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Abstract

This paper summarizes some recent developments in rnicroeconometrics with respect to

methods for estimation and inference in non-linear models based on cross-section and panel

data. In particular we discuss recent progress in estimation with conditional moment

restrictions, simulation methods, serniparametric methods, as well as specification tests. We

use the binary cross-section and panel probit model to illustrate the application of some of the

theoretical results.

Zusammenfassung

Diese Arbeit faBt einige neuere Entwicklungen auf dem Gebiet der Mikrookonometrie

zusarnmen. Methoden fur die Scbatzungen und die Inferenz in nicht-linearen Modellen auf

Querschnitts- als auch Paneldaten stehen dabei im Vordergrund. Es werden Schatzmethoden

basierend auf bedingten Momentenrestriktionen, Simulationsmethoden, serniparametrische

Methoden sowie Spezifikationstests diskutiert. Anhand des binaren Probitmodells fur

Querschnitts- wie auch fur Paneldaten veranschaulichen wir einige der theoretischen

Erorterungen.

Resume

eet article presente un tour d'horizon de developpements recents en rnicroeconometrie, en

mettant l'accent sur l'estimation et l'inference pour les modeles non lineaires estimes sur coupe

transversale ou sur donnees de panel. Nous discutons en particulier les progres recents lies

aux methodes de moments conditonnels, aux methodes de simulation, aux methodes

semiparametriques, ainsi que les tests de specification correspondants. Nous fournissons des

illustrations basees sur l'estimation de modeles probit sur coupe transversale et s~r donnees de

panel.
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1. Introduction

For most of the period since the foundation of the Econometric Society econometrics have

been dominated by macroeconomic model building and time series analysis. Except for some

fields like agricultural economics (HANAU, 1928), demand analysis (STONE, 1954, BALESTRA

and NERLOVE, 1966), human capital theory (MINCER, 1958, 1974), investment activity

(MEYER and KDH, 1957) and production function analysis (DOUGLAS, 1948),

microeconomics played a minor role in applied research. Since the 70's, however,

microeconometrics became increasingly important both in methodological and applied

research. The availability of large data sets for households, firms etc. on the one side, as well

as the generally felled need for the microeconomic foundation of macroeconomics on the

other side are the main reasons for this development, the extent of which has been made

possible by the dramatic decrease computational costs. While econometric textbooks in the

50's and 60's contained at best the linear model for cross-section analysis, there exists now a

broad literature dealing with microeconometric estimation and inference problems. This

growing interest in the field of microeconometrics may be seen by the fact that the Handbook

of Econometrics in its three volumes contains eight paper dealing at length with topics

covering the range from labour econometrics, demand analysis, and firm behaviour to typical

microeconometric inference problems. And the next edition of the Handbook of

Econometrics will show, as did the recent edition of the Handbook of Statistics (volume:

econometrics), that the speed of the appearance ofnew developments has not yet decreased.

Technically speaking, in typical microeconometric work datasets with characteristics of many

heterogeneous individual economic agents, such as households or firms, are analysed with

econometric methods using causal relations among certain random variables of interest. These

causal relations are directly or indirectly obtained from behavioural assumptions for the

agents. Generally agents are supposed to maximise certain quantities, such as utility or profit,

subject to economic and institutional constraints. The resulting model provides restrictions on

the class of admissible data generating processes which describe the population. Common

restrictions are the nullity of some conditional moments or parametric forms for certain

conditional distributions, which could then be used to analyse the available random sample

from this population for example by the Generalised Method of Moments (GMM) or by

Maximum Likelihood (ML). Furthermore overidentifying restrictions could be used to check

the compatibility of the chosen model and the sample. The goal of the analysis is to describe

aspects of this behaviour of the agents and to analyse the outcome of potential behavioural

changes, such as the reaction of labour supply to changes in the tax-benefit systems, finns'

decisions to invest or to innovate, or:. household decisions to buy durable goods.
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The restrictions used for estimation and inference may be complicated for various reasons:

First of all, in order to allow for sufficiently realistic models, flexible functional forms may

have been chosen for the utility or profit functions. Secondly, the possible choices may be

discrete by nature, for example when analysing the use of different modes of transportation,

or for sampling reasons, when for instance firms are asked in so-called business surveys to

forecast changes in the business climate. Thirdly, complicated restrictions may have to be

taken into account, such as the non-convex budget sets generated by nearly all 'real' tax­

benefit systems. Furthermore the available sample may contain variables, which are censored,

truncated, clustered, qualitative, selectively sampled, or measured with error.

The econometric methods developed, some of which will be described in the following, take

specifically account of these problems by exploiting the typical advantage of today-micro­

econometrics: the availability of a disaggregated dataset containing a large number of

economic units, which can be treated as the result of independent draws from the population

of interest. These datasets contain much information about the agents and may even be

repeated for the same or different agents over time. Although the assumption of random

draws may seem inappropriate in particular for certain company datasets, it is at the heart of

nearly all microeconometric estimation procedures, and so we will stick to it in this survey,

too.

However, the desired generality of the microeconomic models used for the empirical analysis

has always been limited by at least three interrelated factors: The quality of the datasets, the

required econometric methods, and the price and availability of the software and computation

time necessary for a sophisticated analysis. In the last decade a significant relaxation of these

constraints could be observed:

(i) More datasets containing more information became available. In particular, datasets with a

panel character, i.e. where the same agent is sampled over more periods, offered new

possibilities for identification and estimation of microeconometric models (see HAMERMESH,

1990, for the field oflabour economics). In this context it is argued (see e.g. PUDNEY, 1989)

that compared to the traditional macroeconometric modelling the microeconometric approach

has important advantages insofar that the behaviour of the individual agent is easier to

understand while taking into account individual heterogeneity (compared to the representative

agent approach of macroeconomics), and that the researcher has more insighf into the process

by which the data are collected. A warning, however, seems to be appropriate already here.

Microeconomic data (if they are not already aggregated· by the sampling procedure, e.g.

family income instead of individual income, price expectations for commodity groups) may

exhibit a larger noise to signal ratio which might be reduced by aggregation. Self-selection or
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panel mortality play an important role and the assumption of independence of individual

behaviour might be questioned (see GRILICHES, 1986). We will come back to these issues,

restricting policy conclusions of microeconometric studies, later.

(ii) The cost of computation time has decreased drastically due to the widespread use of

inexpensive, but powerful personal computers. This does not only foster the use for more

general microeconomic models which are estimated with more complex and robust

econometric methods, but also drastically decreases the costs of handling large survey data­

sets at all stages from data collection to the final analysis. The latter obviously has positive

external effects on (i).

