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Non-technical summary

Patents and the expenditures on research and development (R&D) are the most
widely used indicators in the economic analysis of technical change. Both
indicators are used to assess the technological strength of countries or sectors as a
whole or with respect to certain areas of technology. The continual development of
these indicators commonly interpreted towards changes of the innovative
capabilities. At the firm level patent numbers and R&D are used as indicators of
the technological capabilities of firms to assess the productivity effects of
innovations or the technological strategies of firms. Although many studies use
this indicators more or less as substitutes, the relationship between R&D
expenditure and patents was the subject only of a few studies. It is well-known that
both indicators have strengths and weaknesses. R&D expenditure suffers from the
under-counting of R&D in small firms. Not all inventions were protected by
patents, either because patents are a weak instrument to protect intellectual
property or because patents not only protect but also diffuse knowledge to
competitors. R&D expenditures represent the most important input into the
innovation process whereas a patent is an (intermediate) result of an innovation
process. Therefore, it is questionable whether there is a close correlation between
patent numbers and R&D expenditures.

Based on the data of the Mannheim Innovation panel this paper explores the
relationship between R&D expenditures and patents at the firm level. It is shown
that the share of R&D performing firms is strictly increasing with firm size. The
share of firms applying for patents exhibits an even steeper increase with firm size.
Moreover, large firms more likely apply for patents in more than one country. In
comparison to the patent applications at the European Patent Office or other
international patent offices, the German patent system seems to be especially
important to small and medium sized enterprises.

The number of patent applications depends on firm's own R&D expenditure
but does not depend on R&D spent by competitors. Our study implies that the
ability of R&D to generate patents is increasing with the amount spent on R&D.
Even when we take into account a variety of firm characteristics as well as R&D
expenditure the number of patent applications is increasing with firm size. The
same is true with respect to the propability that a firm applies for a patent. This
result can be explained by a lack of information on the patent system by small
firms. Alternatively small firms prefer other mechanisms (e.g. secrecy) to protect
their innovation or distrust patents, maybe because of the large costs involved in
defending a patent. Another explanation of this result would be that small firms -
on average - are more engaged in incremental innovation which does not fulfill the
novelty requirement of patents. Moreover, large firms more probably apply for
patent due to institutional requirements (e.g. Arbeitnehmererfinderrecht). In
addition, firms apply for patents because patents are used in cross-licencing
agreements with other firms.
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Abstract

Based on the data of the first wave of the Mannheim Innovation panel, this paper
explores the link between R&D expenditures and patents. Our data allow a
detailed analysis of the firm size distribution of R&D and patent applications at
different patent offices. It is shown that the share of R&D performing firms is
strictly increasing with firm size. The share of firms applying for patents shows an
even steeper increase with firm size. Moreover, large firms more likely apply for
patents in more than one country. The home patent office seems to be especially
important for small firms. Using various count data models, the paper explores the
relationship between R&D and patents at the firm level. We carefully test several
distributional assumptions for count data models. A negbin hurdle model seems to
be the most appropriate count data model for our data as the decision to patent
inventions and the productivity of R&D are ruled by different mechanisms. Our
estimates point towards significant returns to scale of R&D. Furthermore, the
empirical results can be interpreted towards minor and insignificant spillover
effects. Even after controlling for a variety of firm characteristics, firm size
exhibits a large effect on the propensity to patent.
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1 Introduction

Patents and R&D are commonly used indicators in the economic analysis of
technical change (see e. g. Griliches 1990, Pavitt 1985). At the aggregate level both
measures are used to assess the technological strength of countries and industries.
The continual development of these indicators is commonly interpreted towards
changes of the innovative capabilities (e.g. NIW et al. 1996, National Science Board
1996). In firm level analyses, patent numbers and R&D are used as indicators of the
technological capacity of firms to study productivity effects of innovation (e.g.
Lach 1995) or to test the famous Schumpeterian hypothesis (see Cohen and Levin
1989).

The usage of patent information and R&D figures as economic indicators has been
steadily improved and refined in recent years. The quality of both indicators as well
as the availability of this kind of data has increased and measurement standards
were developed (see e.g. OECD 1993, 1994). Now, computerisation of patent
offices enables detailed analyses of patent information. R&D surveys are performed
on a regular basis in all developed economies. Therefore, it seems worthwhile to
look more closely at the relationship between both indicators at the firm level.

It has often been recognised that R&D and patents capture different aspects of the
innovation. process. R&D expenditures or the number of R&D employees can be
viewed as a measure of the resources devoted to the innovation process. But R&D
represents only a part of the resources necessary to launch new products and
processes. In addition, traditional R&D surveys often fail to uncover R&D in small
firms (see e.g. Kleinknecht and van Reijnen 1991). On the other hand patents reflect
the results of innovation processes. But as for R&D, only a part of the innovation
output is captured by patents. Patents reflect just one aspect: the means by which
firms protect an innovation. However, patenting is only one method to protect
profits originating from new products or processes from imitation by potential
competitors (see Levin et al. 1987 for the US, Ko6nig and Licht 1995 for Germany).
Moreover, computerisation of patent offices decreased the costs of inferring
technological information from patent documents held by competitors in recent
years. As a consequence the value of patent protection decreases. As shown by
Horstmann, MacDonald, and Slivinski (1985) it is rationale not to patent all
inventions if patent applications contain information on technological opportunities.

The relationship between patents and R&D has been studied by various authors in
recent years. Pavitt (1985) concludes that small firms tend to patent more per unit
R&D than large firms. Scherer (1983) finds remarkable differences in patenting
behaviour within technology groups not being explained by R&D efforts. Using a
data set of large German companies, Zimmermann und Schwalbach (1991) find
only weak correlations between various firm characteristics like risk,
diversification, export share and patenting behaviour. In the absence of R&D data,
firm size turns out to be an important determinant of the number of patents held by



a company. Evenson (1993) stresses the importance of foreign demand for the
propensity to patent. Crépon and Duguet (1996, 1997) study the relation of R&D
and patent application at the firm level using a sample of French firms. Using a
wide variety of count data models, they find a R&D elasticity of patent numbers of
just around | and a strong negative effect of R&D rivalry on patent activity.

Our study builds on this literature to explore the relationship between patents and
R&D. It extends the previous literature in at least four aspects. First, previous
literature is mainly based on data of US or French enterprises. Our study
supplements the literature with the case of the West-Germany economy which is the
world’s third largest patentee. Second, we study patent applications at various
patent offices for a large sample of manufacturing firms, which enable us to
compare patenting behaviour in the home and the export market. Existing empirical
evidence only looks at one patent office. Our data set provides us with information
on patent applications at various patent offices which allows us to draw some
inferences with regard to national and international patenting activities. Third, our
data enables us to control for the effect of certain firm characteristics unavailable in
most studies. Finally, we distinguish between the decision with respect to the first
patent and the decision for additional patents. We carefully test the statistical
properties of various count data models and adopt a negative binomial hurdle model
to take account for unobserved heterogeneity with respect to the propensity to
patent as well as the ability of firms to generate inventions.

The paper is organised as follows: Section 2 sets up the problem by describing
patenting behaviour and R&D at the firm level. It gives some evidence on
differences of patenting and not patenting firms as depicted by indicators of
innovation processes. Section 3 shortly outlines a theoretical framework for
investigating the relation of R&D and patents at the firm level. In section 4 we
describe the necessary steps to implement the theoretical framework to the data set
at hand. Section 5 introduces the empirical model. We discuss various count data
approaches to the patent-R&D relationship and present some specification tests. In
section 6 we present the regression estimates and take a closer look at the elasticity
of patent applications to R&D. Finally, section 7 summarizes our results and draws
some conclusions for further research.

