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Governments around the world are under pressure to reduce industrial energy use
and emissions without losing out to international competition. For this reason,
climate policies often come with exemptions or additional support for large energy-
intensive firms, increasing the heterogeneity in energy prices. We document such
a rising dispersion in industrial energy prices in the German manufacturing
sector that coincides with rising average energy prices. Surprisingly, we observe
an increase in industrial energy intensity, while at the same time, manufacturing
firms have shifted toward producing less energy intensive products. We develop a
model of multi-product firms with heterogeneous energy prices and heterogeneous
products that can partially explain this puzzle via a ‘reshuffling’ among producers:
If energy prices rise only for a share of firms, those firms will drop energy-intensive
products. But the remaining low energy price firms will increase their market
share of these products and produce them in a less energy-efficient way. Empirical
analyses based on German administrative firm data suggest that such a ‘reshuffling’
is indeed taking place. We show in a simple quantification that reshuffling can have
sizable effects on aggregate energy intensity.
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1 Introduction
In a world of accelerating climate change, reducing carbon emissions and (fossil) energy consumption
is crucial across all sectors of the economy. This is particularly true for the manufacturing sector,
which made up 29% of global greenhouse gas emissions in 2016 (Ritchie & Roser, 2023) but has proven
to be highly difficult to decarbonise. One key difficulty for policy makers has been to balance local
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climate policy ambition with international competitive pressure. This has led many governments to
provide generous exemptions or subsidies for large firms in particularly energy-intensive industries.
While these may help selected firms to compete on international product markets, they also have the
potential to undermine industrial climate action and domestic allocative efficiency.
Past research has empirically examined the effects of such exemptions and subsidies on firm-level
outcomes such as energy use, revenue or employment (Basaglia et al., 2024; Gerster & Lamp, 2024).
However, this existing research does not allow us to fully understand the aggregate implications of
the resulting energy price dispersion for two reasons: Conceptually, studies that analyse shifts in
industrial production and their implications for emissions and energy use (like Barrows & Ollivier,
2018) usually do not account for heterogeneous energy prices between firms. That means that they
cannot capture the effect of policies that affect the energy prices of some firms more than others, or
subsidise the energy use of a particular group of firms. Empirically, many of the approaches used to
analyse the behaviour of firms in the face of changes to input factor supply or production technology
either abstract from product heterogeneity (e.g. studies like Gerster & Lamp, 2024, or Marin & Vona,
2021, that focus on firm-level effects of energy prices only, or Barrows et al., 2024, who analyse the
effect of heterogeneous energy prices but implicitly assume that products are homogeneous). Or they
can only be applied to the subset of single-product firms (like most of the standard production function
estimation literature, e.g. Ackerberg et al., 2015).
Disregarding product heterogeneity is problematic because, around the world, a substantial share of
actual energy and emissions intensity reductions in the manufacturing sector comes from an aggregate
shift towards ‘cleaner’ products (e.g. Barrows & Ollivier, 2018, for India, Pan et al., 2022, for China, or
Rottner & von Graevenitz, 2024, for Germany) and it has been shown empirically that firms may engage
in product switching in response to energy prices and regulation (Abeberese, 2017). Concentrating on
single-product firms is problematic because, even though the majority of firms are relatively small,
single-product firms, the vast majority of energy use and emissions comes from large multi-product
firms: In our case of Germany, the data reveal that the 36% of firms that produce multiple products
account for around 80% of energy use and emissions.
For this reason, we analyse the relationship between energy prices and energy intensity in a way that
incorporates both multi-product production and energy price heterogeneity, empirically as well as
theoretically. Using German administrative firm data from 2005 to 2017, we show that the country’s
manufacturing sector has undergone a composition shift towards less energy-intensive products but
that this has not reduced energy intensity. Over the same period, firm energy prices have become
substantially more dispersed, with low energy-price firms moving into markets for more energy-
intensive products and high energy-price firms moving out of them.
We propose a model of multi-product firms in a world with energy price and product heterogeneity
to offer a theoretical explanation for this phenomenon: a reshuffling among the producers of energy-
intensive products. When energy prices rise for some firms more than for others – for example
if a country introduces climate policies but compensates large energy-intensive firms –, firms with
increasing energy prices move out of more energy-intensive products. This reduces competitive
pressure in the markets for these products, allowing firms with a lower energy price to increase their
market shares. Since firms with a lower energy price produce the same products in a more energy-
intensive way, this ‘reshuffling’ among producers increases aggregate energy intensity.
This mechanism can explain how increasing energy price dispersion can lead to an increase in energy
intensity that is decoupled from the the energy intensity of the product mix. In line with the German
data, it implies that energy-intensive products are both added and dropped more frequently than
others, and that they are added in particular by firms with a low energy price. A simple preliminary
quantification based on a log-normal firm energy price distribution confirms the role of reshuffling
but suggests that other factors play a role as well. In such a setting, the demand-reducing increase in
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average energy prices that accompanies the rising energy price dispersion dominates and aggregate
energy intensity declines.
Our paper connects to several strands of the literature. First, we contribute to the extensive literature
on multi-product production (Bernard et al., 2011; Eckel & Neary, 2010; Liu, 2010; Ma et al., 2014;
Mayer et al., 2014; Nocke & Yeaple, 2014; Qiu & Zhou, 2013). This literature focuses mostly on the
role of trade and investigates how export and import competition drive firms to adapt their product
portfolio, typically using a one-factor, homogeneous-product Melitz-type workhorse model. To our
knowledge, only two papers from this literature have considered the interaction between multi-
product production and energy use or emissions: Barrows and Ollivier (2018) have included energy as
a second factor of production into the workhorse model of product choice to explain the emissions-
reducing effect of competitiveness shocks in India around the turn of the millennium. We expand on
their model by introducing heterogeneous energy prices and heterogeneous products, which allows
us to analyse the role of energy price dispersion and product portfolio shifts. Close to our work, Mayr-
Dorn (2024) develops a model of multi-product firms to show that the emissions of such firms may
increase rather than decrease when an emissions pricing scheme is introduced: If emissions pricing
induces firms to focus on their core products, and if these core products are more emissions-intensive
than their ‘fringe products’, the shift towards more emissions-intensive core products may outweigh
the emissions-reducing effect of a carbon price. Mayr-Dorn studies symmetric firms in an oligopolistic
setting, where everyone faces emissions pricing or no-one does. Our model is set up to gauge the
consequences of a more realistic policy framework that provides heterogeneous incentives across firms
even within industries. We also allow for firm heterogeneity in productivity which is an important
feature of the manufacturing sector, and we assess our model predictions empirically using German
administrative data.
Second, we speak to the large literature on industrial decarbonisation by focusing on product mix
adjustments as a channel through which firms might react to climate policy. Many papers find that
climate policies lead to reductions in firm-level carbon emissions, without being able to attribute these
emission reductions to either output reductions or to increases in investments (Flues & Lutz, 2015;
Gerster & Lamp, 2024; von Graevenitz & Rottner, 2024). Other studies identify output effects that are
too small to explain observed emissions reductions in full (Aldy & Pizer, 2015; Wolverton et al., 2022).
Product mix adjustments might play a role in this, complementing technique effects like efficiency
improvements or substitution of energy with other inputs. The literature has already established a link
between climate policies and product innovation, i.e., R&D aimed at developing new (clean) products
(Calel & Dechezleprêtre, 2016). Our paper provides a clear theoretical mechanism of how both the
‘technique’ effect and the ‘product composition’ effect of increasing energy prices come about at the
firm level, and provides preliminary evidence that both effects matter for firm energy use and, hence,
emissions.
We also connect to a strand of the empirical energy and climate literature that documents how firms
change their product portfolios in response to energy prices and regulation (Abeberese, 2017; Elliott et
al., 2019; Elrod & Malik, 2017; 2019; Zhang et al., 2023). We contribute to this strand of the literature by
producing empirical evidence on product switching in response to energy prices in Germany. But more
importantly, we complement this literature by providing a theoretical underpinning for the reduced-
form evidence: We show in particular that it is not sufficient for reducing aggregate energy use or
emissions if firms with a higher energy price move out of energy-intensive products. In equilibrium,
the remaining firms with a lower energy price may ramp up their output of these products and produce
them in a more energy-intensive way than the firms which left, potentially undoing the effect of the
original energy price increase.
The remainder of this paper is structured as follows: In Section 2 we present our data as well as key
descriptive evidence about product portfolios and energy and emissions intensity. In Section 3 we
develop our theoretical model that can explain the stylized facts documented in Section 2. In Section 4,
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we provide empirical evidence of the mechanisms posited by our model, before we proceed with a
simple quantification in Section 5. Finally, we discuss the policy implications of our results in Section 6.

2 Motivating results
The focus of our empirical analysis is on the German manufacturing sector. As one of the world’s
largest manufacturing producers and a leading industrial economy, the case of Germany is highly
instructive for much of the industrialised world. Moreover, the German statistical offices provide highly
granular output and energy use data for almost the entire manufacturing sector, which allow us to
look in depth at firm-product-level shifts in production and energy use.

2.1 Data
Our empirical results are chiefly based on firm-product-level administrative microdata from Germany.
The so-called Amtliche Firmendaten für Deutschland (AFiD) panel is provided by the German Federal
Statistical Office and the Statistical Offices of the Federal States. It contains detailed information
on each manufacturing firm with more than 20 employees in Germany, including output quantity
and value by highly granular 9-digit product codes (see Table  1 for an excerpt from the product
classification)¹, and energy consumption by source.
The AFiD panel contains around 30,000 firms each year. The data are available annually between 2003
and 2017. However, we focus on three focal years 2005, 2011 and 2017 and the changes occurring in
the six-year intervals between them. This is in line with previous empirical studies on product choice
(Bernard et al., 2010; Goldberg et al., 2010; Navarro, 2012) and allows us to concentrate on longer-term
changes in firms’ product portfolios.² We define products in terms of 6-digit product codes according
to the GP 2009 product classification. By this definition, we distinguish between around 1,400 distinct
manufacturing products, which gives us a similar granularity as in most existing studies of multi-
product production.³

Table 1:  Excerpt from GP 2009 product classification

GP 2009 code Description
10 Food and feed
 101 Meat and meat products
 … …
 103 Fruit and vegetable products
 1031 Processed and preserved potatoes
 1031 11 Frozen potatoes
 … …
 1031 14 Prepared or preserved potatoes
 … …
 1031 14 603 Potato crisps and sticks
 1031 14 605 Potato salad, no mayonnaise-based dressing
 … …

 1032 Fruit and vegetable juices, unfermented and without added spirits

¹Codes are based on the GP 2009 product classification, which is a German derivative of the EU–wide PRODCOM
classification.

²Since firms’ product portfolios do not vary much in the short run, year-on-year comparisons are not overly insightful.
³The 5-digit SIC codes that Bernard et al. (2010) use, for example, distinguish between 1,500 different products.
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Unless noted otherwise, we operationalise output as sales value of production.⁴ Note that we do not use
data on output quantities in our analyses. This is because the aggregation of quantities is conceptually
problematic if products are measured in different units or of different quality.⁵
We also observe total energy expenditures for a rolling subsample of firms that are part of the cost
structure survey (Kostenstrukturerhebung, KSE). This allows us to compute the firm-level average
energy price for these firms by dividing their energy expenditure by their energy consumption. The
expenditure data are available for roughly 45% of firms each year. Every four years, a new stratified
sample is drawn. The sample is chosen to represent firms of all sectors and all employment sizes. Only
firms with more than 500 employees are always surveyed.

Mapping energy use to products
To analyse product composition shifts towards more or less energy-intensive products, we develop a
novel measure of product energy intensities. Obtaining such product-level intensities is challenging
in standard production data as ours because we observe energy inputs only at the firm level. For
multi-product firms, we have no means of knowing how much of the energy they consume flows into
which product.
To circumvent this problem, large parts of the existing literature have restricted their attention to
single product firms. By contrast, we use a straightforward statistical approach to estimating product-
level energy intensities: We regress firm-level energy use on firm-product level output and use the
resulting product-specific coefficients as proxies for product energy intensity. Specifically, we consider
the linear projection

𝑚𝑖 = ∑
𝑁𝐽

𝑗=1
𝑟𝑖𝑗𝜂𝑗 + 𝜀𝑖 (1)

where 𝑚𝑖 is firm 𝑖’s energy use, 𝑟𝑖𝑗 is firm 𝑖’s output of product 𝑗 and 𝑁𝐽  is the number of distinct
products in the economy. Each 𝜂𝑗 then represents the average increase in energy use associated with
an additional EUR of output of product 𝑗 – that is, the average energy intensity of the product.
We use data over our entire sample range from 2003 to 2017 and pool observations in three-year bins
to reduce small-sample error and flatten out period-specific shocks, and then estimate Equation 1 to
get the vector of product-specific energy intensity estimates (𝜂𝑗)

𝑁𝐽

1
.⁶ This procedure yields reasonable

product-level energy intensity estimates 𝜂𝑗 for 82% of all products across our sample years. For some
products that are only produced by a small number of firms, the resulting 𝜂𝑗 are negative, in which case
we set them to missing. The resulting product energy intensity estimates have a high predictive power
for firm-level energy use and match aggregate energy intensity well (see Appendix B for more detail).
The key advantage of this regression-based approach is that it allows us to leverage information from
the full sample of firms to construct our measure of product energy intensity. This sets our study apart
from the vast majority of previous empirical studies of energy use (as well as input use in general)
and firm performance, which typically restrict their analyses to single-product firms to avoid the host

⁴Small differences between the sales value of production and revenue arise, for example, due to firms building up stock
or selling out pre-existing inventory in a year, or due to systematic price discounts the firm offers on the market.

⁵That is true in particular given our aggregation to 6-digit product codes. But even in the case of a more granular
definition we can think of a Ferrari and a Volkswagen Polo that would still constitute one unit of the product ‘car’.

⁶Solving such a regression is computationally challenging because our granular product definition means that it
includes around 1,400 regressors. To obtain a computationally feasible estimator, we use the fact that few firms produce
more than a handful of different products. This means that the feature matrix 𝑅 = [𝒓1′ , …, 𝒓𝑁′ ]′ is high-dimensional
but sparse, since most of its entries are zero. We therefore implement an OLS computation procedure based on the
R language’s implementation of the QR decomposition of sparse matrices that can solve this regression problem in
reasonable time.
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of issues that come with attributing firm-level inputs to firm-product-level outputs (e.g. Ganapati et
al., 2020).
If we were to follow this approach, we could simply sum up the energy consumption of all single-
product firms producing a given product, and divide it by the total output of this product from single-
product firms to obtain product-level energy intensities. While this may be a helpful simplification
in some contexts, it is not well suited if one wants to explain changes in aggregate production
and energy consumption. First, it ignores the bulk of economic activity and energy use: Over our
period of observation, the 36% of firms that had multiple products in their portfolio produced 68%
of aggregate output and were responsible for 80% of industrial energy consumption. Second, it is
likely to give us a substantially distorted picture of the actual energy intensity of production: In our
data, the aggregate energy intensity of single-product firms is 59% lower than the aggregate energy
intensity of multi-product firms and 32% lower than total aggregate energy intensity.⁷ Indeed, we see
in Appendix B that our regression-based product energy intensities explain actual energy use far better
than single-product-based product energy intensities. At the same time, our regression-based approach
asymptotically nests the single-product-based approach when applied to the subset of single-product
firms.⁸ What is more, roughly 36% of aggregate revenue comes from products that are only produced
by three or fewer single-product firms, making it virtually impossible to estimate a reliable single-
product-based energy intensity for them.
Compared to structural approaches to input attribution like the one pioneered by De Loecker et al.
(2016), our method of obtaining product energy intensities has the advantage that it only relies on a
minimum of assumptions. This does come at a cost: Unlike De Loecker et al. (2016), we cannot attribute
inputs to outputs for individual firms, and our product energy intensity measures 𝜂𝑗 do not reflect deep
technological parameters but only the empirical average amount of energy used per unit of product
𝑗. But we do get robust proxies for product energy intensity that do not rely on strong structural
assumptions like the functional form of the production function and the timing of input choices.⁹

2.2 Product choice, energy use and emissions
We use the data described above to examine how aggregate and firm-level energy prices, energy use,
and product composition relate to one another. Specifically, we find that energy prices have both
increased and become more dispersed between 2005 and 2017. Curiously, this has coincided with a
widening wedge between the energy intensity of the product mix (i.e., energy intensity if all products
were still produced at their 2005 average energy intensity) and actual energy intensity.

Divergence between composition-induced and actual energy intensity
We observe that energy prices paid by German manufacturing firms increased substantially over our
period of observation, but this increase was highly heterogeneous. As we can see in panel (a) of
Figure 1, the distribution of energy prices in 2011 and 2017 shifted to the right compared to 2005.
However, the dispersion of firm-level energy prices increased substantially over the same period. Panel
(b) suggests that it was in particular firms with low energy consumption that saw their prices increase,
with large consumers maintaining their much lower price levels: The unweighted average of firm-level

⁷Across all years of observation, we observe an average energy intensity of 0.73 EUR/kWh among multi-product firms
but only 0.42 EUR/kWh among single-product firms. Due to the large share of multi-product firms in overall energy
consumption, total energy intensity across all firms is much closer to the energy intensity of multi-product firms at 0.63
EUR/kWh.

⁸See Appendix B for a formal proof.
⁹Even De Loecker et al. (2016) need a sufficiently large number of single-product firms that produce a product to be

able to include it in their analysis, because they estimate product-level production functions off of single-product firms
in a first step.

