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1. Introduction

The problem of decomposing an empirical frequency distribution into several com
ponents is a very old statistical problem. We are approaching the centenary of Karl
Pearson's classical paper (Pearson, 1894) in which he introduced the method of
moments to estimate the parameters of a two-component mixture of normal distribu
tions andin which he applied the model to the distributions of some measures of the
forehead of crabs and of the dental distance in prawns.

Qver the years, the statistical analysis of finite mixture distributions has found a
great variety of applications in such diverse fields as fisheries research, geology, crime
and comet frequencies and medicine 1. In finance, mixtures of normal distributions
have been applied to model the price dynamics of stocks (see Barnea and Downes
(1973), Ball and Torous (1983), Fielitz and Rozelle (1983), Kon (1984), Akgiray and
Booth (1987), and Akgiray, Booth and Leistl (1989» and exchange rates (see Boothe
and Glassman (1987), Akgirayand Booth (1988), and Tucker and Pond (1988) )2.

From a theoretical perspective, mixtures of distributions can be motivated as
models of information arrival on financial markets (see Kon (1984». It is typically
assumed that the model consists of two (or more) distributions with different variances.
Drawings from the high-variance distribution represent information events while
drawings from the low-variance distribution represent non-information periods which
can be associated with background noise of normal trading. Alternatively, Kon (1984)

,;suggested.athree-components mixture model for stock returns based on the idea that
.. the returns are drawn from a non-information distribution, a firm-specific information

distribution, and a market-wide information distribution. Mixture models may also be
related to "anomalities" of the stock market such as excess returns and volatilities on
Mondays and other calendar effects. In applications to exchange rates, it has been
suggested that the components of the mixture represent periods. with Central Bank
intervention and periods without intervention or, alternatively, that the two components
of a mixture can be associated with "news" form the two countries whose exchange
rate is considered (Friedman and Vandersteel (1982».

From a statistical perspective, mixture models may be motivated as models which
imply leptokurtosis. Extensive empirical analysis has revealed that leptokurtosis is a
strong and robust empirical regularity of short-run price dynamics in financial markets.
Under time-aggregation, however, leptokurtosis vanishes, i. e. the null hypothesis of
a normal distribution can, in general,.be.rejected for daily and weekly data but not for
monthly and quarterly data (see Fama (1976». It can be shown (see section 2) that

1 See Everitt and Hand (1981) and Titterington, Smith and Makov (1985) for comprehensive surveys.

2 It is quite remarkable that the finance literature on mixture models seems to have been unaware of
the statistics literature on the same subject. For instance, Ball and Torous (1983) and Kon (1984) deal
with estimation problems which had long been solved.
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arbitrary scale::.mixtures of normal distributions imply leptokurtosis. Hence, this class
of models is compatible with the strong stylized facts of leptokurtosis and convergence
to normality. The latter follows, of course, from the central limit theorem.

There are a number of competing probability models, however, which also imply
leptokurtosis. The work along these lines was initiated by Mandelbrot (1963) who
introduced the family of stable Paretian distributions into economics and finance.
However, stable Paretian distributions are not compatible with convergence to nor
mality and, besides, have some unattractive analytical features. The other main com
petitors are the Student's distribution, introduced into the modelling of financial data
by Praetz (1972), and the compound Poisson process, introduced by Press (1967). It
is interesting to note that all four probability models can be viewed within the framework
of scale-compounded normal distributions where the variance is random with an
independent distribution. The mixture model attaches a multinomial distribution to the
variance, the Student's distribution attaches an inverted gamma-distribution, the
compound Poisson process attaches a Poisson distribution and the stable Paretian
distributions attach positive stable distributions to the variance. In tlUs way, the choice
among the models can be regarded as a choice between variance functions for a normal
distribution.

There is mounting empirical evidence for the rejection of the stable Paretian
distribution as a valid model for price dynamics in financial markets (see Lau et a1.
(1990), Jansen and de Vries (1991), and Kaehler (1991). In comparative studies with
daily and weekly data on stock returns and exchange-rate dynamics, it turned out that
the compound Poisson process and mixtures of normal distributions are superior to
stable distributions and Student's distributions in their fit to the data (see Kon (1984),
Akgiray and Booth (1987,1988), Boothe and Glassman (1987), Tucker and Pond
(1988), and Akgiray, Booth and Loist! (1989».

In this paper we will consider the mixture of normal distributions and a gener
alization of it for the modelling of financial data and we will apply the model to daily,
weekly, monthly, and quarterly exchange-rate dynamics. In Section 2 we show that
heteroskedasticity is another strong empirical regularity of the data and in Section 3
we show that the mixture model does not capture this regularity. Section 4 introduces
an extension of the mixture model which incorporates heteroskedasticity by letting
drawings from the component distributions follow a first-order Markov chain. This
Markov-switching model for mixture distributions is due to Lindgreq (1978) based on
the work of Baum et a1.(1970). In a series of papers, Hamilton extended the model and
adapted it to the modelling of interest rates, exchange-rate and the business cycle (see
Hamilton (1988,1989, 1990, 1991a,b), and Engel and Hamilton (1990».

The stochastic specification of financial models is of fundamental importance in
almost every branch of finance. We study the implications of mixture models and
Markov-switching models for the pricing of foreign-currency call options in Section
4. In Section 5 we draw some conclusions from our study and suggest directions for
future research.
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2. Stylized FactS ofExch~mge.Rate-Dynamics

The data to be analysed are the exchange rates of the U.S. dollar against the Gennan
mark, the British pound, the Swiss franc and the Japanese yen. The data are on a daily
basis but also weekly, monthly and quarterly data are used. For these series, end-of
period data were derived from daily exchange rates. The data are from July 1st, 1974
.toJUIie.28th,.1991. -Due to-differences in bank holidays between countries, there are
different numbers of observations in the daily data: 4260 for the mark, 4299 for the
pounq, 4266 for the franc, and 4226 for the yen. For all currencies, the number of
observations in the weekly series is 886, in the monthly series it is 203 and in the
quarterly series it is 68. Data sources are the IMF's International Financial Statistics
and the monthly reports of the Swiss National Bank. The exchange-rate dynamics are
analysed in the fonn of X t = 100 (et -et - 1 ) where et is the logarithm of the exchange

rate at time t.
Table 1reports some descripitive statistics and tests for the daily, weekly, monthly

andquarterly exchange-ratedynamics. Overall, the results are in line with earlier studies
of price dynamics in financial markets (see e.g. Taylor (1986». First, the means of the
series are, in general, not significantly different from zero. It is only in the daily and
weekly yen series that we find some weak evidence against a mean of zero. But note
that the underlying t-test assumes nonnality and that this assumption is very ques
tionable for these data as will be shown below.

, Second, there is some evidence 'of negative skewness (~l' defined as the 3rd

. "standardized moment) in the daily and weekly data of the mark, the franc, and the yen.
However, there is no strong evidence against the null hypothesis of a symmetric dis
tribution (HO:~l =0) in monthly and quarterly data.