2 Patents, R&D and Innovation at the Firm Level

Although patents and R&D are regularly used indicators of technical change at the
macro and the micro level, only a few studies seek to analyze their relation at a
micro level. R&D reflects the input side whereas patents can be viewed as a
measure of an intermediate output of innovation processes. Both have their
strengths and weaknesses which need not to be discussed in detail here. The main
problems with patents arise from the fact that not all inventions will be patented.
Imitative and incremental innovations are not covered by patent statistics although
they represent a large and increasingly important part of innovation activities of



firms. The most obvious short-coming of R&D statistics is their undercoverage of
innovation activities in small firms (see e.g. Kleinknecht and Reijnen 1991).1 As
recent research has shown small firms are less likely to be engaged in R&D; but if
they have decided to do so, small firms invest more compared to their size than
medium sized firms but less than large firms.2

It is well known from patent application data that a large share of patents is applied
for by only a small number of firms and that, therefore, the distribution patent
application numbers is highly skewed. But it is less known about the distribution of
patenting or not by firm size. Figure 1 contains the size distribution of innovating,
R&D performing and patenting firms. As expected, the percentages of innovating,
R&D performing and patenting firms increase strongly with firm size. Slightly more
than 50% of all manufacturing companies with more than 4 and less than 50
employees have introduced improved or new products or processes in 1990-1992 or
intended to do so in 1993-1995.3 The share of R&D performing firms amounts to
20% of all firms in this size class. However, just one out of ten innovating firms
applies for a patent in 1992 in the smallest size class. In the largest size class the
percentage of patenting firms exceeds 65%. When looking at the innovative firm
only, the figure demonstrates that the shares of non R&D performing and non
patenting companies decline with firm size. Thus the innovation activities of small
and medium companies will most certainly be underestimated if only R&D and
patents are used as indicators for innovative activities.

The difference between small and large firms is even more pronounced with respect
to patent applications at more than one patent office in one year. The overwhelming
majority of German patenting firms apply to the German patent office. Just around
10% of the patenting firms use the European procedure only and do not apply to the
German office. The share of firms that do not only apply to the German or European
patent office but also to the US Patent and Trademark Office or another patent
office is increasing with firm size for small and medium sized firms. But this share
is nearly constant for firms with more than 250 employees.* Since the application

! Throughout the paper R&D always refers to the FRASCATI-definition (see OECD 1993).

9

See e.g. Felder et al. (1996) who simultaneously model the decision to perform R&D and the
R&D intensity. The U-shaped form of the relationship between R&D intensity and firm size
depends strongly on the indicators used to measure R&D intensity.

These firms are called ‘innovating companies’. Our definition of innovation takes a purely firm-
specific view. So innovation comprise absolutely new products as well as new products which
are pure imitations. Our questionnaire assumes that all companies which do not innovate within
this six-year-period do not perform R&D in 1992 and do not apply for a patent in 1992.

The European patent procedure is rather expensive (e.g. patent fees; cost of translating the
patent documentation into the languages of the destination countries). As a rule the European
patent procedure is cheaper than the direct application via national patent offices if one seeks
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cost at a foreign patent office are larger than a patent application at the home office,
and exporting is more common in larger enterprises, this result is in line with our
expectations. Our data produces two stylised facts already shown by Sirilli (1987)
for the Italian manufacturing sector: the structure of international patenting
activities is similar to the structure of international trade; abroad extension of
patents is increasing with firm size. So, firm size and export status are expected to
be important determinants of patent behaviour in foreign countries.

Figure 1: Innovating, R&D-performing and Patenting Companies in German
Manufacturing Industries in 1992 - Weighted Data
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Source: ZEW: Mannheim Innovation Panel (1995)

patent protection in more than three European countries. Therefore, we consider applications at
the European Patent Office as abroad applications.
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Figure 2: Innovation activities and patent applications in Germany
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least to one foreign patent office. There are significant differences between
patenting and non-patenting firms. But these differences are less significant be-
tween firms which only use GPO applications and firms which also apply to foreign
patent offices (including EPO).




The first three items in Figure 2 relate to the sources of knowledge used to generate
innovations. We distinguish (1) the firm’s own R&D department, (2) scientific
institutions and (3) other firms as being an important sources of know-how.5 Own
R&D seems to be an important source of know-how especally for patenting firms. A
much larger share of patentors regard scientific institutions as an important source
of knowledge for innovation processes. This difference is less pronounced with
regard to private firms as sources of know-how. To fulfill the novelty requirements
patenting firms show a more systematic, R&D based approach to knowledge
generation than non patenting firms. These differences on the input side of innova-
tion processes is also confirmed by differences with respect to the results of inno-
vation processes. Figure 2 shows that a larger share of patenting firms introduced
products which are not only new to the firm but represent market innovations.
When we look at the share of sales of innovative productsé, we find no difference
between patenting and non patenting firms. So, market success with innovative
products not only depends on successful technological solutions which are repre-
sented by a patent, but also on complementary assets and activities of firms (e.g.
superior sales effort).” In addition, Figure 2 shows that a lot of firms (40%) intro-
duce products ‘new to the industry’ without applying for patent protection. One of
the most prominent explanations maintains that patents are an imperfect tool for
protecting innovations. Alternatively, market novelties do not always meet the
novelty requirements of patents. '

Furthermore, patenting firms spend a larger share of the total R&D budget than non
patenting firms on product innovation. Those in turn spend a larger share on process
R&D. But this does not imply that patentors devote a higher share of their total
innovative activities to new products compared to non patenting companies. Cost
saving process innovations and the generation and market introduction of product
innovations are viewed as equally important by patenting and non-patenting firms.
Figure 2 also shows that patents are an important tool in the strategy of firms. This
notion rests on the result that exporting companies and companies with innovative
activities devoted to foreign markets, are involved in patenting to a larger extent.
This is even true when we look at patenting only in Germany. So, patenting seems
to be especially important in markets which are open to international competition.

‘Scientific institutions’ and ‘other private firmis’ are ‘aggregated’ representations of various
sources of information (e.g. customers, suppliers, competitors, consultants, universities,
government research laboratories). Firms rate the importance of these source for innovation on a
five-point scale. The aggregate values are the weighted sum of the scores given to these sources.
Weights are obtained by a factor analysis (see Felder et al. 1996 for details).

6 ‘Innovative products’ refer to products introduced to the market in the last three years.
Innovative products are defined as ‘new to the firm’. Therefore, this figure also includes the

market success with pure imitative products.

7 Similar results are reported for France by Kabla (1996).



Protecting the home market by patents is only the first step in gaining intellectual
property rights for new products at the world market.

3 A Theoretical Framework for the Econometric Analysis of Patent
Applications

A firm will apply for patent protection if the expected marginal return of protection
exceeds the cost of an application. The returns from using the patent system depend
on whether patents are effective in preventing imitation by competitors. In addition,
if competitors profit from the knowledge diffused through publication of patents
returns are also adversely affected. Recently, Cohen et al. (1996) provide some
evidence that patents are a rather imperfect shelter from imitation. As the theoretical
models of Horstman et al. (1985) and Harter (1993) show, firms will not always
apply for a patent if patents diffuse information to competitors. In order to protect
its competitive edge, a firm may apply for patent protection for only some fraction
of its inventions. Indeed, many firms may not rely on patents at all but on
alternative mechanisms like secrecy or complexity of product design. Both
arguments lead to the concept of the propensity to patent which states that firms
patent only a fraction of their inventions. This is captured by the equation

(1) Pyj=gXpk

where Py is the number of patent applications of firm i at the patent office j. The
vector X; captures characteristics of firms which affect the difference between the
marginal expected return from using patents and the costs for applying and holding
of a patent. [; is the number of inventions of firm i which fulfill the novelty test.