6



(a) Energy price dispersion 2005, 2011 and 2017 (b) Average energy prices, 2003-2017

Figure 1:  Development of energy prices between 2005 and 2017

Note: Energy prices are based on the rolling subsample of around 11,000 manufacturing firms each year for which total energy
expenditure is available.

Source: AFiD manufacturing census (see Appendix A)

energy prices increased substantially between 2003 and 2017.¹⁰ The consumption-weighted average
price, which puts much higher weight on large consumers, increased somewhat up to 2008 but fell
back to its original level over the subsequent years.
Both the extent and the direction of energy price dispersion we observe are in line with what we know
about the institutional and regulatory landscape in our period of observation: The energy cost of a firm
depends on its fuel mix, its choice of retailer, the quantities consumed, its location (network charges),
and the taxes and surcharges it is subject to. Large users systematically face lower prices after taxes and
surcharges. There is evidence of Ramsey pricing, e.g. for electricity (see also Davis et al., 2013 for the
US case), which leads to lower prices for users with more elastic demand. Large users also tend to be
connected to the grid at higher levels which lowers network charges for gas and electricity. Moreover,
large users benefit from exemption schemes and relief measures designed to level the playing field in
international markets. In Germany there are several such schemes where consumption levels play a
role for eligibility: Reduced network charges, partial exemptions from the renewable energy surcharge,
and electricity price compensation for ETS induced electricity price increases are the largest of these.
These schemes all tend to favor the same type of industrial firm predominantly in energy intensive
and trade-exposed sectors.¹¹
Secondly, we can observe that – in spite of rising energy prices – aggregate energy intensity in German
manufacturing has increased over our period of observation (Figure 2). Over the same period of time,
however, the sector’s product mix became less energy-intensive: On aggregate, firms started producing
relatively more of products with a low baseline energy intensity, and relatively less of products with
a high baseline energy intensity.
This echoes previous results that Rottner and von Graevenitz (2024) find for German manufacturing
emissions using the workhorse decomposition method developed by Levinson (2009, 2015) but still
represents an economic puzzle. After all, profit-maximising firms should substitute away from an input

¹⁰The average price increased from around 12 ct/kWh in 2003 to almost 16 ct/kWh in 2014, before stabilising at 14
ct/kWh from 2016 on. The slight drop in prices after 2011 is most likely attributable to the substantial fall in industrial
natural gas prices over the same period, which dropped from 3.61 ct/kWh in 2011 to 2.55 ct/kWh in 2017 (Destatis, 2023).

¹¹Past research has used these sources of variation to estimate causal effects of electricity prices on plant performance,
e.g. Gerster and Lamp (2024); von Graevenitz and Rottner (2024). See these papers for more details on the pricing of
electricity in Germany.
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Figure 2:  Actual energy intensity and energy intensity of the product mix in German manufacturing,
2003-2017

Note:  Actual energy intensity is calculated as total energy consumption divided by total output in each year. The energy
intensity of the product mix is calculated by taking product energy intensities from 2005 and weighting them with current

product shares in total output each year.
Source: AFiD manufacturing census (see Appendix A)

when its price increases – or at least not increase their use of this input. The fact that this fundamental
prediction does not hold on aggregate suggests that there are counteracting forces at play.
What is even more puzzling is that the energy intensity of the product mix develops in the opposite
direction of the actual energy intensity. This is in line with the notion that an increase in the price of
an input should lead firms to shift away from products that require more of this input (which follows,
for example, from the product choice model that Boehm et al., 2022, develop). But it suggests that
manufacturing firms shifted towards less energy-intensive products while at the same time producing
them in a more energy-intensive way.

3 Theoretical model
To explain our empirical findings from Section 2, we propose a model of product portfolio choice
with labour and energy as input factors. Firms have a core competence in one product but may opt to
produce additional products. Such products are more expensive for a firm to produce the more they
differ from its core product. Firms differ in their productivity and face different energy prices, while
products differ in their energy intensity. A firm’s decision to expand into an additional product market
is based on the interaction of firm- and product-specific features: Firms that have a high productivity
in producing a specific product will be much more likely to enter the market for that product. And
firms with high energy prices will struggle to profitably produce any good, especially those that are
energy-intensive.
Our model is similar in spirit to the canonical multi-product models from the trade literature (Bernard
et al., 2011; Eckel & Neary, 2010; Mayer et al., 2014) and in particular to the model developed by Barrows
and Ollivier (2018). It expands on these models in two main ways: by allowing for firm-specific energy
prices; and by allowing for heterogeneity in energy intensity between products.
To our knowledge, Barrows and Ollivier (2018) were the first to include energy as a second factor
of production into a Melitz-type multi-product model. We build on their approach but allow energy
prices to differ between firms. This has two advantages: First, it allows us to reflect the economic
consequences of heterogeneous energy prices while nesting their simpler model and incorporates the
key empirical finding that energy prices are heterogeneous between firms. Second, it allows us to make
predictions about the effect of policies that change the energy prices of some firms more than others.
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This is empirically relevant since it mirrors exactly how many industrial, climate and energy policies
work in reality.
Unlike almost all previous multi-product models, we explicitly model heterogeneity between products.
This allows us to derive product-side explanations for firms’ product choice alongside firm-side
explanations. Most importantly, we allow for products to have different baseline energy intensities.
This is highly intuitive: Producing 1 000 EUR worth of steel will require much more energy than
printing 1 000 EUR worth of books. Previous models of product choice – including Barrows and Ollivier
(2018) – abstract from product heterogeneity, but it is crucial to explain the reshuffling patterns we
observe in the data.
We discuss our fundamental model setup in Section 3.1. Building on this, we illustrate the role that
reshuffling of producers plays for energy intensity based on a stylised energy price distribution in
Section 3.2. After providing some empirical evidence of the underlying model mechanisms in Section 4,
we proceed with a simple quantification based on a more realistic energy price distribution among
German manufacturing firms in Section 5.

3.1 Model setup

Consumers love variety
We keep the demand side simple by assuming a representative consumer who demands different
products in fixed proportions and exhibits a love for different varieties of each product. This gives
producers some market power in the niche they occupy with their variety, which leads to them acting
as monopolistic competitors on the market for each product.
Fundamentally, we assume that there is a continuum 𝐼 = [0, 1] of producers and a finite set of products
𝐽 . Each producer 𝑖 may or may not decide to produce her own variety of 𝑗. This means that, ultimately,
a subset 𝐼𝑗 ⊂ [0, 1] of firm-specific varieties of product 𝑗 will be produced in the economy.
The representative consumer derives utility

𝑈(𝒒) ≔ 𝑞0 + ∑
𝑗∈𝐽

𝛾

(
((
((
((
((

[∫
𝑖∈𝐼

𝑞
𝜎−1

𝜎
𝑖𝑗 𝑑𝑖]

𝜎
𝜎−1

⏟⏟⏟⏟⏟⏟⏟
≕ 𝑈𝑗 )

))
))
))
))

1−𝛿

(2)

from bundle 𝒒 = (𝑞𝑖𝑗)𝑗∈𝐽,𝑖∈𝐼
. The inner term – which we denote by 𝑈𝑗 – represents the CES utility

the consumer derives from the aggreate of all varieties they consume of product 𝑗. 𝜎 is the elasticity
of substitution between varieties of a product which we assume to be greater than one as is standard
in the literature.
The outer term corresponds to a quasi-linear utility function over the utilities derived from each
additional good: The consumer can derive linear utility from an outside option 𝑞0 which can be thought
of as representing saving and consumption of non-manufacturing goods and services. Product-level
utilities 𝑈𝑗 enter the consumer’s aggregate utility function as additively separable concave terms.
Intuitively, this means that the consumer trades off each individual manufacturing good against the
outside option 𝑞0. If the aggregate price of one good 𝑗 increases, the consumer will consume less of that
good but will not reduce her consumption of other goods in order to be able to afford more of good 𝑗.
𝛾 represents the taste of the consumer for a good and 𝛿 ∈ (0, 1) governs how quickly the consumer’s
marginal utility from each manufacturing product decreases. For ease of exposition, we have imposed
that 𝛾, 𝛿 and 𝜎 are identical across products, but this is not essential to our conclusions.
The representative consumer solves the utility maximisation problem
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max
𝒒

𝑈(𝒒) s.t. 𝑌 ≥ 𝑞0 + ∑
𝑗∈𝐽

∫
𝑖∈𝐼

𝑝𝑖𝑗𝑞𝑖𝑗𝑑𝑖,

𝑞0 ≥ 0, 𝑞𝑖𝑗 ≥ 0 ∀𝑖, 𝑗
(3)

where 𝑝𝑖𝑗 is the price of firm 𝑖’s variety of product 𝑗 (relative to the outside option). On top of this, we
assume that, given the set of prices 𝑃 = (𝑝𝑖𝑗)𝑖∈𝐼,𝑗∈𝐽

, consumer income 𝑌  is sufficiently large that the
consumer does not spend all their income on manufacturing goods. This corresponds to assuming that

𝑌 > ∑
𝑗

[(1 − 𝛿)𝛾]1
𝛿 𝑃 1−1

𝛿
𝑗 (4)

where 𝑃𝑗 = [∫
𝑖∈𝐼

𝑝1−𝜎
𝑖𝑗 ]

1
1−𝜎

 is the CES price aggregator.¹²
Under these assumptions, consumer demand for variety 𝑖 of product 𝑗 is

𝑞∗
𝑖𝑗 = [(1 − 𝛿)𝛾]1

𝛿 𝑃 𝜎−1
𝛿

𝑗 𝑝−𝜎
𝑖𝑗 . (5)

As under standard CES utility, the demand for product variety 𝑖𝑗 decreases in its own price with a
constant elasticity of 𝜎. At the same time, the demand for product variety 𝑖𝑗 increases in the aggregate
price index of product 𝑗 with an elasticity of 𝜎 − 1

𝛿 > 0. This elasticity results from the interplay of
two different mechanisms: substitution between varieties, and substitution between the product and
the numéraire good, i.e. saving or consumption outside the manufacturing sector.
If the aggregate price index 𝑃𝑗 is high, the demand for product variety 𝑖𝑗 is higher ceteris paribus
because it is more expensive for consumers to substitute variety 𝑖 with other varieties (hence the 𝜎
in the elasticity term). At the same time, if 𝑃𝑗 is high, consumers will buy less of product 𝑗 because
marginal utility is decreasing in aggregate consumption of the product. This effect is less pronounced
if 𝛿 is close to 1, because then marginal utility from product 𝑗 is decreasing so quickly that even large
changes in the product price index only translate into moderate changes in demand. If 𝛿 is close to 0, on
the other hand, the effect is potentially very large because the consumer is more indifferent between
each product and the numéraire and small increases in the price index of product 𝑗 may drive her away
from the product (hence the −1

𝛿  in the elasticity term).
We assume for the remainder of the paper that 𝜎 > 1

𝛿 . That is, we assume that the substitution
effect between varieties of a product dominates the substitution effect between the product and the
numéraire, so that an increase in the aggregate price of product 𝑗 will always increase the demand for
product variety 𝑖𝑗. This is intuitively plausible for most manufacturing goods: If all producers bar one
increased their prices, we would expect demand to flock towards the producer who kept her prices
constant instead of consumers just turning their back to the product as a whole.

Firms charge constant markup over unit costs
We assume that firms maximise profits given their production technology and consumer demand.
Specifically, we assume that each firm 𝑖 can produce its variety of product 𝑗 from labour and energy
using CES production technology

𝑞𝑖𝑗(𝑙𝑖𝑗, 𝑚𝑖𝑗) = 𝜑𝑖𝑗[𝛼𝑙
𝑗𝑙

𝜌
𝑖𝑗 + 𝛼𝑚

𝑗 𝑚𝜌
𝑖𝑗]

1
𝜌 . (6)

Here, 𝜑𝑖𝑗 is a firm–product specific total factor productivity term which we will discuss in more
detail below. 𝑙𝑖𝑗 and 𝑚𝑖𝑗 are the amounts of labour and energy that the firm spends on producing its

¹²We show below that such a level of income 𝑌  must exist for any equilibrium price set 𝑃 ∗, although it cannot be
determined algebraically.
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variety of the product. 𝛼𝑙
𝑗 and 𝛼𝑚

𝑗  are product-specific baseline labour and energy intensities which we
normalise to 𝛼𝑙

𝑗 + 𝛼𝑚
𝑗 = 1 for each product. (Steel, for example, would have a very high 𝛼𝑚

𝑗 , whereas
bookprinting would have a much lower 𝛼𝑚

𝑗  and, correspondingly, a higher 𝛼𝑙
𝑗.) 𝜌 determines the degree

to which labour and energy can be substituted in the production process: The limiting cases of 𝜌 = 1
and 𝜌 → −∞ indicate perfect substitutability and perfect complementarity.¹³ We assume that 𝜌 < 0,
i.e. some degree of complementarity between labour and energy.
We assume that each firm has to pay the same wage 𝑤 per effective unit of labour but draws a specific
energy price 𝜏𝑖. This results in the following cost minimisation problem

min
𝑙,𝑚

𝑤𝑙 + 𝜏𝑖𝑚 s.t. 𝑞𝑖𝑗(𝑙𝑖𝑗, 𝑚𝑖𝑗) ≥ 𝑞𝑖𝑗. (7)

Its solution tells us that firms produce at a firm-product specific constant unit cost

𝑐𝑖𝑗 = 1
𝜑𝑖𝑗

[(1 − 𝛼𝑚
𝑗 )

− 1
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1
𝑖 ]

𝜌−1
𝜌

= 1
𝜑𝑖𝑗

𝑐𝑗(𝜏𝑖) (8)

where 𝑐𝑗(𝜏𝑖) represents the cost net of productivity of a firm with energy price 𝜏𝑖 that wants to produce
one unit of its variety of product 𝑗.
The unit cost of production depends on the interaction of firm- and product-specific factors. It
decreases in firm-product-specific productivity 𝜑𝑖𝑗 and increases in wage 𝑤 and energy price 𝜏𝑖. The
cost impact of a higher energy price is more pronounced if the product has a relatively higher baseline
energy intensity 𝛼𝑚

𝑗  whereas the cost impact of a higher wage is more pronounced if the product has
a relatively higher baseline labour intensity. High energy prices matter more if 𝜌 is low, because then
the firm cannot compensate for its higher energy prices by substituting energy with labour.
Conditional on entering the market for product 𝑗, firm 𝑖 maximises its profits by setting

𝑝∗
𝑖𝑗 = arg max

𝑝
(𝑝 − 𝑐𝑖𝑗)[(1 − 𝛿)𝛾1−𝛿]

1
𝛿 𝑃 𝜎−1

𝛿
𝑗 𝑝−𝜎

𝑖𝑗 . (9)

Since there is a continuum of firms, each individual firm takes the aggregate price index 𝑃𝑗 as given
and sets the price for its variety of 𝑗 to maximise its profits in monopolistic competition with all other
firms. Its optimal conditional profits are therefore given by

𝜋∗
𝑖𝑗(𝑃𝑗) = 𝐴𝑃 𝜎−1

𝛿
𝑗 𝑐1−𝜎

𝑖𝑗 (10)

with 𝐴 = (𝜎−1)𝜎−1

𝜎𝜎 [(1 − 𝛿)𝛾]1
𝛿  being a profit multiplier that only depends on model parameters.

Firms draw individual productivities for each product
We assume that each firm draws its productivity for each product independently from a Pareto
distribution. This generates a hierarchy of products for each firm. In anaology to the typical model
setup in the multi-product firm literatur (e.g. Mayer et al., 2014, Nocke & Yeaple, 2014, Barrows &
Ollivier, 2018), we can conceive of the product for which a firm is most productive as the firm’s core
product, and products for which the firm is less productive as products that are increasingly far away
from its core competency.¹⁴

¹³Specifically, the elasticity of substitution between labour and energy is 1
1−𝜌 .

¹⁴Standard models from the multi-product literature typically assume that each firm’s productivity decreases
deterministically with a product’s distance from the firm’s core competency. This is a helpful assumption when
one considers homogeneous products but quickly becomes untractable when analysing heterogeneous products.
In a heterogeneous-product model, interactions between a product’s properties and its distance to other products
immediately generate high-dimensional interactions that are hard to track analytically.
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Specifically, each firm 𝑖 draws its productivity for product 𝑗 from a Pareto distribution with cdf 𝐺 with
dispersion parameter 𝑘 and minimum value 1. We make the standard assumption that 𝑘 > 𝜎 − 1, that
is, we put an upper bound on productivity dispersion (a value of 𝑘 → ∞ would imply that all firms
have a productivity of 1, whereas a value of 𝑘 → 0 would imply that each level of productivity between
0 and ∞ is equally likely). As we show in Appendix C.1, this assumption is necessary to ensure that
we have a positive equilibrium price index for each product. Intuitively, the underlying mechanism
works as follows: If productivity is extremely dispersed (i.e. we have a verly low 𝑘), there will be a non-
negligible share of firms with extremely high productivities which can produce the product almost for
free, drawing demand away from any firm which produces a variety of the product at a positive price
and preventing the formation of an equilibrium in which the product is produced at all.