Third, we found very strong leptokurtosis in all daily and weekly series. It has
repeatedly been found that returns and price movements in financial markets have
excess kurtosis, i.e. kurtosis which is significantly greater than 3 (the value for a nonnal
distribution). Kurtosis ~ , defined as the ratio of the 4th central moment to the square

of the variance, increases both with excessive mass in the tails or at the centre of the
distribution. A test of HO:~l =3 is a test of mesokurtosis with the two-sided alternatives

of platykurtic (~< 3) and leptokurtic (~> 3) distributions 3. Whereas leptokurtosis

is highly significant in daily and weekly data, it is only significant (at' the 5 percent
level) for the monthly series of the mark, the pound and the franc and all distributions

3 Since the skewness and kurtosis statistics have unknown distributions and show strong non-nor
mality even in large samples, we applied to both statistics some transformations (as described by
0'Agostino (1986» to improve the approximation to a standard normal distribution. We used the S/I
approximation for 131 and the Anscombe-Glynn approximation for ~ .
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Table 1
Statistical properties of exchange-rate dynamics

mark pound franc yen

day mean -0.008 0.009 -0.015 -0.017 *
variance 0.473 0.545 0.660 0.406
skewness -0.225 *** -0.048 -0.086 ** -0.450 ***
kurtosis 7.423 *** 7.341 *** 8.095 *** 7.363 ***

AD 26.675 *** 44.891 *** 32.603 *** 42.780 ***
Q..(40) 56.684 ** 63.669 ** 59.344 ** 80.965 ***
Q.u(40) 567.435 *** 968.832 *** 926.047 *** 760.990 ***

week mean -0.039 0.044 -0.073 -0.083 *
variance 2.153 2.137 2.891 1.786
skewness -0.209 ** -0.015 -0.229 *** -0.728 ***
kurtosis 5.380 *** 6.242 *** 4.749 *** 6.186 ***

AD 5.992 *** 4.386 *** 4.976 *** 9.683 ***
Q.. (40) 46.956 38.332 37.617 98.205 ***
Qx..(40) 168.753 *** 194.851 *** 172.655 *** 127.254 ***

month mean -0.175 0.188 -0.318 -0.379
variance 11.770 11.329 14.707 11.381
ske'Yfless 0.176 -0.315 * 0.215 -0.224
kurtosis 4.084 ** 3.850 ** 4.003 ** 3.470

AD 0.784 0.488 0.482 2.038 **
Q..(40) 37.127 28.881 40.356 47.553

Q.u(40) 26.653 26.113 28.729 39.83

quarter mean -0.569 0.543 -0.949 -1.153
variance 40.155 32.942 53.325 37.544
skewness 0.174 0.053 -0.361 -0.450
kurtosis 2.596 2.437 2.767 2.667

AD 0.210 0.556 0.297 0.583
Qx(l5) 17.748 21.545 9.370 14.202
Qrr(l5) 15.146 11.169 10.256 9.728

Significance levels: * 10 percent, ** 5 percent, *** 1 percent.

of quarterly data are platykurtic (but not significantly). We may conclude, therefore,
that leptokurtosis is a phenomenon of short-run exchange-rate dynamics and that there
is convergence to normality under time-aggregation.

In order to further investigate deviations from normality, we applied the Ander
son-Darling (AD) test for normality which, like the well-known Kolmogorov-Smimov
test, is based upon the vertical difference between the empirical distribution function
and the theoretical distribution function. But the AD test has more power than the
Kolmogorov-Smimov test (see Stephens (1986». As Table 1 shows, the results from
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the AD test are quite similar to those of the kurtosis test. Normality is overwhelmingly
rejected for daily and weekly data. It is quite peculiar, however, that the only monthly
series for which normality is rejected is the yen series whereas in the kurtosis test, this
series was the only monthly series for which mesokurtosis could not be rejected. This
demonstrates that these tests are sensitive to different distributional aspects. The Ho
of normality cannot be rejected with the AD test for any of the quarterly series.

Table 1 also reports results from a test of serial independence. We applied the

Ljung-Box statistic Qx(M) which is.based on autocorrelation function .(ACF) of xt

where M is the highest lag in the ACF. Under the Ho of white noise, Qx(M) has

asymptotically a X2 distribution with M degrees of freedom. Table 1 shows that there
is strong serial dependence in the daily and weekly yen series. At the 5 percent sig
nificance level, Qx is also significant for the other three daily series, but for all other

series we find no evidence for serial dependence. Note, however, that the results for
the daily series may be biased. In the presence of heteroscedasticity, the Bartlett standard
errors of the ACF are downward biased and the Ljung-Box statistic is upward biased,

i.e. we would reject the Ho of independence too often. Diebold (1988) has shown that

heteroscedasticity does indeed bias tests for serial independence with weekly data.
In order to quantify the heteroskedasticity of the series, we computed the ACF of

the squared data xt
2

• McLeod and Li (1983) have established that under the Ho of

..-white noise, the standard errors of squared-data autocorrelations are the same as for
.,the usual ACF. Hence also the Ljung-Box statistic Qxx(M) for squared data is applicable

without modification. As with the test for normality, we find that there are marked
differences between short-run, i.e. daily and weekly, and medium-run, i.e. monthly
and quarterly exchange-rate dynamics. Whereas there is extremely strong serial
dependence of volatility in daily and weekly data, this dependence disappears com
pletely in monthly and quaterly data. Furthermore, all individual autocorrelation
coeffecients for the daily data are positive and they are significant up to M =40. For
the weekly data, some autocorrelation coefficients are negative but all significant
coefficients are positive. Hence, there is a strong clustering of small and of large
exchange-rate fluctuations in the short-run data.

To summarize the statistical properties, we find very strong leptokurtosis and
heteroskedasticity in daily and weekly but a convergence to Gaussian white noise under
time-aggregation. In the following two sections, we shall aim to build a model com
patible with these three empirical regularities.

3. Mixtures of Normal Distributions

As noted in the introduction, the mixture of normal distributions has often been applied
to capture the stylized facts of price dynamics in financial markets. A finite mixture
of normal distributions is defined by:
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(1)

with

(2)

and

(3)

I

LPi=l and O<Pi<l foralli
i=l

~n equation (1), e is the parameter vector e = (PI' ""PI-1' ~1' ... , ~jo 0'1' ••• ,0'/)

where PI is redundant because of the restriction that the probabilities Pi sum to 1.

Scale mixtures of -normal distributions are defined as special cases of (1) with

~1 = "'=~/'

It is straightforward to show that scale mixtures for arbitrary I are leptokurtic4
•

It is more convenient here to define leptokurtosis in terms of the fourth cumulant %4

which is related to central moments by

(4)

where vk is the k-th central moment. Leptokurtosis of a random variable X can

also be defined by the condition %4> O. It is easy to show that for scale mixtures

(5)

and

(6)
I

v4(X) =3 L Pia:.
i=l

Inserting both terms into (4) yields

4 Gridgeman (1970) proved only the peakedness of general scale mixtures of normal distributions.
Mean mixtures of normal distributions are not generally leptokurtic. For instance, the kurtosis of a
two-component normal mixture with 0'1 = 0'2 = 1 and III = -1l2 = 1 is 1.25, i.e. this distribution is
platykurtic.
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(7) ".(X) = {Jr':-(itPiO:)1
= 3var(if) > 0

,'since the variance<f is non-degenerate by assumption. Furthermore, the convergence

to normality under addition follows simply from the central limit theorem.

