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Abstract

We examine a setting of independent private value auctions where bidders can

covertly acquire gradual information about their valuations. We demonstrate that

a dynamic pivot mechanism implements the first-best information acquisition and

allocation rule. We apply our results to a commonly used model of auctions with in-

formation acquisition. The bidders are symmetric and information acquisition costs

are moderate. Our analysis shows that the Dutch auction achieves near-efficiency.

That is, the welfare loss is bounded by the information acquisition cost of a single

bidder. In contrast, the English auction may result in greater welfare losses.
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1 Introduction

Efficient resource allocation often relies on the ability and willingness of market partic-

ipants to acquire information. In auction settings, acquiring information is crucial for

participants to make informed bidding decisions, which ultimately affects the efficiency of

the allocation process. For example, when a government awards contracts for advanced

military systems, defense contractors may invest significant resources to evaluate pro-

duction costs, technological feasibility, and supply chain requirements to estimate their

delivery costs. Similarly, in renewable energy support auctions, bidders need to conduct

detailed feasibility studies and environmental assessments to accurately determine their

costs. This process includes estimating the cost of delivering a renewable energy project,

accounting for the opportunity cost of decommissioning an existing power plant, forecast-

ing future revenues from a wind farm, and evaluating potential results of future auctions.

Such information acquisition can be costly, involving both direct expenditures and the

allocation of significant organizational resources.1

Welfare maximization requires careful consideration of the costs associated with in-

formation acquisition. It is inefficient for all bidders to invest heavily in information

acquisition, as the associated costs are wasted for those who do not win the auction. In

this context, it has been established that dynamic standard auctions (English, Dutch) are

more efficient than static auctions (first-price, second-price) when information acquisition

is considered, as bidders can adjust based on information revealed during the auction.

However, whether standard auctions can achieve first-best efficiency remains an open

question.

In this paper, we demonstrate in a private value setting that a dynamic first-best mech-

anism maximizing social welfare exists. Specifically, we consider an environment where a

mechanism designer allocates a single indivisible good and maximizes social welfare. Buy-

ers can gradually and covertly acquire private signals to learn about their value for the

good. The mechanism designer must balance the cost of information acquisition against

the potential benefits of making a more informed allocation decision. To navigate this

trade-off, the first-best mechanism, based on the buyers’ reports, offers recommendations

1According to the International Renewable Energy Agency (2019), by the end of 2018, more than 100
countries had used auctions to purchase renewable energy, representing a ten-fold increase in just one
decade.
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on information acquisition and determines the allocation of the good accordingly.

To implement the optimal policy, the mechanism needs to satisfy both incentive com-

patibility and individual rationality constraints. Since information acquisition is both

endogenous and unobservable, incentive compatibility constraints are divided into two

types: obedience constraints and truth-telling constraints. Obedience constraints ensure

that buyers adhere to the mechanism’s recommendations for information acquisition, while

truth-telling constraints require buyers to truthfully report the signals they acquire.

We prove that the optimal policy can always be implemented using the transfer rule of a

dynamic pivot mechanism introduced by Bergemann and Välimäki (2010). As a dynamic

version of the Vickrey-Clarke-Groves (VCG) mechanism, a dynamic pivot mechanism

requires players to pay the externality they impose on social welfare. As a result, the

payment of a bidder does not depend directly on their report except through the allocation

decision of the mechanism. This incentivizes buyers to report their signals truthfully. We

also demonstrate that the mechanism incentivizes obedience. Specifically, buyers acquire

information as recommended, thereby following the optimal information acquisition path.

Obedience is crucial to our analysis, as buyers’ decisions to acquire information are both

endogenous and unobserved.