Firms draw energy prices
We assume that firms draw their energy price 𝜏𝑖 from a distribution 𝐻  with strictly positive support
and 𝔼[𝜏1−𝜎

𝑖 ] < ∞. We assume a stylised distribution of 𝜏𝑖 in Section  3.2 to derive theoretical
predictions and quantitatively investigate the effects of a more realistic energy price distribution in
Section 5.
We assume that 𝜏𝑖 ⟂ 𝜑𝑖𝑗, i.e. that a firm’s productivity does not affect its energy price ex ante.
Importantly, this does not rule out a relationship between energy price and productivity conditional on
entry. Indeed, it is a key prediction of our model that firms need to be either very productive or have a
low energy price in order to succeed in the market, which introduces a positive relationship between
energy price and productivity conditional on entering the market.
If we consider our model to represent a snapshot of the German manufacturing sector at a given point
in time, there are valid reasons to suspect both a positive and a negative ex ante relationship between
energy prices and productivity. On the one hand, energy prices may be higher for less productive firms
because they are generally smaller and have less market power on factor markets, and generally buy
smaller quantities of energy. What is more, strategic sourcing of affordable energy may correlate with
general management quality and hence with overall productivity. This would rationalise a negative
relationship between 𝜑𝑖𝑗 and 𝜏𝑖. On the other hand, energy prices may be lower for less productive
firms due to dynamic selection effects that our static model cannot capture. Firstly, firms with a low
energy price may have been under less pressure to engage in productivity-enhancing investments
(Colmer et al., 2024; Hawkins-Pierot & Wagner, 2024). Secondly, existing firms with low productivity
may have been more likely to be targeted by subsidies in order to keep them alive. Keeping firms
from shutting down has in fact been an important rationale of German industrial policy in the face
of economic pressure for the past decades, as witnessed by a steep rise in the share of ‘zombie firms’
over our period of observation (although the share of zombie firms remains small in absolute terms;
Albuquerque & Iyer, 2023). And thirdly, firms with a high productivity may simply have been under less
pressure to source cheap energy than firms that are scraping to get by. By assuming that productivity
𝜑𝑖𝑗 and energy price 𝜏𝑖 are independent, we take a middle ground between these different potential
states of the world, which has the advantage that we can attribute any resulting relationship between
energy price and productivity purely to our model mechanisms.
Through the lens of the allocative efficiency literature (e.g. Ruzic & Ho, 2023 or Hsieh & Klenow, 2009),
our assumption of independence between 𝜏𝑖 and 𝜑𝑖𝑗 implies that different energy prices are ex ante
allocatively neutral: Lower energy prices increase firms’ share in overall production (and input use),
but these firms are not systematically more or less productive than others. As we discuss in more detail
in Section 6, a negative correlation between 𝜏𝑖 and 𝜑𝑖𝑗 would mean that energy price dispersion helps
combat misallocation because more productive firms would have access to cheaper energy and be able
to increase their share in production, and vice versa.
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Product market entry and equilibrium
We assume that entering a product market requires an irrecoverable upfront investment of 𝐹 . Firm
𝑖 considers each product market 𝑗 separately and decides to enter it if its profits from that product
market, 𝜋∗

𝑖𝑗, exceed entry costs 𝐹 .¹⁵ This defines a cost threshold

𝑐𝑗(𝑃𝑗) = [𝐴
𝐹

𝑃 𝜎−1
𝛿

𝑗 ]
1

𝜎−1

. (11)

All firms with cost 𝑐𝑖𝑗 < 𝑐𝑗 enter the market for product 𝑗, while all firms with costs above 𝑐𝑗 stay out
of the market and supply 𝑞𝑖𝑗 = 0.
This cost threshold depends on the CES price index for product 𝑗, 𝑃𝑗: If the general price level for
product 𝑗 is high, firms can profitably enter the product market even if they have relatively high
production costs. 𝑃𝑗, however, depends itself on the cost cutoff 𝑐𝑗 because it reflects aggregate product
variety prices of those firms that end up producing product 𝑗. Defining

𝐼𝑗(𝑃𝑗) = {𝑖 ∈ 𝐼 | 𝑐𝑖𝑗 < 𝑐𝑗(𝑃𝑗)} (12)

as the set of firms that would enter the market for product 𝑗 given price index 𝑃𝑗, the equilibrium
condition for the market for product 𝑗 is given by

𝑃 ∗
𝑗 =

[
[[∫

𝑖∈𝐼𝑗(𝑃 ∗
𝑗 )

𝑝1−𝜎
𝑖𝑗 𝑑𝑖

]
]]

1
1−𝜎

. (13)

As we show in Appendix C.1, this pins down a unique equilibrium with 𝑃 ∗
𝑗 < ∞. Intuitively, the main

mechanism behind this equilibrium is the following: If the CES price index for product 𝑗 increases
(i.e. if the left-hand side of Equation 13 increases), more firms will enter the market for the product.
However, the more firms enter the market, the cheaper it gets for the consumer to obtain one unit of
utility from product 𝑗 because she can spread her consumption across more varieties (which puts more
competitive pressure on each individual competitive monopolist in the market). Since 𝑃𝑗 reflects the
cost of obtaining one unit of utility from product 𝑗, this decreases the CES price index (i.e. the right-
hand side of Equation 13).
Given our assumption that firm-product-specific productivities are Pareto(𝑘, 1)-distributed, the
equilibrium price index is given by

𝑃 ∗
𝑗 =

[
[
[𝑘 − (𝜎 − 1)

𝑘
( 𝜎

𝜎 − 1
)

𝜎−1
(𝐹

𝐴
)

𝑘
𝜎−1−1

(∫
∞

0
𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏))

−1

]
]
]

1
𝜉𝑘+(1−𝜉)(𝜎−1)

(14)

where we have defined

𝜉 ≔
𝜎 − 1

𝛿
𝜎 − 1

∈ (0, 1), (15)

for notational convenience.¹⁶ Here, 𝜉 represents the strength of the demand response to an increase
in the CES price index 𝑃𝑗 in our world with decreasing marginal utility from each composite product

¹⁵Strictly speaking, we also assume that firms know the distribution of firm-product productivities 𝜑𝑖𝑗 and energy
prices 𝜏𝑖 and believe that all other firms are maximising profits as well, so they can anticipate the resulting equilibrium
price index 𝑃𝑗. Without this additional assumption, firms would not be able to determine their potential profits 𝜋∗

𝑖𝑗
before entering.

¹⁶As we show in Appendix C.1, the integral ∫∞
0

𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏) must be finite by our condition that ∫∞
0

𝜏1−𝜎𝑑𝐻(𝜏) <
∞. Also note that this closed-form expression for 𝑃 ∗

𝑗  allows us to specify our assumption from Equation 4: If we assume
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𝑗 relative to the strength of the demand response in a counterfactual world with constant marginal
utility from each composite product.
The explicit expression for 𝑃 ∗

𝑗  tells us that the equilibrium CES price index of product 𝑗 is increasing
in net-of-productivity costs 𝑐𝑗(𝜏): If all firms’ costs uniformly increase by 1%, the equilibrium price
index increases by 𝑘

𝜉𝑘+(1−𝜉)(𝜎−1)  > 1%. This is because, in response to a 1% cost shock, all firms increase
the prices of their varieties 𝑝𝑖𝑗 by 1%. Ceteris paribus, this increases the CES price index of product 𝑗
by 1% as well. However, since the consumer’s marginal utility from product 𝑗 is decreasing, she will
only increase her spending on the product by 𝜉%, where 𝜉 < 1. That means that each firm’s profits
actually decrease by (1 − 𝜉)%. This drives some firms that were just breaking even before out of the
market for product 𝑗. This, in turn, reduces competitive pressure, which increases the CES price index
beyond the mechanical 1% increase.

Energy intensity depends on interaction of product features and energy prices
To assess the role of energy price changes and product choice for energy intensity, let us define the
energy intensity of product variety 𝑖𝑗 in revenue terms as

𝜂𝑖𝑗 ≔
𝑚𝑖𝑗

𝑟𝑖𝑗
= 𝜎 − 1

𝜎
𝑠𝑖𝑗

𝜏𝑖
(16)

where

𝑠𝑖𝑗 ≔
(𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1
𝑖

(1 − 𝛼𝑚
𝑗 )

− 1
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1
𝑖

(17)

represents the share of unit energy costs in total unit costs.¹⁷

Lemma 1 : Revenue-based energy intensity 𝜂𝑖𝑗 is decreasing in firm energy price 𝜏𝑖 and
increasing in baseline product energy intensity 𝛼𝑚

𝑗 .

Proof :  Simple algebra reveals that

𝑑𝑠𝑖𝑗

𝑑𝛼𝑚
𝑗

= −1
𝜌

𝑠𝑖𝑗(1 − 𝑠𝑖𝑗)
𝛼𝑚

𝑗 (1 − 𝛼𝑚
𝑗 )

> 0 (18)

and

𝑑𝑠𝑖𝑗

𝑑𝜏𝑖
= 𝜌

𝜌 − 1
1
𝜏𝑖

𝑠𝑖𝑗(1 − 𝑠𝑖𝑗) > 0. (19)

To see that 𝜂𝑖𝑗 is decreasing in 𝜏𝑖, consider the derivative

𝑑𝜂𝑖𝑗

𝑑𝜏𝑖
= 𝜂𝑖𝑗

1
𝜏𝑖

⋅ [ 𝜌
𝜌 − 1

(1 − 𝑠𝑖𝑗) − 1]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ

. (20)

Clearly, 𝜌
𝜌−1 < 1 by 𝜌 < 0 and 𝑠𝑖𝑗 < 1 by our considerations above. But this implies that 𝜌

𝜌−1(1 −
𝑠𝑖𝑗) < 1 and hence Δ < 0, so 𝑑𝜂𝑖𝑗

𝑑𝜏𝑖
< 0. □

that 𝑌 > ∑𝑗 [(1 − 𝛿)𝛾1−𝛿]
1
𝛿 (𝑃 ∗

𝑗 )1−1
𝛿 , the consumer’s income must be sufficiently large for her not to spend all her

money on manufacturing goods under equilibrium prices.
¹⁷Specifically, 𝑠

𝜌−1
𝜌

𝑖𝑗  is the ratio between the unit cost of variety 𝑖𝑗 in a counterfactual world where energy is the only
costly input relative to the actual unit cost.
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Lemma 1 tells us that 𝜂𝑖𝑗 is decreasing in the firm’s energy price 𝜏𝑖 and increasing in the product’s
baseline energy intensity 𝛼𝑚

𝑗 , which is intuitively straightforward. Since firms can at least partially
substitute energy with labour in the production process (because 𝜌 > −∞), higher energy prices
will translate into lower energy intensity. We can think of this mechanism as representing both
behavioural changes and investments into energy-saving technologies in our static model. At the same
time, products with a higher baseline energy intensity will require more energy even after accounting
for potential input substitution patterns. This represents fundamental properties of the production
process: For example, to produce a ton of steel, a significant amount of energy is required to extract
iron from iron ore and then oxidate it, and a firm can only get so far by investing into more energy-
efficient machinery or implementing energy saving measures.
Our empirical focus is on revenue-based energy intensity because this is the outcome we can observe
in the data.¹⁸ However, to get a clearer picture of the underlying mechanisms, it is instructive to look
at quantity-based ‘physical’ energy intensity

𝜂𝑖𝑗 ≔
𝑚𝑖𝑗

𝑞𝑖𝑗
= 1

𝜑𝑖𝑗
(

𝛼𝑚
𝑗

𝑠𝑖𝑗
)

−1
𝜌

(21)

as well in the theoretical part. The most striking difference compared to revenue-based energy

intensity 𝜂𝑖𝑗 is that 𝜂𝑖𝑗 depends positively on (𝛼𝑚
𝑗

𝑠𝑖𝑗
)

−1
𝜌  rather than on 𝑠𝑖𝑗

𝜏𝑖
. This term is still decreasing

in the energy price 𝜏𝑖. But unlike our revenue-based energy intensity measure, it does not include
the additional intensity-reducing effect that comes from the fact that an increase in energy costs
will translate into higher overall costs which increase revenue because they are passed through to
the consumer.
The second major difference between physical energy intensity 𝜂𝑖𝑗 and revenue-based energy intensity
𝑞𝑖𝑗 is that physical energy intensity negatively depends on total factor productivity 𝜑𝑖𝑗. This reflects
the fact that firms with a high TFP require less of each input to produce the same physical output.
However, since firms in our model charge a constant markup on each product, these efficiency gains are
fully passed through to the consumer. This, of course, is a simplifying assumption. In reality, firms will
only partially pass through efficiency gains to consumers on most markets, and hence revenue-based
energy intensity will to some extent depend on productivity as well (Ganapati et al., 2020). But since
this channel is not essential to the reshuffling phenomenon we attempt to explain and substantially
increases the mathematical complexity of our model, we follow a significant strand of the product
choice literature (e.g. Bernard et al., 2011; Nocke & Yeaple, 2014) in assuming mathematically tractable
CES utility which results in iso-elastic demand and constant multiplicative mark-ups.
Finally, we also define aggregates of the energy intensity measures.

𝜂𝑗 =
𝑀𝑗

𝑅𝑗
=

∫
𝑖∈𝐼𝑗

𝜂𝑖𝑗𝑟𝑖𝑗𝑑𝑖

∫
𝑖∈𝐼𝑗

𝑟𝑖𝑗𝑑𝑖
(22)

with 𝑀𝑗 = ∫
𝑖∈𝐼𝑗

𝑚𝑖𝑗𝑑𝑖 and 𝑅𝑗 = ∫
𝑖∈𝐼𝑗

𝑟𝑖𝑗𝑑𝑖 is the aggregate energy intensity of product 𝑗, and

𝜂 = 𝑀
𝑅

=
∑𝑗∈𝐽 𝑀𝑗

∑𝑗∈𝐽 𝑅𝑗
= ∑

𝑗∈𝐽
𝜂𝑗

𝑅𝑗

𝑅
(23)

¹⁸While quantity-based energy intensity measures are in principle available in our data, they are difficult to interpret
since products can be quite heterogeneous even within six-digit categories.
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is the aggregate energy intensity of the entire manufacturing sector, with 𝑅 = ∑𝑗∈𝐽 𝑅𝑗 and 𝑀 =
∑𝑗∈𝐽 𝑀𝑗.

3.2 Illustration under stylised energy price distribution
To illustrate how our hypothesised reshuffling mechanism can increase the energy intensity of
production even while the product mix becomes cleaner, we run through our model under a stylised
energy price distribution in this section. This serves to highlight the key mechanisms at play. In
Section 5, we will quantitatively assess how our model behaves under a more realistic distribution of
energy prices, for which theoretical statements are much harder to derive.
To illustrate how the ‘reshuffling’ mechanism works in principle, consider an economy as we have
described it in Section 3.1 in which the energy price distribution 𝐻  is binary: Firms pay low energy
price 𝜏  with probability 𝑝 and high energy price 𝜏 = 𝜈𝜏 , 𝜈 > 1, with probability 1 − 𝑝. Trivially, this
distribution of 𝜏𝑖 satisfies the regularity condition that 𝔼[𝜏1−𝜎

𝑖 ] < ∞.
As derived in Appendix C.1, we can write the average revenue from product 𝑗 among the group of
firms with energy price 𝜏  as

𝑅𝑗(𝑃𝑗, 𝜏) ≔ 𝑘
𝑘 − (𝜎 − 1)

𝐴𝑘𝐹−( 𝑘
𝜎−1−1)𝑐𝑗(𝜏)−𝑘𝑃 𝜉𝑘

𝑗 . (24)

Similarly, since by Equation 16, 𝜂𝑖𝑗 only depends on product parameters and the firm energy price 𝜏𝑖,
each firm with the same energy price 𝜏  will produce product 𝑗 with the same energy intensity

𝜂𝑗(𝜏) = 𝜎 − 1
𝜎

𝑠𝑗(𝜏)
𝜏

, (25)

with

𝑠𝑗(𝜏) ≔
(𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1

(1 − 𝛼𝑚
𝑗 )

− 1
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1

(26)

being the share of energy costs in total costs for any firm with energy price 𝜏  when producing product
𝑗. Of course, this does not affect the applicability of Lemma 1, and in particular the fact that 𝜂𝑗(𝜏) is
decreasing in 𝜏 .
Under our binary energy distribution, we can then define the aggregate energy intensity with which
product 𝑗 is produced in terms of the distributional parameters 𝜈 and 𝜏 :

𝜂𝑗(𝜈, 𝜏) = 𝜃𝑗(𝜈, 𝜏)𝜂𝑗(𝜏) + (1 − 𝜃𝑗(𝜈, 𝜏))𝜂𝑗(𝜈𝜏). (27)

Here, 𝜃𝑗(𝜈, 𝜏) = 𝑝𝑅𝑗(𝑃𝑗,𝜏)
𝑝𝑅𝑗(𝑃𝑗,𝜏)+(1−𝑝)𝑅𝑗(𝑃𝑗,𝜈𝜏)  is the share of total revenue from product 𝑗 that is produced

by the group of low energy-price firms. Note that 𝑃𝑗, on which the average revenues of both groups
depend, cancels out of the expression for the revenue share 𝜃𝑗 by Equation 24. This is due to our
assumption that productivity is Pareto-distributed, which implies that the reduction in the mass of
active firms in the market due to a price increase is proportional to the original mass of active firms.
If we now consider a marginal increase in the energy price of the high-price firms – that is, a marginal
increase in 𝜈 –, it is straightforward to show that

𝑑𝜂𝑗

𝑑𝜈
= (𝜂𝑗(𝜏) − 𝜂𝑗(𝜈𝜏))

𝑑𝜃𝑗

𝑑𝜈⏟⏟⏟⏟⏟⏟⏟⏟⏟
reshuffling effect

+ (1 − 𝜃𝑗)
𝑑𝜂𝑗(𝜈𝜏)

𝑑𝜏
𝜏

⏟⏟⏟⏟⏟⏟⏟
technique effect

. (28)
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Intuitively, this means the following: If the energy price of the high-price firms increases, this induces
them to produce in a more energy-efficient way. This is the technique effect and it reduces the energy
intensity of product 𝑗 by Lemma 1. However, an energy price increase for the high-price firms also has
a composition effect on aggregate energy intensity at the product level because it affects the revenue
share of low-price firms in the market for product 𝑗. Since firms with a low energy price produce the
same product in a more energy-intensive way, this reshuffling effect increases observed product-level
energy intensity if and only if 𝑑𝜃𝑗