~he mixture of normal distributions ofequation (1) can only be estimated if I is
specified. In order to identify I, we applied the Schwarz information criterion (SIC)
and found that the optimal I was either 2 or 3 for the series of exchange rates. There
were also some numerical problems when I was greater than 3. Distinguishing between

mean mixtures, which impose the restriction 0'1 = ... = a/> scale mixtures, which impose

the restriction ~1 =... =~l' and mean-scale mixtures, which impose no such restric

tions, we found by applying the SIC that mean mi~tures are never optimal and that
mean-scale mixtures are only optimal for the two yen series. Otherwise, scale mixtures
with either two or three components were optimal for the other series. However, in
most three-components models there was one component with a very small probability

Pi of 0.05 or less. For instance, for the weekly franc series we estimated P2 = 0.02

along with ~ = 2.63 and ~ =0.05. Compared with the overall mean of ~ = -0.07

and the overall variance of <f =2:89,it is clear that this component picks up a bunch
of strong depreciations of the Swiss franc. The small values of the P2 and ~ are

disturbing because they indicate that there might be a problem with singularities, or
near singularities, in the likelihood function (see Titterington, Smith and Makov
(1985». Furthermore, one of the diagnostic tests for independence which we applied
to the model (see below) could not be performed for some of the three-components

models because of some low component probabilities Pi' Therefore, we report only

the results from the two-component models in this paper. The estimates are given in
Table 2 and asymptotic standard errors are in brackets.

Several important observations may be drawn from Table 2. First, there are no
significant mean effects in the daily and weekly series of the mark, pound and franc
but both yen series have components which are significantly different .in their means
with opposite signs. On the other hand, the components of all short-run exchange-rate
series can clearly be distinguished with respect to their variances. The first component

is ,always ,associated with theJower variance and ~ is larger than ai by a factor of

at least 5 in daily data and by a factor of at least 4 in a weekly data. In general the
low-variance component has a higher probability than the second component, the only
exception being the weekly mark series.
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Table 2
Estimates of the mixture of normal distributions

mark pound franc yen

day p 0.749 (0.053) 0.519 (0.045) 0.807 (0.030) 0.689 (0.035)

III 0.002 (0.012) -0.010 (0.010) 0.010 (0.012) 0.032 (0.010)

~ -0.036 (0.041) 0.029 (0.022) -0.121 (0.060) -0.125 (0.034)

~ 0.232 (0.024) 0.101 (0.016) 0.332 (0.021) ~ 0.151 (0.012)

~ 1.192 (0.145) 0.834 (0.057) 2.013 (0.207) 0.955 (0.073)

~I -0.086 0.071 -0.192 -0.315

~ 5.330 4.954 6.077 5.578
LR 400.05 *** 585.56 *** 524.80 *** 573.45 ***

runs 6.704 *** 9.971 *** 7.950 *** 9.311 ***
Markov 44.175 *** 99.056 *** 63.084 *** 86.564 ***

week p 0.335 (0.084) 0.830 (0.141) 0.612 (0.094) 0.636 (0.073)

III -0.015 (0.057) 0.025 (0.058) 0.071 (0.071) 0.139 (0.051)

~ -0.050 (0.0.76) 0.136 (0.262) -0.300 (0.180) -0.469 (0.147)

~ 0.293 (0.143) 1.313 (0.319) 1.154 (0.224) 0.592 (0.108)

~ 3.084 (0.332) 6.143 (2.625) 5.533 (0.836) 3.630 (0.504)

~I -0.021 0.073 -0.236 -0.544

~ 4.125 5.172 4.662 5.145
LR 75.627 *** 63.215 *** 65.848 *** 120.20 ***

runs 3.399 *** 4.711 *** 2.247 ** 5.662 ***
Markov 11.310 *** 21.934 *** 4.994 ** 31.336 ***

month p 0.297 (0.200) 0.926 (0.173) 0.200 (0.138) 0.265 (0.184)

III -0.225 (0.426) 0.188 (0.273) 0.047 (0.597) 0.364 (0.500)

~ -0.155 (0.365) 0.188 (3.003) -0.409 (0.367) -0.647 (0.520)

~ 2.262 (2.218) 9.376 (1.982) 2.458 (2.140) 0.787 (1.366)

~ 15.701 (3.498) 34.911 (44.730) 17.642 (2.910) 14.856 (2.992)

~I 0.015 0.000 -0.059 -0.216

~ 3.824 4.059 3.509 3.840
LR 8.459 ** 3.701 4.317 20.649 ***

runs -0.223 -0.234 - -0.145
Markov 0.058 0.046 - 0.058

quarter p 0.955 (0.030) 0.736 (0.083) 0.935 (0.033) 0.750 (0.166)

III -1.201 (0.752) -2.013 (0.907) 0.149 (0.812) 1.471 (1.312)

~ 12.723 (0.591) 7.683 (0.776) -16.708 (0.763) -9.005 (3.307)

~ 32.604 (6.365) 17.339 (5.923) 37.541 (7.530) 16.537 (6.473)

~ 0.734 (6.436) 5.429 (2.769) 2.044 (1.532) 15.904 (13.942)

~I 0.196 0.089 -0.379 -0.462

~ 2.921 2.225 3.053 2.763
LR 3.870 5.129 * 6.698 ** 5.258 *

runs 0.554 -2.671 *** 0.236 2.166 **
Markov 0.155 6.298 ** 0.362 4.376 **
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The results are somewhat different for medium-term exchange-rate dynamics, i.e.
for monthly and quarterly data. The low-variance component has the smallerprobability
for these data (with the exception of the monthly pound series). It may also be surprising
that the first component is associated with the high-variance state in quarterly data but
note that 'the "ranking" of states 'is arbitrary and unimportant in this model. We also
find some strong mean effects in the lower frequency data. All quarterly series have
components which are significantly different in their means with opposite signs. Some
of the 'mean effects, however, are disturbing. For instance, the second component for
the quarterly mark series has a large mean, a small variance and a probability of 4.5
percent. With a total of 68 quarterly observations, this probability implies an expected
number of approximately 3 observations from the second component in this series.
This means that the second component represents a small number of large depreciations
of the mark against the dollar. In more extreme cases, the mixture model may converge
to a singularitywhere the mean ofone component is equal to the value ofone observation
(often an extreme one) and where the variance of this components goes to zero. The
likelihood function will then go to infinity and this is a major problem for maxi
mum-likelihood estimation of the model. In order to avoid this singularity problem,

one may try to keep all 0; away from zero through simple restrictions on the parameter

space or through the introduction of a penaltyfunction (which also has the interpretation
ofaBayesian prior) as in Hamilton (l991a). Empirical applications often apply the
restrictions of mean mixtures but we decided not to impose the restrictions of equal
variances because we have good reason to believe that scale effects are more important
than mean effects in our data. The only series where we got serious problems with
singularities was the monthly pound series. The fully parameterized model converged
for none of the starting values which we tried. We, therefore, imposed the restriction
of equal variances for this series.