The function g represents the propensity to patent and depends on the
characteristics of the patent system. The model of Horstman et al. (1985) implies g;
to be smaller than unity. In addition, as the application for patents at a foreign
patent office is more expensive than an application at the home office we also
suppose that on average foreign patents should be more valuable than patent
application in the home country. So, the expected value of the least valuable patent
applied for at a foreign office should exceed the least valuable patent at the home
office. Therefore, we should keep in mind that patent applications at foreign offices
may be more homogenous w.r.t. to their value than patents applied for at the home
patent office. E

Equation (1) can not be implemented directly as we do not observe the number of
inventions at the firm level. But inventions can be viewed as the outcome of a
systematic search process for novelties. The relationship between the outcome of
innovative activities and the inputs can be represented by the concept of a
production function for inventions. This analytical tool is thought to describe the
transformation of R&D into new knowledge which in later stages of the innovation
process is used for the development of new products and processes. We assume
R&D to be the most important input into the knowledge generating process. In

7



addition, firms profit from other firms’ R&D. So, the larger this spillover is the
larger will be the productivity of a firm to generate inventions. To capture this, we
assume that R&D capital of the industry enhance the knowledge generating process

of firms. Therefore, a simple version of the invention production function is given
by

(2) =1 (K, K, A)

where [; represents the number of inventions made by firm i in the period under
consideration. K; denotes the firm's own R&D capital and K indicates the R&D
capital of all other firms (= the industry) from which knowledge spillovers arise. A,
represents other firm-specific factors which influence the R&D productivity of a
firm in generating inventions. This factors are referred to as technological
opportunities in the literature.

Combining (1) and (2) we derive an equation which relates the number of patents to
R&D and various factors which influence the propensity to patent.

(3) Py =gi(X;) £(K;, K, A)

To keep the model as simple as bossible, we assume that g; and f are exponential
functions of a linear combination of their arguments. Therefore, the log of the
number of patents is modelled as a linear function of the arguments of g and f.
Given the nature of invention, a random error uncorrelated with the arguments of g
and f is added to the loglinear version of equation (3). This random error should
also account for unobserved heterogeneity due to the economic value of an
invention. As firms probably differ in their ability to assess a priori the economic
value of an invention and hence of a patent? their propensity to patent might be
affected by this unobserved ability.

Equation (3) relates the number of patent applications to R&D in a rather simple
manner but also shows that there probably is a number of other variables
intervening into the relationship between R&D and patents. Spillovers have an
ambigious effect on the number of patents. On the one hand spillovers will enhance
the productivity of R&D and increase the number of inventions. On the other hand
spillovers probably reduce the propensity to patent and induce firms to rely on
alternative mechanisms to protect the competitive edge. In addition, if patents
induce an overinvestment in R&D it can occure that we observe a negative
correlation between industry’s R&D and the number of patents.

8 Tt is well-known from the literature that the economic value of patents differs widely (see

Lanjouw, Pakes and Putnam 1996 for a survey).



4 Empirical Implementation

Our data set contains information on the number of patent applications at the
German, the European and US Patent Office by German firms in 1992.
Unfortunately, we do not observe whether this patent applications refer to the same
invention, d.i. belonging to the same patent family. Moreover, given the rules of
international patenting, it seems not reasonable to assume that this is the case.
Extentions of patent applications at the home office to foreign patent systems
usually do not occur within the same year.

We are restricted to a single cross-section of data which implies that the cost of
patent applications does not vary very much in the sample used. Variation in
application costs is mainly present between offices. E.g. it is well-known that patent
applications at the European patent office are far more expensive than patent
applications at the German office. So, we should expect that firms apply for patent
protection for some of the less valuable inventions at the German patent office but
hesitate to apply for this invention at the EPO or foreign patent offices. Therefore,
patent applications at foreign patent offices are expected to have a large mean
economic value when compared to the patent application at the home patent office.
So, differences in application costs and the value of patents are given only
implicitly as our data set contains patent applications at different patent offices. We
should keep this in mind when we interpret the estimation results.

The implementation of various exogenous variables also need some further
comments.® Since our data set does not contain any information on past R&D
expenditure which would allow the construction of firm specific R&D capital
stocks, we use the current R&D expenditures as a proxy for the R&D capital stock.
But our data allow us to identify whether a firm performs R&D on a continuous
basis. This information can be used to account for past R&D, which has a long-
lasting effect on the productivity in generating patents.

The construction of the spillover pool is also restricted by data availability. Since no
information is available on the technological field (e.g. Jaffe 1988) or the product
groups (e.g. Harhoff 1994) in which firms perform R&D, we use the total R&D
expenditures of an industry as reported in the official 1992 German R&D statistics
(see SV-Wissenschaftsstatistik 1994). In addition, we account for firm specific
differences in the invention production function. Following Levin and Reiss (1987)
we assume that the productivity is higher because of higher technological
opportunities if firms view scientific sources as an important source of information
for their innovation activities.

9 The definitions of the variables are summarized in Table 1. Descriptive statistics by firm size
are given in the Appendix 1.



Firm size probably
affects the
marginal costs of
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Table 1: Definition of variables

Variable Short description
name i
PATENT MEASURES
PATDE  No. of patent applications at German Patent Office
PATEU No. of patent applications at European Patent Office
PATUS No. of patent applications at US Patent and Trademark Office

EXPENDITURES FOR R&D
LR&D: R&D expenditures in 1992 (in DM 1000; in logs)
LR&DSQ R&D expenditures in 1992 (in DM 1000; in logs) squared
PERM_R&D Dummy for firms with permanent R&D activities

SPILLOVER MEASURES

SPILL Spillover pool=Total R&D of industry (in Mill. DM; in logs)
R&D_SPILL Spillover pool multiplied by the firms’ own R&D (in logs)

FIRM SPECIFIC PRODUCTIVITY INDICATORS

SCIENCE Importance of scientific institutions as source of knowledge
for innovations (factor analysis; see Felder et al. (1996)

OTHFIRM  Importance of other firms as source of knowledge for
innovations (factor analysis; see Felder et al. (1996)

EXPORT STATUS
EX_SHARE Export share
EXPORT  Dummy for exporting firm
EX_PLAN Innovation activities planned for the US, Japanese or other
overseas market (Dummy: 1= important or very important)

FIRM SIZE
LEMP Number of employees (in logs)

OTHER FIRM CHARACTERISTICS

EAST Firm in East-Germany
DIVERS  Degree of diversification calculated as the inverse of the sum
of squared sales shares (%) for the 4 major product groups.
Therefore a single product firm will have the value 1.
FOREIGN  Foreign subsidiary
GROUP  Part of a group

tion costs. We test for the effect of firm size on the propensity to patent by
including the logarithm of the number of employees.

Several studies argue that the degree of diversification has an impact on the propen-
sity to patent (see e.g. Zimmermann and Schwalbach 1991). The reason for this
behaviour is that more diversified firms may use an invention in different products
and processes. So the market risk of innovation is lower and the expected marginal
returns from patenting are higher.

We consider the impact of the export status of a firm on the propensity to patent. A
positive impact of exports on the propensity to patent is expected as the number of
competitors gets larger for exporting firms and, therefore, protection of knowledge

is more important.




Due to the transformation process in East-Germany, the productivity in generating
patents as well as the propensity to patent are likely lower among East-German than
among West-German companies. This is most obvious from the fact that within a
few years, the number of R&D personnel drops from 88 000 (1989) to around
22 000 (1993). This drop is accompanied by reorganisations of R&D departments.
In addition, new R&D projects are started recently have less in common with R&D
programmes of the former GDR enterprises which were to a large extent imitation
of Western technologies. Therefore, a dummy for East-German firms is included.