𝑑𝜈 > 0, that is, if the increase in 𝜈 increases the revenue share of the
low-energy-price group.
Using our expression for 𝑅𝑗 from Equation 24, we can see that

𝑑𝜃𝑗

𝑑𝜈
= 𝑘𝜃𝑗(1 − 𝜃𝑗)

𝑠𝑗(𝜈𝜏)
𝜈

> 0, (29)

that is, an increase in the energy price of high-price firms increases the market share of low-price firms
in the market for any product 𝑗. This result is quite intuitive: Given an increase in the energy price of
high-price firms, these firms will have to increase their prices and lose market shares. What is more,
because they become less profitable, some high-price firms close to the extensive margin will choose
to exit the market for product 𝑗 altogether, which further reduces their market share.¹⁹
Taken together, this means that the observed energy intensity of product 𝑗 changes by

𝑑𝜂𝑗

𝑑𝜈
=

(1 − 𝜃𝑗)𝜂𝑗(𝜈𝜏)
𝜈

[
[
[
[ 𝜌

𝜌 − 1
(1 − 𝑠𝑗(𝜈𝜏)) − 1

⏟⏟⏟⏟⏟⏟⏟⏟⏟
<0

+ (𝑠𝑗(𝜏)𝜈 − 𝑠𝑗(𝜈𝜏))𝑘𝜃𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
>0 ]

]
]
]

. (30)

The sign of this total effect can be positive or negative depending on the the product’s energy intensity
𝛼𝑚

𝑗 , the baseline dispersion of energy prices – given by 𝜈 in our stylised distribution – and the exact
parametrisation of the model.²⁰ That means we cannot analytically determine whether the reshuffling
effect or the technique effect will dominate for a given product. But Figure 3 shows that it certainly is
possible that the reshuffling effect will be sufficiently large that an increase in the energy price for a
subset of firms leads to an overall increase in energy intensity for some products.
Broadening our view across all products to look at aggregate energy intensity 𝜂, we can see that

𝑑𝜂
𝑑𝜈

= ∑
𝑗∈𝐽

𝑑𝜂𝑗

𝑑𝜈
𝑅𝑗

𝑅
⏟⏟⏟⏟⏟

avg. within-product effect

+ 1
𝑅

(∑
𝑗∈𝐽

𝜂𝑗
𝑑𝑅𝑗

𝑑𝜈
− 𝜂 ∑

𝑗∈𝐽

𝑑𝑅𝑗

𝑑𝜈
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
product composition effect

. (31)

This means that the response of aggregate energy intensity to an increase in 𝜈 depends on two
additively separable effects: the average within-product effect and the product composition effect. The
average within-product effect is simply the weighted sum of the effects of an increase in 𝜈 on the energy
intensity of each individual product that we have discussed at length above. Its sign is indeterminate,
as it nests the energy demand reducing technique effect and the energy demand increasing reshuffling
effect. If the within-product effect is energy demand increasing for some products and energy demand
reducing for others, products with higher total revenue will have a higher weight.

¹⁹In general, a third effect will be at work as well: An increase in 𝜈 increases the equilibrium price 𝑃 ∗
𝑗  because it

increases the cost of a non-zero mass of firms. In principle, such an increase in 𝑃𝑗 may affect the revenue of high-
energy-price firms and low-energy-price firms differently, leading to an orthogonal shift in 𝜃𝑗. But by our assumption
of Pareto-distributed productivities, 𝜃𝑗 does not depend on 𝑃𝑗, so this channel is shut down.

²⁰For example, a lower productivity dispersion (i.e. a higher 𝑘), a stronger complementarity between energy and labour
(i.e. a lower 𝜌) or a larger gap between 𝑠𝑗(𝜏) and 𝑠𝑗(𝜈𝜏) increase 𝑑𝜂𝑗

𝑑𝜈 .
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Figure 3:  Elasticity of product-level energy intensity with respect to 𝜈
Note:  Each line represents the elasticity of observed product-level energy intensity with respect to 𝜈, 𝑑𝜂𝑗

𝑑𝜈
𝜈
𝜂𝑗

, for a different
baseline level of 𝜈. It is based on 𝑝 = 0.3 and 𝜏 = 1, with all other parameters corresponding to their values in the main

quantification as listed in Appendix D.

The product composition effect reflects the fact that a change in 𝜈 may affect the shares of products
with a different energy intensity in different ways. It is energy-decreasing if and only if the empirical
covariance between 𝜂𝑗 and 𝑑𝑅𝑗

𝑑𝜈  is negative, that is: If the revenue share of products with a high energy
intensity decreases in response to an increase in 𝜈, and vice versa.
Since products only differ in their baseline energy intensity 𝛼𝑚

𝑗 , and since we know by Lemma 1 that
𝜂𝑗 is strictly increasing in 𝛼𝑚

𝑗 , this boils down to the question whether or not 𝑑𝑅𝑗
𝑑𝜈  is increasing in 𝛼𝑚

𝑗 ,
that is, whether or not 𝑑2𝑅𝑗

𝑑𝛼𝑚
𝑗 𝑑𝜈 > 0. Similarly to the case of the within-product effect, it turns out that

this depends on the product’s energy intensity, the baseline level of 𝜈 and other model parameters.
Specifically, some algebra shows that, in equilibrium,

𝑑𝑅𝑗

𝑑𝜈
= −𝑘 (1 − 𝜉)(𝜎 − 1)

(1 − 𝜉)(𝜎 − 1) + 𝜉𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈(0,1)

𝑅𝑗

𝜈
(1 − 𝜃𝑗)𝑠𝑗(𝜈𝜏) < 0. (32)

That means that, as one would expect, aggregate revenue from each product decreases when 𝜈
increases. However, whether or not this decrease is weaker or stronger among products with a high
baseline energy intensity 𝛼𝑚

𝑗  crucially depends on the (1 − 𝜃𝑗)𝑠𝑗(𝜈𝜏) term. That term reflects two
opposing forces with respect to the role of 𝛼𝑚

𝑗 : On the one hand, products with a higher 𝛼𝑚
𝑗  are simply

produced less by firms with a high energy price. Hence, (1 − 𝜃𝑗) is relatively lower for such products
and the increase in 𝜈 affects them less. On the other hand, the adverse effects of an increase in 𝜈 are
stronger among products for which the share of energy in total costs, 𝑠𝑗(𝜈𝜏), is high. Trivially, this is
the case for products with a higher 𝛼𝑚

𝑗 .
Analytically, the sign of 𝑑2𝑅𝑗

𝑑𝛼𝑚
𝑗 𝑑𝜈  is indeterminate, as it is a complex non-linear and non-monotonic

function of product energy intensity 𝛼𝑚
𝑗  and the energy price distribution. Figure 4 highlights that it

indeed strongly depends on the energy price distribution how 𝑑𝑅𝑗
𝑑𝜈  evolves with 𝛼𝑚

𝑗 . This implies that
the sign of the composition effect will depend on the empirical distribution of product baseline energy
intensities as well.
Putting everything together, we conclude that a non-uniform increase in the energy price can indeed
explain the puzzling pattern we observe in the data: An asymmetric price increase can lead to a
decrease in the energy intensity of the product mix – through the product composition effect – paired
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Figure 4:  Elasticity of aggregate product revenue with respect to 𝜈
Note:  Each line represents the elasticity of aggregate product revenue with respect to 𝜈, 𝑑𝑅𝑗

𝑑𝜈
𝜈

𝑅𝑗
, for a different baseline level

of 𝜈. It is based on 𝑝 = 0.3 and 𝜏 = 1, with all other parameters corresponding to their values in the main quantification as
listed in Appendix D.

with an increase in actual energy intensity through the reshuffling effect. Whether or not it will
produce these results depends on the exact parameters of the model.
One stylised setting in which our framework trivially produces exactly such a result is a world with two
products – product 𝐴 which requires no energy at all and product 𝐵 which requires some energy –, a
high baseline level of 𝜈 and a high share 𝑝 of firms with a persistent low energy price. Then, the product
composition effect is clearly energy-reducing because the revenue from product 𝐴 is unaffected by
an increase in 𝜈 whereas revenue from product 𝐵 shrinks. The energy-reducing technique effect is
rather small because only few firms are actually affected by the increase in 𝜈. But at the same time,
the energy-increasing reshuffling effect is quite strong because 𝜂𝐵(𝜏) − 𝜂𝐵(𝜈𝜏) is large.

4 Evidence of model mechanisms
Suggestive evidence at the product, firm and firm-product level provides support to several key
mechanisms posited by our model as we have described it in Section  3. In particular, it supports
our reshuffling hypothesis that producers with a low energy price partially replace producers with a
higher energy price in the markets for energy-intensive goods, which may result in increasing energy
intensity.
First of all, Figure 5 shows that producer reshuffling is more pronounced for more energy intensive
products. From panel (a), we can see that both add and drop rates – that is, the share of firms that add
or drop the product over a given time period relative to the total number of firms that produce it – are
higher for more energy-intensive products. That means that energy-intensive products are dropped
more often than others (relative to the total number of firms that produce them), just as one would
expect under rising energy prices. But they are also added more often than others – indicating that
new producers may fill part of the gap created by old producers moving out of the product market.
As can be seen from panel (b) of Figure  5, this is also reflected in a higher standard deviation of
firm-product level growth rates among more energy intensive products. That means that we also find
evidence of reshuffling when we look at both extensive-margin changes (i.e. when a firm adds or
drops a product) and intensive-margin changes (i.e. when a firm increases or decreases its output of a
product) combined.
In line with our hypothesised reshuffling mechanism, the firms that are adding more energy-intensive
products tend to be those with a lower energy price, and vice versa for the case of product dropping.
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(a) Product add and drop rates by energy
intensity

(b) Standard deviation of symmetric growth rate
by energy intensity

Figure 5:  Reshuffling among producers of most energy-intensive products

Note:  Each point in the binned scatter plots represents around 100 product-period combinations. Each underlying data point
represents one product over a six-year interval from 2005-2011 or 2011-2017. Product add and drop rates are computed as

# of producing firms adding/dropping the product
# of producers in base period + # of producing firms in final period  in line with Bernard et al. (2010). Firm-product level symmetric growth

rates are computed in terms of revenue 𝑟𝑖𝑗𝑡 as 𝑟𝑖𝑗,𝑡+1−𝑟𝑖𝑗𝑡
𝑟𝑖𝑗,𝑡+1+𝑟𝑖𝑗𝑡

.
Source: AFiD manufacturing census (see Appendix A)

As Panel (a) of Figure 6 shows, the probability that a firm adds a specific product decreases in the
firm’s energy price. This relationship between energy price and adding probability plays almost no
role among products with a low energy intensity but is strongly pronounced among products with
high energy intensities. For example, the predicted probability that a firm with a low energy price of
5 ct/kWh adds a product with a high energy intensity of 4 kWh/EUR is more than seven times as high
as the probability that a firm with a high energy price of 25 ct/kWh adds the same product.
Panel (b) of Figure 6 documents the reverse tendency for product dropping: The probability that a firm
with a high energy price drops a product is much higher for products with a high energy intensity
than for products with a low energy intensity. For example, for a firm with a high energy price of 25
ct/kWh, the predicted probability of dropping a product with a high energy intensity of 4 kWh/EUR
is 60 percent higher than the predicted probability of dropping a product with a low energy intensity
of 0.5 kWh/EUR. Conversely, firms with a lower energy price are much less likely to drop energy-
intensive products.
Unexpectedly, though, firms with a low energy price are more likely than others in absolute terms to
drop products with a low energy intensity. This seems counterintuitive at first because a lower energy
price is – at least through the lens of our model – an unequivocal benefit: It reduces production costs
for both energy-intensive and less energy-intensive products, even though cost reductions are much
larger for energy-intensive products. A large part of this relationship can be explained by a the simple
fact that we only include surviving firms in the regressions underlying Figure 6. While this gives us
clean product adding and dropping effects that are not affected by firm entry and exit, it implies that
we mostly observe product dropping among multi-product firms, as product switches among single-
product firms are rare. But firms with a low energy price are more likely to be multi-product firms, so
we are more likely to observe them drop a product.²¹

²¹The fact that firms with a low energy price will, on average, produce more different products follows directly from
our model (since productivity and energy prices are independent from one another, and the productivity cutoff for
product market entry is increasing in the energy price). We also document it empirically in Figure 11b in Appendix E.
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(a) Adding probabilties (b) Dropping probabilities

Figure 6:  Predicted adding and dropping probabilities of products by product energy intensity and
firm energy price

Note:  Visualisations are based on a regression of adding and dropping dummies on log firm energy price, product energy
intensity and the interaction of the two. We report the regression results in Table 5 in Appendix E. The adding probabilities in

Panel (a) are based on the sample of 18 007 162 hypothetical firm-product combinations over the two six-year periods
2005-2011 and 2011-2017 that are not produced in the respective period’s base year (and so could potentially be added). The

dropping probabilities in Panel (b) are based on the sample of 35 306 firm-product combinations over the two six-year periods
2005-2011 and 2011-2017 that are produced in the respective period’s base year (and so could potentially be dropped). The

sample is restricted to firms that survive over the respective six-year period. The graphs’ 𝑥 and 𝑦 axes represent the empirical
range of product energy intensities and firm energy prices, respectively.

Source: AFiD manufacturing census (see Appendix A)

On top of these results on energy-price-related product adding and dropping, Figure 7 documents
a positive correlation between a firm’s energy price and its total factor productivity, conditional on
output. This is evidence of exactly the selection mechanism that our model posits: Both a low energy
price and a high productivity reduce firms’ production costs, increasing their output and profits. Hence,
at any given level of output, we expect a positive relationship between energy price and productivity
– even if energy prices and productivity are ex ante independent.
Specifically, our model predicts that

𝜏𝑖 = ( 1
𝛼𝑚

𝑗
)

−1
𝜌

[
[[
[

(
(((

𝜑𝑖𝑗
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𝑖𝑗
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− 1
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𝜌
𝜌−1

]
]]
]

𝜌−1
𝜌

(33)

for each firm 𝑖 and product 𝑗. This means that the firm energy price 𝜏𝑖 is positively correlated with
𝜑𝑖𝑗

𝑟
1

𝜎−1
𝑖𝑗

. Since firm-product revenue 𝑟𝑖𝑗 is a function of 𝜑𝜎−1
𝑖𝑗 , 𝜑𝑖𝑗 cancels out of the right-hand side of

the equation in the cross section.²² However, once we condition on a specific level of revenue, our
model predicts a clear positive relationship between 𝜏𝑖 and 𝜑𝑖𝑗. While we do not observe firm-product
specific productivity 𝜑𝑖𝑗 in the data – because we cannot attribute the inputs of multi-product firms
to their different outputs – this result generalises to the relationship between firm-level productivity
and the energy price.²³

In fact, when adding ‘2-5 products’ and ‘>5 products’ dummies to our regression specification in Table 5, the negative
energy price coefficient drops from −0.2 to −0.11.

²²See Equation 54 in Appendix C.1 for the exact expression for optimal 𝑟𝑖𝑗.
²³The firm-level productivity we observe in the data is, effectively, a weighted average of the firm’s specific

productivities in producing the different products it has in its portfolio.
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Figure 7:  Positive correlation between energy price and TFP

Note:  Bin scatter plot based on 𝑁 = 34 915 firm-year combinations in 2005, 2011 and 2017. Both x and y axis are net of a
linear control term for log firm revenue. TFPR is calculated using median cost shares of capital, labour, materials and energy

at the 4-digit industry level as proxies for the respective input elasticities as described in De Loecker and Syverson (2021). The
regression coefficient underlying the slope of the fitted line is 0.07, measured with a standard error of 0.01. Similar results

hold for most other productivity measures, as documented in Table 7 in Appendix E.
Source: AFiD manufacturing census (see Appendix A)

Finally, the data also suggest that firms with a lower energy price are more energy intensive (Figure 8).
This holds both unconditionally (as depicted in panel (a) of the figure) and conditional on firms’ exact
product mix (as depicted in panel (b)). To arrive at the latter, we first compute the energy intensity of
the firm’s product mix analogously to the energy intensity of the entire manufacturing sector’s product
mix in Figure 2. If a firm’s actual energy intensity is higher than the energy intensity of its product mix,
this means that it requires more energy to produce its exact combination of outputs than the average
firm would need. This quantity – which we have dubbed the actual–predicted energy ratio – allows us
to compare the energy intensity of firms conditional on their potentially very diverse product mixes.
Of course, the relationship depicted in Figure 8 does not represent the causal effect of energy prices
on energy intensity: At least some degree of reverse causality is to be expected because, typically,
firms with a higher energy intensity will use more energy and for this reason get quantity discounts
from their energy providers. But it shows that there is a clear negative relationship between energy
intensity and the energy price even after accounting for the fact that firms with a low energy price
may select into more energy-intensive products and industries. A causal effect from higher energy
prices to lower energy intensity is then both in line with fundamental economic intuition and existing
empirical evidence (Gerster & Lamp, 2024; Marin & Vona, 2021).