In order to judge whether the estimated models are compatible with the stylized
facts of the data, we computed the implied skewness ~1 and the implied kurtosis ~

of the models from

(8)

and
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(9)

with bj =~i -~, where ~ is the overall mean. The results, reported in Table 2, show

a rather close agreement between the pattern of skewness and kurtosis in the data and
the implied skewness and kurtosis. If we impose a 5 percent significance level, we find
significant negative skewness in several daily and weekly series (see Table 1) and we
find also for all those series a negative implied skewness. As regards implied kurtosis,
we get 1eptokurtosis for all daily, weekly, and monthly series but the degree of 1epto
kurtosis decreases under time-aggregation, as it does in the data (see Table 1). The
implied kurtosis is somewhat smaller than the kurtosis of the data for daily and weekly
series but there is a quite close agreement between implied 1eptokurtosis and actual
1eptokurtosis for the monthly data.

We also report in Table 2 the results from a likelihood-ratio (LR) test against the
Ho of Gaussian white noise. There is, however, a problem with the application of the

LR· test to mixture models since the degrees of freedom are unclear for mean-scale
mixtures. We may either impose the restriction P == PI = 0 (or alternatively: P = 1)

which reduces the mixture model to Gaussian white noise or we may impose the
restrictions ~1 =~2 and 01 =02. In the first case we would have one degree of freedom

(from one restriction) in the LR test and in the second case we would have two degrees
of freedom. Another, related, problem with the LR test is that p is on the boundary of
the parameter space under Ho and that, therefore, the regularity conditions for the

application of the X2distribution are not satisfied.
We took here the pragmatic position of being on the save side with a conservative

rule that the degrees of freedom are two. The choice of degrees offreedo~is immaterial
for daily and weekly data where the Ho of Gaussian white noise is overwhelmingly

rejected. For monthly and quarterly data, we find much weaker evidence against
normality but this is no surprise in view of the stylized facts reported in the previous
section.

Finally, we applied two tests of serial dependence to examine the dynamic
properties of the model. In order to test for independence we introduce the unobservable
state variable St which determines at time t from which component a realization is

drawn, i.e. if St = i then there will be a drawing from component i at t . From Bayes's

theorem we get
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(10) pf$t Ixt)
/;(tt 'I ~;~ 0) .p;'f$t)
I

I /;U:t I ~;, 0;) • p;f$t)
;=}

and we can estimate the integer St by maximizing /;U:t I ~;, oJ· p;f$t). This gives an

estimated series of states which can be tested for independence.
the:first,test~is the multiple runs testaf Barton and David (1957). A run is defined

as a sequence of s,'s 'with the same value. The corresponding test statistic has an

asymptotic standard normal distribution. A positive value of the test statistic indicates
that there are less runs than expected under the H o of randomness. Table 2 shows that

for all high-frequency series randomness is indeed rejected and that there are always
less runs than expected, i.e. there is positive dependence in the states. Given that the
components of the mixture are mainly different with respect to their variances, this
result corresponds to the results from the ACF for squared data in Table 1. Again, there
is a marked difference to low-frequency (i.e. mond~y and quarterly) data where the
runs test leads to a rejection of independence for the quarterly pound and yen series
only.

The second test for independence is a conventional X2 test within the framework

of a Markov chain for St. The results are very similar to the ones from the runs test.

There is strong rejection of independence for all daily and weekly data but no rejection
_in the monthly data. For quarterly data, independence can be rejected for the pound
,and the yen at the 5 percent level. In all cases of rejections, the dependence is caused
by the fact that the states St have a greater degree of persistence than expected, i.e.

there is positive serial dependence of states.
We may conclude from the above analysis that the model of two mixtures of

normal distributions captures well the stylized facts of non-normality and leptokurtosis
in short-run exchange-rate data. With the exception of the yen series, the dominant
effect is the scale effect and not the mean effect. For monthly and quarterly data,
however, we find much weaker evidence for a mixture model. This, of course, is in
accordance with the stylized fact of convergence to normality under time aggregation.
But a general deficiency of the model is that it cannot capture the heteroskedasticity
of the high-frequency data. The rejection in the test of independence for the state
variable St indicates this deficiency. In the next section we will discuss' an extension

of this model which removes this deficiency by introducing a Markov chain process
for the state variable.

5 The run test could not be computed for the monthly franc series because, according to (9), all
observations are classified as belonging to the second component.
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4. Markov-Switching Models

Bibliothek
des Ins'tituts fur Weltv,firtschcd'i

A natural way to add dynamics to the mixture model is to assume that the state variable
Sf follows a time-homogeneous or stationary first-order Markov process, i.e.

For a Markov-switching model with two states (or regimes) we get a 2x2 transition
matrix of states with two independent probabilities Pll and P22. Of course, it follows

P21 =1-Pll and that P12 =1-P22' This Markov chain together with the mixture model

(1) and the specification of the normal distribution (3) gives a seven parameter model

with parameter vector e =(pll,P22' Ill, 1l2, 01' O2, '¢) where '¢ =P (s1 =1). We need '¢,

the probability of being in state 1 in time period- t = 1, to start off the Markov chain
and a natural choice is to set 1.V equal to the stationary probability of being in state 1,
i.e.

(12)
1-P22

'¢=---
2-PU-P22

Estimation of the Markov-switching model is quite involved since the state

variable Sf is not observable. The basic idea of the model is due to Baum et a!. (1970)

who suggested to estimate the model with the expectation-maximization (EM) algo
rithm. Furthermore, they derived the essential properties of the EM algorithm within
a general model with Markov-chain dependence. They showed that, under certain
regularity conditions, the EM algorithm increases the likelihood function monotoni
cally and that it converges to the maximum-likelihood (ML) estimates. Lindgren (1978)
detailed the steps needed to implement the EM algorithm for the Markov-switching
model, extended the model to the case of switching regressions and examined the
properties of the ML estimator. The switching-regressions model may be written as

(13)

(l4) Sf_d=i for i=1, ... ,I
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where z, is a ~ector of exog~nousor lagged endogenous variables, ai' is a 'vector or

regression parameters for the i -th state, u, is a Gaussian white-noise disturbance

term with state-dependent variance 07 and d is a delay parameter for the state variable

It m8:Y be noted that the switching-regressions model of (12) - (13) describes a
broad class of models including the switching model of Goldfeld and Quandt (1973)
and the threshold models of Tong (1983, 1990) and Priestley (1988). The specifications
differ'only in their assumptions about the state variable St. The Markov-switching

model obtains from (12) - (13) when Z, =1 and when we assume a Markov chain for

s, as in (11). We also assume that the delay parameter d is zero. Our motivation for

ignoring mean effects of exogenous and lagged endogenous variables derives from
Section 2 where we found no strong mean effects in the statistical properties of the
exchange-rate data. _

The estimates of the Markov-switching model are presente}i in Table 3 where
asymptotic standard errors are given in brackets. First, we note that the large values of
Pll and P22 indicate great persistence of states. We can calculate the expected duration

of state i, Ai' from Ai = (1-Putl and find that, for instance, the expected duration of

state 2 is 50 days for the daily mark series. For daily data, the expected duration of
.. "states varies between- 29.4 days and 50.0 days, for weekly data Ai varies between 9.7

weeks and 31.3 weeks, for monthly data Ai varies between 2.3 months and 12.0 months,

and for quarterly data Ai varies between 1 quarter and 14.3 quarters. The extreme

values for the quarterly data were caused by the franc series where the problem of
convergence to singularities occurred. For some series and states, the Ai'S are roughly

consistent across time horizons. For instance, the AI'S for the mark-dollar exchange

rate are 47.6 for daily data, 9.7 for weekly data and 2.9 for monthly data. On the other
hand, A2 is equal to 16.4 for the weekly yen series and equal to 16.7 for the monthly

yen series, and this appears to be inconsistent. In general, the Ai'S of quarterly data

are surprisingly high.
We also computed the stationary stateprobabilies PI and P2 frorb PI = '¢ (see

