
finding against the REH. We think this conclusion is generally valid.

What are the implied covariance restrictions for the three and four .{variable
versions of the rational expectations hypothesis, in addition to the )qy.n,~i;fYi~ng

restrictions made previoulsy? . . .. -. . < •

1. Three-variable testing without simulation

The common test for efficiency in rational expectations involves cori~iti.~Hihg
today's realization on the expectation made yesterday about today and )/(;sterday's
realization. Specifically

with the restrictions for the null hypothesis as

Without considering the identifying restrictions made in (9) for the four vari~.l?le

case, let us examine the coefficient experssions and determine whatidenti'fyihg
restrictions we have to make for the three variable case. Following the numbering
convention in (8) we can rewrite (10) as

....,., (10')

11



which yields

Under the null, U2 = O. This yields the following covariance restnctlOn: (J12 =
(J14(J24· To test if Uj = 1 we need to make the additional assumption that (J;, = (J f =

1 which is different from the identifying assumption made in (9). Because we
impose a unit variance on Yt , we may leave the thresholds to be freely estimated.
However, we are forced to impose the restriction of equal thresholds on Yt-l whose
variance is estimated freely.

The joint covariance matrix to be estimated is:

with the restriction under the null being (J 12 = (J 14(J24.20

2. Four-variable version with simulation

We proceed from the less to the more restrictive model. The less restrictive
alternative, as described by (11) is

with the maintained restriction of U3 = O. The other parameters are freely estimated.
As for the three variable version, we write

The implied covariance restrictions are

Thus we estimate the following covariance matrix:

20 This restriction is analogous to the one imposed by Horvath, Nerlove and Willson (1992).
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(5~ (512 0 (514]
100

I 0 .
(5~

For the null of rational expectations, we consider the conditional expectation in (10)
which is the same as the three variable case. However, to cast it fully into the joint
four variable framework, we simply make the following additional covariance
restrictions:

Thus the covariance matrix for the four variable version of the null of rational
expectations is

(5~ 0 0 0]
100

I 0 .

o

c. Testing for adaptive expectations

The test of the adaptive expectations hypothesis (AEH) is almost as simple.
Recall that we are interested in

which"~is equation (7). We need to assume that U t is uncorrelated with Yt and y~.
Again, taking into account the multivariate setup, the conditional expectation of
interest is

(12)

We test the restriction:

where ~I = (1-y) and ~2 = y, presuming 0 < y < 1. We call this the strong form of the
AEH. Again, the completely unrestricted model contains an additional variable: Yt­
I. The~ appropriate alternative against which to test the AEH is given by

(13)

where the restriction ~3 = 0 is imposed. We call this the weak form of AEH where
future expectations are related to past expectations and current realizations (but not

13



lagged realizations). The strong form puts a particular restriction on this relation,
namely that ~l + ~2 = 1. In Section V we first test the weak form against the
completely unrestricted model and then proceed to the test of the strong against the
weak form.

What are 'the implied covariance restrictions? For the AEH we remain with
the four variable joint framwork throughout. Again, we proceed from the less to the
more restrictive model. The AEH alternative, or its weak form, is described by (13)
with ~3 = 0 being the only restriction. As with the rational expectations hypothesis,

_we will follow the numbering convention of (8) and write

The implied covariance restrictions are

We therefore estimate the following covariance matrix:

0
2 0 °13 °141

1 0 0

1 °34

O~

For the null of the strong form of adaptive expectations, we consider the conditional
expectation given by (12) with the restriction that ~I + ~2 = 1. The implied
additional covariance restrictions are

The strong form of the AEH implies the following covariance matrix:

Although the rational and adaptive expectations hypotheses are not nested
one inside the other, in our representation they are both nested in a more general
expectations formation framework, which allows for the effects of Y~+l in the joint

14



distribution of the four "variables Yt, Yl-I, Y~+I' and Y~' The rational and adaptive
expectations hypotheses state that realizations and expectations are related in a

'particular way. In contrast, in more conventional analyses the alternative to the
rational expectations hypothesis in isolation simply states that expectations are not

rational; one has, in fact, no idea what they may be if the null of rational
expectations is rejected. In our case, the alternative is estimated.

Any variable of this set of four variables, Yh Yt-I, Y~+I' and Y~, may in general
contain information about the others. For example, expectations may contain
information about realized values. What might this information be in the case of the
rational or adaptive expectations hypothesis? Do expectations (and only
expectations) contain information about realizations? Do expectations and
realizations (but not lagged realizations) contain information about future
expectations? Our formulation allows us to answer such questions within one
structure: the covariance matrix for the four variables in question.