Finally, the propensity to patent as well as the patent productivity are affected by
other firm characteristics. In some firm groups only the mother company applies for
the patent regardless of the subsidiary brought forth the invention. This is especially
well known from foreign companies. On the other hand daughter companies might
profit from R&D performed in other parts of the group which would imply a higher
productivity of the observed unit. Therefore, we use dummies for firms which are
part of the group and for firms with a foreign mother company.

5 Econometric Modelling

The number of patents is restricted by definition to non-negative integers.
Appropriate estimation techniques for this kind of data are given by the family of
count data models. Count data models are applied to the patents-R&D relationship
by a number of researchers including Bound et al. (1984) as well as Hausman, Hall
and Griliches (1984) for the US, Crépon and Duguet (1993) for France or
Zimmermann and Schwalbach (1991) for Germany. Our econometric modelling
strategy starts with some basic models for count data which we describe briefly in
the first part of the chapter. The second part of this chapter deals with hurdle models
for count data.!?

The economic rationale for applying hurdle models rest on the plausible assumption
that the decision to apply for the first patent and the decision to apply for additional
patents are ruled by different processes. The decision to apply for a patent has to be
made when the yield of holding this patent is not known exactly. Firms often adopt
some basic decisions how to protect intellectual property and how to handle
patentable inventions. This basic decision is often made in the context of the first
invention. The decision to apply for patents for additional inventions is often based
on this first principle decision. So, we should expect different rules which govern
the decision concerning for the first patent and for additional patents. The empirical
specification of the model should take potentially different decision processes into
account. Clearly. all firms included in our sample are assumed to decide whether to

10 Appendix 3 contains an overview of various econometric tests for count data models and
reports the results for the data set at hand.



patent their innovations or not. Therefore, we restrict the sample to those firms
which actually introduced a product or a process innovation in recent years.!!

Basic Models for Count Data

As a starting point it is often assummed that the data generating process follows a
poisson distribution. If the random variable Y, €{0,1,2..} is poisson distributed, the
probability that exactly y, counts are observed, is given by

_ SXp=ANAY
; ,

Vi

4) P =y

1) y,=012,... with E[Y]=Var[Y]=2,>0

Covariates can be introduced by specifying the individual mean by A, =exp(x/8) to
ensure the positiveness of the mean. Here x/ denotes a (1xk) vector of non-

stochastic covariates of firm i and B is the corresponding coefficient vector.
Assuming a random sample of individual observations(y,,x,), the vector  can be
estimated by maximum likelihood methods.

In empirical work the equality of conditional mean and conditional variance of the
distribution of the dependent variable, implied by the model, often turns out to be
too restrictive. In most applications the conditional variance exceeds the conditional
mean which is known as overdispersion. Overdispersion can have at least two
distinct statistical sources: positive contagion (occurrences influence future
occurences) or unobserved heterogeneity (see Winkelmann and Zimmermann 1995,
McCullagh and Nelder 1989).

A first alternative are models assuming a negative binomial distribution for the data
generating process. As shown in the literature, the negative binomial model is an
extension of the standard poisson model where the poisson parameter for each firm
A, has an additional random component, accounting for (unobserved)

heterogeneity, not yet accounted for by the regressors that determine the individual
mean function.

Specifying 1, =exp(x/B+¢,) =exp(x/B)u: where ¢, is an error term uncorrelated with
the explanatory variables, captures unobserved heterogeneity and leads to a
stochastic mean function with éxpectation E[A,1=4, and variance
Var[1,]= 20> .The negative binomial distribution for ¥ results as a compound

i

It If there were firms that would not even think about patenting their innovations, the “zero
inflated” count data model of Lambert (1992) would be a possible alternative. But this would
not correctly model the propensity to patent that we have in mind. Lamberts mode} would only
allow us to distinguish between firms that would never ever patent and others that follow a
more conventional pattern comprising the number of patents as well as not to patent at all.
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poisson distribution if the mixing distribution is the gamma distribution. Assuming
g, to be gamma distributed or equivalently 1, ~ Gamma(¢,,v,), one can derive the
negative binomial distribution for ¥, with:

_ oy FOirv) vi Yo Y
&) P(Yf‘yf)“r(y,.+1)r(vi)[¢i+viJ [¢x+"-)

with expectation E[Y,]=¢, and variance Var[Y,1=¢, +v;'¢} .

Specifying the individual mean function as above, E[Y,]=¢, =exp(x/3), we get the
regression model with an unknown coefficient vector § and an unknown variance
parameter v,. Choosing different parametrisations for the precision parameter v,
allows to model different variance to mean ratios of the dependent variable. Setting
v.,=a"', a constant for all firms, leads to a model with the following form of
heteroscedasticity: Var[¥]=E[Y,1(1+0E[Y,]). The variance-mean relationship is
linear in“the mean. Following Cameron and Trivedi (1986), we call this the type II
negative binomial model (negbin II). Similarly, a type I negative binomial model
(negbin I) is obtained by setting v, =o' exp(x/8) . The variance implied by negbin I
can be written as Var[¥,]=(1+ «)E[Y,], with a constant variance-mean ratio. negbin I
and II are different models and in general lead to different estimates for .

Hurdle models for Count Data

A further alternative modelling strategy in the light of overdispersion is to assume
that the decisions of whether or not to patent and to apply for more than one patent
are ruled by different processes. This can be done using hurdle models for count
data proposed by Mullahy (1986). The hurdle model takes account of the fact that
there may be different distributions which govern the first decision to patent an
invention and the decision to apply for patent protection for other inventions. In a
more technical view, the hurdle specification rests on the assumption that the data
generating process is driven by two sets of parameters. The underlying idea is that a
binomial probability model governs the binary outcome of whether a count variate
has a zero or a positive realisation (Mullahy 1986). Once the hurdle is crossed and
positive counts are observed, the data generating process is governed by a
truncated-at-zero count model. The binomial process in the first stage can also be
interpreted as a threshold-crossing binary choice model, in which the continuous
latent variable is the firm’s propensity to enter the second stage of the process, i.e.
the firm’s willingness to patent an invention (see Pohlmeier and Ulrich 1995).

Assume that f, is any probability distribution function for non-negative integers,
that governs the decision whether or not to patent, and that f, represents the process

governing the decision once the hurdle is crossed. Then the probability distribution
of the model is given by:



©) P(Y,=0)= f,(0)
f2(y)

]-fz(o)

P(Y, =y)=(1-f,(0)

(1-f,(0)) gives the probability of crossing the hurdle and (1-f£,(0)) is the
normalisation for f,(y) because of the truncation at zero (see Winkelmann and
Zimmermann 1995).

The likelihood of the model depends on two different parameter vectors: §,
represents the parameters w.r.t. the decision for the first patent, f§, captures the
parameter vector which refers to the decision to apply for more than one patent. Let
Q, denote the subsample of firms without a patent application and Q, represents
the subsample of firms with at least one patent application. Then we can write the
likelihood as follows:

o’ ’ P(Y=y|x"ﬁ71a7)
7y L=1]pPx=0x8, 1- P(Y, = 01xB,. o, L= X XP,, Ay
@ l;[ (¥ =0Ix/B,, ) 1;][ (¥ = 0 xB,, )] ‘1;[‘1_1)(“0”'_,[3:’%)

The likelihood for the binary process to patent or not to patent is given by the first
two expressions (7), and the last part is the likelihood of a truncated-at-zero count
model.