We use our result to shed light on welfare in standard auctions with information ac-

quisition. Although previous studies (Compte & Jehiel, 2007; Miettinen, 2013; Gretschko

& Wambach, 2014; Rezende, 2018) have established that dynamic auctions like the Dutch

and English auctions outperform static ones, it remains unclear which of the two is more

preferable in terms of welfare. We adopt a framework commonly used in the literature

on the dominance of dynamic auctions: buyers’ values are symmetrically distributed, and

information acquisition is one-shot and fully informative. When the cost of information

acquisition is identical for all buyers and sufficiently low, the first-best information acqui-

sition and allocation policy can be described by adapting the results of Doval (2018) on

optimal search to an auction setting.

We show that the first-best policy, which is implementable given our initial results, re-

sembles the equilibrium of the Dutch auction studied by Gretschko and Wambach (2014),

where buyers acquire information in decreasing order of expected values. We demon-

strate that the optimal policy deviates from the Dutch auction equilibrium at most with

respect to the optimal information acquisition strategy of the buyer with the lowest ex-
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ante expected value. Thus, the welfare loss in the Dutch auction, relative to the first-best

mechanism, is bounded by the information acquisition cost of a single buyer. By contrast,

in the English auction, buyers acquire information in increasing order of expected values,

resulting in potentially larger welfare losses.

This result is particularly interesting because the English auction typically allocates

efficiently in many settings. In contrast, the Dutch auction is often regarded as less

favorable. We show that the Dutch auction outperforms the English auction in our setting

with respect to welfare. When bidders are symmetric, the Dutch auction closely resembles

the first-best mechanism. This challenges conventional wisdom around auction formats

and highlights the potential of the Dutch auction to achieve near-optimal outcomes.

Related literature Our paper contributes to the literature on information acquisition

in mechanisms. Several studies examine settings in which buyers can flexibly decide how

much and which information to acquire prior to participating in an auction (Bergemann &

Välimäki, 2002; Bobkova, 2024; Shi, 2012; Kim & Koh, 2022). Bergemann and Välimäki

(2002) also use a Vickrey-Clarke-Groves (VCG) mechanism and show that it ensures

efficient information acquisition prior to the mechanism and efficient ex-post allocation

of the good. All these papers consider a static environment where information can be

acquired before the start of the mechanism, once the mechanism starts, information is

fixed. These papers also fall into a broader literature on two-step mechanisms, which

also encompass models of entry (McAfee & McMillan, 1987; Hausch & Li, 1993; Levin &

Smith, 1994; Stegeman, 1996), models of indicative bidding (Ye, 2007; Quint & Hendricks,

2018; Lu, Ye, & Feng, 2021), and models in which the seller controls the disclosure of

information (Bergemann & Pesendorfer, 2007; Eső & Szentes, 2007). In contrast, our

model allows for flexible information acquisition during the mechanism.

Another strand of literature examines dynamic mechanisms in which information

evolves exogenously over time (Bergemann & Välimäki, 2010; Athey & Segal, 2013; Pa-

van, Segal, & Toikka, 2014). A key contribution of our work is to endogenize the flow

of information. We build on ideas introduced by Bergemann and Välimäki (2010), who

developed a dynamic version of a VCG mechanism known as a dynamic pivot mechanism.

In their framework, information evolves over time, and buyers learn their values for free.

By contrast, we assume that buyers can choose to acquire information at a cost. The
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optimal information acquisition path is determined by the mechanism and, unlike in the

aforementioned studies, buyers must be incentivized to adhere to this policy. We demon-

strate that a dynamic pivot mechanism provides these incentives for obedience, enabling

the implementation of the first-best information and allocation policy.

Crémer, Spiegel, and Zheng (2009) is a closely related study that also addresses costly

information acquisition during a mechanism. The authors show that an incentive-feasible

mechanism exists that implements any first-best policy in their setting. By allowing the

seller to charge an entry fee, they obtain a full surplus extraction result. Our model differs

in two decisive ways. In Crémer et al. (2009), bidders have no prior information, infor-

mation is fully informative — buyers need to acquire information only once — whereas

we allow for multi-stage and imperfect learning. In their framework, information is also

’productive’; that is, a buyer will never bid without having learned his value, whereas

information acquisition is optional in our model.

