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Abstract

Many European companies face the challenge of lowering CO2 emissions from their
company car fleets. A promising lever is to increase the notoriously low electric usage of
Plug-in Hybrid Electric Vehicles (PHEVs). This paper examines whether home charging
infrastructure can help achieve these goals. We leverage quasi-experimental variation in
the delivery and installation of home chargers to quantify the impact of this technology
on energy use and CO2 emissions of PHEV company cars held by 856 employees of
a large German company. Since fuel and electricity expenditures for these cars are
covered by the employer, home charging mainly changes the non-monetary costs to
an employee. We find that access to home charging increases electricity consumption
by 317.9 (±23.3) kWh per quarter and decreases fuel consumption by 97.97 (±36.5)
liters, reducing CO2 emissions by 38%. Moreover, access to home charging increases
the employee’s propensity to choose a Battery Electric Vehicle (BEV) upon renewal of
the lease by 28.4 (±25.6) percentage points. We use these estimates to compute the
private levelized abatement costs of home chargers for a range of scenarios characterizing
the diffusion of BEVs and the effect of the program on vehicle choice. With current
tax-inclusive energy prices, home chargers break even for the company within eight to
16 years.
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1 Introduction

The environmental benefit of Plug-in Hybrid Electric Vehicles (PHEVs) critically de-

pends on user behavior. When operated with gasoline or diesel, PHEVs have no

advantage over conventional cars in terms of carbon dioxide (CO2) emissions per kilo-

meter traveled. Only the electric use of PHEVs can drive specific emissions to zero,

provided that the electricity they charge is coming from renewable sources or from an

electricity sector that is subject to a binding cap on emissions.1 To tap the abate-

ment potential offered by electrification, PHEV drivers should maximize the electric

driving share, defined as the share of kilometers traveled using electric energy in total

kilometers traveled. In the real world, however, this share falls short of what is tech-

nically feasible or assumed in official test procedures (Chakraborty et al., 2020), with

the result that CO2 emissions of PHEVs are two to five times higher than on the test

stand (Plötz et al., 2022; Tsanko, 2023). Encouraging more electric driving of PHEVs

is thus a necessity for decarbonizing road transportation.

This issue is highly relevant for the many companies in Europe that provide employ-

ees with a company car for both personal and business-related trips. Due to generous

rules for deducting ownership and fuel costs from wage taxes, company cars are re-

garded as an attractive fringe benefit by employees and employers alike. This has led to

the emergence of large company car fleets in almost all member states of the European

Union (EU).2 Since CO2 emitted by these cars counts towards corporate emissions,3

companies that pursue decarbonization targets are searching for ways to reduce emis-

sions without abolishing company cars, e.g., by increasing the electric driving share of

PHEVs and promoting the adoption of Battery Electric Vehicles (BEVs).

This paper empirically investigates whether providing home charging infrastruc-

ture is a cost effective tool for decarbonizing company car fleets. We hypothesize

that access to home charging stations increases electric driving because it reduces the

inconvenience and time requirements of charging, which have been identified as key

deterrents in the literature (Krishna, 2021), and based on survey evidence of a strong

preference for charging electric vehicles (EVs) at home (e.g., Barber et al., 2024). Our

paper provides the first causal evidence on the impacts of home charging stations in

1This is true for Europe but not necessarily in other parts of the world. Holland et al. (2016)
show that electric driving tends to increase CO2 emissions in most US counties.

2While exact numbers on company cars in the above-defined sense are not publicly available,
Antich (2024) compiles data on the share of company-owned cars in new registrations of passenger
cars. In 2023, this share exceeded 50% in 19 out of 27 EU member states, including the EU’s largest
car markets Germany and France. In Germany, roughly three out of five newly registered passenger
cars with a corporate owner are estimated to be company cars (Kampermann, 2023). Across Europe,
PHEVs accounted for twice as many new registrations by corporate owners than by private owners
in 2023 (Antich, 2024).

3Depending on use (business vs. personal travel) and ownership (leasing vs. owning), those
emissions count towards scope one, two or three.
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the context of company cars, using data from a large German company. To promote

electric driving, the company launched a program that paid for the installation of

a charging station at the employee’s home, with separate metering and automatic

settlement of electricity expenses related to charging the company car. Qualifying em-

ployees were enrolled in the company’s fuel cost compensation scheme, which covers

all fuel and charging costs associated with the personal use of the company car via

a fixed monthly deduction from their pre-tax salary. Participants thus did not incur

any variable monetary cost for refueling or charging. The roll-out of this program was

staggered because supply chain disruptions following the COVID-19 pandemic, as well

as capacity constraints of the installation firm, delayed the installation of the charger

by several months. We exploit quasi-experimental variation in delays across program

participants to estimate the causal impacts on PHEV and BEV use, as well as on the

propensity to adopt a BEV among participants who changed their company car.

Our analysis sample consists of 856 employees holding a PHEV and 407 employees

holding a BEV. These employees applied for the home charging program between the

start of the program in January 2021 and November 2022. Based on over 266,000

refueling and charging transactions for these vehicles, we estimate the effect of ac-

cess to charging at home between January 2020 and September 2022. The data con-

tain the amount of fuel in liters and electricity in kilowatt-hours (kWh), the time

stamp, employee-reported odometer readings, and information on the vehicle’s make

and model. Using emission factors and energy prices for the different energy sources,

we also estimate CO2 emissions and energy expenditures.

We estimate causal effects of installing charging infrastructure at home using the

Difference-in-Differences estimator by Callaway & Sant’Anna (2021). To avoid any

bias from selection into the home charger adoption, we identify the average treat-

ment effect on the treated from the difference in contemporaneous outcomes between

treated employees and not-yet-treated employees who receive a home charger later in

the sample period. Intensive-margin outcomes of primary interest are the amount of

electricity charged, the amount of fuel used, CO2 emissions, energy expenditures, and

vehicle kilometers traveled (VKT).

We find that the availability of home charging increased electricity consumption

of PHEVs by 317.9 (±23.3 for the 95% confidence interval) kWh per quarter while

decreasing consumption of gasoline or diesel by 97.97 (±36.5) liters per quarter. This

38%-reduction in fuel consumption saved tailpipe emissions on the order of 237.12

(±87.5) kg of CO2 per quarter, in spite of a 15%-rebound in VKT per quarter by 671.13

(±474.9). Among BEV holders, home chargers increased electricity consumption by

36%, corresponding to an additional 172.05 (±143.12) kWh consumed per quarter.

While corporate energy costs for PHEVs decreased significantly by e 102.52 (±61.6)

per quarter, we do not see a similar cost decrease for BEVs due to the rebound effect
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and the comparatively small price difference between charging at home and at other

charging stations.

Providing employees with access to home charging increases the likelihood of or-

dering a BEV as the next company car by 28.4 (±25.6) percentage points (pp). This

extensive-margin effect boosts the overall abatement effect of home charging by shift-

ing all transport-related CO2 emissions of the company car under the regulatory cap of

the European Union’s Emissions Trading System, which – notwithstanding the intrica-

cies of the Market Stability Rule – is binding on emissions and declines over time. We

identify this effect in a subset of program participants who may order a new vehicle as

their initial lease ends. Variation in the end-of-lease dates and in the delivery time of

the home charger implies that some employees have gathered experience with the home

charger when ordering a new company car, while others have not. Our preferred esti-

mator for the extensive-margin effect compares vehicle choices after matching treated

and untreated employees who ordered their home charger at a similar time.

We use our estimated treatment effects to analyze the net present value of the

home charger program to the firm. We find that the home charger program is a cost-

effective way to abate between four and 21 tons of CO2 emissions over a 20-year horizon

for the average employee in our sample. We quantify total abatement and energy

expenditures using plausible forecasts about BEV diffusion among untreated employees

and varying the strength of the program’s estimated impact on BEV adoption among

treated employees. In almost all scenarios, the installation of the home charger pays

off for the company within eight to 16 years. Given that the lifespan of a home charger

can exceed 20 years, the program can yield substantial benefits, not just in terms of

emissions abatement but also financially. The only scenario where home chargers give

rise to positive costs per ton of CO2 abated is when the company also makes the

adoption of a BEV mandatory upon renewal of the lease. While the BEV mandate

itself reduces energy costs and CO2 emissions, the abatement benefits arise regardless

of whether BEVs are being charged at home or at a public charging station. The cost

differences between those options are not large enough to justify the investment into

home charging stations.

Our paper contributes to a growing economics literature on the adoption and the

use of EVs. Previous research has analyzed how those outcomes respond to financial

incentives and to the provision of charging infrastructure. The first strand of literature

shows that people respond to prices when charging their vehicles. Electricity prices

affect the time of charging (Qiu et al., 2022; Bailey et al., 2024), the choice of charging

at home vs. at the workplace (Chakraborty et al., 2019), the decision to charge a

PHEV at all (Chakraborty et al., 2020), and the kilometers traveled for BEVs (Nehiba,

2024). In addition, the use of PHEVs is affected by the price of fossil fuels, a close

substitute for electricity. In line with this, Grigolon et al. (2024) estimate higher fuel
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price elasticities for PHEVs than for conventional cars. Habit formation does not

seem to play a role in this context, as the estimated effects disappear when financial

incentives are removed (Bailey et al., 2024; Grigolon et al., 2024). Our paper departs

from this literature by empirically analyzing the impact of the non-monetary costs of

charging EVs on user behavior. The fuel cost compensation scheme described above

removes any marginal financial incentives when drivers refuel or charge their vehicles.

The company car setting is ideal for our analysis, in the sense that it minimizes the

scope for financial incentives that could easily confound estimates in non-experimental

settings.

The other strand of literature focuses on EV adoption. This literature provides

evidence for a positive effect of EV purchase subsidies (Beresteanu & Li, 2011; Xing

et al., 2021; Muehlegger & Rapson, 2022; Springel, 2021; Remmy, 2022; He et al.,

2023; Fournel, 2024), and for indirect network effects of public charging infrastructure

on EV sales (Li et al., 2017; Illmann & Kluge, 2020; Ou et al., 2020; Springel, 2021;

Remmy, 2022; Li, 2023). When it comes to home charging infrastructure, substantial

differences in the adoption of EVs between homeowners and renters have been linked

to different abilities to install charging infrastructure (Davis, 2019). Ability to charge

at home has been a strong predictor of consumer interest in PHEVs since their early

days (much stronger than public charging points; cf. Bailey et al., 2015). Conversely,

dissatisfaction with the convenience of charging and with not having 240-volt charging

at home were stated as main reasons by PHEV owners in California for choosing to

discontinue electric driving (Hardman & Tal, 2021). Lee et al. (2023) present further

evidence that this replacement decision correlates with the convenience of charging and

access to home charging. Building on this literature, our study takes a significant step

ahead by directly analyzing the effects of home charging on the intensive and extensive

margins of electric vehicle use. By tracking the vehicles’ energy consumption across all

sources –electric and fossil– we can estimate responses of intensive-margin outcomes

such as CO2 emissions for PHEVs and BEVs. At the extensive margin, our analysis

of vehicle renewal choices contributes much needed evidence on the impact of home

charging stations on BEV adoption.

The remainder of this paper is structured as follows: Section 2 introduces the

context of our study, the data, and the empirical strategy. Section 3 presents our

empirical results. Based on those results, Section 4 simulates the effects of a home

charging station on emissions and energy costs throughout its useful life to compute

its benefits and costs to the company. Section 5 discusses implications of our results

and concludes.
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2 Research Design

2.1 Quasi-Experimental Roll-Out of Home Charging

We study the roll-out of home chargers among employees of a German firm that op-

erates a large fleet of company cars. In Germany and other EU countries, company

cars are commonly offered as a fringe benefit to employees. In exchange for a fixed

monthly deduction from the net salary (which is proportional to the net list price

of the car), employees get a car that they can use for business-related but also for

private trips. For an additional lump-sum deduction, employees can enroll in a fuel

cost compensation scheme that covers the costs of all fuel and electricity consumed

by the vehicle, including electricity charged at home.4 Company cars are chosen by

the employees from a large set of makes and models. In 2022, vehicles with an inter-

nal combustion engine (ICEVs) continued to be the most popular choice, followed by

PHEVs and BEVs. Electric vehicles can be charged at public charging points and in

company parking lots, at no extra cost to employees enrolled in the fuel cost compen-

sation scheme. Even so, the electric utilization rate of PHEVs is low among employees

without access to home charging. The utility factor, defined as the ratio between VKT

using electricity and total VKT (Plötz et al., 2021), averages at 0.69 in type-approval

ratings under the New European Driving Cycle (NEDC) test procedure (Vallée et al.,

2022). In our sample, employees achieved a utility factor of only 0.29 in 2020, prior to

the installation of a home charger.5

To encourage at-home charging by PHEV and BEV holders, the company intro-

duced a program that subsidized the installation cost of a 22 kilo-Watt home charger

and automatically reimburses expenses for the electricity consumed by it. The sub-

sidy of up to e 2,750 was sufficiently generous to cover the cost of the home charger

including its installation.6 The program was rolled out in January 2021 and was open

to all employees (i) driving a PHEV or BEV company car (or having ordered one)

and (ii) participating in the fuel cost compensation scheme. The program continued

beyond the end of our sample period (November 2022).

Several features of the application and installation process resulted in a staggered

adoption of home chargers over time. First, during the first eight months of the

program, participants could order a home charger only through the employer and not

directly from the provider. The employer collected applications and forwarded them

in batches to the company installing the home chargers. Second, during our sample

period, supply-side frictions in the aftermath of the COVID-19 pandemic caused delays

4See Appendix A for more background on the German company car scheme.
5Plötz et al. (2020) find an even lower average utility factor of 0.18 in a sample of German company

cars.
6For more details on the installation cost, refer to Appendix C.3.
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in the delivery and installation of home chargers. Third, employees can only participate

in the home charger program once they hold or have ordered a BEV or PHEV. They

typically become eligible to order a company car after three years of tenure with the

company (regardless of whether they need it for business travel or not). Employees

must hold on to a company car for four years before they can order a new car or

opt out of the company car scheme (which rarely occurs due to large tax advantages

over private car ownership). This implies that each month, a new group of employees

can decide to order an electric company car and, potentially, participate in the home

charger program.

All of the above factors delayed the installation dates of the home chargers in ways

that varied considerably and randomly across participants, as can be seen for PHEVs

in Figure 1. Panel (a) exhibits a distinctive gap between the date of application and

the date on which the home charger is first used. The cross-sectional distribution

of this waiting time is depicted in panel (b); while the mean is four months, some

employees had to wait more than 12 months for the installation. Panel (c) shows that

the average waiting times by month of application also varied considerably over the

sample period, ranging from two to more than five months.