(12» and P2 = 1-Pl' It is surprising that the low-variance states, in general this is

state 1, have in most eases a smaller stationary probability than the high-variance states.
Only for two series is PI greater than 0.5 (it is 0.526 for the daily pound series and

0.558 for the daily franc series, see also the last column in Table 4). This result is in
conflict with the estimates from the mixture model where PI was greater than 0.5 for

nearly all of the daily and weekly series.
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From the ·pa:rameterestimates of the model we can also compute the conditional
probability :It; (t I 't) =p Cst =i IXl' •.. ,xt ;8) in a recursive way (see Lindgren (1978) and

Hamilton (1989)). If we set 't = t, we get "filter" probabilities about the probable state
at time t whereas for 't =T we get "smoothed" probabilities based on the full sample.
In practice, both alternatives give very similar results. In Figure 1 we plot the smoothed
probabilities of state 1 for the weekly mark series together with the series x,. It is

apparent from this figure that state 1 is associated with tranquil (i.e. low variance)
periods. The probability smoother identifies the period from November 1975 until
November 1977 as being associated with state 1 if the criterion is that :ltl(t IT) > 0.5.

The corresponding plot of x, shows that this was also a period of relatively small

weekly exchange-rate fluctuations. The only other periods of prolonged tranquillity
are the ones from July until December 1974 and from February until September 1979.
This seems to indicate that the early period of the post-Bretton-Woods era was more
tranquil than the more recent one. It is also interes!ing to note that the smoother attaches
a probability of zero to :ltl (t IT) to both the strongest appreciation of the mark in the

sample (the 7.8 percent appreciation in the wake of the Plaza agreement in September
1985) and the stronges depreciation (the 7.0 percent depreciation after the introduction
of support measures for the dollar in November 1978).

Figure 1 a
Smoothed probabilities of state 1: weekly mark series
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Figure 1 b
Exchange-rate dynamics: weekly mark series
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As regards the estimates of means ~j' we get results that are very similar to the

ones of the mixture model. We find no strong mean effects in daily, weekly and monthly
data with the exception of the daily yen series. It is only with quarterly data that we

··:find strong mean effects with ~1 and ~2' having opposite signs. This result confirms

the finding of Engel and Hamilton (1990) that there are significant mean effects in the
three quarterly dollar exchange rate they analysed (mark, pound and French franc). It
is, however, somewhat puzzling that we should find mean effects in quarterly data but
not in higher-frequency data. A possible explanation for this might be significant
high-order autocorrelations in the high-frequency data, a phenomenon that was also
discussed in the contextofbusiness-cycle analysis (see Cochrame (1988)). Applications
of the variance-ratio test to exchange-rate data seem to confirm this conjecture (see
Lin and He (l991)).

As regards the estimates of variances aj, we find the variance-effect to be
(

dominant in daily, weekly and monthly data but also to be prevalent in quarterly data.
We noted in the previous section that the presence of singularities in th~ likelihood is
a major problem for the estimation ofmean-scale mixtures. The same problem arises
in the estimation of Markov-switching models with mean-and-variance effects. But,
fortunately, this.problem did not bother us much in our application to exchange rates.
The only series where this problem occured was the quarterly franc series.

Finally, it is interesting to compare the Markov-switching models and the mixture
models with LR tests. Table 3 shows that for daily and weekly data we can reject the
mixture models in favour of the corresponding Markov-switching models at very high
significance levels (note that we apply a X2 distribution with one degree of freedom
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Table 3
Estimates of the Markov-switching model

mark pound franc yen

day PH 0.979 (0.004) 0.975 (0.005) 0.977 (0.004) 0.966 (0.006)

P22 0.980 (0.005) 0.973 (0.005) 0.971 (0.006) 0.979 (0.004)

J.LI .0.002 (0.010) 0.010 (0.009) 0.013 (0.011) 0.018 (0.008)

Il2 -0.018 (0.020) 0.008 (0.020) -0.051 (0.026) -0.039 (0.016)

of 0.153 (0.008) 0.147 (0.014) 0.225 (0.010) 0.072 (0.056)

~ 0.781 (0.033) 0.793 (0.045) 1.204 (0.050) 0.610 (0.021)

LR 513.490*** 389.732*** 465.268*** 651.809***

week PH 0.897 (0.029) 0.897 (0.020) 0.924 (0.041) 0.922 (0.025)

P22 0.940 (0.021) 0.968 (0.004) 0.967 (0.036) 0.939 (0.028)

J.LI -0.062 (0.051) -0.086 (0.06~ -0.116 (0.080) 0.087 (0.063)

Il2 -0.025 (0.078) 0.082 (0.059) -0.055 (0.082) -0.217 (0.113)

of 0.416 (0.066) 0.284 (0.070) 0.597 (0.185) 0.388 (0.092)

~ 3.154 (0.240) 2.679 (0.140) 3.867 (0.560) 2.851 (0.313)

LR 66.692*** 64.356*** 55.204*** 78.094***

month PH 0.657 (0.369) 0.568 (0.105) 0.767 (0.075) 0.857 (0.023)

P22 0.840 (0.307) 0.908 (0.043) 0.917 (0.013) 0.940 (0.012)

J.LI -0.179 (0.449) 0.654 (0.457) 0.156 (0.477) 0.026 (0.210)

Il2 -0.174 (0.412) 0.089 (0.398) -0.488 (0.305) -0.541 (0.334)

of 2.967 (4.456) 2.108 (1.426) 3.347 (1.007) 1.568 (0.483)

~ 15.820 (6.103) 13.171 (1.561) 18.582 (1.839) 15.116 (1.914)

LR 0.123 0.246 5.585** 7.548***

quarter PH 0.814 (0.120) 0.807 (0.070) 0.930 (0.036) 0.647 (0.068)

P22 0.881 (0.099) 0.606 (0.216) 0.000 (0.541) 0.752 (0.148)

J.LI -4.115 (1.074) -2.554 (1.044) 0.169 (0.808) 2.269 (0.706)

Il2 1.762 (1.651) 6.955 (1.684) -16.696 (0.756)

"
-3.535 (1.437)

of 17.122 (6.724) 14.755 (4.570) 37.260 (7.445) 12.696 (4.288)

~ 40.604 (10.664) 8.122 (6.641) 2.058 (1.548) 40.066 (7.082)

LR 0.483 5.370** 0.526 3.310

17



"t~ the LR statistic). However, the evidence In favour of the Markov':;swifching model"
is much weaker in the low-frequency data. Only three of the eight LR's for monthly
and quarterly data are significant at the 5 percent level. It is only the monthly yen series
where the LR statistic rejects the mixture model against the Markov-switching model
and it rejects the Ho of Gaussian white-noise against the mixture model. If we apply

theLR test to a direct comparison between the Markov-switching model and Gaussian
white noise, we are again confronted with the methodological problems mentioned in
the last section. However, if we apply a,'l distribution with 2 degrees of freedom to
this direct comparison we find that Gaussian white noise is rejected in six of the eight
low-frequency series.