Our second result examines the performance of standard auction formats relative to

the first-best policy in a symmetric setting with moderate information acquisition costs.

Several papers show how the design of the auction affects the results and that dynamic

auction formats often outperform static formats (Engelbrecht-Wiggans, 1988; Persico,

2000; Klemperer, 2002; Compte & Jehiel, 2004, 2007; Bulow & Klemperer, 2009; Roberts

& Sweeting, 2013; Miettinen, 2013; Gretschko & Wambach, 2014; Rezende, 2018; Klein-

berg, Waggoner, & Weyl, 2018). Using a mechanism design approach, we demonstrate

that the first-best policy in a setting where buyers can covertly acquire information is

inherently a dynamic mechanism.

In a symmetric setting with moderate information acquisition costs, we derive a first-

best information and allocation policy by adapting the optimal search results by Doval

(2018) to an auction setting. We are not the first to relate information acquisition in se-

quential mechanisms to results from optimal search (e.g. Crémer et al., 2009; Kleinberg et

al., 2018; Ben-Porath, Dekel, & Lipman, 2024). Kleinberg et al. (2018) examine an auction

setting similar to our symmetric setup, applying the optimal search results of Weitzman

(1979). In contrast to our assumptions, they require buyers to acquire information before

bidding in the auction. In particular, they do not assume that information acquisition is

covert. Our results differ in two dimensions: information acquisition is optional and un-

observable. Since information acquisition is optional for auction participation, allocating
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to a bidder who has not acquired information may be optimal, meaning that the Dutch

auction is not always first-best efficient. When information acquisition is unobservable,

a mechanism must incentivize buyers to acquire information as recommended. Our first

result states that a dynamic pivot mechanism sets the right incentives for buyers to fol-

low the first-best information policy. In a symmetric setting with moderate information

costs, Gretschko and Wambach (2014) show that the Dutch auction provides the correct

incentives for information acquisition for all buyers but the one with the lowest expected

value.

2 Model

Payoffs and priors. There is one seller (she) selling one unit of an indivisible good.

There are n buyers (he), N = {1, . . . , n}. The allocation of the good is denoted by

x ∈ ∆({0, 1}n). That is, xi is the probability that buyer i receives the good, and thus∑n
i=1 xi ≤ 1.

A buyer’s value ωi for the good is drawn from a compact set Ωi ⊂ R+
0 . The set of all

possible states of the world is Ω = ×ni=1Ωi. An element ω ∈ Ω is a vector of values for all

buyers, that is ω = (ω1, . . . , ωn). For any vector (v1, . . . , vn) we denote by v−i the vector

(v1, . . . , vi−1, vi+1, . . . , vn) and sometimes write (vi, v−i) for v. Endow Ω with the Borel

σ-Algebra and denote by ∆(Ω) the set of all probability distributions on Ω. The prior

distribution µ(ω) ∈ ∆(Ω) is common knowledge among the seller and the buyers. The

marginal distribution over ωi is denoted by µi(ωi). We assume that the prior distribution

is independent across buyers, that is

µ(ω) =
n∏
i=1

µi(ωi).

Players do not know anything beyond the prior distribution.

The profit of buyer i depends on the allocation x and a transfer payment to the seller

pi ∈ R, as follows

xiωi − pi.

For simplicity, the seller’s value for the good is 0, so the seller’s profit is
∑n

i=1 pi.
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Information acquisition. Each buyer i can acquire information sequentially by receiv-

ing up to li signals. Signals acquired by different buyers are independent of each other.

For j ∈ {1, . . . , li} let Sji be a sufficiently rich compact set of possible signal realizations

sji ∈ Sji . Signal sji is determined by a joint distribution on Ωi × S1
i . . . S

j
i . That is, if

a buyer chooses to acquire k signals, his belief about ωi is given by πi,k(ωi | s1
i , . . . , s

k
i ).