5 Model quantification
As we have illustrated in Section  3, heterogeneous energy price changes can affect actual energy
intensity and the energy intensity of the product mix in different ways due to a reshuffling among
the producers of energy-intensive products in particular. To get an idea of the magnitude of the effect
that this reshuffling could have had in German manufacturing over our period of observation, we
walk through a simple and preliminary quantification of our model in this section. We simulate our
model with 75,000 firms and 100 products over three periods that roughly represent our main years of
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(a) Energy intensity (b) Actual / predicted energy use

Figure 8:  Relationship between energy price and energy intensity

Note:  Bin scatter plot based on 𝑁 = 35 301 firm-year combinations in 2005, 2011 and 2017. The ratio of actual to predicted
energy use is calculated as 𝑚𝑖

∑𝑁𝐽
𝑗=1 𝜂̂𝑗𝑟𝑖𝑗

, where 𝑚𝑖 represents firm 𝑖’s energy consumption, 𝜂𝑗 is the average energy intensity of

product 𝑗 as described in Section 2.1 and 𝑟𝑖𝑗 is firm 𝑖’s output of product 𝑗.
Source: AFiD manufacturing census (see Appendix A)

observation: 2005, 2011 and 2017.²⁴
In contrast to the stylised setup in Section 3.2, we plug a more realistic distribution of energy prices,
𝐻 , into our model in this section. To roughly mimic the empirical energy price distribution, we assume
that energy prices are distributed log-normally with log mean 𝜇𝜏,1 and log standard deviation 𝜎𝜏,1 in
the first period. For each subsequent period 𝑡 > 1, firm 𝑖’s energy price 𝜏𝑖 is updated according to the
law of motion

ln 𝜏𝑖𝑡 = ln 𝜏𝑖,𝑡−1 + 𝛽𝜏,𝑡(ln 𝜏𝑡−1 − ln 𝜏𝑖,𝑡−1) + ln 𝜏𝑖𝑡, (34)

where 𝜏𝑖𝑡 is a random shock drawn from a normal distribution with mean 𝜇̂𝜏,𝑡 and standard deviation
𝜎̂𝜏,𝑡, and ln 𝜏𝑡 is the average log energy price in period 𝑡. If the shock distribution has a higher mean,
the shock mainly results in an increased average energy price, and if it has a higher standard deviation,
the shock mainly results in an increased energy price dispersion (although mean and variance of the
energy price distribution positively depend on each other due to its log-normal structure). A higher
𝛽𝜏,𝑡 implies that firms with a higher baseline energy price will be more likely to have their energy
price increase, which results in a higher energy price dispersion on aggregate.²⁵
To reproduce the development of the empirical energy price distribution from 2005 to 2017, we set the
baseline parameters 𝜇𝜏,1 = 0 and 𝜎𝜏,1 = 0.4 and pick law of motion parameters (𝜇̂𝜏,𝑡, 𝜎̂𝜏,𝑡, 𝛽𝜏,𝑡)𝑡=2,3
that yield the energy price distribution depicted in Panel (b) of Figure 9.²⁶ Calibration choices with
respect to other model components are described in more detail in Appendix D.
Table 2 shows the results of the corresponding model simulation. Given our choice of parameters and
our approximation of the true energy price distribution, we see that the energy intensity of the product
mix inversely follows the average energy price: It slightly decreases from period 1 to period 2, when

²⁴We have chosen the number of firms to get the right order of magnitude of firms entering the market in our resulting
simulations. The number of products is a compromise between how granular we are able to represent real-world product
heterogeneity versus how computationally intensive it is to solve the model.

²⁵Specifically, since the right-hand side is a linear combination of normal distributions, the log of the updated energy
price distribution will be normally distributed as well, with 𝜇𝜏,𝑡 = 𝜇𝜏,𝑡−1 + 𝜇̂𝜏,𝑡 and 𝜎𝜏,𝑡 = √(𝛽2 + 𝛽 + 1)𝜎2

𝜏,𝑡 + 𝜎̂2
𝜏,𝑡.

²⁶The exact parameters to produce these distributions are 𝜇̂𝜏,2 = 0.6, 𝜎̂𝜏,2 = 0, 𝛽𝜏,2 = 0, 𝜇̂𝜏,3 = 0, 𝜎̂𝜏,3 = 0.2 and
𝛽𝜏,3 = 0.2.
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(a) Actual distribution (b) Simulation input

Figure 9:  Actual distribution of energy prices vs distribution used in simulation

Note:  Panel (b) represents kernel density estimates of the distribution of energy price draws among the 75,000 firms in the
population of our simulated model world. Panel (a) is identical to Figure 1a and just repeated here for ease of comparison with

panel (b).

Table 2:  Energy price dispersion and energy intensity in simulated model

𝑡 𝜏weighted 𝜏unweighted 𝜎𝜏 𝜂 (product mix) 𝜂 (actual)
1 0.94 0.84 0.39 100.00% 100.00%
2 1.67 1.49 0.69 99.77% 68.10%
3 1.57 1.31 0.85 99.81% 75.01%

Note: 𝜏weighted represents the consumption-weighted average of the energy prices of all firms active in the market. 𝜏unweighted,
conversely, represents the unweighted average of the same energy prices. 𝜎𝜏  represents the (unweighted) standard deviation
of energy prices. Predicted 𝜂 denotes aggregate (revenue-based) energy intensity if each product was produced at its baseline

energy intensity from 𝑡 = 1. Actual 𝜂 denotes actual (revenue-based) energy intensity.

the average energy price rises strongly, and it minimally increases from period 2 to period 3, when the
average energy price slightly falls. This is the expected result: Energy price increases make energy-
intensive products relatively more expensive to produce and hence less profitable, so firms should
disproportionately reduce their output of them.
Overall, though, the energy intensity of the product mix is quite persistent despite substantial
price changes. This is the reshuffling mechanism at play: As energy prices increase on average, the
comparative advantage of those firms with a relatively low energy price increases. Many firms reduce
their output of energy-intensive products, but the producers with the relatively lowest energy prices
increase their output, so in sum, production does not decrease by that much.
By contrast, actual energy intensity changes substantially between the three periods. That means:
What is produced does not change by that much, but how it is produced changes a lot. From period 1
to period 2, total energy intensity drops by 32%. This is because the effect of the energy price increase
across the board (which causes all firms to reduce their energy intensity) dominates the effect of the
increase in the dispersion of energy prices (which leads to a reallocation towards firms with a relatively
lower energy price). From period 2 to period 3, on the other hand, total energy intensity increases by
7%. This is in part the result of a slight decrease in the average energy price and in part due to the
increase in energy price dispersion.
While these simulation results are internally consistent and do highlight that reshuffling due to
increasing energy price dispersion can drive a wedge between actual energy intensity and the energy
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intensity of the product mix, they are not able to explain the actual development of energy intensity in
German manufacturing. Recall from Figure 2 that the energy intensity of the product mix fell slightly
but consistently between 2005 and 2017. Actual energy intensity fluctuated substantially around a
slight upward trend between 2005 and 2011 and then increased substantially between 2011 and 2017.
Our model results do offer a convincing explanation how increasing energy price dispersion may have
contributed to the increase in actual energy intensity relative to the energy intensity of the product
mix, in particular over the period from 2011 to 2017. But additional factors that we do not include in our
simple model would be required to account for the overall increase in energy intensity despite rising
average energy prices. One reason might be that the cost of other inputs has increased as well over our
period of observation, which could explain why an increase in the average energy price did not lead
to the aggregate shift away from energy that our model predicts. Alternatively, a shift in production
technology might be at play if the increased availability of automation technologies introduced an
‘energy-biased technological change’. Investigating these mechanisms in more detail is an important
avenue for future research.

6 Conclusion
In this study, we have shown that an increase in the dispersion of energy prices can lead to an increase
in the aggregate energy intensity of production, and that this can happen independently of the energy
intensity of the product mix. Using administrative microdata, we have shown that the energy prices
paid by German manufacturing firms have become substantially more dispersed between 2005 and
2017. And that this has gone along with a reshuffling among the producers of more energy-intensive
products: These were more likely to be added by firms with a low energy price and (relatively) more
likely to be dropped by firms with a high energy price. We have developed a model that explains how
an increased dispersion of energy prices leads to such a reshuffling and that this reshuffling increases
aggregate energy intensity because firms with a low energy price tend to produce the same goods
in a more energy-intensive way than firms with a high energy price. In a simple and preliminary
quantification, we have been able to confirm the relevance of this mechanism, but have observed that,
in our model, it is dominated by the energy-saving effects of rising average energy prices.
Our findings have two main implications for policy. First, they demonstrate that, in order to reduce
energy consumption and emissions, it is not enough to focus on a shift towards less energy-intensive
products alone. As we have seen empirically in the case of the German manufacturing sector, and
illustrated in our model, it is possible that energy intensity rises even though the manufacturing
sector as a whole shifts towards less energy-intensive products. The crucial policy lesson here is that
policies that aim at making less energy-intensive products more attractive without strictly penalising
the production of more energy-intensive products do lead to a shift towards less energy-intensive
products. But they can make the production of highly energy-intensive products even more energy-
intensive. This is because policies that induce a shift towards less energy-intensive products reduce
competitive pressure in the markets for more energy-intensive products. Exactly those firms with the
highest comparative advantage in the production of energy-intensive products will benefit the most
from this reduced pressure and step up their production. These firms, however, are often the ones with
the lowest effective energy or emissions prices. Consequently, they produce the same goods in a more
energy-intensive way and counteract the beneficial effects of the increased production of clean goods.
The second main policy implication is related to the first: It is that allocation – that is, who produces
how much of what – matters for energy consumption. Policies like the compensation of energy-
intensive producers in trade-exposed industries may aim to ensure a level playing field internationally,
where many countries can offer cheaper and less heavily regulated access to energy. But they tilt the
domestic playing field towards the compensated firms.
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This is a highly relevant aspect of such policies that public debate has often neglected so far. The
allocative efficiency literature has long found that the inefficient allocation of resources (away from
the firm that can put them to their most productive use) is a significant barrier to efficient production
that may cost a substantial share of GDP (Hopenhayn, 2014; Hsieh & Klenow, 2009; Ruzic & Ho, 2023).
Our findings demonstrate that dispersion in energy prices has allocative effects as well: It leads to an
allocation of the production of the most energy-intensive products to the firms with the lowest energy
price and the least energy-efficient technology. This contributes to an increase in aggregate energy
intensity. Whether it exacerbates or mitigates the problem of allocative efficiency depends on who the
firms are that benefit from lower energy prices: If the institutional and regulatory conditions in the
industrial energy market make it easier for more productive firms to source cheap energy, this may
lead to increased energy intensity but increase allocative efficiency because it causes an allocation of
production towards more productive firms. If the reverse is true – i.e. if less productive firms have
access to cheaper energy, on average – the dispersion of energy prices makes allocative inefficiencies
worse.

Bibliography
Abeberese, A. B. (2017). Electricity Cost and Firm Performance: Evidence from India. The Review of

Economics and Statistics, 99(5), 839–852. https://doi.org/10.1162/REST_a_00641
Ackerberg, D. A., Caves, K., & Frazer, G. (2015). Identification Properties of Recent Production Function

Estimators. Econometrica, 83(6), 2411–2451. https://doi.org/10.3982/ECTA13408
Albuquerque, B., & Iyer, R. (2023). The Rise of the Walking Dead: Zombie Firms Around

the World (Number WP/23/125). https://www.imf.org/en/Publications/WP/Issues/2023/06/16/The-
Rise-of-the-Walking-Dead-Zombie-Firms-Around-the-World-534866?utm_source=chatgpt.com

Aldy, J. E., & Pizer, W. A. (2015). The Competitiveness Impacts of Climate Change Mitigation Policies.
Journal of the Association of Environmental and Resource Economists, 2(4), 565–595. https://doi.org/
10.1086/683305

Barrows, G., & Ollivier, H. (2018). Cleaner Firms or Cleaner Products? How Product Mix Shapes
Emission Intensity from Manufacturing. Journal of Environmental Economics and Management, 88,
134–158. https://doi.org/10.1016/j.jeem.2017.10.008

Barrows, G., Calel, R., Jégard, M., & Ollivier, H. (2024, May 13). Equilibrium Effects of Carbon Policy.
Mannheim Conference on Energy and the Environment.

Basaglia, P., Behr, S. M., & Drupp, M. A. (2024). De-Fueling Externalities: Causal Effects of Fuel Taxation
and Mediating Mechanisms for Reducing Climate and Pollution Costs (Number 10508). https://doi.
org/10.2139/ssrn.4477996

Bernard, A. B., Redding, S. J., & Schott, P. K. (2011). Multiproduct Firms and Trade Liberalization. The
Quarterly Journal of Economics, 126(3), 1271–1318. https://doi.org/10.1093/qje/qjr021

Bernard, A. B., Redding, S. J., & Schott, P. K. (2010). Multiple-Product Firms and Product Switching.
American Economic Review, 100(1), 70–97. https://doi.org/10.1257/aer.100.1.70

Boehm, J., Dhingra, S., & Morrow, J. (2022). The Comparative Advantage of Firms. Journal of Political
Economy, 130(12), 3025–3100. https://doi.org/10.1086/720630

Bretschger, L., & Jo, A. (2024). Complementarity between Labor and Energy: A Firm-Level Analysis.
Journal of Environmental Economics and Management, 124, 102934. https://doi.org/10.1016/j.jeem.
2024.102934

Calel, R., & Dechezleprêtre, A. (2016). Environmental Policy and Directed Technological Change:
Evidence from the European Carbon Market. The Review of Economics and Statistics, 98(1), 173–
191. https://doi.org/10.1162/REST_a_00470

26

https://doi.org/10.1162/REST_a_00641
https://doi.org/10.3982/ECTA13408
https://www.imf.org/en/Publications/WP/Issues/2023/06/16/The-Rise-of-the-Walking-Dead-Zombie-Firms-Around-the-World-534866?utm_source=chatgpt.com
https://www.imf.org/en/Publications/WP/Issues/2023/06/16/The-Rise-of-the-Walking-Dead-Zombie-Firms-Around-the-World-534866?utm_source=chatgpt.com
https://doi.org/10.1086/683305
https://doi.org/10.1016/j.jeem.2017.10.008
https://doi.org/10.2139/ssrn.4477996
https://doi.org/10.1093/qje/qjr021
https://doi.org/10.1257/aer.100.1.70
https://doi.org/10.1086/720630
https://doi.org/10.1016/j.jeem.2024.102934
https://doi.org/10.1016/j.jeem.2024.102934
https://doi.org/10.1162/REST_a_00470


Colmer, J., Martin, R., Muûls, M., & Wagner, U. J. (2024). Does Pricing Carbon Mitigate Climate Change?
Firm-Level Evidence from the European Union Emissions Trading System. The Review of Economic
Studies. https://doi.org/10.1093/restud/rdae055

Davis, S. J., Grim, C., Haltiwanger, J., & Streitwieser, M. (2013). Electricity Unit Value Prices and
Purchase Quantities: U.S. Manufacturing Plants, 1963–2000. The Review of Economics and Statistics,
95(4), 1150–1165. https://doi.org/10.1162/REST_a_00309

De Loecker, J., & Syverson, C. (2021). An Industrial Organization Perspective on Productivity. In
Handbook of Industrial Organization: Vol. 4. Handbook of Industrial Organization (pp. 141–223).
Elsevier. https://doi.org/10.1016/bs.hesind.2021.11.003

De Loecker, J., Goldberg, P. K., Khandelwal, A. K., & Pavcnik, N. (2016). Prices, Markups, and Trade
Reform. Econometrica, 84(2), 445–510. https://doi.org/10.3982/ECTA11042

Destatis. (2023). Preise: Daten zur Energiepreisentwicklung. Lange Reihen von Januar 2005 bis Januar 2023
(Number 5619001231014). https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Erdgas-Strom-
DurchschnittsPreise/_inhalt.html#_a9l5v6d6y

Eckel, C., & Neary, J. P. (2010). Multi-Product Firms and Flexible Manufacturing in the Global Economy.
Review of Economic Studies, 77(1), 188–217. https://doi.org/10.1111/j.1467-937X.2009.00573.x

Elliott, R., Sun, P., & Zhu, T. (2019). Electricity Prices and Industry Switching: Evidence from Chinese
Manufacturing Firms. Energy Economics, 78, 567–588. https://doi.org/10.1016/j.eneco.2018.11.029

Elrod, A. A., & Malik, A. S. (2017). The Effect of Environmental Regulation on Plant-Level Product Mix:
A Study of EPA's Cluster Rule. Journal of Environmental Economics and Management, 83, 164–184.
https://doi.org/10.1016/j.jeem.2017.03.002

Elrod, A. A., & Malik, A. S. (2019). The Effect of County Non-Attainment Status on the Product Mix
of Plants in the Pulp, Paper, and Paperboard Industries. Journal of Environmental Economics and
Policy, 8(3), 283–300. https://doi.org/10.1080/21606544.2019.1569561

Flues, F. S., & Lutz, B. J. (2015). The Effect of Electricity Taxation on the German Manufacturing Sector:
A Regression Discontinuity Approach (Numbers 15–13). https://doi.org/10.2139/ssrn.2580742

Ganapati, S., Shapiro, J. S., & Walker, R. (2020). Energy Cost Pass-Through in US Manufacturing:
Estimates and Implications for Carbon Taxes. American Economic Journal: Applied Economics, 12(2),
303–342. https://doi.org/10.1257/app.20180474

Gerster, A., & Lamp, S. (2024). Energy Tax Exemptions and Industrial Production. The Economic Journal,
134(663), 2803–2834. https://doi.org/10.1093/ej/ueae048

Goldberg, P. K., Khandelwal, A. K., Pavcnik, N., & Topalova, P. (2010). Multiproduct Firms and Product
Turnover in the Developing World: Evidence from India. The Review of Economics and Statistics,
92(4), 1042–1049. https://www.jstor.org/stable/40985812

Hawkins-Pierot, J. T., & Wagner, K. R. H. (2024). Technology Lock-In and Costs of Delayed Climate Policy.
http://www.krhwagner.com/papers/carbon_lockin.pdf