(iii) Furthermore, many new econometric methods become part of standardised software

packages, and new software was developed which allowed easy programming of methods

exactly tailored to the specific problems of the analysis. The development of econometric

methods, which will be the main focus of this survey, is certainly related to the other

developments, since the prospects of potential applications of more sophisticated, and more

burdensome, methods increased. Clearly the process from inventing new estimation methods

to their routine use in empirical analysis is subject to considerable time lags. But even these

time lags seem to get shorter as the number of microeconometricians increases.

A decade ago the toolbox of the microeconometricians contained estimation methods for

many models which account for the basic problems mentioned above. Typically they are

developed for cross-section analysis, imply tight distributional assumptions on unobservable

variables, and are based more on fully parametric ML estimation. These models, pioneered by

TOBIN (1958), are well documented for example in the surveys by AMEMlYA (1981, 1984),

MAnDALA (1983) and McFADDEN (1984). All modem econometric textbooks contain some

of them (e.g. DAVIDSON and MACKINNON, 1993, RONNING, 1991). Subsequently these

methods have been applied extensively to all sorts of microeconometric problems. However,

researchers became worried about the impact of distributional assumptions on the results of

the analysis, very often difficult to justify. It seems reasonable to argue that the following

developments tackle this problem in three different ways: First of all, lots of specification tests

have been developed which' can be used to check the validity of the chosen specification.

Secondly, more flexible and more sophisticated parametric models are used for the

econometric analysis. However, ML estimation is too burdensome or even impossible to

conduct for many of them, so that some efficiency is sacrificed and GMM methods or

simulation methods are proposed for the estimation of these models. Thirdly, more and more

semi- and nonparametric models have been proposed to avoid unnecessary overidentifying

restrictions and, thus, allowing for more robust estimations.
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The object of this survey is a selective overview of these developments and their practical

applications. We try to stick to an essentially non-technical presentation and will use examples

to clarify some points of the more theoretical discussion. For the respective complete sets of

assumptions for which the results are valid and the associated proofs, the reader is referred to

the original papers. In order to keep to this non-technical approach we will not discuss two

very technical, but important areas which are of interest for proofing properties of parametric

and semiparametric estimators, that is the concept of stochastic equicontinuity (ANDREWS,

1994, NEWEY, 1991, POTSCHER and PRUCHA, 1994) and that of semiparametric efficiency

bounds (CHAMBERLAIN, 1986, 1992, COSSLETT, 1987, NEWEY, 1990b, NEWEY and POWELL,

1993, THOMPSON, 1993).

A lot of different econometric models have be~n developed in the literature and applied to

microeconometric analysis. Discussing their particular advantages and problems is far beyond

our scope and space limits, and is not necessary anyway because many excellent surveys are

available, some of which will be mentioned in the following. The most prominent example is

the linear model which still has its merits for many microeconometric applications in particular

for panel data (RAJ and BALTAGI, 1992). Other examples are models for count data (GURMlJ

and TRIVEDI, 1992, POHLMEIER, 1994), duration models (FLORENS, 1990, LANCASTER,

1990), simultaneous non-linear models (BLUNDELL and SMITII, 1993), LISREL, LISCOMP

and similar models (ARMINGER and MOLLER, 1990, Ml.ITHEN, 1987), dynamic non-linear

models for panel data (HECKMAN, 1981, LECHNER, 1993a, b), models for errors in variables

(MARIANo and BROWN, 1993), discrete choice models (MAnDALA, 1983, McFADDEN,

1984), many variants of limited dependent variable models (AMEMlYA, 1981, 1984,

MAnDALA, 1983, 1987), dynamic discrete choice models (ECKSTEIN and WOLPIN, 1989a,

Horz and Mn..LER, 1993, MANSKI, 1991, 1993a, RUST, 1991, 1994), and disequilibrium

models {MAnDALA, 1986, LAROQUE and SALINIE, 1994), among others. From a

methodological point of view we completely ignore Baysian analysis (FLORENS and

MOUCHART, 1993), and the problem of optimal prediction in non-linear models (MANSKI and

THOMPSON, 1989, MADDALA, 1993) not because we consider these, topics as unimportant,

but because it is beyond the amount of material our survey can carry. For this same reason we

will also completely ignore the important topics of optimal sample design and choice based

sampling (COSSLETT, 1993, IMBENS, 1992) and pseudo panel data (MOFITI, 1993, VERBEEK

and NIJMAN, 1993).

The paper is organised as follows. Section two discusses the general notation of a binary

choice model. Estimation problems and approaches are discussed in section three. The fourth

section presents an overview about recent development in diagnostic testing, followed by a
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brief discussion of some issues of non- and serniparametric estimations in section five. Finally,

in section six we conclude with some considerations about topics for future research.

2 An Example: The Binary Choice Model

In section 2 we discuss some econometric methods fOr estimation and inference in cross­

sections and panel data which have been proposed recently. In order to clarify the basic

intuition underlying the various procedures we use the binary choice model as an example.

Consider the following model:

y; =g(xj>'p)+uj>

y, = l(y;" > 0), i= 1, ... ,N.
(1)

The T x I and T x K dimensional matrices (Yi' Xi) =z; denote the 'j'-th observed realisation

from N random draws in the joint distribution of the random variables (Y, X) = Z. The

unobserved vectors Y;" and u; serve merely as a device to rationalise restrictions on certain

conditional and joint distributions of Z. All procedures which are discussed in the following

are based on the 'analogy'-principle (MANSKI, 1988a), which means that we specify some

characteristics of the distribution of Z, such as conditional moments or conditional densities,

and use the appropriate sample analogs, such as the sample mean, to obtain consistent

estimates of the parameters of interest 0, or other quantities of interest, which characterise

parts of the distribution of Z. In general 0 contains the K x 1 dimensional parameter vector.p
and parameters of the covariance matrix of the errors r. f!,1f ,ro denote the parameter

values by which the true distribution of Z is characterised. . The positive integer 'T may

denote a fixed time dimension in the case of a panel data model, but can also be interpreted as

a number of choices in the discrete choice problem for example. YIi equals one if the

expression in the 't'-th component of the indicator function 1(.) is true and zero otherwise. By

choosing other functions as 10 for the transformation of the latent dependent variable to its

observed counterpart, other pbpular models, such as ordered choice models or tobit-type

models can be generated. From the point of view of the loss of information by observing

Y; instead ofy;", the binary choice model is the worst case in this class of latent models,

because only the sign of y; is observed. The implications are at least twofold: First, this poses

difficult identification problems for 0 and other quantities of interest. These problems are

extensively discussed in MANSKI (1988b) and reviewed in HOROWITZ (1993a). One important

conclusion is that conditional mean independence, e.g. E(Vi X= X; f! ) = 0, has no identifying
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power whatsoever. Second, all methods which 'work' for this model, could also be applied to

the other models in that class when Yi carries more information about Y: .