We chose negbin II as the underlying distribution for both stages for the following
reasons: It captures unobserved heterogeneity, allows for overdispersion in its own
right and enables us to test the distributional assumptions. In addition, we estimate
the poisson hurdle model proposed by Mullahy (1986), where we assume that the
underlying distribution for both stages is poisson. Finally, we also consider a
poisson-negbin hurdle model which assumes the poisson distribution for the first
stage and the negbin II distribution for the second stage.
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Figure 3: Comparison of Observed and Predicted Counts for Various Count Data Models
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Moreover, our hurdle models comprise the conventional count data models as
special cases. If the parameter estimates for both stages are the same the negbin
hurdle model as well as the poisson hurdle model collapse to the underlying
conventional model (negbin II model in the case of the negbin hurdle model and
poisson model in the case of the poisson hurdle model). Furthermore, it can be
shown that if the overdispersion parameter converges to zero, o — 0, the negative
binomial distribution collapses to the poisson distribution. Within the negbin hurdle
specification we obtain the poisson-negbin hurdle model if «, =0 and poisson
hurdle model if «, =a, =02 (see Pohlmeier and Ulrich 1995). Hence, it is quite
easy to test the various models against each other. More details can be found in
Appendix 3.

As stands out from Appendix 3, our test strategy implies that a negbin hurdle model
is preferable. Moreover, this conclusion is confirmed by comparing the observed
number of firms with a certain number of patents and the predicted number of firms
with a given number of patent applications. These predictions are obtained by first
calculating for each observation, the probability for a certain number of patents and
then by summing over these individual predicted probabilities for each category
(see Winkelmann and Zimmermann 1995). The predicted and observed number of
firms within each category (number of patents) are compared in Figure 3, details are
reported in the Appendix 4. We will thus report only the results from the negbin
hurdle model, noting that the results for the alternative poisson negbin hurdle model
are rather similar.

6 Regression Results

Regression results for the model outlined in equation (7) are reported in Table 2.1
The model is estimated separately for patent applications at the German, the
European and the US patent office. Overall, we find remarkable differences
between patent applications at the German Patent Office, the European Patent
Office, and the US Patent and Trademark Office. In our opinion this partly reflects
peculiarities of the patent procedures of these three offices and can be attributted to
the smaller heterogeneity of patents in terms of their value in the case of the EPO
and USPTO.

But the results demonstrate that the patent strategies of firms are important
determinants of patent activities and, therefore, the number of patents produced by
an economy in a given year not only reflects technological success but also depends
on behavioural patterns of firms. The number of patents of a firm rests not only on

12 ¢ denotes the overdispersion parameter for the hurdle stage, o, for the second stage when the

hurdle is crossed.

13 STATA, Version 4.0 is used for estimation.



the productivity in generating invention but also on their propensity to patent. This
can be seen in the differences of estimated parameter vector for the decision stage
and the number of patent part of the hurdle models. Different parameter vectors for
both stages are evident from the specification tests reported in Appendix 3.

In addition, the propensity to patent not only affects the decision whether to patent
or not, but also affects the number of patents. This is evident from the fact that
export share and firm size which were expected to be arguments of the propensity to
patent part of the model, are also significant in the second stage. This interpretation
is also confirmed by the parameter estimates for the diversification indicator: the
higher the degree of diversification the lower will be the number of patents applied
for. But the principal decision on whether or not to patent is unaffect by
diversification. A possible interpretation of this result could be that diversified firms
spend a larger share-of their R&D on incremental, non-patentable innovations, so
that their ‘productivity’ in generating patents is lower.

R&D turns out to be a major source in generating new knowledge. The elasticity of
the number of patents with respect to R&D is increasing with current R&D
expenditures as it is indicated by the coefficients of log R&D (LR&D) and its
square (LR&DSQ) in the patent numbers part of the model. Our results, therefore,
suggest economies of scale with respect to the production of patents. Figure 4
shows the_elasticities of the number of patents applied for with respect to R&D. The
elasticities are increasing throughout the relevant range of R&D expenditures.

Besides the R&D elasticity of patent numbers, Figure 4 indicates the median value
of firms R&D expenditure for those firms which apply to the three patent offices.
These calculations show that for the median R&D performer the elasticity is rather
close to one. Only for some large R&D spenders, economies to scale are sufficiently
large. So, for the majority of firms our results do not deviate too much from recent
results for France by Crépon and Duguet (1996) who find an elasticity of patent
w.r.t. R&D not deviating significantly from unity.

Moreover, different fixed costs seem to be associated with patent applications at the
GPO, the EPO and the USPTO. The parameter estimates for R&D in the hurdle
stage is much lower for the GPO than for the EPO and the USPTO. The parameter
estimates for the second stage of the hurdle model are far less different between
these different kinds of patent applications.



Table 2: Patent Applications at the German Patent Office, European Patent Office and the US Patent and Trademark Office -
Results for the Negbin Hurdle Regression Model

German Patent Office European Patent Office US Patent and Trademark Office
Summary statistics
Observations 1685 1689 1694
Log.Likelihood -1859.1 -1337.31 -828.18

X2/ df / Pseudo R? 1002.5 56 0.213 913.3 56 0.255 685.4 56 0.293

Exogenous Decision part | Patent numbers Decision part | Patent numbers | Decision part Patent numbers
Variables Coeff. |t-values| Coeff. |t-values] Coeff. |t-values| Coeff. |t-values| Coeff. |t-values| Coeff. |t-values
LR&D 0.384 1.82 { -0.013 -0.09 0.853 2.08 | 0.107 0.47 1.033 1.72 0077 | 022
LR&D? 0.019 1.19 | 0.033 5.87 0.081 248 | 0.022 3.37 0.104 224 0.031 3.54
PERM_R&D 0.324 1.21 | 0.328 1.29 1.014 2251 -0302 | -0.81 0.105 0.13 0.234 0.33
SPILL -0.322 -0.62 | -0.004 -0.01 -0.784 | -079 | -0.784 | -144| -0323| -0.24 -0.669 -1.10
R&D_SPILL -0.003 -0.13 | 0.028 1.521 -0.006 | -0.17 | 0.004 0.14]| -0013| -024 0.007 0.18
SCIENCE 0.222 200 ( 0.199 2.83 0.207 1.20 | 0.316 3.54 0.544 1.82 0.108 0.95
OTHFIRM 0.135 1.25 0.001 0.01 0.071 040 | 0.068 0.71 -0.362 -1.23 0.101 [ 0.89
EX_SHARE 0.713 1.62 | 0.550 2.02 2.089 2.54 | 0.699 2.02 3.969 2.64 1.250 273
EXPORTER 0.324 1.11 | -0.051 -0.19 0.293 0.55 0.194 0.48 1.306 1.08 -0.578 -0.95
EX_PLAN 0.248 1.33 0.068 0.59 0.500 1.62 | 0.200 1.36 2.197 324 0.081 0.40
LEMP 0.311 341 0.351 5.95 0.273 1.82 [ 0.401 5.37 0.356 1.67 0.318 3.34
LEMP * EAST 0.092 0.56 | 0.008 0.07 0.028 0.08 | -0.394 -0.99 -1.154 -1.55 -0.655 -1.18
EAST -1.458 -1.73 | 0.398 055 -3.025| -1.59| 3.599 1.46 1.868 0.53 3.094 0.98
DIVERS 0.027 0.04 | -0.923 -2.09 -0.653 -0.59 | -0.474 -0.83 0.646 0.36 -1.205 -1.78
FOREIGN -0.402 -1.13 ] -0.225 -1.03§ -0451) -077 | -0053 | -021) -0.529| -0.63 0.081 0.26
GROUP -0.120 -0.61 | -0.088 -0.75 0.137 042 | -0.129 | -092 0.188 0.38 -0.257 -1.51

Industry dummies included included included included included included

In o, In 0 0517 1.03 | -0.117 -0.88 1.493 3.67 | -0.064 -0.39 2.035 4.39 -0.281 -1.40
Constant -1.001 -0.37 | -0.958 -0.48 -0.061 -0.01 2.745 0.98 -4.725 -0.67 2.360 0.71

All models are estimated by maximum likelihood. The likelihood function is given by equation (7). The y2-value refers to a test against a model with
constants as well as In o and In o,



Figure 4: Elasticities of the number of patent applications w.r.t. R&D
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Remark: Calculations are based on regression estimates reported in Table 2. We use the estimates of the 'numbers part’
only. The value of the spillover-effect is evaluated at the median value for the GPO.