We motivated the application of mixture models to the modelling ofexchange-rate
dynamics in Section 3 with reference to the stylized facts of the data, i.e. with the
statistical properties of leptokurtosis and convergence to normality under time-ag
gregation. The extension to the Markov-switching model was motivated by the fact
that the mixture model cannot capture the stylized fact of heteroscedasticity whereas
this properties is incorporated in Markov-switching models with scale components.
We have now to ask ourselves whether leptokurtosis and convergence to normality
still obtain in a Markov-switching model. The question of leptokurtosis is very easy
to answer. In order to compute the moments of the distribution of X, we simply have
to compute the stationary probabilities as in (12) and then proceed as in the case of a
mixture model. This means that we have the same condition for leptokurtosis as in the
niixture model with Pi replaced by Pi and that we may use equations (8) and (9) with

Pi substituted for Pi' It follows that Markov-switching models with variance effects

but without mean effects always imply leptokurtosis.
The questionof convergenceto normality under time-aggregation is more difficult

to address since the property of independence is lost and, therefore, we cannot invoke
a simple central limit theorem. There is, however, some reason to conjecture that
convergence to normality obtains for non-degenerate and non-pathological Mar
kov-switching models. Lindgren (1978) established the asymptotic independence of
the Xi variables and this ought to be half the way to the proof of convergence to

normalitY'. We leave it to future research to provide the remaining steps of a complete
proof of convergence since we want to concentrate here on the aspects of application
of the model. However, in Table 4 we offer some illustrations of asymptotic inde
pendencefor the estimated models. We report there the estimates of the n-step transition

probabilities P~ =P ~t =i ISt-n =i) for daily and weekly data. The n-step transition

probabilities are obtained from the n-th power of the transition matrix. The last column

6 Lindgren (1978) proved asymptotic independence by showing that the "mixing" conditions are
satisfied. The use of the term "mixing" might cause some confusion in this context since the "mixing"
conditions are not related in any way to the mixing of densities as in (1).
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reports the Statib"ilary transition probabilities for n~· 00. Independence obtaines if

P~l +p~ =1, and we find this condition quite closely satisfied at a yearly time interval,

i.e. for n = 250 with daily data and for n = 52 with weekly data.

Table 4
Estimates of the n-step transition probabilities

day n =5 n =20 n =60 n =250 n~oo

mark P~l 0.903 0.708 0.530 0.490 0.490

P~ 0.906 0.719 0.548 0.510 0.510

pound P~l 0.888 0.688 0.545 0.526 0.526

P~ 0.876 0.654 0.495 0.474 0.474
-

franc P~l 0.896 0.709 0.576 0.558 0.558

P~ 0.869 0.632 0.464 0.442 0.442

yen P~l 0.847 0.579 00401 0.381 0.381

P~ 0.907 0.741 0.632 0.619 0.619

week n =1 n =4 n =12 n =52 n~oo

mark P~l 0.897 0.678 0.444 0.369 0.369

P~ 0.940 0.812 0.674 0.631 0.631

pound P~l 0.897 0.663 0.369 0.235 0.234

P~ 0.968 0.897 0.807 0.766 0.766

franc P~l 0.924 0.696 0.479 0.305 0.303

P~ 0.967 0.868 0.773 0.698 0.697

yen P~l 0.922 0.704 0.532 0.439 0.439

P~ 0.939 0.769 0.634 0.562 0.562

We may conclude from the analysis in this section that the Markov-switching
model captures well the major stylized facts of the exchange-rate data. It does so
especially for the short-run, i.e. daily and weekly, data.
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5. Implications for the Pricing of Foreign-currency Options

The concept of choice under uncertainty is the cornerstone of financial theory.
Therefore, the stochastic specificationoffinancial models is of fundamental importance
in almost any branc1:l of modem finance. A convenient and natural choice for the
underlying probability model is the normal distribution in the static context and the
corresponding Wiener process in the continuous.;.time context.

The assumption of a Wiener process for the price (or return) process is also central
for th~ seminal option"'pricing model6f Black and Scholes (1973). The fact that this
assumption is at odds with the empirical regularities of stock prices has early been
recognized (see the Introduction). But early attempts to adapt the Black-Scholes model
to the stylized facts of financial data have only considered the effect of non-normality,
i.e.leptokurtosis. A popular alternative to the Wiener process has been Merton's (1976)
model of a jump-diffusion process which incorporates a compound Poisson process.
Empirical applications have shown that this model provides a better fit to the data than
the assumption of Gaussian white noise but when option prices are computed from the
estimated parameters of compound Poisson processes, they differ only little from
Black-Scholes prices (see Ball and Torons (1985».

The issue of heteroskedasticity has only recently been addressed in the finance
literature under the label of "stochastic volatility" (Jarrow and Wiggins (1989) and
Taylor (1992) provide surveys of this literature). The approaches which have been
applied can~ grouped under two headings: the continuous-time-finance approach and
the econometric approach. In the continuous-time-finance approach, the price process

(15) dE/E ~ adt + odW

(where E the price of the underlying asset, say the exchange rate, W is standard
Brownian motion, a is a constant and 0 is the instantaneous standard deviation) is
augmented by a specification of the volatility process as a geometric Wiener process

(16) d % = Nit + ydV

(where A and y are constants and V is standard Brownian motioq~ or as a Orn
stein-Uhlenbeck process

(17) dolo = A(~ - o)dt +ydV

(where ~ is a constant) or some variants of (16) or (17). The two-equation system of
either (15)-(16) or (15) and (17) has as an additional parameter g, the correlation
between dW and d V.
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There are 'severalproblems withthis approach. First, the specification of (16) or
(17) is ad hoc and only motivated by the fact that it is convenient to work with popular
stochastic processes. Second, the fundamental problem with any specification of an
independent stochastic volatility process is that it becomes impossible to construct a
perfect-hedge portfolio because volatility is non-observable and non-traded. Therefore,
the great advantage of risk-neutral evaluation is lost. It has been tried to circumvent
this problem by either assuming that the volatility risk can be diversified (see e.g. Hull
and White (1987)), but this appears to be arbitrary, or by putting restrictions on the
utility function of investors, such as logarithmic utility functions (see e.g. Wiggins
(1987)).

Whereas the continuous-time-finance approach starts from a theoretical per
spective, the econometric approach starts from an empirical one. This approach has
only recently been applied and it has used the generalized autoregressive conditional
variance (GARCH) model of Engle (1982) and Bollerslev (1986). The aim of this
approach is to find a specification of the volatility process which adequately represents
the stylized facts (see e.g. Duan (1991)). A problem with this approach is that it is often
unclear under whichconditions the specified volatility process is compatible with the
risk-neutral valuation principle. Duan (1991), however, has established such conditions
for the GARCH model.