3 Estimation Methods for Parametric Models

In this section we use the term 'parametric' in the sense that the researcher knows or pretends
to know the complete conditional distribution of rl X, denoted by FYIX , or certain features of

it like conditional moments, up to a finite set of parameters 8. Furthermore, a crucial

condition for the applicability of all the methods discussed in this section will be that the
respective objects (FYIX or the moments) will be smoothly differentiable W.r.t. the parameters.

Hence it will be the typical feature of the semi- _and nonparametric models, discussed in

section 4, that they are characterised either by an infinite set of (nuisance) parameter and/or

non-differentiability.

3.1 Maximum Likelihood

Assume that the researcher knows the conditional distribution of Y1 X(FylX ). Given the usual

regularity conditions (see for example GoURIEROUX and MONFORT, 1989) hold, maximum

likelihood estimation (ML) gives consistent, asymptotically efficient and .IN-normal
estimates for (f. Typically the specification of FYIX is done on the level of the latent model by

assuming a parametric form for g(X,ft) and Fu1x ' such as linearity, e.g. g(X,ft) = Xft,

multivariate normality of Fu1x and independence of U and X. For this T= I is the well-known

cross-section probit model which can easily be estimated with modem software packages.

The other popular model, the logit model, results from assuming a logistic distribution for
Fu1x instead. Both models are very difficult to distinguish empirically.

The average log-likelihood function of a random sample for the cross-section probit model,
denoted by LN (.), is given by:

(2)
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<1>(a) denotes the cumulative distribution function of the univariate standard normal

distribution evaluated at a. The ML-estimate eN of the scaled coefficients 0° = W/a;, where

a; denotes the square root of the first element of L, can be computed by standard iterative

procedures without any problems. Now consider the situation that a panel data set ofT waves

is available. Assume that the errors are independent of all regressors and jointly normally

distributed. The average log-likelihood function is given by:

(3)

<1>(T) denotes the cumulative distribution function of the multivariate normal distribution with
mean zero and covariance matrix b( 0) evaluated at a;( 0). Let °= (01)02) with 0 1 = Pial and

O2 contain the scaled variance u
J
Iu, and the correlations appearing in L. A typical element

of the T-dimensional vector a( 0) is given by all = xti0\ (2YIi -1), a typical element of the

(TxT)-dimensional matrix b(O) is bts=uts/u\(2Yb-1)(2y',;-I) (AMEMIYA, 1986). The

T - 1 additional waves lead to a gain in efficiency for the estimation of the scale~ coefficients

Pial and, in sufficiently regular cases, to the identification of the relative variances uJu,
and the correlation matrix of the error terms. However, note that there are T(T +1)/2-1
additional parameters to be estimated and that aT-dimensional integration over the

multivariate normal density has to be performed. This complicates the estimation

considerably, in the sense that the number of iterations necessary for convergence increases.

Local extremas may be a problem and the estimates of the correlations or their

transformations may tend towards the boundary of the parameter space by approaching +1 or

-1, and thus lead to ill-conditioned estimates. Since analytical closed form formulas for the

integration are not available, they have to be computed numerically, which is infeasible for

T> 4, and very burdensome for T> 2.

As a way to reduce the number of parameters and the dimension of integration, the following

factor-analytic decomposition of the error terms has become popular:

Uti = O,C, +&Ii C, - N(O,I), &Ii - N(O,a;);
EC;&ti =0, E &ti&sj =0, t,*s.

(4)

This implies that p(Y,IJ-:,X,C) = p(Y,IX,C),t ,*s, and so the log-likelihood function

simplifies to a one dimensional integral over products of the cumulative distribution function
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of univariate standard normal distributions. Denote the respective density function by
¢l...c) and Ec the expectation operator w.r.t. to the marginal distribution of c, then:

(5)

and appropriately normalised coefficients can be estimated. The algorithm of BlJILER and

MOFill (1982), based on Gaussian quadrature, provides an efficient tool for the

unidimensional numerical integration necessary (HSIAO, 1986, 1992). This approach serves as

a flexible method for the analysis of models with a small time dimension, but for larger T the

restrictions implied for L may, if not true, still lead to inconsistent estimates. For example, if

T> 4, uti can only be stationary for the special case of 8 t = 8, 'it, which is the pure random

or equicorrelation case and rules out for example AR and MA error processes (AMEMIYA,

1986, HECKMAN, 1981). The following methods will, by sacrificing efficiency, overcome this

problem in different ways.

3.2 Conditional Moment Restrictions

In applied work there are many reasons why it may be desirable to avoid the complete

specification of the distribution of the dependent variables given the independent variables.

The most prominent reasons are that the researcher has no information, or no confidence in

arbitrary assumptions, on higher conditional moments describing the full distribution.

Additional parameters describing the complete conditional distribution may increase the

complexity of the model and can lead to problems related to identification, computation and

small sample properties. If the researcher is prepared to specify functi6ns which depend on

the variables in the population and a finite number of parameters, have mean zero, identify the

parameters of interest, are smoothly differentiable with respect to parameters, and satisfy

some additional regularity conditions, then the generalised method of moments (GMM) can

be used for the estimation. This method introduced by HANSEN (1982) is in full accordance to

the analogy principle. It is based on estimating the parameters by minimising quadratic forms

of functions which are sample analogs of the respective population moments. The major
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distinction to the semi- and nonparametric approaches discussed later will be the requirement

of smoothness, differentiability and the finiteness of the number of parameters on which the

moments depend. We chose this distinction for the ease of presentation. In econometrics a

specific form of moment restrictions play a prominent role, namely the conditional moment

restrictions. Recent important insights in the properties of estimators based on conditional

moment restrictions have been obtained by CHAMBERLAIN (1987) and NEWEY (1990a). The

excellent survey by NEWEY (1993) summarises these results and elaborates on them. The

following exposition borrows heavily from this source.

The T x 1 dimensional function M( Z, e) depends on the K x 1 dimensional parameter vector

e, and satisfies the following conditional moment restrictions for the true parameter value d.

E [M(Z, d)lx = Xi] = 0 (6)

For identification purposes it necessary that there is no other value of e in the parametric

space e (which is part of the R K
) that also fulfils this restriction. The conditional moment

restriction implies that at the true value of the paramameters -and only at the true value- all

functions of the conditioning variables (X) are uncorrelated with the moments M (Z,eO).