2.2 Econometric Framework

The setting described above suggests employing a generalized Difference-in-Differences

(DiD) estimator to study the effects of installing home chargers. The traditional

approach would implement a two-way fixed-effects estimator based on the equation

Yit = β1 1(t ≥ Gi) + ηi + µt + ϵit (1)

where the variable Yit measures relevant outcome variables of employee i in quarter t,

Gi denotes the quarter in which the home charger becomes available to employee i, and

ηi and µt are employee and quarter fixed effects (and ϵit is the error term). Since this es-

timator may be biased under heterogenous treatment effects, we aggregate separately-

estimated average treatment effects on the treated ATT (g, t) = E(Yit(g)− Yit(0)|Gi =

g) where Gi = g indicates that employee i belongs to the group of employees receiving

treatment in period g. Adopting the dynamic potential outcome framework (Robins,

1986), Yit(g) denotes the potential outcome of employee i in period t if that employee

receives the home charger in period g and Yit(0) (with a slight abuse of notation)

denotes the employee’s potential outcome in period t if she had not yet received the

home charger in that period. To estimate group-by-quarter-specific treatment effects

ÂTT (g, t), we employ the doubly-robust estimator proposed by Callaway & Sant’Anna

(2021) and use a control group of not-yet-treated program participants who receive
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Figure 1: Home Charger Applications and Distribution of Waiting Times

(a) Applications and Deliveries over Time

(b) Distribution of Waiting Times across
Employees

(c) Average Waiting Times by Month of
Application

Notes: (a): Cumulative applications and deliveries of home chargers over the sample period. (b):

Cross-sectional distribution of waiting times between the date of application and the date of first use

of a home charger. (c): Average waiting times by month of application. 95% confidence interval of

the mean indicated. Source: Own computations.
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a home charger at a later point in time.7 These estimates are aggregated up to the

overall ATT of home charger adoption as follows:

θOsel =
∑
g∈G

P (Gi = g|Gi ≤ T )
1

T − g + 1

T∑
t=g

ÂTT (g, t)︸ ︷︷ ︸
ÂTT for employees with Gi = g

(2)

where T is the last period in the sample (t = 1, . . . , T ), and P (Gi = g|Gi ≤ T ) is the

share of employees receiving the home charger in period g as a fraction of all employees

receiving the home charger by T . The estimator assigns equal weight to all employees,

regardless of the number of post-treatment observations.

To estimate event-study coefficients for treatment effects as a function of the length

of treatment exposure, we aggregate the group × time-specific estimates of the ATT

into an estimator of the treatment effect at differential temporal exposure to the treat-

ment (Callaway & Sant’Anna, 2021):

θes(e) =
∑
g∈G

1(g + e ≤ T )P (Gi = g|Gi + e ≤ T )ÂTT (g, g + e) (3)

Here, e = t − g is the number of periods group g is exposed to the treatment (event

time), and θes(e) simply aggregates group × time-specific ATTs with the same expo-

sure time e into a summary measure of the treatment effect after e periods of treatment.

In so doing, it weights each group by the number of employees in the group relative

to the total number of employees observed with exposure time e.8 As Callaway &

Sant’Anna (2021) point out, interpreting differences in the estimator θes(e) as dy-

namic effects hinges on the assumption of homogeneous effects of treatment exposure

across groups with different times of home charger adoption, since the composition of

groups observed with a given exposure time might change. We provide evidence for

homogeneous treatment effects across treatment groups (in terms of the ATT (g, g+1))

in Appendix Figure E.4.9

2.3 Data

Sample Composition Our analysis considers all home charger applications between

January 2021 and November 2022. For our analysis, we separate the transaction data

7The estimator is doubly robust in the sense that it yields consistent estimates if either the
outcome evolution in the control group or the probability of treatment assignment are correctly
specified.

8Note that later-treated groups are not observed with long treatment exposure.
9Panel (e) of that figure shows heterogenous treatment effects for VKT. Appendix Figure E.5

suggests that this heterogeneity arises over time rather than across treatment groups.

8



on refueling and electric charging events for PHEV and BEV holders.10 Since all

charging transactions are automatically recorded, the raw data needed little cleaning

(cf. Appendix B).

For PHEVs, we additionally have data on odometer readings that employees are

required to report each time they use the corporate fuel card to pump gas at a filling

station. Since fuel efficiency and mileage outcomes rely on these data, we conduct sev-

eral cleaning steps to make sure that vehicle kilometers traveled between two odometer

readings are plausible. Starting with transaction data for 1,021 PHEVs held by 939

employees during our sample period (some employees renewed their lease during the

sample period and got a different car, hence more cars than employees), we drop 63

cars with less than two odometer readings. To the remaining odometer readings, we

apply a data cleaning algorithm that identifies infeasible mileages and imputes more

plausible ones by interpolating between odometer readings that were deemed feasible

(cf. Appendix B for details). In this cleaning step, we drop 26 cars with less than

two feasible odometer readings that are needed to calculate VKT. We also drop two

cars that had more than 30% of their quarterly mileages above the 99.9th percentile of

quarterly mileages, and we additionally drop all quarterly observations where (i) the

mileage exceeded the 99.9th percentile of quarterly mileages or (ii) the ratio between

the observed mileage and an approximation of the mileage based on the vehicle’s fuel

and electricity consumption was below the bottom half percent (0.005) or exceeded

the top half percent (4.68).11 We further drop all observations after September 2022,

since, for many cars, we observe the second-to-last refueling event –and hence, the last

vehicle mileage– before September 2022.

After cleaning, our analysis samples comprise 928 PHEVs held by 856 employees

and 421 BEVs held by 407 employees, respectively. We observe 208,105 refueling and

charging transactions for the PHEVs and 59,864 charging transactions for the BEVs.

We aggregate these transactions to quarterly observations for two reasons. First, to

meet minimum size requirements of the estimator by Callaway & Sant’Anna (2021),

which cannot be met in a monthly aggregation. Second, aggregating to weekly or

monthly observations would result in noisy VKT estimates since some cars are charged

or filled up only every couple of weeks.

Since the main focus of this paper is on the effect of home charging on the use

of PHEVs, we will focus on the PHEV sample in the remainder of this section and

in most of Section 3. We defer the analysis of the program’s effects on BEV use to

Section 3.3, and analyze BEV adoption in Section 3.4.

10Some employees switched from a PHEV to a BEV in our sample period. We split such time-series
into two employee-by-vehicle series.

11Only three cars had a very high mileage (≥ 19,770 km per quarter) in more than 30% of all
observed quarters. Two of them are observed in the sample period.
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Summary Statistics Transaction data from January 2020 until September 2022

comprises the date and time of refueling or recharging, the amount of fuel in liters

(electricity in kWh), the employee-reported odometer reading, and administrative in-

formation on the vehicle model, which we merged with vehicle efficiency data published

by the General German Automobile Club (Allgemeiner Deutscher Automobil-Club e.V.

(ADAC), 2024). We estimate CO2 emissions using the appropriate emission factors for

each energy source (gasoline, diesel, and electricity) published by the German Envi-

ronment Agency (Juhrich, 2022; Icha & Lauf, 2022). We calculate energy expenditures

associated with charging on firm premises or at public charging stations, and for re-

fueling the car using data on yearly average energy prices; for charging at home, we

use the contractual price per kWh. Appendix Table C.1 summarizes the assumptions

made on emission factors and energy prices. Appendix Table E.1 summarizes driving

and charging outcomes, vehicle attributes, as well as employee characteristics in the

analysis sample, following the adoption of a home charger.

Selection into Treatment Employees who applied for the home charger program

might differ systematically from those who drove a PHEV but did not apply during

the analysis period. Those differences might be correlated with outcomes associated

with the adoption of home chargers. To guard against selection bias, our identifica-

tion strategy discards non-applicants and relies on quasi-experimental variation in the

installation time among participants of the home charger program. This strengthens

the internal validity of our approach.

External validity hinges on how different applicants are from non-applicants. Out

of more than 2,500 employees who held a PHEV during the period of analysis, 856

participated in the program. Table 1 shows the differences in mean characteristics

between these groups in 2020, the year before the program was launched.12 We observe

that program applicants tend to be male; they are older and have a longer tenure with

the company than non-applicants. The correlation with tenure and age points to

home ownership, which increases with age and reduces legal obstacles to installing

a charging station, as an underlying determinant of program participation. With a

2% higher mileage per quarter, applicants use 9% less fuel and 24% more electricity

than non-applicants. Thus, their PHEV use is more climate-friendly than that of non-

applicants already before adopting a home charger. Given these differences, a näıve

estimate based on never-takers of the home charger would likely yield biased results.

Within the sample of program participants, selection issues could arise if early

adoption correlates with unobservable determinants of PHEV use. However, exogenous

waiting times between the application for and installation of the home charger, as well

12Since PHEV adoption grew very fast during this period, both groups were considerably smaller
in 2020, yet the proportion between these groups remained relatively stable over time.
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Table 1: Home Charger Applicants vs. Non-applicants (with PHEVs)

Home Charger No Home Charger

Variable Mean Sd Mean Sd

Panel A: Vehicle Use in 2020
Mileage per quarter [km] 4318.28 (2838.04) 4215.240 (2728.7)
Emissions [kgCO2] 646.17 (550.62) 700.37 (575.97)
Tailpipe emissions [kgCO2] 627.57 (556.94) 686.34 (582.05)
Electricity per quarter [kWh] 48.57 (82.77) 36.63 (73.09)
Fuel per quarter [l] 259.87 (231.4) 285.88 (242.78)
Fuel consumption [l/100 km] 5.78 (3.2) 6.50 (3.08)
Electricity consumption [kWh/100 km] 1.46 (2.66) 1.20 (2.5)
Utility factor [km elec./km total] 0.29 (0.38) 0.19 (0.38)
Energy expenditures [Euro] 342.75 (293.73) 374.48 (309.74)

Panel B: Vehicle Characteristics
Fuel efficiency [l/100 km WLTP] 1.59 (0.35) 1.54 (0.36)
Electric efficiency [kWh/100 km WLTP] 17.46 (3.15) 16.65 (2.5)
Price [Euro] 32135.91 (4195.48) 30279.44 (4764.88)
Weight [kg] 1997.62 (255.93) 1895.78 (211.14)

Panel C: Employee Characteristics
Age [years] 48.22 - 43.19 -
Tenure [years] 17.43 - 12.89 -
Female [%] 0.16 - 0.24 -

Notes: Comparison of the sample of employees selecting into the home charger pro-
gram between January 2021 and December 2022 (N = 856 employees) to the group of
employees not selecting into the home charger program during that period (N = 2695
employees). Both samples are restricted to the employees holding at least one PHEV
during the sample period and opting into the fuel cost compensation scheme of the
company. Panel A shows summary statistics for vehicle use in the year 2020 in which
none of the employees in the home charger sample has received a home charger yet. The
sample sizes are reduced to N = 388 employees that are using their PHEV during that
period for the home charger sample and N = 1533 employees in the no home charger
sample. Panel B displays vehicle characteristics obtained from the General German
Automobile Club’s car catalog. Panel C displays employee characteristics, which are
only available in terms of group averages. WLTP stands for “Worldwide Harmonised
Light Vehicle Testing Protocol”.
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as pre-determined leasing cycles and their effect on program eligibility imply that

employees cannot easily select into early treatment adoption. Moreover, employees

who received access to home charging in 2021 are similar to those receiving access in

2022 in terms of their average fuel and electricity consumption per 100 km in the year

prior to program participation, and in terms of employee and vehicle characteristics

(cf. Appendix Table E.4). However, substantial differences exist in variables reflecting

the total use of the vehicle, such as VKT, fuel and electricity consumption. We think

that these differences in total mobility demand are caused by changes in restrictions

to individual mobility due to the COVID-19 pandemic between 2020 and 2021.

Finally, it is important to note that our approach does not rely on balance in

covariates between treatment and control groups, but on a parallel trends assumptions,

which we assess via inspection of pre-trends in Figures 3 to 5.

Average Outcomes for Treated and Not-yet-treated Employees Figure 2

compares average outcomes between employees who have installed a company-sponsored

charging station at home and those who do not yet have it, for the years 2020 to 2022.13

Panel (a) shows that the utility factor among users of home chargers is almost three

times as high as among non-users. The difference is mainly driven by charging at

home, which dwarfs charging at the firm or at public stations (panel b). Panel (c)

depicts specific emissions per km for those who have a home charger and those who

have not yet received it, both in terms of real-driving emissions and according to the

Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP). While emissions

according to WLTP are very similar across groups, real-driving emissions per kilome-

ter drop by nearly two thirds for employees with access to home charging, closing 86%

of the gap to official ratings according to WLTP. Before home charging, real-driving

emissions in our sample exceed WLTP emissions by a factor of 3.3, which is similar to

the gap observed for the average newly registered PHEV in the EU fleet (European

Commission, 2024a). The next section investigates whether these descriptive findings

hold up in a causal evaluation framework.

3 Treatment Effects of Home Charger Adoption

3.1 Treatment Effects by Quarter

Quarterly ATTs for various PHEV outcome variables are plotted in Figures 3 to 5.

Point estimates in quarter zero are lower in absolute value than those for subsequent

quarters because subjects receive the home charger on different dates during that

13The COVID-19 pandemic may have distorted transportation behavior in 2020 and 2021. In
Appendix Figure E.1 we use only data for the year 2022 which was only partially affected by the
pandemic. We find very similar results.
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Figure 2: Average Differences in PHEV Use: Treated vs. Not-yet-treated Employees

(a) Utility Factor (b) Charging by Source

(c) Emissions Per Kilometer

Notes: Based on transaction data for the period 2020 - 2022. Utility factors are calculated based on

the observed on-road fuel consumption and the vehicle’s fuel consumption in the charge-sustaining

mode in the New European Driving Cycle (NEDC) testing procedure. For details on the calculation,

see Appendix B. Charging by source is calculated based on the observed amount charged at each

source. Both measures compare employees who have already received home chargers with employees

who selected into the program but have not yet received home chargers. Thus, some employees

switch between the two samples as time proceeds. “WLTP” are vehicle CO2 emissions per kilometer,

according to the Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP) type approval

tests. “RDE” are real-world driving emissions. “EU Fleet” are vehicle emissions for the entire fleet

of vehicles in Europe which already report RDE over the air (numbers based on Commission Report

COM/2024/122). 95% confidence intervals are indicated where possible.
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quarter. Therefore, quarter one is the first quarter in which we observe all treated

employees for the entire three-month period. Point estimates get noisier for higher-

order lags because fewer not-yet-treated employees remain in the control group and

because long treatment exposures are only observed for early treatment cohorts. The

panel is unbalanced since a fraction of employees switch to a new car on a monthly

basis.14

We begin the discussion of the results by considering the margin of charging vs.

refueling. Panel (a) of Figure 3 shows that total electricity consumption of PHEVs

increases sharply when treated employees receive their home charger. The effect size is

around 400 kWh per quarter initially and begins to decrease towards 330 kWh in the

fourth quarter after adoption. Panel (b) shows that treated subjects reduce charging

at public stations, to an increasing extent, by up to around 50 kWh per quarter. We

observe from panel (c) that point estimates for charging on company premises are

negative but not statistically significant. Note that there are no significant differences

between the treatment group and the control group in terms of charging behavior prior

to treatment. This finding holds true also for the outcome variables analyzed below,

supporting the parallel pre-trends assumption underlying the DiD estimator.