The evidence for positive knowledge spillovers from other firms R&D investment
seems rather weak in our data. No significant impact of the spillover pool (SPILL)
on patent activity is observed. Moreover, as the interaction term between own R&D
and the spillover pool (R&D_SPILL) is not significant, we conclude that even in
high-tech sectors the patent productivity is not affected by spillovers or patent
rivalry effects. So, our results do not confirm Crépon and Duguet (1996) who find
negative rivalry effects with regard to the number of patents of French companies.
They also point out that this effect is especially important for big companies. As
many small and medium firms are included in our data set this can be an
explanation for this different results.

Technological opportunity should reflect interfirm differences in R&D productivity:
Those firms which regard scientific institutions as primary sources of information
for their innovation activities (SCIENCE) apply more often for patents. This reveals
that the productivity of R&D is larger in technological areas where the know-how
generating process within the firms is enhanced by ongoing research in public
scientific infrastructure.

Export activities seem to be one of the major determinants of a firm’s propensity to
patent. Even in the case of applications at the GPO, the number of patent
applications increases with the export share. As one would expect, the effect of
exports increases when looking at the EPO and even more when looking at the
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USPTO. This is even more pronounced if innovation activities are undertaken to
protect future competitiveness in foreign markets.

Firm size exhibits a large effect on patenting. The propensity to patent seems to
increase with firm size. Even more surprising is the large firm size effect found in
the patent numbers part of our model. This can be interpreted towards a higher
productivity in generating invention in large firms. An alternative explanation could
be that rules, adopted in larger firms, stimulate patent applications even if the
economic value of an invention is probably low.!4 Moreover, larger firms are
probably more aware of the role played by patents in cross-licensing agreements,
R&D cooperations and the strategic dimension of patents. Legal regulations like the
German Employee Inventor Law (,,Arbeitnehmererfindergesetz“) also stimulate to
patent applications. Those rules are probably more important considerations for the
formalised innovation processes of large companies and, therefore, in line with the
increasing propensity to patent in large companies.

We should also note that despite of a large correlation of firm size and R&D in a
cross-section regression, the coefficients on the R&D variables only slightly change
when we drop firm size from our regression.

Other firm characteristics included in the model are some what surprising. We do
not find a significant negative effect neither for small nor for large East-German
firms. Only in the hurdle stage in the regression model for the German patent office
the East-German dummy variable nearly reaches statistically significance. So, our
model do not point to a lower patent productivity nor to a different behaviour
towards patents in East-German firms. The small patent numbers of the East-
German economy are mainly caused by a low R&D effort and the small number of
large firms in East-Germany.

In addition, our expectations with regard to a lower patent activity of group
members and subsidiaries of foreign firms are not fulfilled by our results. Given the
large differences in the way multinational companies organize their decision
processes a more refined modelling seems to be necessary before we can reach more
clear-cut conclusions with regard to the patent behaviour of the German daughters
of multinational companies.

Finally, our specification also includes 12 sector dummies. We omit the discussion
of these dummies because it is difficult to interpret whether they reflect interfirm
differences in the propensity to patent or in the invention production function.

4 Giese and Stoutz show that patent applications of large firms are less probably lead to patent
grants.
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7  Summary and some hints on further research

Based on the data of the first wave of the Mannheim Innovation Panel, this paper
explores the role of patents as appropriability mechanisms and the relation between
R&D expenditures and patents. This data generates the possibility to look at the
firm size distribution of patents application at different patent offices.

Before summarizing the main results, some qualifying remarks are in order. First, as
it is shown by various other studies (see e.g. Harhoff 1994 for German
manufacturing) spillovers and appropriability conditions depend crucially on the
nature of technology. Further research should more explicitly explore the possibility
to estimate our model for high-tech and low-tech sectors separately. Secondly, we
neglect technology-specific effects. These effects can be accounted when using the
information on technology inherent in the classification of patents by patent office.
Therefore, we should seek to explicitly merge available patent application data at
the level of patents to our firm level data set (see e.g. Jaffe 1989). Finally, R&D
expenditures and patent applications are maybe determined simultaneously (see
Pakes 1985). Future research should try to take this simultaneity into account and
test whether the results of this paper suffer from a simultaneous equation bias.

The results of the paper can be summarized in the following way: In the first part of
the paper it is shown that the share of R&D performing firms strictly increases with
firm size. The share of firms applying for patents exhibits an even steeper increase
with firm size. Moreover, the larger a firm, the more likely it is to apply for patents
in more than one country. Although large firms apply for a German patent with a
higher probability than SMEs, large firms also apply to the European patent office
whereas SMEs often apply for a patent at the German patent office only. The
German patent office seems to be especially important for small firms.

The second part of the paper explores the relationship between R&D and patents
more closely. We find a close relationship between R&D and patents. Our hurdle
negbin regression model implies the presence of economies of scale in the patents-
R&D relationship. But the elasticity of patents with respect to R&D significantly
exceeds unity only for large R&D spenders. For the majority of firms this elasticity
is just around 1. Using the R&D expenditures of the industry, our model is thought
to capture spillovers or effects of R&D rivalry on the number of patents. But we
failed to find empirical evidence for these effects.

Even after controlling for a variety of firm characteristics, firm size exhibits a large
effect on the propensity to patent. Patents also play an important role when looking
at export strategies of firms. Exporting firms apply more often for patents at the
German patent office and even more at foreign patent offices. Therefore, we should
be very careful when using patent numbers as an indicator of the technological
capabilities of firms or economies as strategic decisions are important determinants
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of the number of patent applications. So, a change in the number of patents
applications of an economy in a given year can well be the result of a change in the
patent strategy of firms and need not to be the result of an increase in the
technological capabilities of the economy.
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Appendix 1: Description of the Data Set

Data were taken from the first wave of the Mannheim Innovation Panel. This multi-year innovation
survey has been conducted by the "Zentrum fiir Europiische Wirtschaftsforschung' (ZEW) and the
'Institut fiir angewandte Sozialforschung' (infas) since 1993. The sampling frame stems from the
records of Germany’s largest credit rating company (CREDITREFORM). The sample was
stratified by industries and firm size classes as well as West- and East-Germany. The questionnaire
follows the guidelines for innovation statistics contained in the OSLO-manual of the OECD (see
OECD 1997). Moreover, it is based on the harmonised questionnaire for innovation surveys
developed by EUROSTAT. In addition to the harmonised questionnaire, our survey also contains
information on patent applications. Firms are asked whether they have applied for patents at
German, European, US patent offices and to estimate the number of patent applications made at
each office. Furthermore, the questionnaire covers a broad range of topics related to the innovation
process, such as the objectives behind innovation activities, the obstacles that firms encounter in
this connection, characteristics of the knwo-how generating process, mechanisms for protecting
technological knowledge, and firm’s expenditure on innovation activities (including R&D).