Hence the following unconditional moment restrictions can be formed:

E A(X)M(Z, d) = o. (7)

Note that the T X 1 dimensional moment condition in (6) has now be transformed to the p x 1

dimensional moment condition in (7). p denotes the row dimension of the p x T dimensional

matrix A (X), and must be at least as large as K to identify the parameters. If p > K there are

overidentifying restrictions. It has become common in this literature to call A(X) the

instroment matrix. Note however that this may cause some confusion related to the standard

IV-terminology used in linear regression. Here we are not instrumenting a particular

endogenous regressor, but exploiting (6) to form unconditional moments to be used in

estimation. But that there is no contradiction with linear IV-estimation. In the case of a linear

model, M(Z,eo) would denote the residual, Z would include the dependent variable Yand

the endogenous and exogenous regressors. The conditioning variables X would contain only

the exogenous regressors plus additional variables to be used as instruments for the

endogenous regressors. Those would be used to form the instrument matrix A(x).
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The sample analogs for the expectation appearing in (7) are given by the following arithmetic

means over the N independent observations:

1 N

gN (0) = - L A(x, )M(z" 0)
N i=1

(8)

The idea ofGMM estimation is that for an large sample size (8) should. approach zero for the

true value of the parameters. Hence the value of the parameters which sets these empirical

moments to zero is a natural estimate (8) of the true value. If there are overidentifying

restrictions, this may not be possible and the following quadratic form is minimised instead:

(9)

W denotes any choice of a p x p dimensional positive definite weighting matrix. Under

suitable regularity conditions on gN and W,8 is .IN-consistent and asymptotically normal.

Since in this approach the amount of prior information used, e.g. the conditional moment

restrictions, may be much lower than for example in ML estimation, it is particularly

important to exploit the available information fully to obtain asymptotically efficient

estimators given this information. The tools which can be used to achieve this are the optimal

choices of the instruments A(x) and of the weighting matrix W As shown by Hansen (1982)

in a more general setting, the optimal choice of W is {E[ A(X)M(Z, (1)M(Z, (1). A(X),]r

or any consistent estimator of that expression. CHAMBERLAIN (1987) and NEWEY (1990a)

derived the optimal choiCe ofA (x). Let

The optimal choice for A(xi ) denoted by AO(xJ equals:

(10)

where C is any non-singular K x K matrix. Note that the column-dimension of AO( Xi) equals

K, so that the choice of W is irrelevant. D( Xi) and n(Xi) may be substituted by consistent

estimates. Note that in the linear regression model D( Xi) will just denote the regressors, and
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n(xj ) corrects for conditional heteroscedasticity and correlations, so that this approach

results simply in a feasible GLS estimator.

However, finding these consistent estimates of the optimal instruments may be formidable

task in a complex model, as will be exemplified for the relatively simple panel probit case. To

circumvent these problems NEWEY (1 990a, 1993) suggests the use of nonparametric

methods, such as nearest neighbour estimation and series approximations instead, and derives

the conditions necessary for these methods to result in consistent and asymptotically efficient

estimates.

Some aspects of the estimation with conditional moment restrictions will be clarified in the

cases of cross-section and panel probit models. In a single cross-section the conditional

expectation of the observed variable, as defined in section 2.1, is given by the probability that

it equals one, and so the following conditional moment can be used for estimation:

M( Z,S) =Y - <1>( XS) S = Pia. (11)

In order to find the asymptotically optimal matrix of instruments, the conditional expectations

of derivative w. r. t. () and the conditional variance, n(x), have to be evaluated at the true

value:

[
oM(Z,SO)1 _ ] _ ( 0) I

E 00 X - xj - -4> XiS X,

(12)

Since there are no overidentifying restrictions, the optimal GMM-estimator, 8 fulfils:

(13)
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Note that gN (.) equals the first derivative of the log-likelihood function, hence the optimal

GMM-estimator is identical to the ML-estimator.

The analysis of panel data provides the more interesting case. The estimator which is

proposed in the following is based on assumptions about the marginal distribution of Vr, the

joint distribution of V is otherwise unrestricted, except that it is supposed to fulfil certain

regularity conditions which ensure the existence of second moments. The marginal

distribution could be derived from some multivariate distribution for V, but this is not

necessary.

Suppose that each Vr is normally distributed with mean zero and variance cI,. Furthermore" it

is assumed to be independently distributed from all elements of X. The T x I-dimensional

moment function is given by:

,
M(Z,O) = [ml (Z" 0), .. "mr(Zr, O), ... ,mr(Zr' 0)]

mr(Z" 0) = Y, - q>( ;;).
(14)

The use of these types of moments as a basis of GMM estimation has first been advocated by

AVERY et al. (1983). It can be shown that the ML-estimators, under the assumption of

independent errors (AVERY et al., 1983), and the sequential random effect probit estimator

suggested by CHAMBERLAIN (1980, 1984), belong to this class of estimators and differ only in
the choice of the instrument matrices A(X) and W, and by using one-step vs. two-step

estimation procedures (BREITIJNG and LECHNER, 1994). Note that embedding the

unrestricted ML-estimator in this framework would require specification of the probability of
the complete sequence (~, ... ,YT ) and appropriately defined indicator variables for the

occurrence of a particular sequence of events. However, as for the ML estimation this would

require T-dimensional integration and estimation of L .

In order to obtain the optimal GMM-estimator based on (10) the following notation is intro­

duced. Let 0= (~,0;)' , 01 =PIUI> O2=(On"'" 02T)' ,02, =u1/u, and Prs =u rs/(U1U2 ),

where U rs denotes E V,V•. Denote the Tx K-matrix offirst derivatives ofM as M s, then:
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,

Me(Z,8) = [ Ina1(ZI ,8)' ,. ··,lnar( Zr, 8)']

E[Ina, (Zt> 8 )IX =Xi] =[-lj>(X/i82/8J82/X~ ,0, ... , -lj>(X/i82,8JX/i8p ... ,0].

Let wr.n a typical element of n(xJ Furthermore, assume that (U"UJ are jointly normally

distributed with correlation coefficient Pis' For notational convenience let <1>/:= <I>(X,8\82J,
<I>/i:= <I>(x/i8182J and <I>~):= <I>(2)(X/i8\82"xsj8\82s ,pJ. <1>(2)0 denotes the cumulative

distribution function of the bivariate standardised normal distribution:

ift =s,

ift;es.

Note that wjx) has the same sign as Pis and that Wls =°if Pis =0, so that the GMM­

estimator collapses to the MI.-estimator for uncorrelated errors, but generally the optimal

GMM-estimator is less efficient than the MI.-estimator. However, the estimation of the

optimal" GMM-estimator is still difficult; because it depends on the unknown correlation

coefficients of L. Although the unknown coefficients could be substituted by consistent

estimates without affecting the asymptotic distribution of the estimates, obtaining them would
require (T -1) TI2 bivariate probits, which can be cumbersome for large T. An alternative,

suggested by NEWEY (1993), is to use nonparametric methods, such as nearest neighbour or
series estimation to obtain consistent estimates of n(Xi)' The idea behind nearest neighbour

estimation (NN) is very simple: If there is only a finite number of (.I) of configurations for X,
each containing a large number of observations (N). then averaging the squared residuals

N

within each sub population having the same Xl e.g. ~i t[y! - <I>(xiO)][y! - <I>(xiO)] would

give a consistent estimate for n(Xl = Xi)' where 0 is a consistent, but inefficient estimate.