Figure 4 displays outcomes related to fuel consumption and mileage. We observe

that the increase in electric charging is accompanied by a drop in fuel consumption

(panel a), which is driven by reductions in both the number of refueling transactions

per quarter (panel b) and the average amount of fuel per transaction (panel c). On av-

erage, treated subjects reduce their quarterly fuel consumption by slightly more than

100 liters in the first few quarters after adoption. These results indicate a high substi-

tutability of electricity for gasoline among treated subjects. As before, the precision

of these estimates decreases with the length of the event window.

Five quarters after the installation of the home charger, the estimated fuel savings

weaken whereas increased electric charging is sustained (see Figure 3a). This begs

the question of whether treated employees end up driving more. Indeed, panel (d) of

Figure 4 shows an increase in quarterly vehicle kilometers traveled by about 1,000,

or 20% from 2020 levels. While the point estimates become statistically insignificant

from quarter four onward, aggregate treatment effects presented in Table 2 below con-

firm that home chargers cause a rebound effect on driving. Two reasons for this effect

come to mind. First, the home charger makes charging more convenient and also less

time-consuming, lowering the non-monetary cost of driving. Second, environmentally

conscious employees might drive their PHEV more because electric driving has a much

lower environmental impact in terms of air pollution and CO2 emissions (for a discus-

14A few employees received the home charger after receiving their PHEV company car (for details,
see Appendix Figure E.2). Attrition is low; only 78 out of 1,442 drop out of the sample after treatment
because they left the firm and returned their company car.
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Figure 3: Treatment Effects on Electric Charging

(a) Total Charging

(b) At Public Station (c) At Firm

Notes: Estimator θes(e) from Callaway & Sant’Anna (2021)as specified in Equation (3). “Total

Charging” is the sum of all kWh charged at home, at public charging stations and at company-

owned charging stations on company premises. “At Public Station” and “At Firm” correspond to the

kWh charged at the corresponding sources. Event time indicated on the x-axis. Employees receive

access to home charging at some point during quarter 0. The analysis is clustered at the level of the

participating employee. 95% confidence intervals are based on bootstrapped standard errors (1,000

draws).
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Figure 4: Treatment Effects on Fuel Consumption and Mileage

(a) Fuel in Liters (b) Number of Refueling Transactions

(c) Liters per Refueling Transaction (d) Kilometers Traveled

Notes: Estimator θes(e) from Callaway & Sant’Anna (2021) as specified in Equation (3). “Fuel in

Liters” is the amount refueled (pooled across gasoline and diesel PHEVs). “Number of Refueling

Transactions” and “Liters per Refueling Transaction” are self-explanatory. “Kilometers Traveled”

is the number of vehicle kilometers traveled in a given quarter. Event time indicated on the x-axis.

Employees receive access to home charging at some point during quarter 0. The analysis is clustered at

the level of the participating employee. 95% confidence intervals are based on bootstrapped standard

errors (1,000 draws).
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sion of moral licensing in an environmental context, see, e.g., Tiefenbeck et al., 2013).

Both these factors make PHEV driving more attractive, generating additional trips or

inducing substitution away from other means of transportation, including another car

that is privately owned by the household.

Finally, Figure 5 shows that the treatment reduced the average fuel consumption

per 100 km by up to three liters (panel a) as it increased the electric driving share

of PHEVs by up to 40 pp. (panel b). These effects are very large relative to pre-

treatment averages in 2020 (see Table 1): the average fuel consumption per 100 km

drops by more than 50% while the utility factor more than doubles. The extent to

which this translates into CO2 abatement depends on assumptions about the emissions

caused by electricity generation for charging. We assume that no additional emissions

are generated because fossil-based electricity generation in the EU is subject to an

emissions cap set under the EU ETS. Thus, any incremental emissions from charging

must be offset by reduced emissions elsewhere under the cap. As a consequence, the

change in total emissions is equal to the reduction in tailpipe CO2 emissions from fuel

consumption of up to 300 kg per quarter (panel c). For comparison, panel (d) shows

the effect of treatment on CO2 emissions if the additional electricity charged were to

give rise to unregulated CO2 emissions at the prevailing average CO2 intensity in the

German electricity grid (cf. Appendix C.1). In this scenario, emissions abatement is

still about half of the abatement under the other scenario, though the corresponding

coefficient becomes statistically insignificant already shortly after the adoption of home

charging infrastructure.

Lastly, panel (e) of Figure 5 plots the quarterly treatment effects on the energy

costs of charging or refueling the vehicle. This outcome aggregates the pecuniary

costs of gasoline or diesel bought at the pump and of electricity charged at home,

on company premises, or at public stations. We find that home charger adoption

significantly lowered energy costs of PHEV use. Recall that within the fringe benefit

scheme considered here, this is a benefit that accrues to the firm, not to the holder of

the car.

3.2 Overall Treatment Effects

Following Callaway & Sant’Anna (2021), we compute the ATT as a weighted average

of the DiD estimates obtained for different cohorts and time horizons, assigning equal

weight to each employee in our sample. Table 2 reports the resulting ATT estimates,

all of which are statistically significant at the 5% or 1% level. Home charger adoption

increased electricity consumption by 317.90 (±23.3 for the 95% confidence interval)

kWh, almost a quintupling from the baseline of 65.5 kWh. At the same time, it

decreased consumption of gasoline or diesel by 97.97 (±36.5) liters per quarter (38.4%).
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Figure 5: Treatment Effects on Fuel Efficiency, CO2 Emissions and Energy Costs

(a) Fuel Consumed per 100 km (b) Electric Driving Share

(c) CO2 Emissions (EU ETS Cap) (d) CO2 Emissions (No EU ETS Cap)

(e) Company Energy Expenditures

Notes: Estimator θes(e) from Callaway & Sant’Anna (2021) as specified in Equation (3). The “Electric

Driving Share” is calculated as described in Appendix B. “CO2 Emissions” in panel (c) are computed

assuming that charging is not associated with any CO2 emissions under the EU ETS cap whereas in

panel (d) we impute CO2 emissions from charging using the average CO2 intensity of the German

electricity grid (cf. Appendix C.1). “Company Energy Expenditures” summarize expenditures for all

fuel and all electricity charged (cf. Appendix C.2). General notes from Figures 3 and 4 also apply

here.

18



Table 2: Aggregate Treatment Effects on PHEV Holders

Energy Mileage Emissions Expenditures

Electricity Fuel Mileage No EU ETS Cap EU ETS Cap Energy
[kWh] [l] [km] [kg CO2] [kg CO2] [Euro]

Treated 317.9*** -97.97*** 671.13*** -93.04** -237.12*** -102.52***
(11.87) (18.6) (242.28) (46.44) (44.62) (31.43)

Mean 65.5 255 4482 645 616 446
(pre-treatment)

Employees 856 856 856 856 856 856
Groups 6 6 6 6 6 6
Periods 11 11 11 11 11 11

Employee FE X X X X X X
Time FE X X X X X X

Notes: Estimator θOsel from (Callaway & Sant’Anna, 2021) as in Equation 2. Mean (pre-treatment) is
the average of the corresponding outcome variable in the last quarter before home charger adoption
(619 observations). “Groups” are groups of employees receiving home charging in the same quarter.
“Periods” are quarters. “No EU ETS Cap” stands for CO2 emissions being computed under the
assumption that additional electricity charged leads to CO2 emissions at the average CO2 intensity
in the German electricity grid (cf. Appendix C.1). “EU ETS Cap” stands for CO2 emissions being
computed under the more realistic assumption that charging is not associated with any CO2 emissions
under the cap implied by the EU’s emissions trading scheme (EU ETS). The analysis is clustered at
the level of the participating employee. Standard errors in parentheses (bootstrapped, 1000 draws). *
p < 0.1, ** p < 0.05, *** p < 0.01.

The net effect on emissions is a reduction of 237.12 (±87.5) kg of CO2 under the

assumption of non-additionality of emissions under the EU ETS. Emissions would have

fallen by 93.04 (±91.0) kg if additional charging had induced higher CO2 emissions

from electricity generation at the average emissions intensity in the German electricity

grid. In addition, the adoption of home chargers caused a reduction in energy costs of

e 102.52 (±61.6) for the company. Finally, the average employee’s mileage increased

by 671.13 (±474.9) km per quarter, which can be interpreted as a 15% rebound effect

in terms of VKT.

3.3 Treatment Effects for Battery Electric Vehicles

For employees with a BEV during the sample period, we estimate the effect of home

charging on electricity consumption, emissions, and energy expenditures.15 Table 3

reports the aggregate ATT estimates. We find that home charging increased total

electricity consumption by 172.05 (±143.12) kWh per quarter, after netting out sig-

nificant decreases in both charging on the firm premises of 52.38 (±47.35) kWh and,

especially, on the public grid of 247.73 (±122.66) kWh. This result suggests that BEVs

were, similar to PHEVs, driven more once a home charger was installed, pointing to

15Due to the smaller sample of employees holding a BEV and since we rely on not-yet-treated
units as our control group, we had to cut off our sample period after July 2022 (Q2 2022). In Q2
2022, the control group still comprised 28 employees holding a BEV.
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Table 3: Average Treatment Effects on BEV Holders

Electricity Consumption

Total Firm Public Emissions Expenditures
[kWh] [kWh] [kWh] [kg CO2] [Euro]

Treated 172.05** -52.38** -247.73*** 79.84** 23.03
(73.02) (24.16) (62.58) (32.16) (24.84)

Mean 477 103 374 208 173
(pre-treatment)

Employees 407 407 407 407 407
Groups 5 5 5 5 5
Periods 10 10 10 10 10

Employee FE X X X X X
Time FE X X X X X

Notes: Estimator θOsel from (Callaway & Sant’Anna, 2021) as in Equation 2.
Mean (pre-treatment) is the average of the corresponding outcome variable in
the last quarter before home charger adoption (228 observations). “Groups”
are groups of employees receiving home charging in the same quarter. “Peri-
ods” are quarters. Emissions are calculated under the assumption that addi-
tional electricity charged leads to CO2 emissions at the average CO2 intensity
in the German electricity grid (cf. Appendix C.1). In the more realistic EU
ETS scenario, additional emissions are zero and are therefore not reported
here. Standard errors in parentheses (bootstrapped, 1000 draws). * p < 0.1,
** p < 0.05, *** p < 0.01.

an economically significant rebound effect. Since we do not observe odometer readings

for BEVs, we use the average electricity consumption of 15.61 kWh per 100 km (see

Table E.2) to estimate the rebound effect at 1,100 km per quarter. As explained above

for PHEVs, rebound could arise from increased convenience and lower non-monetary

cost of home charging. Moral licensing cannot explain the rebound because BEVs are

always driven electrically. However, due to their exclusive availability, home chargers

likely reduce ‘range anxiety’ among BEV holders, leading them to drive more relative

to the control group.

Increased charging hardly raises expenditures, however, because charging at home

is cheaper than in the public charging network.16 The ATT for charging expenditures

is thus economically and statistically insignificant. The effect on total CO2 emissions

is zero due to cap-and-trade in the electricity sector. In the absence of the EU ETS

cap, incremental CO2 emissions due to home charging would amount to 79.84 (±63.03)

kg per quarter.

In support of the external validity of these findings for the broader population

of BEV company car holders, Appendix Table E.2 shows that electricity consumption

prior to treatment is very similar between adopters of home chargers and non-adopters,

and that differences in the electric efficiency, weight and price of the respective BEVs

are minor. Similar to the PHEV sample, treated BEV holders tend to be male, older

16For a discussion of energy prices, see Appendix C.2.
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than non-participants, and have longer tenure with the company.

3.4 Treatment Effects on Vehicle Choice

Employees entitled to a company car get to choose a new vehicle every four years.

This provides an opportunity to investigate whether experience with convenient home

charging promotes BEV adoption. We hypothesize that employees who already have

access to home charging with their previous vehicle are more likely to choose a BEV. To

test this hypothesis, we focus on 157 program participants with a PHEV lease ending

between October 2020 and March 2023. In this group, we define treated employees as

those who gained experience with home charging before the end of their PHEV lease.

Treatment assignment thus depends on (i) the order date of the home charger, (ii)

the waiting time until the charger is installed, and (iii) the end-of-lease date for the

PHEV. Employees had no control over (ii) or (iii), but they were free to choose the

order date of the home charger. This could give rise to selection into (early) treatment

by employees who are determined to order a BEV as their next company car.17 A

näıve estimator comparing adoption propensities among employees with and without

access to home charging might hence be biased. We resort to a matching estimator to

address this issue.

Adopting the potential outcome framework by Rubin (1974), denote by Yi an in-

dicator for choosing a BEV upon renewal of the lease. The treatment indicator Wi

(exposure) takes the value of one when the employee has access to home charging by

the end of the previous lease and zero otherwise. For treated employees, we only ob-

serve Yi(1), the vehicle choice when treated. To estimate the average treatment effect

on the treated, ATT = E[Yi(1) − Yi(0)|Wi = 1], we follow Abadie & Imbens (2011)

and impute the non-treated outcome Yi(0) via matching of similar observations from

the control group:

ÂTT =
1

N

∑
i:Wi=1

Yi(1)−
1

M

∑
j∈JM (i)

Yj(0)︸ ︷︷ ︸
Ŷi(0)

+ µ̂0(Xi)−
1

M

∑
j∈JM (i)

µ̂0(Xj)︸ ︷︷ ︸
bias correction

 (4)

where JM(i) is the set of M nearest neighbors to observation i based on covariates Xi,

and the asymptotic bias in those matches is corrected for by an auxiliary regression

model to predict µ̂w(x) for the conditional expectation µw(x) = E[Yi(w)|Xi = x]. The

estimator is robust to misspecification of µ̂w(x) (Abadie & Imbens, 2011). We choose

17In line with this, Appendix Figure E.6 shows that treated employees tended to order the home
charger earlier than untreated employees. Moreover, untreated employees who ordered a BEV rather
than a PHEV as their next company car tended to order the home charger earlier.
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Table 4: Effect of Access to Home Charger on Propensity to Order a BEV

(1) (2) (3) (4) (5) (6)

Full Sample 0 ≤ Gap ≤ 7

Exposure 0.326∗∗∗ 0.312∗∗∗ 0.340∗ 0.354 0.284∗∗ 0.283
(0.095) (0.101) (0.206) (0.245) (0.131) (0.227)

Charging ✓ ✓
Order Gap ✓ ✓ ✓
Employees 157 157 157 157 60 60
Treated Empl. 49 49 49 49 20 20

Notes: Coefficient estimates of the ATT in eq. (4) with nearest-neighbor matching
with replacement (one neighbor for all treated units, including ties). All specifi-
cations match on the home charger order date. “Exposure (0/1)”: Employee re-
ceives a home charger before the end of the initial PHEV lease. “Charging”: Exact
matching on a categorical variable for the average amount of electricity charged with
the initial PHEV before home charger adoption (categories: ≤ median charging (7.2
kWh/month), > median charging). “Order Gap”: include the number of months be-
tween the order date for the charger and the end of the initial car lease in addition to
the home charger order date as a matching covariate. Columns (1) to (4) include all
participants in the home charger program whose PHEV lease ends between Oct. 2020
and Mar. 2023. Columns (5) and (6) restrict the sample to employees whose car lease
ends at most seven months after they have ordered the charger. Heteroskedasticity-
robust standard errors from Abadie & Imbens (2011). * p < 0.1, ** p < 0.05, *** p
< 0.01.