Considered as a family of distributions on Ωi parameterized by sji ’s, we assume that

πi,k(ωi | s1
i , . . . , s

k
i ) is continuous in each sji in the weak topology on Ωi.

Acquiring information is costly. Denote by ci(k) the overall cost of acquiring k signals.

The cost difference between acquiring k signals and j signals is given by κi(k, j) = ci(k)−

ci(j).

We are interested in sequential information acquisition by all buyers. We define a

sequence of information acquisition decisions indexed by t ∈ {0, . . . , T} as follows. We

refer to t as the period. In each period t, any subset of buyers may acquire additional

signals. The number of signals acquired by buyer i in all periods prior to and including

t is denoted by αi,t. The belief of buyer i about ωi at the beginning of period t depends

on all previously acquired signals and we denote it by πi,t(ωi | s1
i , . . . , s

αi,t−1

i ). For period

t, let st = (s1
1, . . . , s

αn,t
n ) represent the profile of all signal realizations for all buyers, and

let αt = (α1,t, . . . , αn,t) denote the profile of all acquisition choices up to and including

period t. Let πt(ω | st−1, αt−1) denote the belief about ω at the beginning of period t. By

the independence of the prior belief and the signals, it can be expressed as

πt(ω | st−1, αt−1) =
n∏
i=1

πi,t(ωi | s1
i , . . . , s

αi,t−1

i ).

Denote the allocation in period t by xt and the transfer by pt. The expected profit of

buyer i in period t is given by

xi,t

∫
Ω

ωi dπi,t(ωi | s1
i , . . . , s

αi,t−1

i )− ci(αi,t)− pi,t.

Welfare maximization. Agents do not discount the future, and the socially efficient

policy maximizes the expected sum of valuations minus the cost of information acquisition.

Let Fαt(st | st−1) be the distribution induced on signals in period t by the vector of

information acquisition decisions αt, given the choice of information acquisition αt−1 and
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signal realizations st−1. The socially optimal program, beginning in period t with belief

πt(· | st−1, αt−1) is recursively defined as

Wt(st−1, αt−1) = max
xt,αt

n∑
i=1

(
xi,t

∫
Ω

ωi dπt(ω | st−1, αt−1)

)
+

(
1−

n∑
i=1

xi,t

)

×

(
−

n∑
i=1

κi(αi,t, αi,t−1) +

∫
W (st, αt) dF

αt(st | st−1)

)
.

(1)

In every period t, the good is either allocated based on the information from period t− 1

or buyers acquire additional information. Note that κi(αi,t, αi,t−1) = ci(αi,t) − ci(αi,t−1)

captures the marginal cost of information acquisition in period t for buyer i, which is

zero if no information is acquired by this buyer that period. The optimal policy is a

tuple (x∗, α∗), where x∗ = {x∗t}Tt=0 represents the first-best allocation, and α∗ = {α∗t}Tt=0

denotes the corresponding information acquisition policy.

Let T denote the period in which the good is allocated. We restrict our attention to

first-best policies where, in every period t < T , exactly one agent acquires information.

This is without loss as there is no discounting between periods. The number of signal

draws is finite for every buyer. Thus, the number of possible information acquisition

sequences is finite. As signals are drawn from a compact set, a solution to (1), and thus

a first-best policy (x∗, α∗), always exists. In the optimal policy, the good is allocated to a

buyer with the highest expected value for the good given all realized information at time

T .

Histories and Mechanism. We focus on direct mechanisms that truthfully implement

the socially efficient policy (x∗, α∗). On a high level, a direct dynamic mechanism works

as follows: in each period t, the mechanism asks the buyers to report their most recently

acquired signals. Based on the report from period t and the history of reports from all

previous periods, the mechanism either allocates the good according to x∗ or, if the good

is not allocated, requests the buyers to acquire additional information according to α∗.

Potential transfers are realized at the end of each period. Buyers subsequently decide

whether to follow the mechanism’s recommendation and acquire information before the

next period begins.