However, in most finite sample there are only a few observations having the same values for

all explanatory variable X,, NN weights the residuals according to their similarity to xj ' Under

regularity conditions (NEWEY, 1993) this will give consistent estimates of n(xi ) for each

individual without the need for estimating Pis' Another alternative is to sacrifice more

efficiency and to use sub optimal choices for A(x,), such as the regressors only. Some of the

15



possible choices have been investigated by AVERY et al. (1983) and BRElTUNG and LECHNER

(1994).

The panel data example showed the trade-off between asymptotic efficiency, robustness to

arbitrary assumptions and computational convenience which can be controlled by using

specific types of GMM-estimators, and which makes GMM estimation such a useful tool for

applied microeconometric work.

Another potential in GMM estimation is that this framework easily allows to integrate

information from outside the basic sample. The outside information can be in the form of a

second sample of a similar type or of information on the population as a whole, which may

stem from a caucus, for example. For the theoretical considerations the reader is referred to

the work of Arrelano and MEGlllR (1992) and 1MBENS and LANCASTER (1991). First

applications which are contained in ARRELANO and MEGlllR (1992), GEm et at. (1992) and

LAISNEY and LECHNER (1993) show the potential of the additional gains in efficiency and

identification.

3.3 Simulation Methods

Recently econometric methods based on simulation techniques have become increasingly

popular. This has been induced by the dramatic decrease of the cost of computing power.

Parallel to this there are significant advances in statistical methods dealing with simulations.

Simulation methods play an important role in problems when the analytical derivation of a

certain expression of interest is not possible and when fast and sufficiently exact numerical

methods, such as Gaussian quadrature for the evaluation of certain integrals are not available.

Fields where simulations have been applied for a long time are for example Monte Carlo

studies (see DAVIDSON and MAcKINNON, Ch. 21, 1993) and Bootstrap methods (JOENG and

MAnDALA, 1993, VINOD, 1993).

Recent efforts have been made on integrating simulation methods in 'standard' theory for

estimation and inference in parametric models. Besides classical estimation problems with

independent observations on which the following exposition focuses, PESARAN and PESARAN

(1993) show how these techniques can be fruitfully applied to the computation of the Cox­

statistic in complicated classical inference problems. Furthermore, the special issue of the

Journal of Applied Econometrics (BROWN et al., 1993) contains applications to Baysian

estimation (ANDREWS et al., 1993, GEWEKE, 1993, KLEmERGEN and van DIJK, 1993) and

time series models (SMITI-I, 1993, SHEPHARD, 1993).
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An important innovation for the use of simulations in classical estimation problems is the

paper by LERMAN and MANSKI (1981). They suggest an approximation of the choice

probabilities conditional on regressors in a multinomial probit model by drawing in the

distribution of the error terms for each individual and by averaging the simulated 'observed'

outcomes over simulations. These averages are used instead of the actual probabilities to form

the likelihood function. The performance of this estimator in terms of draws necessary to

achieve a performance similar to ML was disappointing, since it violates at least the first three

of the following conditions which later turned out to be very important for the construction of

efficient simulation estimators: the simulated probabilities should be smooth functions of the

parameters of the model, the same draws should be used in different iterations, the simulated

quantities should be unbiased, the draws should be independent for each individual, and the

additional variance included by the simulations should be small. Under some additional

regularity conditions these requirements are enough to obtain estimators which are consistent

and .IN-asymptotically normal for a fixed number of simulations. These insights are basically

due to a seminal paper by McFADDEN (1989) which provides a rigorous treatment of

simulation estimations using GMM-type estimators with particular respect to the multinomial

probit model. Another seminal paper by PAKES and POLLARD (1989) provides useful

conditions to prove consistency and asymptotic normality in cases when the simulations may

not be smooth functions of the parameters. They apply their methods also to a similar GMM­

type estimation of the multinomial probit model. For the case of smooth simulators

GoURIEROUX and MONFORT (1991) derived the asymptotic properties of simulated ML

(SML), simulated GMM (SGMM), and simulated Pseudo-ML (SPML, see also GoURIEROUX

and MONFORT, 1993c) estimators. HArrVASSILOU and McFADDEN (1990) suggested using

the scores of the log-likelihood function directly as objects for simulation. Those methods are

termed as method of simulated scores (MSS). The comprehensive surveys by HAJIVASSILOU

(1993) and KEANE (1993, 1994) discuss in great detail the properties of the different methods

which can be used for estimation. Furthermore, they discuss the various possibilities of

constructing the objects for simulations and obtaining unbiased simulators with a small

variance. The latter is particularly important for SML of non-linear models because the

consistency and asymptotic normality depend on the condition that .IN /H ~ 0, where H

denotes the number of independent draws for each individual. Reducing the variance of the

simulation decreases the number of draws necessary to be close to the asymptotic

distribution. Suggestions by STERN (1992), GoURIEROUX and MONFORT (1993a) and in

particular by BORSCH-SUPAN and HAJIVASSILIOU (1993), GEWEKE (1991) and KEANE (1993)

appeared to be very successful in achieving this goal at least for discrete choice models.

17



The 'indirect inference' approach suggested by GoURIEROUX et al. (1993b) exploits the

potential of simulation techniques in another, ingenious way. They propose to estimate a

possibly incorrect but simple model, and to use simulation methods to establish the relation of

the parameters from the incorrect model and the parameters of the correct model. This

relation can be used to obtain consistent and asymptotically normal estimates. The advantage

is that it is not necessary to specify any conditional moments of the true model, which are

perhaps very complicated. It is sufficient that the true models can be simulated. For the

asymptotic results obtained and the numerical convenience in the application, it is important

that the necessary simulations of the true model depend smoothly on the parameters, which is

not the case for example in discrete choice models. Further research is needed to find ways to

smooth that approach sufficiently. Its enormous potential will be worth the effort necessary.