M = 1 and the Mahalanobis-distance to determine JM(i) = argminj:Wj=0 ∥Xj−Xi∥A.
Our choice of matching covariates X seeks to achieve covariate balance, while the

small sample size dictates a parsimonious approach. In all specifications reported in

Table 4, we match on the month in which the home charger is ordered, the principal

source of endogeneity. Columns (2) to (4) additionally control for the amount of

electricity charged with the previously held PHEV (exact match on below/above the

median) and on the time expired between the order date of the home charger and the

end of the initial vehicle lease, which we refer to as the order gap (match on the number

of months). To the extent that these variables carry information about preferences for

BEVs, this controls for selection into early treatment.18

We find that access to a home charger increases the probability of ordering a BEV

by 31.2 to 35.4 pp. in the full sample. Matching on both charging and the order gap

inflates the standard errors so that the treatment is no longer statistically significant for

this specification, but the point estimates remain similar across all four specifications.

Consistency of the matching estimator relies on an unconfoundedness assumption

18We assess other potential confounders by inspecting the data. To examine the influence of time
trends, Appendix Figure E.8(a) shows the distribution of BEV vs. PHEV choices among untreated
employees in our sample. We see that the relative attractiveness remains unchanged over time.
Moreover, choosing one or the other vehicle did not make a difference for the waiting time between
the order and the delivery date of the home charger, as depicted in Figure E.8(b).
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which is more plausible when covariates are balanced. Table E.5 and Figure E.7 in

the Appendix show that we achieve good balance in terms of the order date of the

home charger as well as consumption of electricity with the previous vehicle. This is

not quite true for the order gap where nearest-neighbor matching is complicated by

a lack of common support for order gaps of more than seven months (cf. Appendix

Figures E.7(g) and (h)). Therefore, columns (5) and (6) of Table 4 report estimates

from specifications that enforce common support by matching exactly on the order

gap not exceeding seven months. While this considerably reduces the sample size, the

estimated treatment effect remains statistically significant at 28.4 pp. At the risk of

overfitting, we also report specifications that additionally match on the length of the

order gap in months (column 6) to improve balance of the continuous order gap variable

(cf. Appendix Figure E.7(i)). This estimate is less precise yet virtually identical in

magnitude.

In sum, we interpret our results as evidence that experiencing the convenience of

charging at home has convinced a sizable share of PHEV holders to go all electric and

switch to a BEV. In the cost-benefit analysis below, we use 28.4 pp. as our preferred

estimate. In view of the limitations set by the institutional setup, small sample size,

and the remaining imbalance on the order gap, we also consider a more conservative

scenario where home chargers have no effect on the adoption of BEVs.

3.5 Robustness Checks

We examine the robustness of our results to using alternative approaches concerning

the relevant control group, the estimator, and the extrapolation of odometer readings

to compute mileages.

To begin, we re-estimate the treatment effects on the use of PHEVs using as a

control group only employees who do not select into home charger adoption. Working

with a constant control group of never-treated employees rules out that changes in the

composition of the control group could drive the estimation results.19

In addition, we estimate the event studies using the following two-way fixed-effects

event-study regression:

Yit =
−2∑

e=−K

δe 1(t−Gi = e)
L∑

e=0

βe 1(t−Gi = e) + ηi + µt + ϵit (5)

where the notation follows Section 2.2 and K and L indicate the maximum number of

pre-treatment and post-treatment periods possible.

19We were not working with never-treated employees in our main specification because employees
select into home charger adoption and Table 1 demonstrates that this selection is associated with
meaningful differences in driving behavior.
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Appendix Figure E.3 plots the estimated coefficients, which are very similar across

the two alternative specifications. When compared to the main results in Figures 3

to 5 above, the results are robust – with a few noteworthy differences. First, the

larger control group increases precision: It is no longer the case that coefficients for

longer treatment exposure are more noisily estimated. Moreover, the point estimates

are more stable, in particular in quarter five after treatment. This suggests that the

increasing variability in the coefficients estimated on higher-order treatment lags in

our main specification reflects compositional changes in a shrinking sample rather

than dynamic treatment effects. We thus conclude that treatment effects are constant

also for longer treatment exposures. Finally, the rebound effect on VKT is not robust

to using never-treated employees as the control group.

Appendix Table E.3 reports the overall treatment effects estimated with the alter-

native control group. Again, all results are robust with the exemption of the rebound

effect on VKT. Comparing the effect sizes for fuel and electricity consumption to

those reported in Table 2, we see that the mileage rebound hinges on smaller esti-

mated fuel savings in the main specification. Since pre-trends for both specifications

(using never-treated and not-yet-treated units as the control group) are parallel, this

difference must be driven by differential post-treatment trends in fuel use across con-

trol groups. Such trends are unobservable to us, but it seems plausible that outcomes

for not-yet-treated program participants better represent trends in non-treated poten-

tial outcomes of treated employees. We thus prefer using not-yet-treated units as the

control group, and interpret the increase in VKT observed in our main specification

as a rebound effect.

To corroborate this interpretation, we perform an additional sensitivity analysis for

outcomes that depend on VKT, a variable we construct from odometer readings that

employees record each time they pump gas or diesel at a filling station. As explained

above, we identify and drop erroneous entries and impute mileage by interpolating

between correct mileages. We also use extrapolation when the first or the last odometer

reading in a series is erroneous.20 The extrapolation combines fuel and electricity

consumption with their assumed or observed efficiency to impute kilometers traveled.

As the treatment might change the electric driving share in ways we cannot directly

observe without mileage, this could introduce error. In Appendix F, we assess the

robustness of the rebound effect to different extrapolation methods. We show that our

results for mileage, fuel efficiency and utility factor are robust to different assumptions

about the specific energy use per kilometer, as long as we consider both fuel and

electricity consumption to extrapolate erroneous mileages (as we do). We also find that

extrapolating using only fuel consumption biases the estimated treatment effects on

20Alternatively, we would have to discard observations with implausible odometer readings at the
beginning and the end of the sample period, thus diminishing our observation window.
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these outcomes, particularly the one for mileage, towards zero. This is expected since

(i) electricity consumption is not accounted for and (ii) the treatment substantially

reduced fuel consumption (cf. Figure 4a).

4 Cost-Benefit Analysis

This section relates emissions abatement due to home charger adoption to the associ-

ated costs incurred by the company. We simulate emission trajectories into the future,

assuming that home chargers have a lifespan of around 20 years. Doing so requires us

to combine all of our previously estimated intensive- and extensive-margin impacts of

home charger adoption. Specifically, we take into account that adopters are more likely

to switch to BEVs, that BEV holders use the home charger differently than PHEV

holders, and that access to a home charger has different effects on charging behavior

of PHEV and BEV holders. We adapt the method by Dugoua & Gerarden (2023,

Appendix D) to our potential outcome framework, using conditional expectations in-

stead of derivatives. Formal derivations and a detailed description of the simulations

are relegated to Appendix D.

The basic idea is to consider repeated vehicle choices every four years and then

forward-simulate the paths of the outcome variables (emissions and energy costs) over

a 20-year period starting from the period 2020 - 2023.21 We simulate these outcomes

under alternative assumptions about employees’ vehicle choices, subsumed in scenarios.

Each scenario is fully characterized by a matrix specifying the choice probabilities of

individual i holding car type kit ∈ {ICEV, PHEV,BEV } in period t under treatment

status Di ∈ {0, 1}. The transition matrix is assumed to be constant over time and

takes the form:

E(Θk
i (Di)) =E(θICEV

i (Di)|ICEV ) E(θICEV
i (Di)|PHEV ) E(θICEV

i (Di)|BEV )

E(θPHEV
i (Di)|ICEV ) E(θPHEV

i (Di)|PHEV ) E(θPHEV
i (Di)|BEV )

E(θBEV
i (Di)|ICEV ) E(θBEV

i (Di)|PHEV ) E(θBEV
i (Di)|BEV )

 (6)

where θki is an indicator for whether employee i adopts vehicle type k. That is, for any

vehicle type and treatment status, there is a certain probability of choosing another

or the same car type. Some of these choice probabilities are given by our estimated

ATTs, others are based on assumptions outlined below.

21Employees have to hold on to their company car at our partner company for four years, so roughly
one in four chooses a new car every year. For tractability, we assume instead that all employees choose
at the same time every four years.
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4.1 Scenarios

Across scenarios, we rely on a set of common assumptions. First, emissions from

electricity generation are non-additional due to the binding cap of the EU ETS. Second,

there is no exit from vehicle ownership. Third, the initial fleet of PHEVs in the first

four years is equal to the PHEV fleet observed in the data (in terms of technical

characteristics). Fourth, all employees choose a new company car simultaneously in

four-year increments. Fifth, treatment effects are constant over time, i.e., a home

charger has the same effect on charging behavior and vehicle adoption in each period.

Sixth, vehicle choice is independent of vehicle use, i.e., the average treatment effects

on vehicle use and future vehicle choices are independent. Seventh, car use, emissions

factors (particularly for electricity generation), and energy prices are constant over

time. All cost outcomes are expressed in 2020 euros and all future cost outcomes are

discounted to that year.

Scenario 0: Baseline This scenario is based on the following (additional) assump-

tions:

A1 BEV adoption is an absorbing state (employees do not go back to ICEVs or

PHEVs once a BEV has been chosen).

A2 EV adoption is an absorbing state (employees do not go back to ICEVs once a

PHEV or BEV has been chosen).

Under these two assumptions, the first column and the first row in equation (6) become

irrelevant and the transition matrix for treated employees simplifies to:

E(Θi(1)) =

(
0.429 0

0.571 1

)
(7)

That is, the probability that a PHEV holder chooses a BEV upon treatment is 0.571,

based on the extensive-margin effects of home chargers estimated in Section 3.4 above.

Over time, this effect compounds and hence accelerates BEV adoption. We take

this into account when computing the overall treatment effects (cf. eq. D.10 in the

appendix). In contrast, the following scenarios abstract from this effect.

Scenario 1: No Effect on Vehicle Choice We assume that access to home charg-

ing does not change vehicle choice. The choice probabilities for different vehicle types

are thus given by a simplified transition matrix that does not depend on treatment

status:

E(Θi(1)) = E(Θi(0)) =

(
0.713 0

0.287 1

)
(8)
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Since the treatment no longer affects vehicle choice, we only need to consider the

intensive-margin treatment effects for the ATTs (eq. D.10, with E(∆θBEV
it ) = 0).22

Scenario 2: Vehicle Choices as in Overall Company Car Population Like

scenario 1, but we replace assumptions A1 and A2 with the assumption that the

vehicle choice probabilities among employees in the home charger program are the

same as in the population of all employees who have to replace their company car.

We elicited these choice probabilities in a company-wide survey in February 2023.

Employees who were going to choose a new company car within two years of the

survey reported the engine type of the company car they currently had and the car

they were planning to choose next. This yields the following transition matrix:

E(Θi(1)) = E(Θi(0)) =

1, 779/3, 038 105/598 15/300

643/3, 038 277/598 8/300

661/3, 038 216/598 277/300

 (9)

based on 3,038 ICEVs, 598 PHEVs, and 300 BEVs in the survey.23 Furthermore, we

only need to consider the intensive-margin treatment effects for the period-ATTs (eq.

D.10, with E(∆θBEV
it ) = 0).

Scenario 3: PHEV Lock-In We assume that employees do not change their vehicle

type over time; they are locked into their initial choice. Then the overall ATT is simply

given by the net present value of the period-treatment effects on PHEV use (eq. D.10,

with E(∆θBEV
it ) = 0 and setting E(θPHEV

it (1)) = 1 ∀t ).

Scenario 4: Forced Transition to BEVs We assume that, from the second four-

year period onward, all employees switch to a BEV. This scenario illustrates a forced

transition to a zero-emission car fleet which would be consistent with corporate pledges

for net-zero emissions. Recently, some companies have taken steps into this direction

by adopting BEV mandates for new company car leases. The dynamic ATTs then

correspond to the ATTs during the first four-year period, since the treatment has no

lasting effects on emissions in this case (eq. D.10, with E(∆θBEV
it ) = 0 and setting

E(θPHEV
i1 (1)) = 1 and E(θPHEV

it (1)) = 0 ∀t > 1 )).

This gives us all the ingredients needed to simulate the ATT on CO2 emissions and

energy costs, combining intensive- and, depending on the scenario, extensive-margin

reactions. We collect the required parameters in Appendix Table D.1.

22Note that the indicator θkit for whether employee i holds a vehicle of type k in period t will vary
over time, even when the transition matrix E(Θi(Di)) is constant over time.

23In the survey, a small fraction of employees were undecided which vehicle type they would choose
for their next company car. We removed those employees to obtain the transition matrix above.
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4.2 Simulation Results

Figure 6 displays the cumulative treatment effects of home charging adoption over time

for various outcomes, starting from the end of year four, when the leases for the initial

PHEV fleet need to be renewed. We examine how the company car fleet develops

over time when treated employees receive a home charger at the beginning of period

1, and how this impacts emissions and abatement. Panels (a)-(c) show abatement and

abatement costs per employee while (d)-(f) display the shares of employees holding

PHEVs, BEVs, and ICEVs, respectively.

Panel (a) depicts cumulative CO2 emissions abatement, which starts from 3.8 tons

after four years (the intensive-margin treatment effect per quarter cumulated over four

years). Depending on the scenario, the cumulative abatement can reach almost 21 tons

of CO2 after 20 years, or remain as low as 3.8 tons of CO2. The lower bound arises

in scenario 4 where the forced transition to a pure BEV fleet implies that all vehicles

operate at 100% electric utility factor from year five onward and hence adding charg-

ers does not further reduce emissions thereafter. Cumulative abatement is highest in

the baseline scenario because treatment boosts the adoption of BEVs relative to the

counterfactual. To see the importance, note that total abatement over 20 years in

the baseline scenario (20.7 tCO2 per employee) is almost twice as high as in scenario

1 (10.8 tCO2 per employee), which shuts off the extensive margin. The only way in

which intensive-margin treatment effects alone could generate similar amounts of cu-

mulative abatement is by shutting down the exogenous transition towards BEVs in

the control group (scenario 3). Under this counterfactual assumption, access to home

charging leads to constant abatement of CO2 emissions over the useful life of the charg-

ing station. However, this scenario is associated with much higher CO2 emissions than

the baseline scenario, due to the continued combustion of fossil fuels. In scenarios 1

and 2, which allow for an exogenous transition towards BEVs but do not consider the

extensive-margin effect of access to home charging on BEV adoption, emission abate-

ment is considerably lower. This is due to an increasing share of employees adopting

a BEV (or an ICEV in scenario 2), independent of access to home charging. For these

employees, the home charger does not generate additional emission reductions.