Hopenhayn, H. A. (2014). Firms, Misallocation, and Aggregate Productivity: A Review. Annual Review
of Economics, 6, 735–770. https://doi.org/10.1146/annurev-economics-082912-110223

Hsieh, C.-T., & Klenow, P. J. (2009). Misallocation and Manufacturing TFP in China and India*. The
Quarterly Journal of Economics, 124(4), 1403–1448. https://doi.org/10.1162/qjec.2009.124.4.1403

Levinson, A. (2009). Technology, International Trade, and Pollution from US Manufacturing. American
Economic Review, 99(5), 2177–2192. https://doi.org/10.1257/aer.99.5.2177

Levinson, A. (2015). A Direct Estimate of the Technique Effect: Changes in the Pollution Intensity of
US Manufacturing, 1990–2008. Journal of the Association of Environmental and Resource Economists,
2(1), 43–56. https://doi.org/10.1086/680039

27

https://doi.org/10.1093/restud/rdae055
https://doi.org/10.1162/REST_a_00309
https://doi.org/10.1016/bs.hesind.2021.11.003
https://doi.org/10.3982/ECTA11042
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Erdgas-Strom-DurchschnittsPreise/_inhalt.html#_a9l5v6d6y
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Erdgas-Strom-DurchschnittsPreise/_inhalt.html#_a9l5v6d6y
https://doi.org/10.1111/j.1467-937X.2009.00573.x
https://doi.org/10.1016/j.eneco.2018.11.029
https://doi.org/10.1016/j.jeem.2017.03.002
https://doi.org/10.1080/21606544.2019.1569561
https://doi.org/10.2139/ssrn.2580742
https://doi.org/10.1257/app.20180474
https://doi.org/10.1093/ej/ueae048
https://www.jstor.org/stable/40985812
http://www.krhwagner.com/papers/carbon_lockin.pdf
https://doi.org/10.1146/annurev-economics-082912-110223
https://doi.org/10.1162/qjec.2009.124.4.1403
https://doi.org/10.1257/aer.99.5.2177
https://doi.org/10.1086/680039


Liu, R. (2010). Import Competition and Firm Refocusing. Canadian Journal of Economics/Revue
canadienne d'économique, 43(2), 440–466. https://doi.org/10.1111/j.1540-5982.2010.01579.x

Ma, Y., Tang, H., & Zhang, Y. (2014). Factor Intensity, Product Switching, and Productivity: Evidence
from Chinese Exporters. Journal of International Economics, 92(2), 349–362. https://doi.org/10.1016/
j.jinteco.2013.11.003

Marin, G., & Vona, F. (2021). The Impact of Energy Prices on Socioeconomic and Environmental
Performance: Evidence from French Manufacturing Establishments, 1997–2015. European Economic
Review, 135, 103739. https://doi.org/10.1016/j.euroecorev.2021.103739

Mayer, T., Melitz, M. J., & Ottaviano, G. I. P. (2014). Market Size, Competition, and the Product Mix of
Exporters. American Economic Review, 104(2), 495–536. https://doi.org/10.1257/aer.104.2.495

Mayr-Dorn, K. (2024). How Effective Is Emissions Pricing? The Role of Firm-Product Level Adjustment
(Number 2410). http://www.economics.jku.at/papers/2024/wp2410.pdf

Navarro, L. (2012). Plant Level Evidence on Product Mix Changes in Chilean Manufacturing. The
Journal of International Trade & Economic Development, 21(2), 165–195. https://doi.org/10.1080/
09638191003710397

Nocke, V., & Yeaple, S. (2014). Globalization and Multiproduct Firms. International Economic Review,
55(4), 993–1018. https://doi.org/10.1111/iere.12080

Pan, X., Guo, S., Xu, H., Tian, M., Pan, X., & Chu, J. (2022). China's Carbon Intensity Factor
Decomposition and Carbon Emission Decoupling Analysis. Energy, 239, 122175. https://doi.org/10.
1016/j.energy.2021.122175

Qiu, L. D., & Zhou, W. (2013). Multiproduct Firms and Scope Adjustment in Globalization. Journal of
International Economics, 91(1), 142–153. https://doi.org/10.1016/j.jinteco.2013.04.006

Ritchie, H., & Roser, M. (2023). Sector by Sector: Where Do Global Greenhouse Gas Emissions Come From?.
https://ourworldindata.org/ghg-emissions-by-sector

Rottner, E., & von Graevenitz, K. (2024). What Drives Carbon Emissions in German Manufacturing:
Scale, Technique or Composition?. Environmental and Resource Economics, 87(9), 2521–2542. https://
doi.org/10.1007/s10640-024-00894-7

Ruzic, D., & Ho, S.-J. (2023). Returns to Scale, Productivity, Measurement, and Trends in U.S.
Manufacturing Misallocation. Review of Economics and Statistics, 105(5), 1287–1303. https://doi.org/
10.1162/rest_a_01121

Shapiro, J. S., & Walker, R. (2018). Why Is Pollution from US Manufacturing Declining? The Roles
of Environmental Regulation, Productivity, and Trade. American Economic Review, 108(12), 3814–
3854. https://doi.org/10.1257/aer.20151272

von Graevenitz, K., & Rottner, E. (2024). Do Manufacturing Plants Respond to Exogenous Changes in
Electricity Prices? Evidence From Administrative Micro-Data (Numbers 22–38). https://doi.org/10.
2139/ssrn.4251564

von Graevenitz, K., Rottner, E., & Richter, P. (2024). Is Germany Becoming the European Pollution Haven?
(Numbers 23–69). https://doi.org/10.2139/ssrn.4690103

Wolverton, A., Shadbegian, R., & Gray, W. B. (2022). The U.S. Manufacturing Sector’s Response to Higher
Electricity Prices: Evidence from State-Level Renewable Portfolio Standards (Number 30502). https://
doi.org/10.3386/w30502

Wooldridge, J. M. (2009). On Estimating Firm-Level Production Functions Using Proxy Variables to
Control for Unobservables. Economics Letters, 104(3), 112–114. https://doi.org/10.1016/j.econlet.
2009.04.026

28

https://doi.org/10.1111/j.1540-5982.2010.01579.x
https://doi.org/10.1016/j.jinteco.2013.11.003
https://doi.org/10.1016/j.jinteco.2013.11.003
https://doi.org/10.1016/j.euroecorev.2021.103739
https://doi.org/10.1257/aer.104.2.495
http://www.economics.jku.at/papers/2024/wp2410.pdf
https://doi.org/10.1080/09638191003710397
https://doi.org/10.1080/09638191003710397
https://doi.org/10.1111/iere.12080
https://doi.org/10.1016/j.energy.2021.122175
https://doi.org/10.1016/j.energy.2021.122175
https://doi.org/10.1016/j.jinteco.2013.04.006
https://ourworldindata.org/ghg-emissions-by-sector
https://doi.org/10.1007/s10640-024-00894-7
https://doi.org/10.1162/rest_a_01121
https://doi.org/10.1257/aer.20151272
https://doi.org/10.2139/ssrn.4251564
https://doi.org/10.2139/ssrn.4251564
https://doi.org/10.2139/ssrn.4690103
https://doi.org/10.3386/w30502
https://doi.org/10.1016/j.econlet.2009.04.026
https://doi.org/10.1016/j.econlet.2009.04.026


Zhang, W., Xu, H., & Xu, Y. (2023). Does Stronger Environmental Regulation Promote Firms’ Export
Sophistication? A Quasi-Natural Experiment Based on Sewage Charges Standard Reform in China.
Sustainability, 15(11), 9023. https://doi.org/10.3390/su15119023

29

https://doi.org/10.3390/su15119023


A Exact data versions used
For our analyses, we use the following modules of the German AFiD manufacturing census, provided
by the Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Federal
States (‘Forschungsdatenzentrum des Bundes und der Länder’):

• for information on firm employment, the panel of industrial establishments (‘AFiD-Panel
Industriebetriebe’) with DOI 10.21242/42111.2017.00.01.1.1.0;

• for information on firm-product-level sales, the production survey (‘AFiD-Modul Produkte’) with
DOI 10.21242/42131.2017.00.03.1.1.0;

• for information on firm-level energy use, the energy use survey (‘AFiD-Modul
Energieverwendung’) with DOI 10.21242/43531.2017.00.03.1.1.0;

• for information on energy and materials expenditures, the cost structure panel (‘Panel der
Kostenstrukturerhebung im Bereich Verarbeitendes Gewerbe, Bergbau und Gewinnung von
Steinen und Erden’) with DOI 10.21242/42251.2017.00.01.1.1.0.
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B Product-level energy intensities
Lemma 2 shows that the regression-based and the single-product-based estimator of average product
energy intensity are closely related when we consider a sample of single-product firms only. The key
difference between the two of them is that the regression-based estimator puts a slightly higher weight
on the energy intensity of large firms but this evens out asymptotically, so both estimators converge
to 𝜂𝑗, that is, the average amount of energy it takes a firm to generate one more unit of revenue from
product 𝑗.

Lemma 2 : The two estimators for average product energy intensity, 𝜂𝑗 and 𝜂SP
𝑗  are

asymptotically identical in a sample of single-product firms.

Proof :  To see that, define 𝜂𝑗 as the coefficient from a linear projection of firm energy use on
output,

𝑚𝑖𝑗 = 𝜂𝑗𝑟𝑖𝑗 + 𝜀𝑖𝑗, (35)

where 𝑟𝑖𝑗 is firm 𝑖’s output of its only product 𝑗, 𝑚𝑖𝑗 = 𝑚𝑖 is the amount of energy firm 𝑖 uses
to produce 𝑗, and Cov(𝜀𝑖𝑗, 𝑟𝑖𝑗) = 𝔼[𝜀𝑖𝑗] = 0 by construction of the linear projection.
It is straightforward to show that the OLS estimator 𝜂𝑗 in a regression

𝑚𝑖𝑗 = ∑
𝑁𝐽

𝑗=1
𝑟𝑖𝑗𝜂𝑗 + 𝜀𝑖𝑗 (36)

is defined as

𝜂𝑗 =
∑𝑁𝐽

𝑗=1 𝑟𝑖𝑗𝑚𝑖𝑗

∑𝑁𝐽
𝑗=1 𝑟2

𝑖𝑗
= 𝜂𝑗 +

∑𝑁𝐽
𝑗=1 𝑟𝑖𝑗𝜀𝑖𝑗

∑𝑁𝐽
𝑗=1 𝑟2

𝑖𝑗
. (37)

Since Cov(𝜀𝑖𝑗, 𝑟𝑖𝑗) = 0 and 𝔼[𝜀𝑖𝑗] = 0, clearly 𝜂𝑗 ⟶
𝑝

𝜂𝑗 by the law of large numbers and the
continuous mapping theorem.
By contrast, the single-product based product energy intensity estimator 𝜂SP

𝑗  is defined as

𝜂SP
𝑗 =

∑𝑁𝐽
𝑗=1 𝑚𝑖𝑗

∑𝑁𝐽
𝑗=1 𝑟𝑖𝑗

= 𝜂𝑗 +
∑𝑁𝐽

𝑗=1 𝜀𝑖𝑗

∑𝑁𝐽
𝑗=1 𝑟𝑖𝑗

. (38)

Trivially, it also holds that 𝜂SP
𝑗 ⟶

𝑝
𝜂𝑗 by 𝔼[𝜀𝑖𝑗] = 0. □

However, restricting our attention to single-product firms ignores a substantial part of production
and energy consumption. We have explained in Section 2.1 that multi-product firms are substantially
more energy-intensive than single-product firms and make up the bulk of aggregate production and
energy consumption. This is reflected in the performance of the two product energy intensity measures
because many products – and in particular the most energy-intensive ones – are not produced by
single-product firms at all. When we compare the coverage of the two measures, we see that products
representing 23% of total output have only a regression-based energy intensity measure, whereas just
5% have only a single-product-based measure (Table 3).
When we shift our glance to the firm level, we can see that, based on our product energy intensities,
we can predict the energy use of firms covering 63% of output and 49% of energy use when using
our regression-based measure (compared to 61% of output and 39% of energy use when using the
single-product based measure). The high share of unpredictable output and energy use at the firm
level comes from the fact that we can only predict the energy use of firms for all of whose products
we can measure product energy intensity. However, among the firms with predictable energy use,

31



the correlation between actual energy use and the energy use predicted by regression-based product
intensity measures is very high at 0.88.

Table 3:  Coverage of regression-based and single-product-based product energy intensity measures

both measures reg only SP only none
(1) (2) (3) (4)

Share of products 59% 23% 5% 13%
Share of output 59% 23% 5% 13%
Output share of firms with predictable energy use 54% 9% 7% 28%
Energy share of firms with predictable energy use 36% 13% 3% 47%

Note:  The share of products and share of output are based on a sample of 3 582 product-year combinations across our focal
years of 2005, 2011 and 2017. The shares of firms are based on 85 445 firm-year combinations across the same focal years.

Column (1) represents the share of firms or products for which both a regression-based and a single-product-based energy
intensity measure is available. Column (2) and column (3) represent the shares of firms or products for which either a

regression-based or a single-product-based energy intensity measure is available, respectively. Column (4) represents the
share of firms or products for which neither a regression-based nor a single-product-based energy intensity is available.

Source: AFiD manufacturing census (see Appendix A)
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C Model proofs and derivations
C.1 Fundamental model behaviour

The consumer’s utility maximisation problem
The Karush–Kuhn–Tucker conditions of the consumer’s utility maximisation problem defined by
Equation 3 are

𝜕𝑈
𝜕𝑞0

|
𝒒∗

= 1 = 𝜆∗ + 𝜇∗
0 (39)

𝜕𝑈
𝜕𝑞𝑖𝑗

|
𝒒∗

= 𝜕𝑈
𝜕𝑈𝑗

|
𝒒∗

⋅
𝜕𝑈𝑗

𝜕𝑞𝑖𝑗
|
𝒒∗

= 𝜆∗𝑝𝑖𝑗 + 𝜇∗
𝑖𝑗 ∀𝑖, 𝑗 (40)

𝜇∗
0 ≥ 0 𝜇∗

𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 𝜇∗
0𝑞∗

0 = 0 𝜇∗
𝑖𝑗𝑞∗

𝑖𝑗 = 0 ∀𝑖, 𝑗, (41)

where 𝜇0 and 𝜇𝑖𝑗 are the Lagrangian multipliers corresponding to the non-negativity constraints on
𝑞0 and 𝑞𝑖𝑗, respectively, and 𝜆 is the Lagrangian multiplier corresponding to the budget constraint.
Consider a consumption bundle 𝒒∗ that satisfies the Karush–Kuhn–Tucker conditions and maximises
the consumer’s utility. First, note that the 𝑈  is strictly increasing in 𝑞0 and each 𝑞𝑖𝑗, which implies that
the budget constraint has to be binding for 𝒒∗. Second, spelling out Equation 40 tells us that

(1 − 𝛿𝑗)𝛾𝑗(𝑈𝑗(𝒒∗
𝑗))

1−𝜎𝑗𝛿𝑗
𝜎𝑗 (𝑞∗

𝑖𝑗)
− 1

𝜎𝑗 = 𝜆∗𝑝𝑖𝑗 + 𝜇∗
𝑖𝑗 ∀𝑖, 𝑗, (42)

from which we can see that, for any finite price 𝑝𝑖𝑗, optimal consumption 𝑞∗
𝑖𝑗 of variety 𝑖 of product 𝑗

has to be strictly positive. Otherwise, the consumer could marginally reduce her consumption of any
other variety 𝑖′𝑗′ with 𝑞∗

𝑖′𝑗′ > 0 (resulting in a finite marginal reduction in utility), and marginally
increase her consumption of variety 𝑖𝑗 (resulting in an infinite marginal increase in utility) to increase
her utility. By the complementary slackness conditions, this implies that 𝜇∗

𝑖𝑗 = 0 ∀𝑖, 𝑗.²⁷
Let us assume for now that our consumption bundle 𝒒∗ features 𝑞∗

0 > 0, i.e. positive consumption of
the numéraire good. (We will verify below that this is feasible and show that indeed no alternative
consumption bundle 𝒒′ with 𝑞′

0 = 0 can be optimal.) This implies that 𝜇∗
0 = 0 and hence – by

Equation 39 – that 𝜆∗ = 1.
Then, we can simplify Equation 42 to the demand function

𝑞∗
𝑖𝑗 = ((1 − 𝛿𝑗)𝛾𝑗)

𝜎𝑗𝑈𝑗(𝒒∗
𝑗)

1−𝛿𝑗𝜎𝑗𝑝−𝜎𝑗
𝑖𝑗 ∀𝑖, 𝑗. (43)

We can transform and integrate both sides of Equation  43 over the entire continuum of firms
to solve for optimal product utility 𝑈𝑗(𝒒∗

𝑗) in terms of the standard CES price aggregator 𝑃𝑗 ≔

[∫
𝑖∈𝐼𝑗

𝑝1−𝜎
𝑖𝑗 𝑑𝑖]

1
1−𝜎

. This reveals that

𝑈𝑗(𝒒∗
𝑗) = [(1 − 𝛿𝑗)𝛾𝑗]

1
𝛿𝑗 𝑃

− 1
𝛿𝑗

𝑗 ∀𝑗, (44)

²⁷We will see that, in equilibrium, firm 𝑖 may decide not to supply its variety of 𝑗 at all because the entry costs into the
product market outweigh its profits. This imposes 𝑞∗