4 Diagnostic Testing of Parametric Models

The assumptions on FYIX , perhaps with the exception of the first moment, are generally not

derived from some structural economic model, but imposed to achieve a computationally

convenient estimator. However, the consistency and efficiency of the estimated coefficients

and standard errors generally depend on the validity of these assumptions. Although there are

some exceptions for particular models and data generating processes (RUUD, 1983, 1986),

the incurred biases when these assumptions are incorrect could be substantial (GABLER et aI.,

1993, MANSKI and THOMPSON, 1986, HOROWITZ, 1993a, for the binary choice model, or

ARABMAZAR and SCHMIDT, 1982 for the tobit model). One possibility to avoid these biases is

to estimate more general models in the beginning,.which could accommodate the suspected

features in a parametric way, for example by assuming particular forms of heteroskedasticity

(DAvIDsON and MAcKINNON, 1984) or using more general distribution functions nesting the

normal (GABLER et al., 1993) or the logistic (LECHNER, 1991, POIRIER, 1980, THOMAS,

1993) distribution. The drawback is that one cannot be sure that the chosen specification is

still general enough. Furthermore, the computations may be" very cumbersome and the

potential efficiency loss substantial. This remark applies as well to the estimation of semi- and

non-parametric models which avoid many of the assumptions of the parametric models and

will be discussed in the next section.

The alternative is to estimate the simple parametric models by ML and subject the results to

extensive specification tests. This is most convenient when these procedures do not require

the estimation ofa more complicated alternative model. In the following we will discuss some

of these methods, termed diagnostics by ENGLE (1984). Furthermore, some developments
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will be presented for the more complicated situation, when a researcher has to choose one of

two competing and possibly non-nested models, which are equally plausible from an

economic point ofview.

The seminal papers by NEWEY (l985a, b) and TAUCHEN (1985) provide a unified framework

for the distribution theory of specification tests when a parametric model is tested against a

parametric alternative. They observe that many test procedures are based on a criterion

function indexed by a finite number of parameters which has zero expectation provided the

hypo~hesis under test is true. If it is false the criterion function should be chosen so that its

expectation with respect to the true data generating process is large. By the analogy principle

the appropriate sample analogs, e.g. the means of the respective sample functions and

estimates of their variances, are used to form quadratic forms which, given regularity

conditions, have a central X2 -distribution under the null hypothesis when N tends to infinity.

Within this framework two important tasks remain: The choice of a criterion function

satisfying the zero expectation requirement and regularity conditions which has a lot of power

in the 'desired' direction. The 'desired' direction will typically be an alternative model which, if

true, is particularly harmful for the interpretation of the results of the performed estimations.

The second task is to find efficient estimators for the covariance matrix of the sample

moments of the criterion to guarantee that the small sample distribution of the test statistic is

close to the asymptotic distribution for a reasonable sample size.

Discussing all procedures which have been suggested in the literature to test various aspects

of specific models is beyond our capabilities. Instead we classify the various procedures

according to the way they define the respective alternatives for which particular power is

desired. The first group consists of procedures specifying a full parametric model as an

alternative, the second one specifies only particular moments of possible alternatives, and the

third group leaves the alternative unspecified.

4.1 Completely Specified Model as Alternative

When a full parametric alternative is specified two basic cases have to be distinguished: nested

and non-nested models. In the case of nested models the validity of the model under test

implies implicit or explicit restrictions on the parameters of the alternative model. In the case

of ML estimation, for example, the classical trinity of Lagrange Multiplier (LM) or Score

tests, Likelihood ratio (LR) tests, and Wald tests can be applied (ENGLE, 1984) to check

whether these restrictions are violated. There is an excellent introduction to this topic in
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chapters 11-13 of the textbook by DAVIDSON and MAcKINNON (1993). For other ..fN­
consistent and asymptotic normal estimators generalised versions of the LM, Score and Wald

tests (GoURIEROUX and MONFORT, 1989) can be applied. As a specification test the LM has

certain advantages: Since it is based on checking whether the scores of the alternative model

are significantly different from zero when evaluated at the estimates of the restricted model,

an estimation of the alternative model is not necessary. This allows the choice of alternatives

which are too complicated to yield sensible parameter estimates, but which can easily be

evaluated under the null hypothesis. An examp~e for this is the use of the Pearson-family of

distributions as an alternative for the normal distribution (HERA et aI., 1984). Furthermore, in

cases when the likelihood function is misspecified but the resulting estimates are still

consistent, generalised versions of the test still have the same asymptotic distribution under

the null (WHITE, 1982) as opposed to the LR test. Compared to the Wald test which uses the

estimates under the alternative, it is invariant (if its covariance matrix is not based on the

empirical mean of the hessian) to different representations of the same null hypothesis,

reparametrisations or one-to-one transformations of the parameter space (DAGENAIS and

DUFOUR, 1991, LAFONTAINE and WmTE, 1986). Furthermore, there is evidence that the

power properties of Wald-tests are badly approximated by the asymptotic local power

function when the alternative is far away from the null (NELSON and SAVIN, 1990). The

computation of the LM test statistic is simplified by regression based methods (ENGLE, 1984,

DAVIDSON and MACKINNON, 1984) or the use of generalised or simulated residuals

(CHESHER and IRISH, 1987, GoURIEROUX et aI., 1987a, b). The LM statistic depends on a

consistent estimate of the covariance matrix of the score under the null, which is based on the

empirical mean of the hessian (H), the outer product of gradients (OPG), the expectation of

the hessian conditional on explanatory variables (I), or a combination of OPG and either the

inverse of H or I (WHITE, 1982). There is accumulating evidence that H, OPG and the

combination ofHand OPG should be avoided in applications, whenever possible. When H is

used alone or in combination with OPG the LM test is not invariant to reparametrisations

(DAGENAIS and DUFOUR, 1991). This means that the statistic may have different values for

different parametrisations of exactly the same model, which is unde~irable. Furthermore, H

may not have full rank when evaluated under the null. The OPG version of the test is very

popular because there is no need to compute second derivatives of the likelihood function,

which may be complicated depending on the alternative model. However, there is

accumulating evidence from Monte Carlo studies that these versions have excessive size

under the null in small samples, e.g. they reject the null too often when it is correct (CHESHER

and SPADY, 1991, DAVIDSON and MAcKINNON, 1984, LECHNER, 1991).
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Since these classical test procedures have a long history, many important aspects of them are

now well understood, they are available for many different models and they become more

common in empirical applications (BLUNDELL, 1987, BLUNDELL et aI., 1993, LAISNEY et aI.,

1991, LEE and MAnDALA, 1985). However, this approach also has drawbacks, for example

,there are important alternatives in which the estimated model cannot be nested. Furthermore,

because of the specification of a particular parametric model, the tests may have little power

in other directions which are of equal importance, in particular since these procedures are

used as diagnostics for the estimated model.