Panel (b) displays the cumulative total abatement cost of adopting home chargers,

i.e., installation costs minus cost savings resulting from the substitution from fuel

(gasoline or diesel) to electricity. We observe that the abatement cost per employee

is highest if the company mandates BEVs from the second four-year period onward,

since home chargers do not result in additional emissions reductions. Abatement is

lowest in the baseline scenario. Note that an abatement cost of zero implies that the

home charger installation has paid off. Negative abatement costs result when the home

charger program pays for itself. The cost-benefit ratio of the home charger program
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Figure 6: Simulation of Cumulative Treatment Effects over Time

(a) Cumulative Emissions Abatement (b) Cumulative Abatement Cost

(c) Abatement Cost (d) Employees Holding PHEV

(e) Employees Holding BEV (f) Employees Holding ICEV

Notes: Estimates for the dynamic ATT, aggregating treatment effects on PHEV and BEV use and

BEV adoption under different assumptions for PHEV and BEV diffusion (cf. Appendix D).
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improves (falls) when (i) more PHEVs remain in the fleet, or (ii) access to charging

at home has a positive impact on BEV adoption. The break-even point is reached in

less than eight years in the baseline scenario and in scenario 3 (note that we model

decisions in four-year increments such that actual amortization periods can be shorter

than indicated). For the remaining two scenarios, the break-even point is four to eight

years later, either because the transition to BEVs due to the treatment proceeds more

slowly (see panel e) or because some employees revert back to ICEVs (see panel f).

Per ton of CO2 emissions, we estimate levelized abatement costs at e 323 after four

years, and they eventually become negative. After 20 years, the profit per ton of CO2

avoided ranges between e 46 and e 269 (see panel c).

The previous scenarios assumed that energy prices observed during the sample pe-

riod 2020-2022 are representative of energy prices over the next 20 years. To gauge the

impact of this assumption on our results, Appendix G presents a sensitivity analysis

using projections for future electricity prices and the future development of carbon

prices for the transport sector in Germany. As shown in Figure G.1, our assumptions

about the future development of energy prices have little effect on our results. The

reason is that the cost of driving one kilometer using fossil fuels already is substantially

higher than driving the same distance using electricity. Since this cost differential re-

mains large relative to the projected price changes for each energy type, the qualitative

finding that home chargers are cost-effectiveness holds up.24

5 Conclusion

This paper contributes, to the best of our knowledge, the first causal evidence that

access to home charging infrastructure substantially reduces the environmental foot-

print of plug-in hybrid electric vehicles. Exploiting quasi-experimental variation in

the adoption of home chargers by German company car holders, we find that electric

charging almost quintuples upon installation of the charger whereas the consumption

of gasoline or diesel drops by 38%. The associated reduction in CO2 emissions is

equally large because any incremental emissions from electric charging are capped un-

der the EU ETS. We thus conclude that the provision of home charging infrastructure

can be a highly effective tool for achieving much-needed CO2 abatement in the road

transportation sector. Starting in 2027, those emissions will be subject to a carbon

price set by the EU ETS 2. To produce the same short-run abatement as our interven-

tion, that carbon price would have to increase gasoline prices by 95% and diesel prices

24Considering price developments for home charging stations is not necessary, since this investment
is made once at the beginning of the sample period. Considering the price developments for different
vehicle types (particularly the price differences between BEV and ICEV) is also not necessary in the
given setting, as employees have a fixed budget for a new company car.
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by 135% (based on recent elasticity estimates for German PHEV drivers by Grigolon

et al., 2024). Our review of the available projections for the EU-ETS-2 price suggests

that the induced increase in the fuel price will be an order of magnitude smaller. If

policymakers were to double fuel prices, this would be highly unpopular (Douenne &

Fabre, 2022). Hence, policies aimed at reducing the carbon footprint of PHEVs must

continue to rely on instruments other than carbon pricing, such as promoting access

to home chargers.

Two additional results strengthen this policy recommendation. First, we have

shown that the diffusion of home chargers also accelerates the transition to driving

battery electric vehicles, which generates sizable knock-on effects on CO2 abatement

by shifting on-road emissions under the EU ETS cap. Second, charging at home leads

to energy cost savings that eventually offset the upfront investment when chargers are

used for approximately six years and longer. In our setting, such net savings accrue to

the company, which also pays for the home charger. A robust insight from analyzing

those cash flows under different assumptions is that home chargers reduce corporate

carbon emissions at low – if not negative – levelized costs that are competitive with

international carbon offsets.

Our analysis provides evidence on a cost-effective tool for reducing CO2 emissions

from corporate passenger car fleets. This is important given the size of such fleets in

markets like Germany, where 39% of all new passenger car registrations in 2022 were

company cars, according to industry estimates (Kampermann, 2023).25 As 51% of

all PHEVs and 40% of BEVs were company-owned in 2023 (Kraftfahrt-Bundesamt,

2024a), our findings are immediately relevant to a substantial share of the overall

stock of EVs. Since company cars are replaced every few years and enter the used-

car market, they drive the diffusion of new vehicle technologies in the total stock of

cars. This insight is behind recent efforts by the European Commission to leverage

the potential of corporate car fleets to accelerate the decarbonization of the transport

sector (European Commission, 2024b). The positive effect of home chargers on BEV

adoption we find could thus lead to further emissions reductions down the road by

increasing the supply of used BEVs.

There are policy implications beyond the particular context of company cars. The

treatment effects we have estimated are driven exclusively by non-monetary aspects

of home charging like convenience, exclusive availability, and time savings. It seems

highly plausible that all these aspects work in the same direction for privately held

PHEVs. The magnitude of the treatment effects may differ, however, due to financial

incentives. We expect the increase in the electric driving share to be larger than in our

25According to administrative data from the German Federal Motor Transport Authority,
company-owned cars accounted for 67% of all new passenger car registrations in Germany in 2023
(Kraftfahrt-Bundesamt, 2024b). Not all cars with a corporate owner are company cars, however. For
example, car dealers often register new vehicles for resale purposes.
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study because private PHEV owners internalize the energy cost savings associated with

home charging. The EU ETS 2 will likely reinforce this effect by raising the costs of

gasoline and diesel, thus creating a complementarity between charging infrastructure

and carbon pricing.

This points to a case for government-subsidized home chargers. When designing

such a subsidy, policymakers should take into account environmental externalities

other than climate change, such as air pollution, as well as external costs imposed

on the electricity sector (Heid et al., 2024). Measuring all external effects of driving

and charging PHEVs is complex due to their high variability across locations and over

time. Given the policy relevance, this is an important topic for future research.

Our findings are relevant to the process of electrifying road transportation. Electric

driving shares among PHEV users in our sample before the adoption of the home

charger align well with those observed for the fleet of new PHEVs in Europe (cf.

Figure 2c). With PHEVs accounting for roughly 8% of new vehicle registrations in

the European Union in 2023 (European Environment Agency, 2024) and as much as

18 % in China during the first half of 2024 (InsideEVs, 2024), our results identify and

quantify an effective lever to reduce emissions in a significant portion of the vehicle

market. To tap this potential, policymakers can reduce administrative barriers to

installing a home charger and actively mandate installation rights for renters. For

example, a 2020 federal law gives tenants in Germany a right to install a charging

station at their rented home, which can only be denied under special circumstances.

In addition, governments could improve the social returns to subsidizing the adoption

of PHEVs. This is a widespread policy in Europe, in particular for company cars,

which yields environmental benefits to the extent that PHEVs are driven electrically.

However, the subsidy does not reward electric driving itself. Our result that having

a charging station at home increases electric driving suggests that conditioning the

PHEV subsidy on the availability of home charging infrastructure would raise its cost

effectiveness.
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Kampwirth, R. (2021). LichtBlick Ladesäulencheck 2021. Technical report, LichtBlick
SE.
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Appendix (For Online Publication)

A Company Cars

Many companies provide generous mobility options to their employees, not only for
business trips but also for the commute to work and leisure trips. The most promi-
nent example are company cars, which typically can also be used privately. The use of
company cars is heavily subsidized in many countries, particularly in Europe (Copen-
hagen Economics, 2010). Furthermore, companies often reimburse up to 100 % of the
car’s fuel cost. These two factors make a company car much cheaper for an employee
than if the same car were purchased privately. In addition, a company car is often
perceived as a status symbol and can make working for an employer more attractive.
Therefore, companies are reluctant to remove this privilege, even though they are faced
with external or internal ambitions to rapidly decrease CO2 emissions, also from their
employees’ mobility.

B Data Preparation

For this project, our partner company provided us with data from different sources:
i) the company car register listing the employee holding the car, a description of the
car model, the vehicle’s fuel type, potentially the date on which the employee ordered
a home charger, ii) data on charging transactions on the company’s premises and at
public charging stations, iii) data on charging transactions at the employee’s home (if
the employee participated in the home charger program), and iv) data on refueling
transactions at public gas stations. For all transaction data sets, we observe the date
and time at which the transaction occurred and the amount of energy charged (fuel
in liters, electricity in kWh). For the refueling transactions, we additionally observe
employee-recorded odometer readings (total mileage up to this point).

The odometer readings sometimes give implausible vehicle mileages between two re-
fueling transactions, either because i) the implied mileage is negative or ii) the mileage
information is not consistent (too high or too low) with the fuel and electricity con-
sumption of the car and the car’s efficiency. To clean the mileage variable, we assess
the plausibility of the observed mileage using i) and ii) via the following procedure.
We manually match the vehicle model descriptions in the company car register to
vehicle models as listed in the model catalog of the General German Automobile
Club (ADAC).26 For each PHEV model, we obtain the combined energy consumption
(using both electricity and fuel) per 100 km according to type-approval tests using
the New European Driving Cycle (NEDC). The NEDC was the European Union’s
testing procedure for type-approval before 2017, and NEDC testing values had to be
provided for all model years in Europe until 2019. For all but 63 vehicles in our sam-
ple, a NEDC fuel consumption is available. If the efficiency is only available for the
newer Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP), we use
that value divided by 1.2 as an NEDC-equivalent value. To clean the data, we used
the fuel consumption of the vehicle in charge-sustaining mode, i.e., when the PHEV’s
battery is (almost) depleted and the PHEV mainly uses the internal combustion en-

26ADAC Modellkatalog, https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-

modelle/?filter=ONLY_RECENT&sort=SORTING_DESC, last accessed 24.02.2024, 23:28 CET.

i
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gine for driving (Riemersma & Plötz, 2017). In the ADAC data, only the combined
fuel consumption is available (average between charge-sustaining and charge-depleting
mode, i.e., the PHEV’s fuel consumption when the battery is fully charged). We ob-
tain a lower-bound estimate for the fuel consumption in charge-sustaining mode using
the formula for the combined consumption under the NEDC procedure (as found in
Riemersma & Plötz, 2017):

CNEDC =
CNEDC

1 DNEDC
e + CNEDC

2 25

DNEDC
e + 25

(B.1)

=⇒ CNEDC
2 ≥ 25CNEDC

DNEDC
e + 25

(B.2)

where CNEDC is the combined NEDC fuel consumption, CNEDC
1 is the charge-depleting

NEDC fuel consumption, CNEDC
2 is the charge-sustaining NEDC fuel consumption,

andDNEDC
e is the NEDC electric driving range of the PHEV. Finally, to account for the

underestimation of fuel consumption in the NEDC testing procedure, particularly for
PHEVs (Plötz et al., 2020), we multiply the NEDC consumption in charge-sustaining
mode by 1.5 to obtain an estimate for the on-road fuel consumption of the vehicle,
following Plötz et al. (2021) and Grigolon et al. (2024):

Creal
2 = 1.5

25CNEDC

DNEDC
e + 25

(B.3)

where Creal
2 is the on-road fuel consumption in charge-sustaining mode.

We further obtain the electric efficiency (according to NEDC) of the PHEV version
of the model, where possible. If we only observe the WLTP electric efficiency, we divide
that value by 1.2 to obtain a proxy of the NEDC electric efficiency. We assume that
the NEDC testing procedure imposes an electric driving share of 80 % on the vehicle,
which is at the upper end of electric driving shares assumed in the testing procedures;
see, e.g., Plötz et al. (2021). This implies that we obtain the efficiency of purely electric
driving by dividing the combined NEDC electricity consumption by 0.8.

With this information, we proceed to clean the mileage variable as follows: Based
on the transaction data, we calculate the total electricity consumption between two
odometer readings by adding up all the electricity charged between the two corre-
sponding refueling dates. Based on the electric efficiency of the vehicle, we then con-
vert the electricity consumption into kilometers, which we subtract from the mileage
obtained from the odometer readings. Dividing the total fuel consumption by this
residual mileage multiplied by 100, we obtain an observed fuel consumption per 100
km traveled using mainly the internal combustion engine. If this observed average fuel
consumption exceeds the vehicle’s fuel consumption in charge-sustaining mode (Creal

2 )
by more than a factor of 3 or else if it is lower than 20 % of Creal

2 , we flag the mileage
as erroneous. We interpolate flagged mileages using an energy-weighted average of the
last and the next correct observed mileage. To obtain the energy weights, we transform
fuel consumption in liters into the equivalent electricity consumption in kWh using the
vehicle’s electric and fuel efficiency according to testing procedures.

Further, we drop time series with less than two non-flagged mileage observations
because we cannot calculate driving distances for these vehicles. There are three
reasons why we could observe only one or two mileages: i) there are indeed very few
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refueling procedures, especially for vehicles bought at the end of the sample period,
ii) company car drivers charge their PHEV privately, so that the observed average
fuel consumption is constantly below the lower bound implied by 20 % of Creal

2 , or
iii) the employee did not take entering the odometer readings seriously, such that the
sequence of recorded mileages does not reflect driving behavior. Note that the latter
case should be rare since not correctly entering odometer readings violates corporate
policies.

Suppose flagged mileages occur at the end of a time series for a particular car. In
that case, we extrapolate based on the last correct odometer reading and the fuel and
electricity use of the vehicle after that. For each refueling procedure after the last
correct odometer reading, we impute the mileage based on the vehicle’s electricity and
fuel consumption, translating energy consumption into kilometers traveled using the
vehicle’s NEDC electricity consumption per 100 km in all-electric mode (see above)
and the vehicle’s average fuel consumption per 100 km we observe in the non-flagged
transaction data (see above).27 We truncate all vehicle time series after the vehicle’s
last (correct or incorrect) mileage observation, i.e., after the second-to-last observed
refueling procedure since we would be unable to obtain a mileage after the last refueling
procedure.