IV. Full Information Maximum Likelihood Estimation

A. Formulation of the sample likelihood

In Section II we outlined a structural latent variable model which is useful for
estimation with business surveys. Following equation (1), the data can be arranged
into a 3(k+l) contingency table, where (k+1) is the total number of variables in the
model. A useful way of writing down the likelihood is to consider that there are M
= 3(k+l) different regimes. Any given observation can fall into only one cell in the
M-cell contingency table. Thus, if we let nj be the observed frequency in the fh cell
(or the fh regime), then the model likelihood is

M

In L(8) = c+ ~> j In 1t j (8),
j=J

where C is a constant of proportionality, and the parameter vector e contains all
thresholds and covariances. For the purposes of this paper, (k+1) == 4, and therefore
we have M = 81 regimes.

Let us consider the form of the log-likelihood for the simple bivariate case.
The data will fall into a 3x3 contingency table. Let nrs be the observed frequency
associated with the rsth cell, and let 7trs be the probability that an observation falls
into' cell rs. 21 The log-likelihood is

21 Thus, 1trs = Pr{ y=r, x=s} = E(nrs).
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In L(8) oc nIl lnnll + nl2 Innl2 + nl3 In1t13

+ n21 Inn21 + n22 Inn22 + n23 Inn23

+ n31 In1t3 \ + n32 Inn32 + n33 Inn33'

The associated score can be written as

where

(14)

(15)

(16)

We can think of (16) as a weighted residual, the residual [nrs - 1trs] being the
deviation of the sample frequency from its expectation.

As Hajivassiliou, McFadden and others have pointed out, the primary
obstacle to computing the FIML estimates for 8 is the calculation of the
probabilities 1trs which appear both linearly and nonlinearly in the likelihood and
score expressions. Each of these probabilities involves integration over an (k+1)
dimensional space. It will be instructive to consider this integration more carefully.

B. The integration problem

The computational barrier for latent variable and multinomial probit (MNP)
models is reached when the degree of integration is greater than three. However,
even in the case of a trivariate latent variable or a four-alternative MNP model, the
computational burden is considered to be exceptionally high. To illustrate the
problem of integration, consider a particular probability expression of the bivariate
business survey model more closely. Specifically, consider the cell for values
where (y = 2, x = 3) from equation (14). Note that an asterisk on a variable denotes
the unobservable continuous latent variable rather than its observable categorical
analogue (no asterisk).

E(nz3 =1t23 = Pr{y =2, x = 3} =Pr{ayl < y*:s;; ay2, axZ < x*}

Rewrite this joint probability as

II ( * *) * * * *= I ayl < Y ~ a YZ,a x2 < x f(y,x )dy dx ,
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where 10 is the indicator function, f(y*, x*) is the bivariate normal density, and the
range of integration in the second part of (18) is the entire real line. This can be
rewritten in a more general form as

Pr(D(z); !l,:L.) = JN(z - !l)dz) == Ez[I(z E D(z)].
D(z)

(19)

where z is a normal (k+1)-dimensional vector with mean 1.1 and covariance matrix I.,
and NO is the multivariate normal density. I(zE D) is the indicator function defined
for the event D(z) = {z I al < z < a2}' A leading case is the negative orthant
probability which is particular to the MNP model, where the conditioning region
D(z) = {z I z < O}. Hajivassiliou, McFadden and Ruud (1991) outline and compare
several simulators designed to estimate the probabilities 1t and its derivatives.

C. Simulated maximum likelihood (SML)

The idea of using simulations for the estimation in a maximum likelihood
context is not new. Lerman and Manski (1981), for the case of the MNP model,
attempted to maximize the likelihood function directly by simulating the probability
expressions which appeared in the likelihood functions. The simulated maximum
likelihood (SML) approach does not yield unbiased estimates of the parameters of
interest for a fixed number of replications.22 The reason for this is simple. Because
of the concavity of the logarithm transformation, the probabilities do not enter the
likelihood function expression linearly, so neither do the simulation errors of those
probabilities. 23 If we denote f asa simulator for the likelihood f, then E f = f.
However, E(1n f) :;: In EU). Specifically,

B<f) = E(ln f)-In E(f):= - var(!> < O. 24
2f

The bias depends on the variance of f (the simulation noise) which will be positive
for any finite number of replications.25

22 Hajivassiliou and Ruud's chapter in Volume IV of the Handbook ofEconometrics (1994) has an
excellent discussion of this point.