So far we considered the case where the estimated model is parametrically nested in the

alternative model used for the construction of the diagnostic. However, there may be

int~resting alternatives which do not have this property. Since the tests against non-nested

alternatives (TNNA) have a very similar structure as the probabilistic tests for selection of

possibly non-nested models (SNNM), they will be discussed jointly. Note that nevertheless

the decision framework is quite different: A TNNA is used to subject the estimated model to

a specification test against a non-nested alternative. The estimated model can be rejected or

not rejected. A SNNM test is used to allow the data to decide which of two plausible models

is the most 'correct' one. The classical TNNA for non-linear models is the one proposed by

Cox (1961, 1962). It is based on the difference of the maximum value of the log-likelihood

function of different models and compares this difference with its expected value evaluated

with the maintained conditional distribution of the estimated model. In the case of nested

models this reduces to the conventional LR statistic. PESARAN (1987) investigates the power

characteristics of this test and obtains some results similar to the classical tests for specific

types of non-nested alternatives, which have certain overlaps. Using the fact that two linear

models with different regressors can easily be nested in a general model, ZABEL (1993)

investigates small sample properties of the Cox test compared to conventional tests, such as

the Wald test (DAvIDSON and MACKINNON, 1981). In his results it is stated that the Cox test

has superior power properties for local alternatives for most data generating processes

considered. However, it seems that the sometimes difficult calculation of the expectations of

the likelihood function of the alternative model with respect to the maintained distribution has

prevented a widespread application of this test. The use of simulation techniques to evaluate

this quantity as suggested by PESARAN and PESARAN (1993) may be a useful tool to

overcome this difficulty. SMITII (1992) generalises the Cox test by suggesting a variant which

is based on GMM estimation, and so overcomes the limitation that a full parametric density

has to be specified to compute the test.
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VUONG (1989) suggested likelihood ratio tests for model selection by testing whether two

competing models are equally distant from the true model against the alternative that one

model is significantly closer to the true one. A natural measure for this distance is the

Kullback-Leibler contrast (see GoURIEROUX and MONFORT, 1989, for reference) which

measures the distance between a given distribution and the true distribution. The proposed

statistic has a clear interpretation in probabilistic terms and is not too difficult to compute. It

has been applied for example by LAISNEY et al. (1991) and LECHNER (1991) for the case of

testing Probit vs. Logit models. An approach which is similar has been suggested by POLLACK

and WALES (1991). They compare adjusted likelihood ratio tests of each of the models under

test with a model nesting both of them, without requiring an estimation in that general model.

However, their approach does not allow the outcome that the distance of both models from

the true model is not significantly different.

The theory of specification tests based on the encompassing principle (MIzON and RICHARD,

1986, HENDRY and RICHARD, 1989) provides a unifying framework for various tests against

non-nested and nested alternatives. The test is based on the idea of checking whether salient

features of one model can also be found in other models. More formally, the tests are based

on the expectation of a statistic which has been computed in an alternative model, while the

expectation ofthe statistic is computed W.r.t. the maintained model. It seams to be the major

problem of this approach that the computation ofthe respective expectation may become very

cumbersome in non-linear models.

4.2 Incompletely Specified Model as Alternative

Now, we tum to procedures w~ch do not require the specification of a full parametric

alternative model. Instead, they ~e based either on some population moments implied by the

maintained model, but not used for its estimation, or some moments of an alternative model

which parametrically nest moments of the estimated model and which are zero when the

estimated model is the true one.

An approach taken by SMITIf (1989) is to specify the alternative density as the product of the

null density and an infinite series of orthogonal polynomials. This is a very general approach

since in principle all smooth alternative densities can be generated in this way. In order to use

LM test principles for a finite number of parameters, the expansion is truncated at some

chosen degree and the significance of the remaining expansion terms is tested. Although this

approach allows the construction of general specifications tests at least in the case of ML
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estimation, its considerable complexity seems to have prevented, at the best of our

knowledge, any empirical application of this procedure.

NEWEY (1985a) and TAUCHEN (1985) suggested a general ~rinciple for specification tests in

models with explanatory variables based on functions which have zero expectation

conditional on explanatory variables under the null model, and non-zero expectation in

desired directions of departure from the model. By the law of iterated expectations

unconditional expectations of products of these functions with functions of the explanatory

variable have the same property and, given usual regularity conditions, can be used to form

appropriate diagnostics. These tests have been termed conditional moments (CM) tests and

nest all the procedures discussed so far. This fr~mework unifies many different approaches

and so allows us to obtain results concerning the properties of these tests, such as their power

properties (BIERENS, 1990), for various estimation procedures, and to construct additional

tests. The excellent surveys ofPAGAN and VELLA (1989) and PAGAN and PAK (1993) give an

account of the potential of this framework. WOOLDRIDGE (1991) discusses CM tests in

models estimated by Pseudo ML (pML). The most important restriction of this approach is

that the regularity conditions require a certain degree of smoothness and a finiteness of the

parameter vector of the conditional moments under the alternative, so that a distribution

theory for testing against many nonparametric and semiparametric alternatives is not

provided. However, a very recent paper by WHANG and ANDREWS (1993) provides

considerable generalisations in that direction.

A CM test which has appeared as a useful device for testing models against general

misspecification is the information matrix test (1M) introduced by WIDTE (1982). The 1M test

is based on checking the validity of the fundamental information matrix identity of ML

estimation, namely that the conditional expectation of the outer product of the gradients

equals the conditional expectation of minus the hessian. The only specified feature of the

alternative model is that this identity does not hold. Although the basic version of the test is

confined to models estimated by ML, LECHNER (1992) showed that certain other estimators

imply similar conditions which could be used to form diagnostics in the same spirit as the 1M

test. Recent Monte Carlo studies (CHESHER and SPADY, 1991, LECHNER, 1991, ORME, 1990)

showed that accurate estimation of the covariance matrix of the indicators is crucial for

getting small sample distributions which close to the asymptotic distribution used for

inference. OPG versions which avoid the need to compute third derivatives of the log­

likelihood function (CHESHER, 1984, LANCASTER, 1984), and to some extent also White's

original version, overreject drastically under the null. ORME (1988, 1990) suggested to use

the asymptotic efficient covariance estimator of the test indicators by exploiting the whole
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structure of the model under the null. This version of the test has a distribution under the null

which is close to the asymptotic one even for moderate samples, at least for the probit model,'

but is more cumbersome to compute.

The diagnostics suggested by ANDREWS (1988a, b) and KLEIN (1993) are based on the

predictions of the estimated model. KLEIN'S (1993) approach for single index models

estimated by maximum likelihood is based on comparing the predictions of the model, e.g. the

expectation conditional on a specific interval of the index with the observed sample analogue

or with a prediction of a semiparametric model, evaluated at the parameters of the null model.

The regions necessary to define the test are solely based on the single index. KLEIN (1993)

derives the asymptotic distribution under the null and local power properti~s for these

statistics and gives conditions on the type of semiparametric model allowed. The latter is

based on the type of partially nonparametric density estimation techniques proposed in KLEIN

and SPADY (1993). This approach should allow the identification of regions in which the

estimated model has a good or bad predictive performance, which is important for policy

analysis. Building on previous work by HECKMAN (1984), ANDREWS (1988a, b) generalises

the classical Pearson test to general types of econometric models. This approach is more

general than the previous one in the sense that it allows any IN -consistent and

asymptotically normal estimator and more general types of cell building necessary to define

the test. Furthermore, it is not restricted to single index models. The test is based on

partitioning the space spanned by the endogenous and exogenous variables in disjunct cells.