In contrast to the employee-recorded odometer readings, we take the amount of
fuel and electricity consumed in the transaction data almost at face value. The only
correction we apply is that we winsorize refueling at 100 liters per transaction since
most vehicles have a tank capacity of less than 100 liters (this affects 8 out of 205,481
refueling procedures) and we winsorize electric charging at 130 % of the vehicle’s
gross battery capacity (this affects 15,497 out of 949,406 recharging and refueling
procedures).28

Finally, we construct the share of VKT in electric mode, the so-called on-road
utility factor following Plötz et al. (2021) and Grigolon et al. (2024):

UF = 1− Con−road
2

Creal
2

(B.4)

where we obtain estimates for the on-road fuel consumption per 100 km, Con−road
2 , by

dividing the fuel consumption observed in the transaction data by the mileage variable
(constructed as described above).

C Emissions, Energy Prices and Abatement Cost

This section outlines the assumptions made to transform the observed energy consump-
tion in terms of electricity or fossil fuels (either diesel or gasoline) into CO2 emissions
and energy costs. We summarize the assumptions made for energy prices, emission
factors, etc. in Table C.1.

27To test whether this extrapolation affects our results for the vehicle’s mileage, average fuel
consumption per 100 km, and utility factor, we perform a sensitivity analysis with two alternative
imputation procedures in Appendix F.

28The amount of electricity charged from the station is always greater than the amount of electricity
stored in the battery, due to efficiency losses. Thus, charging slightly more electricity in kWh than
the net battery capacity of the vehicle is possible. The winsorization of charged amounts at 130 % of
gross battery capacity should affect only charging procedures that are technically infeasible.
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C.1 CO2 Emissions

PHEVs can drive using electricity and either gasoline or diesel, depending on the car.
We observe the amount of fuel in liters and the amount of electricity in kWh. Convert-
ing fuel consumption into CO2 emissions is straightforward since the amount of CO2

emitted is proportional to the amount of fuel burned. To quantify that relationship,
we used emissions factors for fossil fuels from the German Environmental Protection
Agency (Juhrich, 2022).

To convert electricity consumption into CO2 emissions under a non-EU ETS sce-
nario, we make the simplifying assumption that the emissions intensity of electricity
generation in Germany is constant over the course of a year. We can then calcu-
late CO2 emissions from electric charging using the average annual CO2 intensity of
the German electricity mix, as calculated by the German Environmental Protection
Agency (Icha & Lauf, 2022).

C.2 Energy Prices

To calculate the energy cost savings for the firm, we need to assign a monetary value
to the observed energy consumption. For home charging, we directly observe the price
per kWh of electricity. The average kWh charged at the employees home had cost the
company e 0.28. To approximate the prices paid for fuel and electricity charged in the
company’s premises or on the public grid, we used average annual consumer prices for
gasoline and diesel in Germany from the industry organization “Wirtschaftsverband
Fuels und Energie e.V.” (Bittkau et al., 2022), and data on industry electricity prices
from the German Federal Statistical Office (DESTATIS, 2023). To approximate the
cost of charging the vehicle at public charging stations, we take the average price paid
across a set of charging station providers from (Kampwirth, 2020, 2021, 2023).

C.3 Home Charging Installation Cost

Our partner company cooperated with a utility company to provide employees with
subsidized home charging stations. The utility had a modular pricing schedule. More
complex installations, e.g., in underground parking, needed to pay for an inspection
prior to the installation to check whether installing a home charger would be feasible.
Depending on the complexity of the installation (defined by the length of the electrical
cable needed and the number of walls through which these cables needed to go), the
employees were offered one of two prices for installation. The subsidy provided by the
company was capped at e 2,750, which was sufficient to cover the cost of a charging
station and the simple installation. For a more complex installation, employees could
end up paying up to e 800 out of their own pocket. Furthermore, the subsidy for the
home charger installation was subject to a flat income tax rate of 25%.

C.4 Abatement Cost

We calculate the abatement cost assuming that the company paid the full subsidy to
all employees and that this covered the full installation cost. The installation cost
of the home charger is thus covered by a subsidy of e 2,750. To obtain abatement
cost, we use a 20-year horizon, which should correspond to the useful lifetime of the
home charger, and calculate abatement cost under different scenarios in four-year
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increments. Four years is the period over which an employee has to hold on to her
company car. We assume that the treatment effect on the vehicle’s tailpipe emissions
would be constant over the useful lifetime of the home charger. Aggregating over the
useful lifetime, we obtain the implied CO2 emission savings. To obtain energy cost
savings, we assume that the ATT on the energy costs from refueling and charging the
car is also constant over time, and calculate the total cost per employee as the net
present value of the initial investment (the subsidy) and the future energy cost savings.
We divide this number by the CO2 emissions reduction to obtain an estimate of the
levelized abatement cost.

Table C.1: CO2 Emission Factors and Energy Prices

Variable Value Source

Panel A: Emission Factors
Diesel 74.0 tCO2/TJ Juhrich (2022)
Gasoline 3.169 tCO2/t Juhrich (2022)
Electricity 383 g/kWh (2020) Icha & Lauf (2022)

425 g/kWh (2021) Icha & Lauf (2022)
459 g/kWh (2022) Icha & Lauf (2022)

Panel B: Prices
Diesel 1.124 EUR/l (2020) Bittkau et al. (2022)

1.399 EUR/l (2021) Bittkau et al. (2022)
1.960 EUR/l (2022) Bittkau et al. (2022)

Gasoline 1.293 EUR/l (2020) Bittkau et al. (2022)
1.579 EUR/l (2021) Bittkau et al. (2022)
1.962 EUR/l (2022) Bittkau et al. (2022)

Electricity Firm 0.100 EUR/kWh (2020) DESTATIS (2023)
0.150 EUR/kWh (2021) DESTATIS (2023)
0.246 EUR/kWh (2022) DESTATIS (2023)

Electricity Public 0.38 EUR/kWh (2020) Kampwirth (2020)
0.39 EUR/kWh (2021) Kampwirth (2021)
0.43 EUR/kWh (2022) Kampwirth (2021, 2023)

Cost of Home Charger 2750 EUR Partner company
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D Derivations for Cost-Benefit Analysis

D.1 Approximating the ATT for a One-off Vehicle Choice

To build some intuition and introduce notation, we first consider a one-off decision
for vehicle adoption (a four-year lease) where employee i decides on vehicle type k ∈
{ICEV, PHEV,BEV } given her treatment status Di ∈ {0, 1} (Di = 1 for treated
individuals). Treatment status Di and vehicle type k jointly determine the outcomes
CO2 emissions Ek

i (Di) and corporate energy costs Ck
i (Di) for employee i. We adopt

the notation Y k
i (Di) ∈ {Ek

i (Di), C
k
i (Di)}. Employee i’s outcomes can then be written

as Yi(Di) =
∑

k θ
k
i (Di)Y

k
i (Di), where θ

k
i is an indicator for whether employee i adopts

vehicle type k. Using this notation, we can define the ATT as:

ATT (Yi) = E(Yi(1)|Di = 1)− E(Yi(0)|Di = 1) (D.1)

where E stands for the expectation operator. With random assignment of treatment,
this simplifies to:

ATT (Yi) = E(Yi(1))− E(Yi(0)). (D.2)

Considering the outcome given one treatment status in isolation, we can rewrite:

E(Yi(Di)) = E

(∑
k

θki (Di)Y
k
i (Di)

)
(D.3)

We assume that vehicle choice θki is independent of vehicle use and thus independent
of emissions Ek

i and energy costs Ck
i . We justify this assumption by the following

argument: suppose that a company rolls out home charging infrastructure among
employees initially holding PHEVs. These employees have similar characteristics ex
ante. Changes in vehicle choice could be driven by i.i.d. shocks to employee preferences
for sustainable transportation. Under the independence assumption, we can rewrite:

E(Yi(Di)) =
∑
k

E
(
θki (Di)

)
E
(
Y k
i (Di)

)
(D.4)

By definition, the CO2 emissions of ICEVs and BEVs (under the assumption of a
binding cap of the EU ETS) and the energy costs of ICEVs are not affected by the
treatment status. Furthermore, we did not find significant differences in the energy
costs of BEVs for treated and untreated employees (see Table 3). Thus, we can simplify
our notation: Y k

i (1) = Y k
i (0) = Y k

i ∀ i, k ∈ {BEV, ICEV }, Y ∈ {E, C}. This implies
that we can rewrite the ATT as:

ATT (Yi) = E(θPHEV
i (1))E(Y PHEV

i (1))

− E(θPHEV
i (0))E(Y PHEV

i (0))

+
∑

k∈{BEV,ICEV }

E(θki (1)− θki (0))E(Y
k
i ) (D.5)
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Adding a “smart zero” yields:

ATT (Yi) = E(θPHEV
i (1))E(Y PHEV

i (1))

+ E(θPHEV
i (1))E(Y PHEV

i (0))

− E(θPHEV
i (1))E(Y PHEV

i (0))

− E(θPHEV
i (0))E(Y PHEV

i (0))

+
∑

k∈{BEV,ICEV }

E(θki (1)− θki (0))E(Y
k
i ) (D.6)

We adopt the notation θki (1)− θki (0) = ∆θki and Y k
i (1)− Y k

i (0) = ∆Y k
i and rearrange

terms:

ATT (Yi) = E(∆θPHEV
i )E(Y PHEV

i (0))

+ E(θPHEV
i (1))E(∆Y PHEV

i )

+ E(∆θICEV
i )E(Y ICEV

i )

+ E(∆θBEV
i )E(Y BEV

i ) (D.7)

To obtain an estimate of the ATT, we need to make three additional assumptions on
vehicle choice. First, we assume that there is no exit from vehicle ownership during
the lifetime of the home charger, implying E(∆θPHEV

i ) + E(∆θICEV
i ) + E(∆θBEV

i ) =
0. Second, we assume that among the employees selecting into the home charger
program, employees who currently hold a PHEV or a BEV will never choose an ICEV
again, even without access to home charging. Together, these assumptions imply that
E(∆θICEV

i ) = 0 and E(∆θPHEV
i ) = −E(∆θBEV

i ), and we can rewrite the ATT:

ATT (Yi) = E(θPHEV
i (1))E(∆Y PHEV

i )

+ E(∆θBEV
i )E(Y BEV

i − Y PHEV
i (0)) (D.8)

The first term in this expression is the intensive-margin effect on the outcomes for
employees holding on to their PHEVs, and the second term is the extensive-margin
effect for employees choosing a BEV instead of a PHEV as their next company car.
Note that we have already estimated E(∆Y PHEV

i ) and E(∆θBEV
i ) for our sample of

employees who initially hold a PHEV and select into the home charger program. We
estimate E(EPHEV

i (0)), E(CPHEV
i (0)) and E(CBEV

i ) using the corresponding sample
averages among not-yet-treated PHEV or BEV owners. Furthermore, EBEV

i = 0 by
assumption.

D.2 Approximating the ATT with Repeated Vehicle Choices

In our setting, employees have to decide on a new company car every four years.
Assuming that these decisions occur simultaneously for all employees, we obtain a
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new equation to extrapolate the ATT over the subsequent 20 years:

ATT (Yit) =
5∑

t=1

γtATTt

=
5∑

t=1

γt
Y

[
(E(θPHEV

it (1))E(∆Y PHEV
it ) + E(∆θBEV

it )E(Y BEV
it − Y PHEV

it (0))
]

(D.9)

where t denotes the time period (e.g., t = 1 is the first four-year period 2020 - 2023)
and γt

Y is a factor for the respective outcome Y in period t that simultaneously ag-
gregates over the four-year periods considered and discounts to the year 2020, when
the investment decision was made. We work with an annual discount rate of 3% for
energy costs and do not discount CO2 emissions abatement. We additionally assume
that (i) treatment effects are constant over time, i.e., a home charger has the same
effect on vehicle adoption and charging behavior regardless of how long the employee
has had access, and (ii) car usage, emissions factors, and energy prices are constant
over time (we relax the latter assumption on energy prices later on). The ATT then
simplifies to:

ATT (Yit) =
5∑

t=1

γtE(θPHEV
it (1))E(∆Y PHEV

i )

+
5∑

t=1

γtE(∆θBEV
it )E(Y BEV

i − Y PHEV
i (0)) (D.10)

Estimating the ATT over time thus requires an estimate of the share of employees
holding a PHEV in each period t, E(θPHEV

it (1)). The vector

E(θit(Di)) =
(
E(θICEV

it (Di)),E(θ
ICEV
it (Di)),E(θ

ICEV
it (Di))

)′
denotes the share of employees holding a certain vehicle type in period t, given treat-
ment status Di. We assume that it follows a Markov process starting from an initial
distribution of vehicle types θi0, and evolves as E(θit(Di)) = E(θit−1(Di)Θit(Di)) where
E(Θi(Di)) is a transition matrix. Since the treatment was found to affect the vehicle
choice probabilities, this transition matrix depends on the employees’ treatment status
and can be written as follows:

E(Θit(Di)) =E(θICEV
it (Di)|ICEV ) E(θICEV

it (Di)|PHEV ) E(θICEV
it (Di)|BEV )

E(θPHEV
it (Di)|ICEV ) E(θPHEV

it (Di)|PHEV ) E(θPHEV
it (Di)|BEV )

E(θBEV
it (Di)|ICEV ) E(θBEV

it (Di)|PHEV ) E(θBEV
it (Di)|BEV )

 (D.11)

where, e.g., E(θICEV
it (Di)|ICEV ) is the probability of individual i adopting an ICEV

in time period t, conditional on holding an ICEV in the previous period and under
treatment status Di. We assume that the transition matrix is constant over time.
Given our interest in the ATT, we need an estimate of the transition matrix for both
treated and untreated employees E(Θi(Di)).

Note that E(∆θit) still has a time index, since it depends on the constant period-
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treatment effect and on the difference in the share of EVs arising from the different
accumulation of EVs up to time period T :

E(∆θiT ) =
((
E(Θi(1))

T−1 − E(Θi(0))
T−1
)
θi,0
)

In line with the previous section, we assume that employees selecting into the home
charging program and currently holding either a PHEV or a BEV will never revert to
an ICEV company car:

E(Θi(Di)) =E(θICEV
i (Di)|ICEV ) 0 0

E(θPHEV
i (Di)|ICEV ) E(θPHEV

i (Di)|PHEV ) E(θPHEV
i (Di)|BEV )

E(θBEV
i (Di)|ICEV ) E(θBEV

i (Di)|PHEV ) E(θBEV
i (Di)|BEV )

 (D.12)

Starting from a population of employees holding BEVs or PHEVs (this was an admis-
sion criterion for the program), we can thus consider a reduced transition matrix since
no employee in our sample will ever hold an ICEV again:

E(Θi(Di)) =

(
E(θPHEV

i (Di)|PHEV ) E(θPHEV
i (Di)|BEV )

E(θBEV
i (Di)|PHEV ) E(θBEV

i (Di)|BEV )

)
(D.13)

We can rewrite this transition matrix as the sum of the transition matrix in the control
group and the matrix of treatment effects on vehicle choice previously estimated:

E(Θi(1)) = E(Θi(0)) + E(∆Θi) (D.14)

Based on our estimated treatment effects on vehicle choice from Table 4, we obtain
an estimate for E(∆θBEV

i |PHEV ) = −E(∆θPHEV
i |PHEV ) given the no-exit assump-

tion on company car ownership. Additionally, we assume that BEV adoption is an
absorbing state for employees selecting into the home charging program. Together,
these assumptions imply:

E(Θi(1)) = E(Θi(0)|kit) + E(∆Θi) =(
(1− E(θBEV

i (0)|PHEV )) 0
E(θBEV

i (0)|PHEV ) 1

)
+

(
−E(∆θBEV

i |PHEV ) 0
E(∆θBEV

i |PHEV ) 0

)
(D.15)

We observe the probability of choosing a BEV among PHEV owners in the control
group.