Approximately 2900 companies participated in the survey and completed the questionnaire. The
response rate was about 24%. The survey covers innovative as well as non-innovative firms. An
innovative company is defined as a firm which introduced at least one new or improved product or
process in 1990-1992 or intended to do so in 1993-1995. To account for a possible bias arising
from self-selection of innovative firms into the survey, we conducted a short telephone survey of
non-respondents of the initial survey. This telephone survey provided basic information on
additional 1000 firms. The non-response survey yielded a response rate of nearly 90% which
makes a response bias in the survey rather unlikely. Based on data from the original survey, the
sampling frame, and the telephone survey of non-respondents, we use probit models to estimate the
participation probability in the original survey. It turned out that innovating and R&D performing
firms participate in the survey with a higher probability. Therefore, analyses based only on
respondents may be biased as non-R&D performing firms and non-innovators are underrepresented
in the sample.

The descriptive statistical analysis contained in chapter 2 of this paper is based on weighted data.
To correct for response bias, we calculate the individual weights for the responding firms as
follows: Let the inclusion probability for the firms of strata j be denoted by z; and the participation
probability for firm i by r; , which is estimated by a Probit-regression model including firm size,
industry affiliation, a credit rating indicator, as well as dummies for R&D and innovation activities
as regressors. Weighting factors correcting for the non-response bias are then calculated as w; = 1/
(zj ;) i.e. raising factors are given by the inverse of the inclusion probability muitiplied by the
inverse of the participation probability. Weighted data are, therefore, less likely subjected to a
response bias in favour of innovative and R&D performing firms (for further details see Harhoff,
Licht et al. 1996).

About 35% of the firms in our sampﬂe belong to the group of non-innovating companies. With
exception of chapter 2, we restrict our analysis to the group of innovative firms. Furthermore, we
delete all service sector firms since their questionnaire contains no information on patents. Overall,
data of about 2100 firms are included in this study's.

15 The largest enterprises in the sample were split into lines of businesses. We refer to these
entities in this paper as firms too.
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Appendix 2: Descriptive Statistics by Firm Size for Data Used in Regression
Analysis - Unweighted Data

rprises with less Enterprises with 250

B 250 employees employees and more

- VARIABLE Mean . Std.dev. Mean Std.dev.
Share of patenting firms 0.152 0.538
Firms with patent application at GPO 0.127 0.480
Number of patent applications at GPO 0.388 1.966 7.291 35.004
Firms with patent applications a USPO 0.029 0.230
Number of applications for US patents 0.078 0.592 4.152 45.657
LR&D -4.049 2.864 -0.432 3.462
PERM_R&D 0.468 0.801
SPILL 7.473 1.501 7.701 1.528
R&D_SPILL -29.219 21.518 -1.400 25.739
SCIENCE -0.193 0.869 0.288 0.836
OTHFIRM 0.047 0.811 -0.059 0.816
EX_SHARE 0.131 0.194 0.286 0.240
EXPORT 0.609 0.887
EX-PLAN 0.236 0.425 0.440 0.497
LEMP 3.883 1.029 6.754 1.055
LEMPO 1.691 2011 1.033 2.394
EAST 0.443 0.160
DIVERS 1.968 0.942 2.240 1.443
FOREIGN 0.022 0.099
GROUP 0.166 0.532
Industries
Mining. Energy 0.022 0.038
Food. tobacco 0.092 0.078
Puper. Pulp. Printing. Wood processing 0.099 0.057
Chemical industries. refineries 0.071 0.104
Plastics. rubber 0.075 0.037
Earth. ceramics 0.042 0.037
Steal. iron. basic metalls 0.028 0.050
Metal working 0.109 0.078
Mechanical engineering 0.207 0.250
Electrical engineering. computers 0.080 0.083
Optics. precision instrumentes 0.085 0.069
Transport equipment (cars. railroads etc.) 0.053 0.069
Construction 0.038 0.050
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Appendix 3: Model Selection and Testing the Distributional Assumptions For
Count Data Models

Count data models assume a dependent variable resulting from an underlying discrete probability
function. The econometric toolbox offers a wide range of possible distributional assumptions. This
appendix describes our procedure to test these distributional assumptions and to select the most
appropriate empirical specification. We restrict ourselves to the poisson distribution and
compounds of the poisson distribution. The results are summarized in Figure Al.

As mentioned above several of the models are nested. Testing in this case is done using likelihood
ratio tests as well as Hausman tests if applicable. The Hausman test is not applicable to test the
negbin models against the poisson model since the poisson and the negbin models (for any fixed
value of o )!¢ belong to the linear exponential family, which implies consistent pseudo maximum
likelihood estimates of the mean function both under the null and the alternative hypothesis. This
is not the context in which the Hausman test can be applied. For H,:« = 0 the true parameter is on
the boundary of the parameter space. The asymptotic normality property of the ML estimator does
not hold and the conventional LR-, LM- and Wald-tests cannot be applied. However, Chernoff
(1954) shows that under the null hypothesis the likelihood-ratio statistic for testing & =0 is similar
to a random variable which has a probability mass of 0.5 at zero and a 0,5x*(1) distribution for
positive values (see Lawless 1987, Winkelmann and Zimmermann 1995). We used this property to
test the negbin models (I and II) against the poisson model. This idea is also applied to test the
poisson-negbin hurdle model against the poisson hurdle specification and also to test the negbin
hurdle specification against the poisson-negbin hurdle specification.

If the models at hand are not nested we apply a likelihood ratio based test for strictly non-nested
models proposed by Vuong (1989). Using the Kullback Leibler Information Criterion to measure
the closeness of a model to the truth, Vuong devices a likelihood-ratio based statistic for testing the
null hypothesis that the competing models are equally close to the true data generating process
against the alternative hypothesis that one model is closer.

We start with testing the basic models discussed in Chapter 5. First, we test the poisson model
which implies the equality of conditional mean and conditional variance of the distribution of the
dependent variable. In most applications the conditional variance exceeds the conditional mean
which is known as overdispersion. We test for overdispersion using regression-based tests of
Cameron and Trivedi (1990). This is done with the help of a standard t-test from an auxilliary
regression which is asymmtotically equivalent to their optimal test.!7 This test is computed from
an OLS regression of (v24,)7'[(y, = A,)* —y,1 on (¥2A,)"'g(4,). Two tests are performed
concerning the form of heteroscedasticity under the alternative, corresponding to the variance
implied by the parametrically richer negative binomial models in the form of the negbin [ and
negbin-II model. For negbin I we choose g(4,)=A, and for negbin Il g(A,)=A} (see Cameron
and Trivedi 1986). For patent application at the GPO, we have strong evidence for overdispersion
in both versions of the implied variance. The tests indicate weak evidence for overdispersion for
patent applications at the EPO only. In the case of patent applications at the USPTO we have

16 See equation (5) and the adjacent paragraph for the definition of o .

17 See Cameron and Trivedi (1990, p. 353) or Gourieroux, Monfort and Trognon (1984).
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strong evidence only in the first version of the implied variance. Additional robust poisson
estimations performed for all three dependent variables show large reductions in the estimated t-
values of the estimated coefficients, indicating overdispersion too (see Winkelmann 1994).

These test results let us search for more general models allowing for overdispersion. A first
alternative are models assuming a negative binomial distribution for the data generating process.
We estimate both models negbin I and negbin II, which imply different forms of heteroscedasticity.
Since it is difficult to tell a priori which of the two models is more appropriate for the data set at
hand, we test which one performs better. The two versions of the negbin model are not nested.
Therefore, we apply the test proposed by Vuong (1989). This test is directional: Large positive t-
values favour negbin I model, large negative values of the t-statistic favour the negbin I model,
insignificant t-values in the usual sense mean that one cannot discriminate between the two
models. As indicated by insignificant t-statistics in all three cases, we cannot reject the null of no
difference between the two models negbin I or negbin II.