The cells may depend on estimated coefficients. The test is computed by comparing the

conditionally expected number of realisations with the observed number of realisations in each

cell. ANDREWS (1988a) d,erives the asymptotic distribution under the null and local

alternatives. The big advantage of this test is the flexibility in forming the cells. This flexibility

can be used to obtain power in directions which cannot be addressed with other tests.

Applications of this test can be found for example in BLUNDELL et al. (1993), LAISNEY et al.

(1991) and HOROWITZ and NEUMANN (1989).

5 Estimation in Semi- and Nonpararnetric Models

The interest in the estimation of semiparametric and nonparametric models (see the recent

special issue of the Journal of Econometrics, HARDLE and MANSKI, 1993) stems from the

intention to diminish the influence of stochastic assumptions, which are often not derived

from the economic model, on the estimation results. In terms of the example of the binary

choice model discussed so far, different economic models, e.g. utility functions, lead to
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different forms of the function capturing the influence of the regressions, g(x, ,p). However,

the choice of assumptions for the error term, except that it has mean zero conditional on

regressors, could very rarely be motivated by some behavioral hypothesis. Normality and

independence of the regressors, which in tum implies conditional homoscedasticity, lead to

the conventional probit model. They are chosen merely for computational convenience.

Typical semiparametric models use a parametric specification of the function gO and relax

some assumptions on the error term. In ~he last decade different sets of assumptions, and

hence different estimators, have been proposed for cross-section data. An excellent survey by

HOROWITZ (1993a) shows the relationship between different plausible (non-nested) sets of

assumptions and their importance with respect to identification and asymptotic properties of

!he estimators designed for binary choice model. For any details the reader is referred to that

source. Although it seems that the low informational content of the binary choice model

posed a challenge that led to the development of numerous different estimators, these types of

estimators have also been proposed for various types of cross-section tobit and selection

models (NEWEY et aI., 1990, POWELL, 1984, 1986, 1989, POWELL et al., 1989, ROBINSON,

1988, MOON, 1989). Some extensions to panel data models appeared in the recent literature.

MANSKI (1987) suggested an estimator for the binary choice model which is based on the

principles of maximum score estimation (MANSKI, 1975, 1985). The seminonparametric

estimator for the binary choice model (GABLER et aI., 1993) has been extended to random

effects panel data by LAISNEY et al. (1992), and HONORE (1992, 1993) proposed estimators

for fixed effect tobit models which are similar to those suggested by POWELL (1984, 1986) for

cross sections.

Nevertheless there is a price to pay for the robustness offered by semiparametric methods.

Many semiparametric estimators share some of the following drawbacks: Their c0n:tputation

is difficult because of objective functions which may not be differentiable or exhibit many

local extremes. Recently there is progress toward reducing the impact of that problem (see

GaFFE et aI., 1994, PINSKE, 1993 and VEALL, 1990), it is still a m~jor obstacle in

applications. Furtherm~re, some estimators exhibit lower convergence rates than ..[ii, have

non-normal distributions and may require bootstrapping in order to obtain the distrubution of

the coefficient estimates. Furthermore, the ability of the model to be used for policy

simulations may be reduced due to the unspecified error distribution. But it should be noted

that this is not true for all these estimators. The optimal choice of a particular estimator for a

specific application depends very much on the type of results desired.
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Recently the use of semiparametric estimators in applications increased. Examples are labor

supply studies (GABLER et aI., 1993, GERFIN, 1993, NEWEY et aI., 1990) and transport choice

problems (HOROWITZ, 1993b) and innovation activity (LAISNEY et aI., 1992) among others.

Whereas in semiparametric estimation it is still the aim to identify and estimate 'parameters',
the nonparametric approach is based on the estimation of the functional g{x,.) itself Different

ways to do this are discussed for example in DELGADO and ROBINSON (1992) or HARDLE

(1990). These methods may be applied either to identify and estimate non-linear relationships

between two, or more variables, or as an intermediate step in multistep parametric or

semiparametric estimation problems. The former is demonstrated for example by BERTSCHEK

and ENTORF (1993) regarding the relation of firm size to innovative activity or by HARDLE et

al. (1991) for the estimation of Engel-curves. Examples for the latter are the semiparametric

estimators of KLEIN and SPADY (1993) and HOROWITZ (1992), the estimation of optimal

instruments in CM-estimation (NEWEY, 1990, 1993), as already discussed in section 3, or the

non-parametric estimation of expectations in a dynamic discrete choice problem (AHN and

MANSKI, 1993, MANSKI, 1991, 1993a).

6 Topics for Future Research

In the previous sections we sketched some recent developments of econometric methods

which provided useful tools for applied microeconometric work. However, they will certainly

not represent the end ofa phase of rapid developments in that area. In this section we suggest

some fields for future research.

The use of simulation methods for ML or GMM estimation of structural models will be more

common in applications. Many different ways to perform these simulations have been

suggested so far, but it is still difficult to decide which particular simulator is the best in terms

of computational convienience, efficiency, consistency and good small sample performance

given a specific model and a dataset. More comparisons of the different methods based on

Monte Carlo studies and applications will be useful. Similar issues related to small sample

performance arise in the estimation with conditional moment restrictions. It may, or may not,

be worth the computational inconvience in order to obtain gains in asymptotic efficiency by

using the asymptotically optimal instruments, and (or)' base the estimation on more

complicated second or higher order conditional moments. These small sample considerations

are also important in semiparametrics. In particular the questions arise whether the data at

hand would really support such flexible models or whether the gain of confidence in the
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consistency of the estimates is accompanied by a large small sample mean square error which

renders the results worthless for any policy analysis.

With respect to specification testing, many ways have been suggested to test parametrics

models estimated by ML or GMM, but little is known in cases when simulation estimation or

semiparametric estimation is performed.

Artificial neural networks appeared to be useful tools for prediction purposes in financial

econometrics, because they can capture highly nonlinear relations between different variables

of interest. Since these non-linear relations between variables, and the ability to predict

outcomes either in the time or individual dimension are also important in micro-econometrics,

these methods have a potential application in this field too. However, in order to use them we

need to understand the statistical properties of the "black boxes" employed. The papers in the

book by WHITE (1992) show that neural networks can be analysed like semi- and

nonparametric, or flexible parametric methods so that the appropriate distribution theories

could be applied. However, there is still a long way to go in order to use them in applied

microeconometrics.
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