Table D.1 lists all the coefficients and parameters needed for the cost-benefit anal-
ysis.
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Table D.1: Coefficients and Parameters for the Cost-Benefit Analysis

Parameter Source

Panel A: Estimated ATTs
E(∆θBEV

i ) = 0.283 Table 4
E(∆EPHEV

i ) = −237.12 kg CO2 per quarter Table 2
E(∆CPHEV

i ) = −102.52 e per quarter Table 2
E(∆CBEV

i ) = 0 e per quarter Table 3
Panel B: Observed Population Averages

E(EPHEV
i (0)) = 646.17 kg CO2 per quarter Table 1

E(CPHEV
i (0)) = 342.75 e per quarter Table 1

E(CBEV
i ) = 63.40 e per quarter Table E.2

Panel C: Parameter Assumptions
E(θPHEV

i1 (0), θBEV
i1 (0), θICEV

i1 (0)) = (1, 0, 0) Starting from PHEV users
E(EBEV

i ) = 0 Assumption given EU ETS Cap

γt
C =

∑4
y=1(1.03)

y Ad hoc

γt
E = 4 Ad hoc

E(Θi(Di)) See scenarios
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E Additional Graphs and Tables

Table E.1: Summary Statistics

Variable Mean Sd Min Pctl. 25 Median Pctl. 75 Max

Panel A: Driving Behavior after Home Charger Adoption

Mileage [km] 5092 2794 25 3023 4643 6691 18122

Emissions [gCO2] 492 368 3.93 252 393 631 3764

Tailpipe Emissions [gCO2] 305 377 0.257 57.1 166 412 3722

Fuel [l] 126 155 0.0951 23.8 69.2 169 1560

Charge at home [kWh] 362 307 0 119 311 519 2504

Charge at firm [kWh] 30 71 0 0 3.64 30.9 1203

Charge at public [kWh] 21.8 64.4 0 0 0 16.4 986

Fuel consumption [l/100 km] 2.37 2.21 0.00587 0.696 1.74 3.31 14

Electricity consumption [kWh/100 km] 9 6.29 0 3.97 8.09 13.2 37.3

Energy Expenditures [EURO] 351 281 2.83 170 271 450 3029

Panel B: Vehicle Characteristics

Price [Euro] 32542 4488 0 30802 32474 35290 49631

Weight [kg] 2017 262 1480 1840 2025 2105 2655

Fuel Consumption [l/100 km WLTP] 1.58 0.341 0.8 1.4 1.4 1.7 2.9

Electricity Consumption

[kWh/100 km WLTP] 17.5 3.17 13.3 15.3 16.2 18.7 24.2

Panel C: Employee Characteristics

Age [Years] 48.2 -

Tenure [Years] 17.4 -

Female [%] 0.156 -

Notes: Descriptive statistics on the sample of employees and their PHEVs, respectively, in the home
charger program between January 2021 and December 2022 (N = 856 employees). Panel A shows summary
statistics for vehicle use after the employee has received access to home charging. This reduces the
size of the sample to N = 752 employees since we exclude the last-treated group receiving acces to
home charging in Q4/2022. Panel B displays vehicle characteristics obtained from the General German
Automobile Club’s car catalog. Panel C displays employee characteristics. Note that each employee is
assigned the average characteristics of the group simultaneously adopting a home charger. WLTP stands
for “Worldwide Harmonized Light Vehicles Test Procedure”.
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Table E.2: Home Charger Sample with BEVs vs. Population of BEVs

Home Charger No Home Charger

Variable Mean Sd Mean Sd

Panel A: Vehicle Use in 2020
Emissions [kgCO2] 94.89 (105.5) 93.06 (99.56)
Electricity per quarter [kWh] 247.75 (275.46) 242.97 (259.96)
Energy expenditures [Euro] 63.40 (87.42) 65.30 (90.68)

Panel B: Vehicle Characteristics
Price [Euro] 32642.92 (11468.1) 31268.43 (12404.58)
Weight [kg] 1980.91 (349.8) 1901.06 (330.25)
Electricity consumption [kWh/100 km WLTP] 15.62 (2.11) 15.43 (2.51)

Panel C: Employee Characteristics
Age [years] 48.34 - 43.19 -
Tenure [years] 17.54 - 12.89 -
Female [%] 0.16 - 0.24 -

Notes: Comparison of the sample of employees holding BEVs and selecting into the home charger program
between January 2021 and December 2022 (N = 493 employees) to the group of employees not selecting into the
home charger program during that period (N = 749 employees). Both samples are restricted to the employees
holding at least one BEV during that period and opting into the fuel cost compensation scheme of the company.
Panel A shows summary statistics for vehicle use in the year 2020 in which none of the employees in the home
charger sample has received a home charger yet. The sample sizes are reduced to N = 63 cars that were used
during that period for the home charger sample and N = 221 cars in the no-home charger sample. Panel
B displays vehicle characteristics obtained from the General German Automobile Club’s car catalog. Panel
C displays employee characteristics which are only available in terms of group averages. WLTP stands for
“Worldwide Harmonised Light Vehicle Testing Protocol”.
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Figure E.1: Average Differences In Electric Utilization Between Treated and Not-yet-
treated Employees in 2022 (Post COVID-19)

(a) Utility Factor (b) Charging by Source

(c) Emissions Per Kilometer

Notes: Based on transaction data for the year 2022. Utility factors are calculated based on the

observed on-road fuel consumption and the vehicle’s fuel consumption in charge-sustaining mode in

the NEDC testing procedure. For details on the calculation, see Appendix B. Charging by source is

calculated based on the observed amount charged at each source. Both measures compare employees

who have already received home chargers with employees who selected into the program but have not

yet received home chargers. Thus, some employees switch between the two samples as time proceeds.

“WLTP” are vehicle CO2 emissions per kilometer, according to WLTP type approval tests. “RDE”

are real-world driving emissions. “EU Fleet” are vehicle emissions for the entire fleet of vehicles

in Europe which already report real-driving emissions over the air, numbers based on Commission

Report COM (2024) 122. 95% confidence intervals are indicated, where possible.
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Figure E.2: Vehicle Adoption Across Treatment Groups

(a) EVs

(b) PHEVs

(c) BEVs

Notes: Share of employees in a treatment group holding a company car of the type indicated in the

sub-caption. “Treatment” indicates groups of employees receiving access to home charging in the

indicated quarter. X-axis label indicates quarter/year. EVs are BEVs plus PHEVs. In the treatment

quarter, the share of employees holding EVs must be 100%. Based on 1,442 participants in the home

charger program. Dashed black line indicates the share of the corresponding vehicle type among 5,498

employees holding an EV company car at some point during the sample period.
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Figure E.3: Event Studies Comparing TWFE and Callaway & Sant’Anna (2021)

(a) Electricity in kWh (b) Fuel in Liters

(c) CO2 Emissions (EU ETS Cap)
(d) CO2 Emissions (No EU ETS
Cap)

(e) Kilometers Traveled (f) Company Energy Expenditures

Notes: CS indicates that estimator θes(e) from Callaway & Sant’Anna (2021) as specified in Equation

(3) is used. TWFE indicates that the two-way fixed-effects event-study regression in Equation (5) is

estimated. Never-treated employees with a PHEV are used as the control group. All outcomes are

computed as described in the notes to Figures 3 - 5. The analysis is clustered at the employee level.

95% confidence intervals are indicated (for CS: bootstrapped standard errors, 1,000 draws).
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Table E.3: ATT based on Never-treated Units as Controls across Different Outcomes

Energy Mileage Emissions Cost

Electricity Fuel Mileage No EU ETS Cap EU ETS Cap Energy
[kWh] [l] [km] [kg CO2] [kg CO2] [Euro]

Treated 318.46*** -137.98*** 35.93 -187.91*** -332.14*** -171.68***
(10.74) (7.69) (103.3) (20.24) (21.03) (13.17)

Employees 3551 3551 3551 3551 3551 3551
Groups 6 6 6 6 6 6
Periods 11 11 11 11 11 11

Employee FE X X X X X X
Time FE X X X X X X

Notes: Estimator θOsel from Callaway & Sant’Anna (2021) as in Equation 2. Never-treated
employees not selecting into home charger program are used as the control group. “Groups” are
groups of employees receiving home charging in the same quarter. “Periods” are quarters. “No
EU ETS Cap” stands for CO2 emissions being computed under the (counterfactual) assumption
that additional electricity charged by the treated group leads to unregulated CO2 emissions at
the average CO2 intensity in the German electricity grid (cf. Appendix C.1). “EU ETS Cap”
stands for CO2 emissions being computed under the realistic assumption that charging is not
associated with any CO2 emissions under the cap implied by the EU’s emissions trading scheme
(EU ETS). The analysis is clustered at the level of the participating employee. Standard errors
in parentheses (bootstrapped, 1000 draws). * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure E.4: Group-Specific ATT in the First Quarter After Home Charger Adoption

(a) Electricity in kWh (b) Fuel in Liters

(c) CO2 Emissions (EU ETS Cap)
(d) CO2 Emissions (No EU ETS
Cap)

(e) Kilometers Traveled (f) Company Energy Expenditures

Notes: Group-specific ATTs for the first quarter after the installation of the home charger using the

doubly-robust estimator by Callaway & Sant’Anna (2021). “Home Charger Adoption” indicates the

quarter in which the corresponding group received access to home charging. Never-treated employees

with a PHEV are used as the control group. All outcomes are computed as described in the notes to

Figures 3 - 5. The analysis is clustered at the employee level. 95% confidence intervals are indicated

(bootstrapped standard errors, 1000 draws).
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Figure E.5: Group-Specific ATT on Kilometers Traveled Over Time

Notes: Group-specific ATTs after the installation of the home charger using the doubly-robust esti-

mator by Callaway & Sant’Anna (2021). “Group” indicates the quarter in which the corresponding

group received access to home charging. “Treatment” indicates that this group has received access

to home charging. Never-treated units (employees holding a PHEV but not selecting into the home

charger program) are used as the control group. All outcomes are computed as described in notes to

Figures 3 - 5. The analysis is clustered at the level of the participating employee. 95% confidence

intervals are indicated (bootstrapped standard errors, 1000 draws).
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Table E.4: Home Charger Adoption in 2021 vs. 2022

Adoption in 2021 Adoption in 2022

Variable Mean Sd Mean Sd

Panel A: Vehicle Use in Year before Home Charger Adoption
Mileage per quarter [km] 3976.09 (2589.93) 4870.94 (3038.39)
Emissions [kgCO2] 581.91 (503.46) 731.03 (582.55)
Tailpipe Emissions [kgCO2] 562.12 (511.44) 703.28 (590.11)
Electricity per quarter [kWh] 48.29 (82.38) 63.55 (111.81)
Fuel per quarter [l] 232.39 (211.96) 291.36 (244.66)
Fuel consumption [l/100 km] 5.59 (3.15) 5.89 (2.94)
Electricity consumption [kWh/100 km] 1.62 (2.91) 1.50 (2.64)
Utility factor [km elec./km total] 0.30 (0.38) 0.25 (0.37)
Energy expenditures [Euro] 349.81 (303.56) 505.91 (411.44)

Panel B: Vehicle Characteristics
Fuel efficiency [l/100 km WLTP] 1.60 (0.32) 1.56 (0.36)
Electric efficiency [kWh/100 km WLTP] 17.36 (3.05) 17.61 (3.26)
Price [Euro] 32590.58 (4682.52) 32494.10 (4293.65)
Weight [kg] 2005.93 (249.2) 2029.16 (275.19)

Panel C: Employee Characteristics
Age [years] 48.24 - 48.25 -
Tenure [years] 18.07 - 16.79 -
Female [%] 0.15 - 0.16 -

Notes: Comparison of the sample of employees receiving access to home charging in
2021 (N = 426 employees) to the group of employees receiving access to home charging
in 2022 (N = 430 employees). Both samples are restricted to the employees holding at
least one PHEV during the sample period and opting into the fuel cost compensation
scheme of the company. Panel A shows summary statistics for vehicle use in the year
before home charger adoption. This implies that employees adopting the home charger
in 2021 are observed in 2020 and employees adopting the home charger in 2022 are
observed in 2021. The sample sizes are reduced to N = 333 and N = 333 employees,
respectively. Panel B displays vehicle characteristics obtained from the General German
Automobile Club’s car catalog. Panel C displays employee characteristics, which are
only available in terms of group averages. WLTP stands for “Worldwide Harmonised
Light Vehicle Testing Protocol”.
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Figure E.6: Selection Into Early Home Charger Orders Among Employees Ordering
BEVs

(a) Treatment Assignment (b) Vehicle Choice (Control Group)

Notes: Panel (a) displays the kernel density of home charger orders over time for 157 program

participants who had to order a new company car between Oct. 2020 and Mar. 2023. “Treated”

indicates that the employee received the home charger before the end of their previous vehicle’s lease.