Figure Al: Testing distributional assumptions for various count data models

Poisson model
Overdispersion test: Cameron and Trivedi
GPO: 3.31/2.68 (t-values)

EPO: 1.94/1.29 (t-values)
USPTO: 2.94/1.92 (t-values)

Negbin II vs. Poisson Negbin 1 vs. Poisson Poisson hurdle vs. Poisson
LR test: 0.5 * »%(1) LR test: 0.5* (1) Hausman test: x%(29) / LR test: x%(29)
GPO: 36327 GPO:  3613.1 GPO:  901.1/1979.5
EPO: 3578.0 EPO:  3540.2 EPO:  736.4/2270.7
USPTO: 2039.6 USPTO: 1994.3 USPTO: 483.1/1510.8 8

p———

Negbin I vs. Negbin 11
Nonnested Vuong test
GPQ:  -0.49 (t-value)

A

EPO:  -0.87 t-value)
USPTO: -1.57 t-value) Poisson hurdle vs. Negbin II Poisson Negbin hurdle vs. Poisson hurdle
No d Vuong-test Hausman test: (30)/ LR test: 0.5 * xX1)
GPO: -4.37 (1-value) GPO:  0.78/1795.2
EPO: -3.28 EPO: 0.15/1441.9
USPTO: - 3.32 USPTO: 1.95/605.7
Negbin hurdle vs. Negbin II Negbin hurdle vs. Poisson Negbin hurdie
Hausman test: x*30)/ LR test: x*(30) Hausman test: x%(29)/ LR test: 0.5* x%(1)
GPO:  838/150.8 GPO: 6.6/88
EPO: n.a.. /1603 EPO: 266/25.8
USPTO: n.a./100.7 USPTO:453/2538

Critical values: x230;0.95=43‘8; )(230;0.975=47.0; 7(229;0'95=42.6; X229;0A975=45-2§
1%1,0.95=3.8: X21,0.975=5.0.

Remark: Hausman-type tests are performed using estimated parameters and covariance matrices
of both stages of the hurdle model. The table reports Hausman-test for the first stage.
Using second stage Hausman-tests we never obtain a positive definite matrice of
difference of the covariance matrices. The underlined models mean that there is due to
our opinion statistical significance in favour of the underlined model.
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We also apply the Vuong-test to decide between poisson hurdle and negbin II model, since these
are not nested. Here large positive t-values favour the poisson hurdle model, large negative values
of the t-statistic favour the negbin Il model. The results show that negbin II is better than poisson
hurdle. Since both specification allow for overdispersion this result justifies the assumption that
unobserved heterogenity should be accounted for.

As shown by Mullahy (1986) and Winkelmann (1994) the hurdle specification allows for over- and
underdispersion at the individual level. This means that every firm in our sample can have it’s own
variance-covariance relationship.

We use the likelihood ratio to test for H,:6, =8, , i.e. the equality of the estimated coefficients of

the two hurdle stages, to test poisson hurdle against poisson and to test negbin-Hurdle against the
negbin Il model.!8 In addition, we use Hausman tests, which are of special attractiveness to test the
negbin hurdle model against the poisson-negbin hurdle model since it rests on the parameter vector
B, not «, and thus circumvents the boundary problem. In two cases it turned out that the
Hausman test could not be applied due to the fact that the difference of the covariance-matrices
used to compute the statistic failed to be a positive definite matrix.

As obvious from Figure A4 the test strategy implies that a negbin hurdle model is preferable. With
respect to the poisson-negbin hurdle model only, the Hausman test and the LR-test do not point in
the same direction. Moreover, this conclusion is confirmed by comparing the observed number of
firms with a certain number of patents and the predicted number of firms with a given number of
patent applications (see Appendix 4). The prediction of count data models are obtained by first
calculating for each observation the probability for a certain number of patents and then sum over
these individual predicted probabilities for each category (see Winkelmann and Zimmermann
1995). The predicted and observed number of firms within each category (number of patents) are
compared in Figure 3, details are reported in the appendix 4. Thus we will report only the results
from the negbin hurdle model, noting that the results for the alternative poisson negbin hurdle
mode] do not deviate very much.

18 @ is meant to comprise the coefficient vector of the exogenous variables 3 and the parameter
o in case of Negbin hurdle model and to consist of 8 only in case of Poisson hurdle model.
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Appendix 4: A Comparison of Actual and Predicted Counts

Number | Number | Estimated number of firms having a certain number of patents
Observed | Negbin | Poisson- | Poisson |Negbin II| Negbin 1| Poisson
Hurdle | Negbin H. | Hurdle
German Patent Office
0 1223 1223.2 1223.8 1223.8 1189.9 | 12284 926.7
1 100 109.6 112 61.1 183.8 98.4 278
2 81 72.3 72.6 60.4 78.1 57.3 134.9
3 63 50.5 50.1 53.1 449 40.6 83
4 24 36.8 36.3 44.8 29.8 313 56.3
5 48 279 274 37.1 21.5 25.2 39.8
6 10 217 212 30.5 16.3 209 28.5
7 10 17.2 16.8 249 12.9 17.6 20.7
8 13 13.9 13.6 20.3 10.4 15.1 152
9 5 11.5 11.2 16.4 8.6 13.1 11.4
10 23 9.6 9.3 13.3 7.3 11.5 8.8
11-15 24 303 29.8 37.8 24 408 252
16-20 16 15.7 15.5 16.1 133 244 13
21-25 8 9.2 9.2 8.8 8.4 15.7 8.6
European Patent Office
0 1358 1359 13593 | 13593 | 11899 | 1368.1 1093.6
1 71 85.4 89.6 61.1 183.8 71 240.3
2 71 529 534 46.6 78.1 40.4 111.3
3 45 35.8 353 364 44.9 283 64.1
4 20 25.6 25 28.6 29.8 21.7 409
5 23 19.1 18.5 223 215 17.4 27.7
6 14 14.7 14.2 18.3 16.3 14.4 19.6
7 4 11.6 11.2 14.9 12.9 12.2 14.3
8 5 9.4 9 12.3 10.4 10.5 10.6
9 3 1.7 7.4 10.2 8.6 9.1 79
10 21 6.4 6.2 85 7.3 8 6
11-15 24 303 29.8 37.8 24 40.8 252
16-20 16 15.7 15.5 16.1 13.3 24.4 13
21-25 8 9.2 9.2 8.8 8.4 15.7 8.6
US Patent and Trademark Officee =~~~ =
0 1499 1499.5 15004 | 15004 | 1487.6 [ 1500.2 1325.1
1 40 493 51.4 334 85.7 44.1 163.5
2 37 32 323 29 32 24.5 68.9
3 32 22.1 21.7 237 17.5 17 36.7
4 11 15.8 15.3 18.9 11.3 13 222
5 20 11.6 11.2 14.7 8 104 14.6
6 6 8.8 8.5 11.4 6 8.6 10.2
7 3 6.8 6.5 8.8 4.6 7.3 7.4
8 4 54 52 6.8 3.7 6.2 35
9 1 4.4 4.2 5.3 3.1 5.4 42
10 10 3.6 34 43 2.6 4.8 34
11-15 24 30.3 29.8 37.8 24 40.8 252
16-20 16 15.7 15.5 16.1 13.3 24.4 13
21-25 8 9.2 9:2 8.8 8.4 15.7 8.6
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