23 This result is a straight forward application of Jensen's inequality.
24 See B9rsch-Supan and Hajivassiliou (1990), p.15.
25 Consistency and asymptotic unbiasedness is achieved for a finite number of replications when

8R - 80 = O(l/...Jn),
whereas in the SML case we need R (number of replications in the simulator) and n (number of
sample observations) to increase without hound, but at the rate RI...Jn;

8R - 80 = O(...JnIR).
(See also Gourieroux and Monfort (1991) for a special case of a simulated pseudo-ML
estimator which is consistent for finite R).
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As we will be estimating a four-dimensional model with fourteen parameters
(six free thresholds, six covariances and two free variances), the complexity and
number of first-order conditions is rather high. To make efficient use of MSM for
the estimation of moment conditions such as (15) for a general weight matrix would
require the simulation of good instruments. McFadden (1989) stresses that this
weight matrix be constructed using simulations that are independent of n(8). In the
MNP case, he suggests using a polynomial of the regressors for an initial Wand
construct the ideal W only in the final iteration. We cannot do this, for we do not
have regressors in the conventional sense. The computational burden for the
construction of the ideal W at each iteration across 8 would be very high indeed.

Hajivassiliou and McFadden (1990) have devised a method for simulating
directly the score of the likelihood contribution which they call the method of
simulated scores (MSS). Consistency is obtained for both MSM and MSS for a
fixed number of random draws in the simulator. MSS was developed for the
estimation of LDV models and is based on a suggestion by Ruud (1986) that the
score for the general linear exponential model can be written as conditional
expectations which can be simulated directly. Since the business survey model has
no regressors in the conventional sense, the score expression can not be written in
terms of conditional expectations. We thus settle for SML despite its poorer
asymptotic properties.

Our view is that not much is sacrificed by using SML. While consistency is
obtained by MSM and MSS for a fixed number of random draws or replications (R),
efficiency is not. SML is inconsistent for a fixed number of replications in that a
law of large numbers (applied to sample size) does not succeed in eliminating bias.
Full efficiency is gained by MSM and MSS only if RI--Jn ~ 00. However, this
requirement is the same as that for eliminating bias for SML (see also footnote XX).
Moreover, if R1---Jn ~ 00, maximum likelihood efficiency is obtained as well, at
which point SML has the same asymptotic properties as exact ML.26

Variance reduction

One may reduce the (small sample) bias of the SML estimator by
incorporating a bias correction factor which will be a function of the variance of the
simulator itself. Recall that B(f)=~var<1)/2f2. Rewrite this as Avar(f'), where A=
(2f2r 1

• We know that varU); it is simply the variance of the simulated probability

26 See also Schuermann and Weeks (1994), who make the point that SML has the additional
attraction of being rather easy to implement since writing down the likelihood function for most
LDV models is rather straight forward. By contrast, McFadden and Ruud (1991) point out that
both the Tobit model and Heckman's selection model are quite difficult to cast into the MSM or
MSS frameworks. as are many other LDV models.
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across R replications, and AE (Y2,OO). we have found the gain to be minimal for
various (small) values of A.

Another variance reduction technique called antithetic variates is much
simpler and easier to implement. Virtually all simulators, and the GHK is no
exception, have as their basic buidling block a uniform pseudo-random variate,
usually on the unit interval. Let UI be a draw from a U[O,I]. Then another valid
draw would be Uz = I-Ul. So instead of drawing a vector of length R from U[O,I],
merely draw R/2 and construct their symmetric partners. The variance of this R­
length vector of U[0,1] variates will be lower than if we had drawn all of them
directly. We use antithetic variates in our own simulations.

V. Testing the expectations hypotheses with Swiss and British survey data

A. The data

Do Swiss and British manufacturing firms form their expectations adaptively,
rationally, naively or in some other way? We attempt to answer that question here.
Horvath, Nerlove and Willson (1992) use price realizations and expectations with
data from the UK survey to test forecast rationality. In this paper, we use demand in
the form of incoming orders instead. Since the majority of firms surveyed are in
manufacturing, it is unlikely that many operate in anything near to a perfectly
competitive market. These firms are therefore quite likely to be price setters rather
than price takers. Demand may be less under their direct control and therefore less
endogenous to their own actions. Of course, whether the firm has control over
prices ana demand is a question of degree, and, from this standpoint, demand seems
more attractive. If a test is based on prices, in effect it tests whether expectations,
on the basis ofwhich prices are set, are rational, adaptive or neither.

The SWIss survey is conducted monthly whereas the British one is quarterly.27
In addition, the horizon over which expectations are taken are different for the two
surveys. The KOF asks firms what their expectations are for the following three
months while the CBI asks firms to consider a four month horizon. To adjust for
the different surveying frequencies, we used the October survey for the 4th quarter
equivalent and January for the 1st quarter equivalent, etc. The UK sample consists
of 1008 manufacturing firms for the 4th quarter of 1986 (t-l) and the 1st quarter of
1987 (t). The Swiss sample contains 942 firms.

Some Monte Carlo experimentation suggests that R = 20-30 replications for
the simulator are sufficient, but because we may be dealing with potentially small

27 The KOF also conducts a quarterly survey which asks, among other things, questions on price
expectations and realizations.
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probabilities which are notoriously difficult to estimate, we decided to increase the
number of replications to 100. Furthermore, by employing antithetic variates we
reduce the overall variance of the GHK simulator, critical when maximizing
simulated log-likelihood functions.. The Appendix gives parameter estimates for
the completely unconstrained model. Of principal interest to us, however, are not
the point estimates themselves but rather the value of the log-likelihood at the
respective constrained and unconstrained optima.