“Control” is the opposite case. Panel (b) displays the kernel density of home charger orders over time

for the 108 participants in the control group. “BEV”/“PHEV” indicates that the employee ordered

a BEV/PHEV as their next vehicle. Kernel density estimator kdens in Stata (Jann, 2005), using an

Epanechnikov-kernel with the upper-bound optimal bandwidth by Salgado-Ugarte et al. (1996).
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Table E.5: Balance Company Car Order Before vs. After Access to Home Charging

Std. Mean Difference Variance Ratio
Raw Matched Raw Matched

Order Month -.96 -.01 .66 .99
Electricity [kWh] .096 -.03 .70 .57
Fuel [l] -.26 .19 1.08 1.31

Notes: Balance table for the estimator in Equation (4) for the ATT of access to home charging on
the propensity to order a BEV company car instead of a PHEV company car. Sample: employees
selecting into the home charger program whose PHEV-lease ended between Oct. 2020 and Mar.
2023. “Std. Mean Difference” displays the standardized difference in means between treatment and
control group. “Variance Ratio” displays the ratio of the corresponding variances in the treatment
and the control group. Columns “Raw” correspond to the sample before matching. “Matched”
corresponds to the matched control group and the original treatment group. Order month is the
month (count since Jan. 2020) in which the home charger was ordered. Electricity [kWh] is the
average amount of electricity charged per month before access to home charging, with a previously
held PHEV company car. Fuel [l] is the corresponding amount of fuel combusted. Nearest-neighbor
matching: 1 nearest neighbor for all treated units. Covariates included in the matching: order month
of the home charger and categorical variable for the average amount of electricity charged with the
previously held PHEV before home charger adoption (categories: not charged, < 50 kWh/month,
≥ 50 kWh/month). Standard errors reported are the heteroskedasticity-robust standard errors from
Abadie & Imbens (2011). * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure E.7: Kernel Density Plots Before and After Matching

(a) Charger Order,
Before Matching

(b) Charger Order,
After Matching

(c) Charger Order,
Order Gap ≤ 7 Months

(d) Electricity Consumed,
Before Matching

(e) Electricity Consumed,
After Matching

(f) Electricity Consumed,
Order Gap ≤ 7 Months

(g) Order Gap,
Before Match

(h) Order Gap,
After Match

(i) Order Gap,
Order Gap ≤ 7 Months

Notes: Before Matching: 157 program participants who had to order a new company car between

Oct. 2020 and Mar. 2023. “Treated” indicates that the employee received the home charger before

the end of their previous vehicle’s lease. “Control” is the opposite case. After Matching: 49 treated

employees and their nearest neighbors (corresponding to 49 observations after assigning equal weights

summing to one to ties). Panels (a) and (b) display the kernel density of home charger orders over

time. Panels (c) and (d) display the kernel density of electricity consumption with the previous

vehicle in an average month. Panels (e) and (f) display the kernel density of fuel consumption with

the previous vehicle in an average month. Kernel density estimator kdens in Stata (Jann, 2005).

Kernel density estimated using an Epanechnikov-kernel and the upper-bound optimal bandwidth by

Salgado-Ugarte et al. (1996).
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Figure E.8: No Selection Into Order Dates and Waiting Times

(a) End of Previous Lease (b) Waiting Time for Home Charger

Notes: Sample includes 108 program participants who had to order a new company car between

Oct. 2020 and Mar. 2023 and did not yet have access to home charging when ordering a new

car. “BEV”/“PHEV” indicates that the type of company car ordered by the employee. Panel (a)

displays the kernel density of the previous vehicle’s end of lease dates for these employees. Panel (b)

displays the kernel density of the waiting time between the order and the delivery date of the home

charger. Kernel density estimator kdens in Stata (Jann, 2005). Kernel density estimated using an

Epanechnikov-kernel and the upper-bound optimal bandwidth by Salgado-Ugarte et al. (1996).

F Sensitivity Analysis on Vehicle Kilometers

As mentioned in Appendix B, we performed a sensitivity analysis on the imputation
procedure for implausible mileages at the beginning or the end of a vehicle time se-
ries. In the baseline specification as in Appendix B, we extrapolated these values
based on a vehicle’s observed on-road fuel consumption on kilometers traveled with-
out electricity and the vehicle’s NEDC electricity consumption per 100 km (dividing
the testing value by 0.8 to translate the electricity consumption under an 80% utility
factor into a hypothetical 100% electric driving electricity consumption). As alter-
native specifications, we use (i) the vehicle’s average fuel consumption on all vehicle
kilometers and impute using only fuel consumption, or (ii) the vehicle’s electricity
consumption as in the baseline specification and the vehicle’s NEDC fuel consumption
in charge-sustaining mode, i.e., when the vehicle’s battery is not charged. Note that
specification (i) is certainly going to bias our results on the effect on mileage since we
ignore the vehicle’s electricity consumption for the mileage imputation at the end or
the beginning of a series. Based on fuel and electricity consumption data, we show
that access to home charging reduces the vehicle’s fuel consumption while increasing
its electricity consumption. Since access to home charging is an absorbing state in
our study, we will thus impute lower mileages for treated households at the end of the
sample period, which will bias the effect on mileage downward. In specification (ii)
we use the vehicle’s fuel consumption in charge-sustaining mode in the NEDC testing
procedure. We know that NEDC testing procedures tend to be overly optimistic about
the electric driving share of PHEVs. Adjusting the value to display consumption in
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charge-sustaining mode, we try to correct for this bias. Nevertheless, we trust the
imputation in the baseline specification more.

Table F.1 displays the results of the sensitivity analysis. In the first panel, we
see that extrapolating at the end of a series can cause meaningful differences in the
estimated effect on vehicle mileage. Especially if the vehicle’s electricity consumption
is ignored, we find that the rebound effect in terms of vehicle miles is reduced by 70%
and is no longer significant. We find that the differences are very small in the speci-
fications accounting for electricity consumption. The weaker effect on vehicle mileage
in the “Fuel Only” specification translates into a weaker reduction in average fuel con-
sumption per 100 km and a weaker increase in the electric driving share compared to
the “Baseline” specification.

The sensitivity analysis shows that even under an extrapolation scheme that im-
poses a negative bias on the number of kilometers traveled (column 2), the average
fuel consumption per 100 km is reduced and the electric driving share is increased
substantially. However, the comparison between the baseline extrapolation and the
extrapolation based on the vehicle’s fuel and electricity consumption from NEDC test
values (column 3) shows that as long as electricity consumption is reasonably taken
into account, changing the average fuel consumption per 100 km used to impute ve-
hicle mileages does not change the results much. This is reassuring given the proven
inaccuracy of the NEDC testing values we used to clean the mileage variable.

xxiv



Table F.1: ATT on Outcomes Depending on Vehicle Kilometers

Baseline Fuel Only Efficiencies

Mileage [km]

Treated 671.13*** 117.08 669.72***
(228.16) (284.92) (232.33)

Fuel [l/100km]

Treated -2.53*** -1.83*** -2.58***
(0.22) (0.18) (0.22)

Utility Factor

Treated 0.33*** 0.24*** 0.34***
(0.03) (0.02) (0.03)

Employees 856 856 856
Groups 6 6 6
Periods 11 11 11

Employee FE X X X
Time FE X X X

Notes: Estimator θOsel from (Callaway & Sant’Anna, 2021)
as in Equation (2). Baseline: extrapolation of implausi-
ble mileages at the end of a vehicle time series as in the
main analysis. Fuel Only: extrapolation based on fuel
consumption only, ignoring electricity consumption. Effi-
ciencies: extrapolation based on both fuel and electricity
consumption, but using NEDC fuel consumption in charge-
sustaining mode to transform fuel consumption into kilo-
meters traveled. The analysis is clustered at the level of
the participating employee. Standard errors in parentheses
(bootstrapped, 1000 draws). * p < 0.1, ** p < 0.05, *** p
< 0.01.
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G Sensitivity Analysis on Future Energy Prices

The treatment effects reported in Section 3.2 are estimated during the sample period
from January 2020 until September 2022. Extrapolating into the future to obtain
estimates of the abatement cost of the home charger over its useful life relies on the
assumption that the energy prices observed during that period are representative of the
next 20 years. In this section, we provide a sensitivity analysis to show that working
with changing energy prices for electricity and fossil fuels does not change our results
much. To this end we combine estimated treatment effects on energy cost for fuel
and electricity -shown in Table G.1, along with quantity outcomes reproduced from
the main results in Table 2- with alternative assumptions about future developments
in energy and carbon prices. We maintain all other assumptions as in the baseline
scenario and consider the following three energy price scenarios.

Scenario A1: Changes in the Relative Price of Fuel and Electricity We
assume that the relative prices of fuel and electricity change over time, due to carbon
prices levied on electricity and fuel as well as due to a growing share of renewable
energy sources in German electricity generation. We calibrate electricity price changes
relative to 2020-23 using a projection for future wholesale electricity prices in Germany
(Kreidelmeier & Wuensch, 2023). To be precise, we linearly interpolate between three
nodes provided in the projection to obtain average electricity prices in the four-year pe-
riods 2024-27, 2028-31, 2032-35, and 2036-39: Electricity prices in 2024 (e 128/mWh),
2030 (e 76/mWh) and 2050 (e 59/mWh). For 2020-23, we obtain annual electricity
prices on the spot market from Schwenke & Troost (2024). Dividing the four-year
averages (and interpolated averages) by the average price during 2020-23, we obtain a
growth factor for electricity prices, which we use to extrapolate our treatment effect
into future periods.

This extrapolation relies on the assumption that household and industry electricity
prices as well as electricity prices at public charging stations are driven by the underly-
ing wholesale electricity price. The relative prices across the three charging options (at
home, at public stations, and in the firm’s premises) are assumed to be constant over
time. We also assume that the electricity prices observed during our sample period
are representative of the period 2020-23 (i.e., the first period in our simulations).

We apply a similar procedure to extrapolate fuel prices, assuming that future in-
creases in fuel prices in Germany are driven only by an increase in carbon prices under
the European Emission Trading System 2 (EU ETS 2) and not by the relatively volatile
oil prices on the world market.29 Data on the current level of the national carbon price
in these sectors are obtained from Bundesministerium der Justiz (2019) and Emission-
shaendler.com (nd). For a projection of future prices under the EU ETS 2, we rely
on the baseline scenario of Graichen & Ludig (2024). In this scenario, the EU ETS 2
price will increase to e 84 in 2030. We use this projection and the mandated carbon
price in Germany for 2025 (e 55) to linearly extrapolate carbon prices for the years
2025-39. This series, combined with the observed carbon prices up to 2025, is used to
obtain average prices over the four-year periods used in our simulation.

To compute a fuel price path relative to the 2020-23 average, we first obtain the
average fuel price without carbon pricing during that period and then add projected

29The EU ETS 2 will replace a national carbon price in Germany that covers sectors not covered
under the EU ETS 1, such as buildings and road transport.
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carbon prices. Next, we divide by the average price during the period 2020-23 to
calculate fuel price growth factors. We use these growth factors to extrapolate the
treatment effect on fuel costs to future periods.

Adding up the estimates for future treatment effects on fuel and electricity expen-
ditures estimates, we obtain a time-series of treatment effects on the total energy cost
given our assumptions on the relative price development of fuel and electricity.

Scenario A2: Lower Future Fuel and Electricity Prices Our sample period co-
incides with a period of extraordinarily high energy prices in Europe, as a consequence
of the Russian invasion of Ukraine in February 2022 and the resulting embargoes on
Russian oil and gas. Given the approach outlined in scenario A1, we consider that fuel
and electricity prices in the sample period are higher than the average prices in the
period 2020-23. To take this into account, we rescale our price paths in scenario A1
as follows: Instead of considering prices relative to the average of the four-year period
2020-23, we now consider prices relative to their 2022 levels. We do so because the av-
erage fuel price obtained by dividing the effects of the treatment on fuel expenditures
by the effect on fuel consumption in Table G.1 implies a fuel price of e 1.97, which is
closest to the prices of 2022.

Scenario A3: Lower Future Fuel Prices Unlike fuel prices, electricity prices are
relatively rigid. Household electricity prices in Germany are often fixed by long-term
contracts, implying that the shock to wholesale electricity prices does not immediately
translate into shocks for retail prices paid by consumers. Similarly, large industrial
electricity consumers can sign long-term purchasing power agreements, which would
stabilize electricity prices. This is not true for fuel prices, which tend to respond im-
mediately to changes in the oil price. To take this into account, we consider in this
scenario electricity price changes relative to the period 2020-23 and fuel prices relative
to their 2022 levels.

Table G.2 summarizes the relative price paths for all three scenarios and Figure
G.1 plots how they affect abatement costs. Since the emission profiles are exactly the
same as in the baseline scenario, only the abatement cost is reported. One can see that
changes in the relative price of electricity and gasoline do not change our results much.
This is driven by a pre-existing price differential between gasoline and electricity that
largely outweighs changes in future prices for both energy sources. To see this, one
can calculate the average price per kWh (e 0.28) and liter of fuel (e 1.97) implied by
the treatment effects in Table G.1. From Table 1, we see that the average employee
with access to home charging consumes 5.8 liters of fuel per 100 km. If she drove in
electric mode, her vehicle would consume 17.5 kWh per 100 km. These numbers imply
a price difference of 133%, which is large compared to any price change over time in
all scenarios.
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Table G.1: ATT on Energy Consumption and Expenditures By Source

Energy Electricity Fuel

Energy [Euro] Electricity [kWh] Electricity [Euro] Fuel [l] Fuel [Euro]

Treated -102.52*** 317.9*** 90.03*** -97.97*** -192.55***
(31.43) (11.87) (3.88) (18.6) (32.01)

Employees 856 856 856 856 856
Groups 6 6 6 6 6
Periods 11 11 11 11 11

Employee FE X X X X X
Time FE X X X X X

Notes: Estimator θOsel from (Callaway & Sant’Anna, 2021) as in Equation 2. “Energy” cor-
responds to electricity, diesel and gasoline. “Fuel” corresponds to both diesel and gasoline.
“Groups” are groups of employees receiving home charging in the same quarter. “Periods”
are quarters. The analysis is clustered at the level of the participating employee. Standard
errors in parentheses (bootstrapped, 1000 draws). * p < 0.1, ** p < 0.05, *** p < 0.01.

Table G.2: Period-ATTs Relative to Estimated ATTs [%]

Baseline Scenario A1 Scenario A2 Scenario A3

Period Fuel Electr. Fuel Electr. Fuel Electr. Fuel Electr.

2020 - 2023 100 100 100 100 84.6 47.8 84.6 100
2024 - 2027 100 100 103.5 100.5 87.5 48 87.5 100.5
2028 - 2031 100 100 107.2 72 90.6 34.4 90.6 72
2032 - 2035 100 100 110.3 63.8 93.3 30.4 93.3 63.8
2036 - 2039 100 100 113.6 60.8 96.1 29.1 96.1 60.8

Notes: Price path relative to reference period, as described in scenarios Baseline and A1 -
A3. Electricity price path is obtained by dividing the projection for the average wholesale
electricity price in the period by the reference point corresponding to the scenario. Fuel price
path is obtained by adding the predicted carbon price to the average gasoline price in Germany
in the period 2020 - 2023, before the carbon tax. Percentages are obtained by dividing that
price by the average carbon tax-inclusive gasoline price during the reference period of the
corresponding scenario.
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Figure G.1: Simulation of Cumulative Treatment Effects over Time, Incorporating
Changes in Energy Prices

(a) Cumulative Abatement Cost (b) Abatement Cost

Notes: Estimates for the dynamic ATT, aggregating treatment effects on PHEV and BEV use and

BEV adoption under different assumptions for PHEV and BEV diffusion (cf. Appendix D). Scenario

0 is the baseline scenario. In scenario A1, projections for the future development of electricity prices

and carbon prices for gasoline are considered. In scenario A2, we assume our estimates were affected

by high energy prices during 2022. We adjust by scaling the estimated treatment effects on fuel and

electricity using the ratio between i) the fuel price implied by the treatment effects in Table G.1 and

ii) the wholesale electricity price in 2022 and the corresponding prices over the period 2020 - 2023,

based on the sources indicated in Table C.1. In scenario A3, we adjust only the fuel price in that

way.
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