In this section, we follow the econometric approach to study the impact of lep
tokurtosis and heteroskedasticity on option pricing. More specifically, we compute call
option prices which would obtain under a mixture model and under a Markov-switching
model and compare them with Black-Scholes prices which are derived under the
assumption of Gaussian white noise. Of course, we cannot hope to derive closed-form
solutions for option prices of mixture models and Markov-switching model. We,
therefore, have to rely on simulations which are based on the expected value of the
boundary condition, i.e. we compute the call option price as

(18)
1 R

C =- L max{Er -B;O}
R r=l

where B is the exercise price and R = 20,000 is the numer of repetitions in every
experiment. We based our simulations on the parameter estimates of the daily mark
series, as reported in Tables 1-3. "

Table 5 reports the results from the simulation experiments when the current spot
rate Et is varied between 1.60 and 2.00. The time to maturity is set to 20 days and the

exercise price B is set to 1.80. Note that, across each row of Table 5, the computed
option prices are based on the same realizations of the random variable, whereas the
drawings are distinct between rows. We could, of course, compute the Black-Scholes
pricesfrom a closed-form equation but in order to reduce the impactofsample variation,
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Table 5
Spot-rate effect for call options: daily mark series

F, Gauss Mixture Markov bias Mixture st. error bias Markov st. error

1:60 0.000000 0.000003 0.000013 0.000002 0.000275 0.000012 0.000638
1.61 0.000002 0.000002 0.000014 0.000000 0.000197 0.000013 0.000742
1.62 0.000006 0.000011 0.000030 0.000005 0.000411 0.000024 0.001022
1.63' 0.000012 0.000022 0.000050 0.000010 0.000699 0.000038 0.001352
1.64 0.000010 0.000010 0.000071 -0.000000 0.000497 0.000061 0.001489
1.65 0.000031 0.000048 0.000121 0.000016 0.001198 0.000089 0.002033
1.66 0.000069 0.000092 0.000210 0.000024 0.001432 0.000142 0.002545
1.67 0.000134 0.000145 0.000308 0.000011 0.001684 0.000174 0.003025
1.68 0.000192 0.000218 0.000424 ,0.000026 0.002066 0.000233 0.003373
1.69 0.000368 0.000371 0.000569 0.000004 0.003007 0.000201 0.004345
1.70 0.000621 0.000639 0.000924 0.000018 0.003721 0.000303 0.005199
1.71 0.000992 0.000984 0.001366 . -0.000008- 0.004531 0.000374 0.006067
1.72 0.001398 0.001429 0.001717 0.000031 0.005216 0.000320 0.006803
1.73 0.002262 0.002330 0.002401 0.000068 0.006551 0.000138 0.007958
1.74 0.003329 0.003320 0.003422 -0.000009 0.007404 0.000093 0.008953
1.75 0.005169 0.005193 0.005097 0.000024 0.008793 -0.000072 0.010338
1.76 0.007003 0.007015 0.006707 0.000012 0.009833 -0.000296 0.011114
1.77 0.009605 0.009475 0.008915 -0.000130 0.011165 -0.000690 0.011801
1.78 '0.012810 0.012674 0.011814 ':0.000136 0.012144 -0.000995 0.012406
1.79 0.016543 0.016581 0.015555 0.000038 0.013621 -0.000988 0.012772
1.80 0.020855 0.020841 0.019793 -0.000014 0.014429 -0.001062 0.012882
1.81 0.026378 0.026222 0.025422 -0.000157 0.015999 -0.000956 0.013759
1.82 0.032268 0.032425 0.031619 0.000157 0.017135 -0.000649 0.014006
1.83 0.039193 0.038843 0.038593 -0.000350 0.017967 -0.000600 0.014581
1.84 0.045956 0.045926 0.045930 -0.000030 0.018704 -0.000027 0.015244
1.85 0.053905 0.053924 0.053992 0.000019 0.019593 0.000087 0.016332
1.86 0.062576 0.062522 0.062732 -0.000055 0.020449 0.000156 0.016879
1.87 0.070819 0.070960 0.071402 0.000140 0.020758 0.000583 0.017893
1.88 0.079893 0.080074 0.080399 0.000181 0.021302 0.000506 0.018473
1.89 0.089578 0.089608 0.090176 0.000029 0.021820 0.000598 0.019190
1.90 0.098772 0.099140 0.099507 0.000368 0.022054 0.000735 0.019760
1.91 0.108399 0.108739 0.108748 0.000340 0.022573 0.000350 0.020183
1.92 0.117965 0.117986 0.118355 0.000021 0.022773 0.00039,0 0.020639
1.93 0.128322 0.128344 0.128543 0;000022 0.023397 0.000221 0.021202
1.94 0.138264 0.138107 0.138489 -0.000157 0.023194 0.000225 0.021236
1.95 0.148130 0.148112 0.148246 -0.000017 0.023193 0.000116 0.021579
1.96 0.157830 0.157835 0.158127 0.000005 0.023524 0.000297 0.021620
1.97 0.167222 0.167193 0.167415 -0.000028 0.023608 0.000194 0.022045
1.98 0.178347 0.178564 0.178557 0.000217 0.023786 0.000210 0.022113
1.99 0.187682 0.187663 0.187869 -0.000019 0.023971 0.000186 0.022212
2.00 0.198572 0.198372 0.198444 -0.000200 0.024034 -0.000128 0.022345
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theBlack-Scholes 'prices, reported under the heading of "Gauss", are based on simu
lations, too. Note, too, that we neglect the present-value factor in the boundary condition
(18) since it would have no influence on the comparison of prices between models.

Although the simulations are based on 20,000 repetitions per row, the sample
variations are still sizeable for out-of-the-money options. It is, of course, inconsistent
to have call option prices for the Black-Scholes model and for the mixture model which

'. are lower at a'spot rate of Et =1.64 than at Et = 1.63 but here we are interested in

comparisons across rows and not between rows. Under the headings of "bias" we report
the differences between Black-Scholes prices and prices from the mixture model and
the Markov-switching model, respectively. The correspondingstandard errors are given
in columns 7 and 9. Table 5 shows that the biases according to the mixture model are
small and unsystematic. The standard error of biases is a multiple of the biases for all
spot rates. We find, however, a systematic pattern in biases if Black-Scholes prices are
compared with prices computed from the Markov-switching model. For out-of-the-

money options the bias is positive and increasing if we go fromEt =1.60 to Et =1.71.

It then decreases and becomes negative for at-the-money options. The bias is again
positive for in-the-money options with spot rates larger than 1.84. The largest bias
obtains for a spot rate of 1.90 and somewhat surprisingly, the bias is again negative
for a spot rate of 2.00. It is interesting to note that this pattern of biases mimics the
patterns derived by Hull and White (1987) within the continuous-time-finance approach
based on equations (15)-(16) and also mimics the results of Duan (1991) who found
the same pattern of biases in an application of the GARCH model. Although the pattern
is systematic, the biases are small and insignificant when they are compared with their
standard errors. It is, therefore, doubtful whether any profitable investment strategy
can be based on these biases.

Results from experiments of varying the time to maturity are reported in Table
6. We computed call option prices for at-the-money options with a spot rate and an
exercise price of 1.80. The simulations were based on the same parameter estimates
as in the previous experiment and the time to maturity was varied between 1 and 40
days.