While about 1000 observations for each country seems ample arfirst glance,
because we summarize these observations into a contingency table, the amount of
information used in the final estimation is actually much smaller. In the four­
dimensional case, we have an 81-cell contigency table yielding, of course, 80
independent empirical probabilities. For the case of thret> rlime:mions. we have 27
cells. The estimation centers on matching the simulated theoretical probabilities
with the empirical ones in the contingency table. The success of this estimation
depends critically on how well the empirical frequencies are themselves
represented. In other words, how many observations underlie a given cell count? If
that number is small (or worse, zero), this empirical estimate is poor and the
likelihood function flattens out.

A solution is to pool the observations from the two countries. This in effect
doubles the number of underlying observations in the contingency table and will
give us more reliable empirical frequency estimates. One caveat is the differing
time horizon over which managers are asked to form their expectations. We
believe, however, that the benefit obtained by pooling far outweigh the costs of the
slightly different expectations time horizons (three vs. four months).

B. The tests

Table 1 contains a summary of all results. In the four dimensional cases, each
alternative expectations hypothesis is nested in the completely unconstrained
model, and, of 'course, each null is in turn contained in its alternative. We reject
both the rational and adaptive expections hypotheses, for the four as well as for the
three dimensional cases, all with p-values of better than 0.00 1. For the four­
dimensional models, we also reject the respective alternatives against the fully
unrestricted model. All tests are'likelihood ratio tests. \
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Table 1 . Likelihood Ratio Tests

, model (r) LRT
I

-, ,'" , "_·'0.' ,~. ,."'. "'~':

AEH all. YS. unrestricted (4) 83.08

AEH null YS. AEH all. (2) 181.72

-
REH all. YS. unrestricted (3) 192.12

REH null YS. REH all. (2) 189.4

3-D REH test (I) 36.9

Our findings are consistent both with the extensive non simulation work by
Horvath, Nerlove and Willson using 18 quarters of UK surveys, as well as our own
earlier findings (Nerlove and Schuermann, 1995), in which we did not make the
additional 3-D REH test and used non-pooled data.

VI. Summary & Conclusion

The testing of expectations hypotheses, so prevalent in economic theory and
in fact at the core of modern macroeconomic theory, is a major challenge to the
applied researcher. The business surveys which form the empirical basis for this
study are a rich source of data for precisely the reason that they contain questions
about the expectations managers of firms form about future demand and prices.
And because we have data for these firms over time, we can proceed to subsequent
periods and check the realizations against those expectations formed earlier.

A major problem is that these data come in the form of contingency tables.
Any model and subsequent estimation method must make do with the
JQ contingency tables, where J is the number of categories (for us three), and Q the
total number of variables in the model (for us, three or four). By assuming that the
data is generated from a joint latent multivariate normal distribution, we are able to
write down parameter restrictions which are implied by the expectations
hypotheses.

For values of Q larger than three, simulation-based methods must be used to
maximize the likelihood with respect to the parameters of interest. Traditionally,
these models had been estil1)ated by means of conditional log-linear probability
models, but with recent advances in simulation-based inference, the computational
barrier imposed by high-dimensional integratrion has been broken.
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We test rational and adaptive expectations using demand data from about
WOO manufacturing firms in the United Kingdom and about 900 manufacturing
firms in Switzerland, and we reject both hypotheses in favor of a more general
formulation about expectations which contain future expectations. The problem is
that rejection may, and probably does, rest on the discreteness of the periods over
which expections and realizations are measured relative to the continuous nature of
information flow and expectation formation. This is the same problem pointed out
by Sims (1971) many years ago and is, in our view, general for all attempts to assess
the valididity of empirically implementable models of expectation formation.
Either one believes that the world is discrete with the coarseness implied by our
measurements and rejects all simple models of expectation formation, such as
rational.and adaptive, or one holds fast a priori to a model of expectation formation
and rejects the data! Perhaps a useful intermediate approach would be to investigate
various hypotheses using data for which variable intervals of observation can be
constructed.

The latent variable model and the ensuing tests, in both the three- and the
four-variable cas, all rest on the assumption of multivariate normality. How strong
is this assumption? We have performed goodness-of-fit (GFI) tests both for three as
well as for four dimensions and reject them both. This clearly begs the question: is
the rejection of the expectations hypotheses a result of a general model
misspecification or rather a simple violation of the underlying distributional
assumptions? The GFI tests may in fact have failed simply because of the lumping
of survey responses, particularly for the "no change" category. In our view the
issues raised by overlapping information sets constitute the more serious difficulty.
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