𝑖𝑗 = 0, which in turn means that the equilibrium price 𝑝∗
𝑖𝑗 cannot

be finite. Strictly speaking, infinite prices do not exist, so neither does an equilibrium on the market for variety 𝑖 of
product 𝑗. However, we can formally think of an equilibrium on the market for 𝑖𝑗 as the limiting point of a sequence
(𝑝∗

𝑖𝑗,𝑛, 𝑞∗
𝑖𝑗,𝑛) where 𝑞∗

𝑖𝑗,𝑛 → 0 and 𝑝∗
𝑖𝑗,𝑛 → ∞ as 𝑛 → ∞. In slightly informal notation, we denote this by writing 𝑞∗

𝑖𝑗 =
0 and 𝑝∗

𝑖𝑗 = ∞.
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which we can use to derive the set of final demand functions for each variety of each product,

𝑞∗
𝑖𝑗 = [(1 − 𝛿𝑗)𝛾𝑗]

1
𝛿𝑗 𝑃

𝜎𝑗𝛿𝑗−1
𝛿𝑗

𝑗 𝑝−𝜎𝑗
𝑖𝑗 ∀𝑖, 𝑗. (45)

Using these demand functions, we can show that total consumer expenditure on manufacturing goods
is

∑
𝑗∈𝐽

∫
𝑖∈𝐼

𝑝𝑖𝑗𝑞∗
𝑖𝑗𝑑𝑖 = ∑

𝑗∈𝐽
[(1 − 𝛿𝑗)𝛾𝑗]

1
𝛿𝑗 𝑃

𝛿𝑗−1
𝛿𝑗

𝑗 < 𝑌 , (46)

where the inequality holds by our assumption from Equation 4. Since we have established above that
the budget constraint needs to hold with equality if 𝒒∗ maximises the consumer’s utility, this implies
that

𝑞∗
0 = 𝑌 − ∑

𝑗∈𝐽
∫

𝑖∈𝐼
𝑝𝑖𝑗𝑞∗

𝑖𝑗𝑑𝑖 > 0, (47)

as we have assumed above.
We have seen that, given an income 𝑌  and a set of prices 𝑃  that satisfy our assumption from Equation 4,
the Karush–Kuhn–Tucker conditions pin down a unique optimal solution 𝒒∗ among all consumption
bundles with 𝑞0 > 0. We can show on top of this that no consumption bundle with 𝑞0 = 0 can be
optimal.
Consider an optimal consumption bundle 𝒒′ and suppose for contradiction that 𝑞′

0 = 0. Then, 𝜇′
0 ≥ 0

and 𝜆′ ≤ 1 by Equation 39. Since optimality of 𝒒′ implies that 𝜇′
𝑖𝑗 = 0, Equation 42 requires that

(1 − 𝛿𝑗)𝛾𝑗(𝑈𝑗(𝒒′
𝑗))

1−𝜎𝑗𝛿𝑗
𝜎𝑗 (𝑞′

𝑖𝑗)
− 1

𝜎𝑗 = 𝜆′𝑝𝑖𝑗 ≤ 𝑝𝑖𝑗 ∀𝑖, 𝑗. (48)

Now, if 𝜆′ = 1, it is clear that 𝑞′
𝑖𝑗 = 𝑞∗

𝑖𝑗 ∀𝑖, 𝑗, which implies by the bindingness of the budget constraint
that 𝑞′

0 > 0, which is a contradiction. If, on the other hand, 𝜆′ < 1, the inequality from Equation 48
becomes strict, which means that 𝑞′

𝑖𝑗 > 𝑞∗
𝑖𝑗 ∀𝑖, 𝑗. This means that, for any 𝑖𝑗, the marginal utility from

another unit of 𝑞𝑖𝑗 at consumption level 𝑞′
𝑖𝑗 is below the price 𝑝𝑖𝑗. At the same time, the marginal

utility from consuming one more unit of the numéraire is 1, so the consumer can translate any budget
not spent on 𝑖𝑗 one for one into utility. But then the consumer can increase her utility by marginally
reducing her consumption of 𝑖𝑗 and spending the freed budget on the numéraire. Hence, 𝒒′ cannot be
optimal, which is a contradiction.

The firm’s profit maximisation problem
The cost minimisation problem specified in Equation 7 consists of a linear objective function and a
strictly convex constraint, so the first order conditions of the corresponding Lagrangian uniquely pin
down the minimising amounts of labour and energy required to produce 𝑞𝑖𝑗 units of output.
Specifically, these are

𝑙∗𝑖𝑗(𝑞𝑖𝑗) = 1
𝜑𝑖𝑗

(
𝛼𝑙

𝑗

𝑤
)

− 1
𝜌−1

[(𝛼𝑙
𝑗)

− 1
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1
𝑖 ]

−1
𝜌
𝑞𝑖𝑗 (49)

𝑚∗
𝑖𝑗(𝑞𝑖𝑗) = 1

𝜑𝑖𝑗
(

𝛼𝑚
𝑗

𝜏𝑖
)

− 1
𝜌−1

[(𝛼𝑙
𝑗)

− 1
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1
𝑖 ]

−1
𝜌
𝑞𝑖𝑗, (50)

which implies constant firm-product specific unit costs
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𝑐𝑖𝑗 = 1
𝜑𝑖𝑗

[(𝛼𝑙
𝑗)

− 1
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1
𝑖 ]

𝜌−1
𝜌

. (51)

The firm’s profit maximisation problem specified in Equation  9 consists of maximising a strictly
concave function without constraints, so the first-order conditions pin down the unique maximiser.
As in a standard CES demand case, the profit-maximising price is

𝑝∗
𝑖𝑗 =

𝜎𝑗

𝜎𝑗 − 1
𝑐𝑖𝑗, (52)

which results in unit sales of

𝑞∗
𝑖𝑗 = (

𝜎𝑗 − 1
𝜎𝑗

)
𝜎𝑗

[(1 − 𝛿𝑗)𝛾𝑗]
1
𝛿𝑗 𝑃

𝜎𝑗− 1
𝛿𝑗

𝑗 𝑐−𝜎𝑗
𝑖𝑗 (53)

and revenue

𝑟∗
𝑖𝑗 = (

𝜎𝑗 − 1
𝜎𝑗

)
𝜎𝑗−1

[(1 − 𝛿𝑗)𝛾𝑗]
1
𝛿𝑗 𝑃

𝜎𝑗− 1
𝛿𝑗

𝑗 𝑐1−𝜎𝑗
𝑖𝑗 . (54)

Optimal profits are then

𝜋∗
𝑖𝑗 =

(𝜎𝑗 − 1)𝜎𝑗−1

𝜎𝜎𝑗
𝑗

[(1 − 𝛿𝑗)𝛾𝑗]
1
𝛿𝑗 𝑃

𝜎𝑗− 1
𝛿𝑗

𝑗 𝑐1−𝜎𝑗
𝑖𝑗 . (55)

Distributions and the CES price index
Firms draw their productivities for each product independently from a Pareto(𝑘, 1) distribution with
cdf

𝐺(𝜑𝑖𝑗) = 1 − 𝜑−𝑘
𝑖𝑗 (56)

and pdf

𝑔(𝜑𝑖𝑗) = 𝑘𝜑−𝑘−1
𝑖𝑗 (57)

over a support of [1, ∞). Obviously, this means that firm-product-specific productivities for each
product are continuously distributed with a strictly decreasing pdf over the entire support.
Firms draw their energy prices independently from any firm-product productivities from a distribution
with cdf 𝐻  and strictly positive support. Hence, for any firm 𝑖 and product 𝑗,

𝜏𝑖 | 𝜑𝑖𝑗 ∼ 𝐻. (58)

We only impose the regularity condition that 𝔼[𝜏1−𝜎𝑗
𝑖 ] = ∫∞

0
𝜏1−𝜎𝑗𝑑𝐻(𝜏) < ∞ for all products 𝑗.

This is a sufficient condition for

𝔼[𝑐𝑗(𝜏𝑖)
1−𝜎𝑗] = ∫

∞

0
([(𝛼𝑙

𝑗)
− 1

𝜌−1 𝑤
𝜌

𝜌−1 + (𝛼𝑚
𝑗 )

− 1
𝜌−1 𝜏

𝜌
𝜌−1 ]

𝜌−1
𝜌

)
1−𝜎𝑗

𝑑𝐻(𝜏) < ∞ ∀𝑗. (59)

We can then rewrite the equilibrium condtion from Equation 13 as
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𝑃 ∗
𝑗 =

[
[[∫

∞

0
∫

∞

𝜑̂𝑗(𝑃 ∗
𝑗 ,𝜏)

𝑝𝑗(𝜑, 𝜏)1−𝜎𝑗𝑔(𝜑)𝑑𝜑𝑑𝐻(𝜏)
]
]]

1
1−𝜎𝑗

, (60)

where

𝜑̂𝑗(𝑃𝑗, 𝜏) = ( 𝐹
𝐴𝑗

)

1
𝜎𝑗−1

𝑃−𝜉𝑗
𝑗 𝑐𝑗(𝜏) (61)

is the productivity threshold above which a firm with energy price 𝜏  enters the market for product 𝑗
given aggregate price level 𝑃𝑗 with

𝜉𝑗 ≔
𝜎𝑗 − 1

𝛿𝑗

𝜎𝑗 − 1
∈ (0, 1) (62)

analogous to the definition of 𝜉 in Equation 15 in the main text.
Using our CES pricing condition from Equation 52, 𝑝𝑗(𝜑, 𝜏) is defined as

𝑝𝑗(𝜑, 𝜏) =
𝜎𝑗

𝜎𝑗 − 1
1
𝜑

𝑐𝑗(𝜏), (63)

that is, as the price that a firm with energy price 𝜏  and firm-product-specific productivity 𝜑 charges
for its variety of product 𝑗. Using the definition of 𝑔(𝜑) = 𝑘𝜑−𝑘−1 and our formula for 𝑝𝑗(𝜑, 𝜏), we
can integrate over our productivity distribution and further simplify the equilibrium condition to

𝑃 ∗
𝑗 =

𝜎𝑗

𝜎𝑗 − 1
[ 𝑘

𝑘 − (𝜎𝑗 − 1)
∫

∞

0
𝜑̂𝑗(𝑃 ∗

𝑗 , 𝜏)𝜎𝑗−1−𝑘 ⋅ 𝑐𝑗(𝜏)1−𝜎𝑗𝑑𝐻(𝜏)]

1
1−𝜎𝑗

. (64)

Note that integration is possible because our assumption that 𝑘 > 𝜎𝑗 − 1 ∀𝑗 implies that
∫∞

𝜑
𝜑𝜎𝑗−𝑘−1𝑑𝜑 is finite. We can then use the definition of 𝜑̂ to obtain the expression for the equilibrium

price given in Equation 14 in the main text,

𝑃 ∗
𝑗 =

[
[
[𝑘 − (𝜎𝑗 − 1)

𝑘
(

𝜎𝑗

𝜎𝑗 − 1
)

𝜎𝑗−1

( 𝐹
𝐴𝑗

)

𝑘
𝜎𝑗−1−1

(∫
∞

0
𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏))

−1

]
]
]

1
𝜉𝑗𝑘+(1−𝜉𝑗)(𝜎𝑗−1)

.(65)

Note that the integral on the right-hand side must exist and be finite by 𝑘 > 𝜎𝑗 − 1: This implies that
𝑐𝑗(𝜏)−𝑘 is asymptotically dominated by 𝑐𝑗(𝜏)1−𝜎𝑗 . Since ∫∞

0
𝑐𝑗(𝜏)1−𝜎𝑗𝑑𝐻(𝜏) is finite by assumption,

the same must be true for ∫∞
0

𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏).

Existence and uniqueness of product market equilibrium
To show that a unique equilibrium for each product market must exist, we first need to prove that the
distribution of firm-specific unit cost 𝑐𝑖𝑗 is continuous under an arbitrary distribution of energy prices,
𝐻 .

Lemma 3 : The distribution of firm-specific unit costs 𝑐𝑖𝑗 for producing product 𝑗 is continuous
over its entire support [0, 𝑐𝑗) with 𝑐𝑗 > 0 and 𝑐𝑗 → ∞ if the support of the energy price
distribution 𝐻  has no upper limit.

Proof :  By our assumptions in Section 3.1, firm-product productivity 𝜑𝑖𝑗 is distributed according
to a continuous distribution with cdf 𝐺 over a support range [1, ∞). Energy prices 𝜏𝑖 are
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distributed according to an arbitrary distribution 𝐻  with strictly positive support, and firm-
product specific costs are given by

𝑐𝑖𝑗 = 1
𝜑𝑖𝑗

[(𝛼𝑙
𝑗)

− 1
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 1

𝜌−1 𝜏
𝜌

𝜌−1
𝑖 ]

𝜌−1
𝜌

= 1
𝜑𝑖𝑗

𝑐𝑗(𝜏𝑖). (66)

Let us define the distribution of firm-product specific costs for product 𝑗 as 𝑍𝑗 such that 𝑐𝑖𝑗 ∼
𝑍𝑗. We begin by showing that 𝑍𝑗 must be continuous. This is equivalent to saying that ℙ(𝑐𝑖𝑗 =
𝑐) = 0 ∀𝑐 ∈ [0, 𝑐), i.e. that the distribution does not have any mass point.
To see that this must be the case, consider any 𝑐 ∈ [0, 𝑐) and note that, by the law of total
probability,

ℙ(𝑐𝑖𝑗 = 𝑐) = ∫
∞

1
ℙ(𝑐𝑖𝑗 = 𝑐 | 𝜑𝑖𝑗 = 𝜑)𝑑𝐺(𝜑)

= ∫
∞

1
ℙ
(
((
(𝜏𝑖 =

[
[
[( 1

𝛼𝑚
𝑗

)
− 1

𝜌−1

(𝜑𝑐)
𝜌

𝜌−1 + (
𝛼𝑙

𝑗

𝛼𝑚
𝑗

)
− 1

𝜌−1

𝑤
𝜌

𝜌−1

]
]
]

)
))
)𝑔(𝜑)𝑑𝜑,

(67)

where we have used the continuity of 𝐺 to write 𝑑𝐺(𝜑) as 𝑔(𝜑)𝑑𝜑. Now, if 𝐻  has no mass
points, then ℙ(𝜏𝑖 = 𝜏) = 0 for any 𝜏  and hence ℙ(𝑐𝑖𝑗 = 𝑐) = 0 as well. If 𝐻  has a non-empty
set of mass points 𝑀𝐻 , then for any 𝜏 ∈ 𝑀𝐻 , 0 < ℙ(𝜏𝑖𝑗 = 𝜏) < 1, and ℙ(𝜏𝑖 = 𝜏) = 0 for any
𝜏 ∉ 𝑀𝐻 . Trivially, the set of mass points has to be finite as otherwise the total probability mass
of the distribution would be infinite. But a Riemann integral over a function with a finite set of
finite non-zero points is still zero, so ℙ(𝑐𝑖𝑗 = 𝑐) = 0 in this case as well.
Having established that 𝑍𝑗 is continuous, we can proceed to show that it must have support
[0, 𝑐). Trivially, 𝐻  must have non-empty support ℋ, where we know by assumption that ℋ ⊂
ℝ+. Using our expression for 𝑐𝑗 from above, this clearly means that the support of 𝑐𝑗(𝜏𝑖𝑗), 𝒞,
must be a strict subset of ℝ+ as well. Now, as 𝐺 has support [1, ∞), the distribution of 1

𝜑𝑖𝑗
 must

have support (0, 1]. This clearly implies that the lower bound of the support of 𝑐𝑖𝑗 = 1
𝜑𝑖𝑗

𝑐𝑖𝑗 must
be 0.
What is more, it implies that the support of 𝑐𝑖𝑗 must cover the entire range from 0 to

𝑐 ≔ max
𝜏∈ℋ

𝑐𝑗(𝜏). (68)

If sup ℋ = ∞, this means that 𝑐𝑗 → ∞ because lim𝜏→∞ 𝑐𝑗(𝜏) = ∞. If sup ℋ = 𝜏  for some 𝜏 ∈
ℝ+, 𝑐𝑗 < ∞. □

Given Lemma 3, it is then straightforward to prove that each product market must have a unique
equilibrium.

Lemma 4 : The market for each product 𝑗 is cleared by a unique equilibrium price index 𝑃 ∗
𝑗 < ∞.