A comparison of option prices derived under the assumptions of Gaussian white
noise and of a mixture distribution shows that for nearly all maturities, the Black
Scholes prices are larger than the mixture-distribution prices. This corresponds to the
negative value of the bias obtained in Table 5 for a spot rate of 1.80. Surprisingly,
however, for a maturity of 20 days we get a positive bias in Table 6. This indicates that
there is sizeable sample variation for at-the-money options although we used 20,000
repetitions. The absolute value of the bias is only a small fraction of its standard error
for all maturities. The biases are, therefore, insignificant.
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Table 6
Maturity effect for call options: daily mark series

Maturity Gauss Mixture Markov bias 'Mixture st. error bi~s Markov st. error

1 0.00490 0.00448 0.00458 -0.00042 0.00326 -0.00032 0.00309
2 0.00693 0.00657 0.00648 -0.00036 0.00460 -0.00045 0.00436
3 0.00831 0.00812 '0.00777 ~0.00019 0.00569 -0.00054 0.00528
4

",

0.00957 0.00934 0.00901 -0.00024 0.00643 -0.00056 0.00597
5 0.01079 0.01061 0.01007 -0.00018 0.00731 -0.00072 0.00680
6 0.01166 0.01150 0.01086 -0.00016 0.00804 -0.00080 0.00741
7 0.01302 0.01279 0.01231 -0.00023 0.00874 -0.00071 0.00814
8 0.01377 0.01365 0.01291 -0.00012 0.00928 -0.00086 0.00849
9 0.01432 0.01410 0.01360 -0.00022 0.00978 -0.00072 0.00889
10 0.01499 0.01479 0.01398 -0.00020 0.01035 -0.00101 0.00940
11 0.01584 0.01560 0.01487 -0.00024 0.01077 -0.00097 0.00985
12

-
-0.00096 0.010240.01642 0.01616 0.01546 -0.00026 0.01135

13 0.01719 0.01711 0.01613 -0.00008 0.01189 -0.00106 0.01070
14 0.01795 0.01786 0.01695 -0.00008 0.01209 -0.00100 0.01123
15 0.01834 0.01823 0.01737 -0.00010 0.01284 -0.00097 0.01129
16 0.01913 0.01898 0.01809 -0.00015 0.01316 -0.00104 0.01184
17 0.01963 0.01936 0.01861 -0.00027 0.01342 -0.00102 0.01220
18 0.01981 0.01980 0.01870 -0.00000 0.01411 -0.00111 0.01242
19 0.02030 0.02003 0.01924 -0.00027 0.01426 -0.00106 0.01261
20 0.02100 0.02112 0.02010 0.00012 0.01494 -0.00090 0.01307
21 0.02138 0.02127 0.02045 -0.00010 0.01523 -0.00093 0.01321
22 0.02222 0.02217 0.02103 -0.00005 0.01550 -0.00119 0.01378
23 0.02275 0.02271 0.02161 -0.00004 0.01592 -0.00114 0.01419
24 0.02302 0.02296 0.02183 -0.00006 0.01609 -0.00119 0.01438
25 0.02356 0.02347 0.02252 -0.00008 0.01641 -0.00104 0.01470
26 0.02421 0.02402 0.02308 -0.00019 0.01690 -0.00113 0.01487
27 0.02451 0.02444 0.02341 -0.00007 0.01713 -0.00110 0.01503
28 0.02473 0.02467 0.02359 -0.00006 0.01710 -0.00114 0.01535
29 0.02546 0.02549 0.02409 0.00003 0.01769 -0.00137 0.01583
30 0.02559 0.02565 0.02431 0.00006 0.01803 -0.00128 0.01607
31 0.02578 0.02569 0.02463 -0.00010 0.01826 -0.00115 0.01602
32 0.02612 0.02592 0.02489 -0.00020 0.01843 -0.00123 0.01654
33 0.02700 0.02692 0.02575 -0.00009 0.01904 -0.00125' 0.01679
34 0.02682 0.02669 0.02571 -0.00013 0.01903 -0.00111 0.01684
35 0.02761 0.02763 0.02614 0.00002 0.01961 -0.00147 0.01728
36 .0.02808 0.02791 0.02686 -0.00017 0.01966 -0.00122 0.01748
37 0.02783 0.02783 0~02662 -0.00000 0.01980 -0.00121 0.01754
38 0.02847 0.02849 0.02709 0.00003 0.02029 -0.00138 0.01816
39 0.02852 0.02843 0.02751 -0.00009 0.02039 -0.00101 0.01777
40 0.02893 0.02905 0.02769 0.00012 0.02058 -0.00124 0.01846
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.. -- If we compare Black:Scholes prices with Markov-switching prices, we find in
Table 6 that the Black-Scholes model overprices the options at all maturities and this
corresponds to the result in Table 5 for a spot rate of 1.80. The absolute value of the
bias increases with the time to maturity but, again, the sample variation appears to be
quite large. Although the bias is systematic, it is not significant in a statistical sense
since the standard error of the bias is much larger than the amount of bias, in most cases
the bias is less than 10 percent of its standard error.

We may conclude from the simulation experiments in this section that we find
systematic differences to Black-Scholes prices if we adopt a Markov-switching model
but not if we adopt a mixture model. Statistically, however, all biases are insignificant.

6. Conclusions

In this paper we have examined issues in the application of mixture models and
Markov-switching models to the modelling of price-dynamics in financial markets. We
applied the models to exchange-rate data but the approach is readily extended to other
financial prices, such as stock prices, since speculative prices share the stylized facts
of leptokurtosis and heteroskedasticity.

Engel and Hamilton (1990) motivated their application of the Markov-switching
model to quarterly exchange rates with a search for "long swings" in exchange rates,
Le. with a search for mean effects. Our motivation differs from it by emphazising that
the most significant statistical properties of exchange-rate data are the leptokurtosis
and heteroskedasticity of short-run, i.e. daily and weekly, data and by relating it to
mixture models which have a long tradition in finance.

The estimation showed that Markov-switching models provide a significantly
better fit than models of Gaussian white noise and mixture models and that this holds
especially for short-run data. To a certain extent we can confirm the findings of mean
effects in quarterly data, as in Engel and Hamilton (1990), but the dominant effect is
the variance effect in daily and weekly data where we find no significant mean effects
in seven of eight series.

Although we find highly significant deviations from Gaussian white noise in
high-frequency data and although we were able to fit models which capture these
deviations well, we find that the implications of both the mixture model and of the
Markov-switching model for the pricing of call options on foreign currencies are minor.
We only find systematic differences to Black-Scholes prices if we adopt the Mar
kov-switching model but these differences are not statistically significant (and probably
also not economically).

There are several points where our analysis is incomplete or where an extension
would be interesting. We noted in Section 4 that currently we can only conjecture that
the Markov-switching model is compatible with convergence to normality under time
aggregation. We hope to provide a proof of this property in a subsequent paper. The

2S



greates gap that our paper ieaves is the fact that we only assume that option pricing in
the framework of the risk-neutral-valuation principle is possible if we adopt a mixture
model or a Markov-switching model. We leave it to future work to show under which
conditions these models allow risk-neutral valuation and we suppose that we have to
impose some restricitonson the utility function or the changes in aggregate consumption
in order to derive the desired result. Finally, it would be interesting to compare the

- performance,of-the Markov-switching model in modelling speculative prices with the
performance of GARCH-type models.
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