Proof :  We can use the cost cutoff 𝑐𝑗, the continuity of the cost distribution established in Lemma 3
and firms’ optimal pricing condition to rewrite the equilibrium condition in Equation 13 as

𝑃 ∗
𝑗 =

𝜎𝑗

𝜎𝑗 − 1
[∫

𝑐𝑗

0
(𝑃 ∗

𝑗 )𝑐1−𝜎𝑗𝑓(𝑐)𝑑𝑐]

1
1−𝜎𝑗

, (69)

where 𝑓  is the pdf of the cost distribution.
From this equation, it becomes clear hat a unique equilibrium price index 𝑃 ∗

𝑗 < ∞ must exist.
Obviously, the left-hand side of the equation is continuous and strictly increasing in 𝑃 ∗

𝑗 , is zero
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if 𝑃 ∗
𝑗 = 0 and tends to infinity as 𝑃 ∗

𝑗 → ∞. The right-hand side of the equation is continuous in
𝑃 ∗

𝑗  as well because 𝑐𝑗 is a continuous function of 𝑃 ∗
𝑗 . It tends to infinity as 𝑃 ∗

𝑗 → 0, because then
𝑐𝑗 → 0. It is weakly decreasing in 𝑃 ∗

𝑗  because 𝑐𝑗 is strictly positve and is strictly increasing in
𝑃 ∗

𝑗 , and 𝑓(𝑐) > 0 over the non-empty interval [0, 𝑐𝑗). And it converges to the minimum possible

price index 𝑃𝑗 ≔ 𝜎𝑗
𝜎𝑗−1[∫

𝑖∈[0,1]
𝑐1−𝜎𝑗
𝑖𝑗 𝑑𝑖]

1
1−𝜎𝑗  as 𝑃 ∗

𝑗 → ∞ because then 𝑐𝑗 → ∞ and hence all
firms will enter the market. □

Revenue and energy intensity in equilibrium
We can write the conditional average revenue of firms with energy price 𝜏  from product 𝑗 given
aggregate price index 𝑃𝑗 as

𝑅𝑗(𝑃𝑗, 𝜏) ≔ 𝐴𝑗𝑃
𝜎𝑗− 1

𝛿𝑗
𝑗 𝑐𝑗(𝜏)1−𝜎𝑗 ∫

∞

𝜑̂𝑗(𝑃𝑗,𝜏)
𝜑𝜎𝑗−1𝑔(𝜑)𝑑𝜑 (70)

relying on our expression for optimal firm-level renue from Equation 54. Using the fact that 𝑔(𝜑) =
𝑘𝜑−𝑘−1, we can rewrite this as

𝑅𝑗(𝑃𝑗, 𝜏) = 𝑘
𝑘 − (𝜎𝑗 − 1)

𝐴𝑗𝑃
𝜎𝑗− 1

𝛿𝑗
𝑗 𝑐𝑗(𝜏)1−𝜎𝑗𝜑̂𝑗(𝑃𝑗, 𝜏)(𝜎𝑗−1)−𝑘, (71)

which boils down to the expression given in Equation 24 in the main text,

𝑅𝑗(𝑃𝑗, 𝜏) ≔ 𝑘
𝑘 − (𝜎𝑗 − 1)

𝐴𝑘
𝑗 𝐹−( 𝑘

𝜎𝑗−1−1)𝑐𝑗(𝜏)−𝑘𝑃 𝜉𝑗𝑘
𝑗 . (72)

Aggregate revenue from product 𝑗 conditional on product price index 𝑃𝑗 is then given by

𝑅𝑗(𝑃𝑗) ≔ ∫
∞

0
𝑅𝑗(𝑃𝑗, 𝜏)𝑑𝐻(𝜏)

= 𝑘
𝑘 − (𝜎𝑗 − 1)

𝐴𝑘
𝑗 𝐹−( 𝑘

𝜎𝑗−1−1)𝑃 𝜉𝑗𝑘
𝑗 ∫

∞

0
𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏).

(73)

The energy intensity of product 𝑗 is then

𝜂𝑗 ≔
∫∞

0
𝑅𝑗(𝑃𝑗, 𝜏)𝜎𝑗−1

𝜎𝑗

𝑠𝑗(𝜏)
𝜏 𝑑𝐻(𝜏)

𝑅𝑗(𝑃𝑗)
=

𝜎𝑗 − 1
𝜎𝑗

∫∞
0

𝑐𝑗(𝜏)−𝑘 𝑠𝑗(𝜏)
𝜏 𝑑𝐻(𝜏)

∫∞
0

𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏)
(74)

and depends only on the cost structure of the product and the energy price distribution. We can rewrite
it in a more intuitive form as

𝜂𝑗 =
𝜎𝑗 − 1

𝜎𝑗
∫

∞

0

𝑠𝑗(𝜏)
𝜏

𝑑Θ𝑗(𝜏) (75)

where

𝑑Θ𝑗(𝜏) =
𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏)

∫∞
0

𝑐𝑗(𝜏 ′)−𝑘𝑑𝐻(𝜏 ′)
=

𝑅𝑗(𝑃𝑗, 𝜏)𝑑𝐻(𝜏)
∫∞

0
𝑅𝑗(𝑃𝑗, 𝜏 ′)𝑑𝐻(𝜏 ′)

(76)

is the ‘revenue share’ of firms with energy price 𝜏  in product 𝑗. (Of course, if 𝐻  is a continuous
distribution, it will technically be the revenue-weighted density, not a share.)
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Plugging the equilibrium price index 𝑃 ∗
𝑗  into our expression for 𝑅𝑗(𝑃𝑗), we can see that equilibrium

revenue from product 𝑗 must be equal to

𝑅∗
𝑗 = (

𝜎𝑗

𝜎𝑗 − 1
)

𝜁𝑗(𝜎𝑗−1)

𝐴
𝑘+1−

𝑘𝜁𝑗
𝜎𝑗−1

𝑗 [( 𝑘
𝑘 − 𝜎𝑗 − 1

)𝐹−( 𝑘
𝜎𝑗−1−1) ∫

∞

0
𝑐𝑗(𝜏)−𝑘𝑑𝐻(𝜏)]

1−𝜁𝑗

(77)

with

𝜁𝑗 ≔
𝜉𝑗𝑘

𝜉𝑗𝑘 + (1 − 𝜉𝑗)(𝜎𝑗 − 1)
∈ (0, 1). (78)

Comparative statics with respect to 𝛼𝑚
𝑗

In the most general form, net-of-productivity costs 𝑐𝑗(𝜏) may increase or decrease given an
infinitesemal increase in 𝛼𝑚

𝑗 , as

𝑑𝑐𝑗(𝜏)
𝑑𝛼𝑚

𝑗
= −1

𝜌
𝑐𝑗(𝜏)𝑠𝑗(𝜏)

𝑑𝛼𝑙
𝑗

𝑑𝛼𝑚
𝑗

(𝛼𝑙
𝑗)

− 𝜌
𝜌−1 𝑤

𝜌
𝜌−1 + (𝛼𝑚

𝑗 )
− 𝜌

𝜌−1 𝜏
𝜌

𝜌−1

(𝛼𝑚
𝑗 )

− 1
𝜌−1 𝜏

𝜌
𝜌−1

(79)

is positive if and only if

(
𝛼𝑙

𝑗

𝛼𝑚
𝑗

𝜏
𝑤

)

𝜌
𝜌−1

> −
𝑑𝛼𝑙

𝑗

𝑑𝛼𝑚
𝑗

. (80)

This clearly is the case if 𝛼𝑙
𝑗 is fixed, in which case 𝑑𝛼𝑙

𝑗
𝑑𝛼𝑚

𝑗
= 0. However, since we assume that the cost

shares add up to 1 for each product, i.e. that 𝛼𝑙
𝑗 = 1 − 𝛼𝑚

𝑗 ,

𝑑𝑐𝑗(𝜏)
𝑑𝛼𝑚

𝑗
= −1

𝜌
𝑐𝑗(𝜏)𝑠𝑗(𝜏) 1

𝛼𝑚
𝑗

[
[
[1 −

(
((

𝛼𝑚
𝑗 𝑤

(1 − 𝛼𝑚
𝑗 )𝜏 )

))
𝜌

𝜌−1

]
]
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ 𝑧𝑗(𝜏)

, (81)

which clearly is positive if and only if

𝜏 >
𝛼𝑚

𝑗

1 − 𝛼𝑚
𝑗

𝑤. (82)

Since equilibrium product revenue 𝑅∗
𝑗  depends negatively on aggregate costs, this means that an

increase in 𝛼𝑚
𝑗  has an indeterminate effect on revenue, as

𝑑𝑅∗
𝑗

𝑑𝛼𝑚
𝑗

= −(1 − 𝜁𝑗)𝑘
−1
𝜌

1
𝛼𝑚

𝑗
𝑅∗

𝑗 ∫
∞

0
𝑠𝑗(𝜏)𝑧𝑗(𝜏)𝑑Θ𝑗(𝜏). (83)

C.2 Results under stylised energy distribution

Comparative statics with respect to 𝜈 and 𝛼𝑚
𝑗

Based on our definition of 𝑅𝑗(𝑃𝑗, 𝜏) from Equation 24 and our definition of 𝜃𝑗, it is straightforward
to show that
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𝜃𝑗 ≔
𝑝𝑅𝑗(𝑃𝑗, 𝜏)

𝑝𝑅𝑗(𝑃𝑗, 𝜏) + (1 − 𝑝)𝑅𝑗(𝑃𝑗, 𝜈𝜏)
= 𝑝

𝑝 + (1 − 𝑝)( 𝑐𝑗(𝜏)
𝑐𝑗(𝜈𝜏))

𝑘 = 𝑑Θ𝑗(𝜏), (84)

which is only a function of 𝜈 and 𝜏 . Simple application of the chain rule then yields the result from
Equation 29 in the main text that

𝑑𝜃𝑗

𝑑𝜈
= 𝑘𝜃𝑗(1 − 𝜃𝑗)

𝑠𝑗(𝜈𝜏)
𝜈

. (85)

Similarly, some simple albeit tedious algebra reveals that

𝑑𝑅∗
𝑗

𝑑𝜈
= −𝑘(1 − 𝜁𝑗)

𝑅∗
𝑗

𝜈
(1 − 𝜃𝑗)𝑠𝑗(𝜈𝜏) (86)

where 𝑅∗
𝑗 = 𝑅𝑗(𝑃 ∗

𝑗 ) is equilibrium revenue from product 𝑗. For the cross derivative 𝑑2𝑅∗
𝑗

𝑑𝛼𝑚
𝑗 𝑑𝜈 , it helps

to note that

𝑑(1 − 𝜃𝑗)
𝑑𝛼𝑚

𝑗
= −

𝑑𝜃𝑗

𝑑𝛼𝑚
𝑗

= −𝜃𝑗(1 − 𝜃𝑗)
−1
𝜌

1
𝛼𝑚

𝑗
𝑘(𝑠𝑗(𝜈𝜏)𝑧𝑗(𝜈𝜏) − 𝑠𝑗(𝜏)𝑧𝑗(𝜏)) (87)

as well as

𝑑𝑠𝑗(𝜏)
𝑑𝛼𝑚

𝑗
= −1

𝜌 − 1
𝑠(𝜏)(1 − 𝑠(𝜏))
𝛼𝑚

𝑗 (1 − 𝛼𝑚
𝑗 )

(88)

and

𝑑𝑅∗
𝑗

𝑑𝛼𝑚
𝑗

= −𝑘(1 − 𝜁𝑗)
−1
𝜌

1
𝛼𝑚

𝑗
𝑅∗

𝑗[𝜃𝑗𝑠𝑗(𝜏)𝑧𝑗(𝜏) + (1 − 𝜃𝑗)𝑠𝑗(𝜈𝜏)𝑧𝑗(𝜈𝜏)]. (89)

Taken together, this reveals – after some simple but tedious algebra – that

𝑑2𝑅∗
𝑗

𝑑𝜈𝑑𝛼𝑚
𝑗

= −(1 − 𝜁𝑗)𝑘
−1
𝜌

1
𝛼𝑚

𝑗

𝑅∗
𝑗

𝜈
(1 − 𝜃𝑗)𝑠𝑗(𝜈𝜏) ⋅

[𝑘𝜁𝑗𝜃𝑗𝑠𝑗(𝜏)𝑧𝑗(𝜏) − (𝑘(1 − 𝜁𝑗(1 − 𝜃𝑗)) + 𝜌
𝜌 − 1

)𝑠𝑗(𝜈𝜏)𝑧𝑗(𝜈𝜏) − 𝜌
𝜌 − 1

].
(90)

Clearly, this is negative – and so the change in revenue due to an increase in 𝜈 is decreasing in 𝛼𝑚
𝑗  –

if and only if

𝑘𝜁𝑗𝜃𝑗𝑠𝑗(𝜏)𝑧𝑗(𝜏) > (𝑘(1 − 𝜁𝑗(1 − 𝜃𝑗)) + 𝜌
𝜌 − 1

)𝑠𝑗(𝜈𝜏)𝑧𝑗(𝜈𝜏) + 𝜌
𝜌 − 1

. (91)
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D Model calibration
To simulate the model, we have used the fundamental parameters described in Table 4.

Table 4:  Fundamental parameters of simulated model

Parameter Value Comment
𝜎 4.5 As in Shapiro and Walker (2018)
𝛾 3 Calibrated to get realistic number of active firms
𝛿 0.33 Calibrated to get realistic number of active firms
𝐹 1.5 Calibrated to get realistic number of active firms
𝑘 5.4 Estimated from AFiD data (von Graevenitz et al., 2024)
𝜇 2 Calibrated to get realistic distribution of # of products per firm
𝜌 −0.66 Taken from Bretschger and Jo (2024); corresponds to an elasticity of

substitution of 0.6 between energy and labour
w 1 Normalised to 1

We have drawn product-level energy intensities 𝛼𝑚
𝑗  from a Beta(28, 400) distribution, resulting in

the distribution of baseline energy intensties depicted in Figure 10.

Figure 10:  Distribution of product-level energy intensities in simulated model
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Table 5:  Regressions of product adding and dropping on firm energy price and product energy
intensity

(1) (2)
Dep. variable Adding Dropping
prod. ener. int. (kWh/EUR) −5.5 × 10−5 0.018

(< 2.7 × 10−5) (0.009)
log firm ener. price (EUR/kWh) −1.5 × 10−5 −0.020

(< 0.7 × 10−5) (0.004)
prod. ener. int. × log firm ener. price −2.2 × 10−5 0.004

(< 1.1 × 10−5) (0.003)
constant 10.2 × 10−5 0.038

(< 5.1 × 10−5) (0.008)
𝑁 18 007 162 35 306

Note:  The regression in column (1) is based on the (pooled) universe of possible firm-product combinations over the two six
year intervals 2005-2011 and 2011-2017 that are not produced in the interval’s base year. The regression in column (2) is based

on the (pooled) universe of firm-product combinations over the same two intervals that are produced in the interval’s base
year. All coefficients in column (1) are significant at the 5 percent level but exact standard errors are irrecoverable for data

confidentiality reasons.
Source: AFiD manufacturing census (see Appendix A)

E Additional empirical results
The regression model underlying the results reported in Table 5 is

𝐷𝑖𝑗𝑡 = 𝛼 + 𝛽1prodenerint𝑗𝑡 + 𝛽2 ln enerprice𝑖𝑡 + 𝛽3prodenerint𝑗𝑡 × ln enerprice𝑖𝑡 + 𝜀𝑖𝑗𝑡, (92)

where 𝐷𝑖𝑗𝑡 is a dummy that indicates whether or not firm 𝑖 added or dropped product 𝑗 between the
period’s base year 𝑡 and the base year of the next period, 𝑡′.
Firm-product level regressions reveal that the higher add and drop rates among energy-intensive
products stem from the fact that absolute adding and dropping probabilities decrease minimally in
product energy intensity, but energy-intensive products are produced by far fewer firms. This can
be seen in Table 6: Column (1) reveals that the probability that a firm produces a specific product
decreases substantially in the product’s energy intensity. Columns (2) and (3) make clear that the
absolute probability of adding or dropping a product slightly decreases in its energy intensity as well,
but at a much slower rate.²⁸

²⁸For example, the ratio of the probability that a firm adds a product to the baseline probability that a firm produces
the same product is 11.5−1.3⋅0.5

200.9−30.7⋅0.5 = 0.058 for a product with a low energy intensity of 0.5 kWh/EUR, but 11.5−1.3⋅3
200.9−30.7⋅3 =

0.070 for a product with a rather high energy intensity of 3 kWh/EUR.
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Table 6:  Regressions of producing, adding and dropping on product energy intensity

(1) (2) (3)
Dep. variable Producing Adding Dropping
energy intensity (kWh/EUR) −30.7 × 10−5 −1.3 × 10−5 −1.7 × 10−5

(< 15.3 × 10−5) (< 0.6 × 10−5) (< 0.8 × 10−5)
constant 200.9 × 10−5 11.5 × 10−5 14.6 × 10−5

(< 100.4 × 10−5) (< 5.7 × 10−5) (< 7.3 × 10−5)
𝑁 42 581 251 42 581 251 42 581 251

Note:  Regressions are based on the (pooled) universe of possible firm-product combinations over the two six year intervals
2005-2011 and 2011-2017. All coefficients are significant at the 5 percent level but exact standard errors are irrecoverable for

data confidentiality reasons.
Source: AFiD manufacturing census (see Appendix A)

(a) Sales value (b) No. of products

Figure 11:  Relationship between firm size and energy price

Note:  Bin scatter plot based on the subsample of 𝑁 = 35 808 firm-year combinations in 2005, 2011 and 2017 for which energy
price data is available. All values are net of 4-digit main industry fixed effects.

Source: AFiD manufacturing census (see Appendix A)
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Table 7:  Regressions of energy price on productivity

(1) (2) (3) (4) (5) (6) (7)
Dep. variable log energy price
Prod. measure OLS CS W2009 Labour Energy Capital Materials
log productivity 0.123 0.072 −0.001 0.035 0.263 0.059 −0.045

(0.009) (0.01) (0.001) (0.007) (0.004) (0.004) (0.008)
log real sales value −0.104 −0.100 −0.083 −0.099 −0.112 −0.093 −0.080

(0.004) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003)
constant −0.463 −0.530 −0.811 −0.957 −0.768 −0.717 −0.831

(0.057) (0.063) (0.051) (0.061) (0.044) (0.051) (0.052)
𝑁 34 914 34 914 34 887 35 299 35 304 34 954 35 268

Note:  Based on pooled firm-year observations from 2005, 2011 and 2017. Standard errors clustered at the firm level. All
productivities are measured in terms of revenue. OLS refers to the residuals of a OLS regression of log revenue on the four
factors of production (in log terms). CS refers to total factor productivity with individual factor productivities weighted by
cost-share based elasticity estimates. W2009 refers to total factor productivity estimated as in Wooldridge (2009). Individual

factor productivities are calculated as log revenue
factor use .

Source: AFiD manufacturing census (see Appendix A)
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