More formally, the report of buyer i in period t, denoted by rti , reflects the signal he
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received in period t−1. The public history at the start of period t is a tuple comprising all

previous reports and information acquisition recommendations hpub
t = (rt−1, αt−1) where

r0 = ∅ and rt = (r1
1, . . . , r

t
n) for t > 0. Let Hpub

t denote the set of all possible public

histories in period t.

A mechanism is a collection of allocations, information acquisition recommendations,

and transfers {xt, αt, pt}Tt=0. The allocation xt : Hpub
t × Sα1,t−1

1 × . . . × Sαn,t−1
n × {∅} →

∆({0, 1}n) maps the public history and reports in period t into a probability distribution

over allocations. The information acquisition recommendation αt : Hpub
t × Sα1,t−1

1 × . . .×

S
αn,t−1
n ×{∅} → ×ni=1{αi,t−1, . . . , li} maps the public history and reports in period t into an

information acquisition recommendation. The transfer pt : Hpub
t ×Sα1,t−1

1 × . . .×Sαn,t−1
n ×

{∅} → Rn maps the public history and reports in period t into a vector of transfers for

all agents.

We assume pessimistic off-path beliefs. If a buyer reports a signal that is outside his

feasible set or refrains from reporting when prompted, the mechanism designer assumes

the buyer is of the worst possible type and will never allocate the good to this agent. If a

buyer who was not asked to acquire information reports a signal, the mechanism designer

disregards the report.

Strategy. A strategy of buyer i in a mechanism {x∗t , α∗t , pt}Tt=0 in period t is a tuple

(rti , ai,t), where rti denotes his report in period t, and ai,t indicates how many signals he

acquired up to and including period t. The private history of buyer i in period t consists

of the public history, the number of signals acquired by the buyer up to period t, and

their realizations, so hpriv
i,t = (hpub

t , ai,t−1, s
1
i , . . . , s

ai,t−1

i ). Let Hpriv
i,t denote the set of of all

possible private histories of buyer i in period t.

A pure reporting strategy for agent i in period t is a mapping from the private history

into the relevant signaling space, rti : Hpriv
i,t → S

α∗
i,t−1

i ∪{∅}. A pure information acquisition

strategy is a mapping from the private history into the number of acquired signals, given

i has already acquired ai,t−1 signals, ai,t : Hpriv
i,t → {ai,t−1, . . . , li}.

At private history hpriv
i,t , buyer i maximizes his continuation value when deciding on an

information acquisition and reporting strategy, as defined below. Let ri,t = (r1
i , . . . r

t
i) de-

note the vector of all signal reports by buyer i up to period t, and let s−i,t = (s1
1, . . . s

αi−1,t

i−1 ,

s1
i+1, . . . s

αn,t
n ) denote the vector of signals received by all buyers except i up to period
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t. Given the mechanism {xt, αt, pt}Tt=0, and truthful reporting by the other buyers, let

F ai,t(st | st−1) denote the distribution induced on signals of buyer i in period t by the

vector of his information acquisition decision ai,t, given the choice of previous information

acquisitions ai,t−1 and signal realizations st−1. The optimal reporting strategy ri = {rti}Tt=1

and the optimal information acquisition strategy ai = {ai,t}Tt=0 for buyer i can be defined

recursively.

Vi(h
priv
i,t ) = max

rti ,ai,t
xi,t(ri,t−1, r

t
i , s−i,t−1, αt−1)

∫
Ωi

ωi dπi,t−1(ωi | hpriv
i,t )

−

(
n∑
i=1

xi,t(ri,t−1, r
t
i , s−i,t−1, αt−1)

)
pi(ri,t−1, r

t
i , s−i,t−1, αt−1)

+

(
1−

n∑
i=1

xi,t(ri,t−1, r
t
i , s−i,t−1, αt−1)

)(
− κ(ai,t, ai,t−1)

+

∫
Vi(h

priv
i,t+1) dF ai,t(st | st−1)

)
.

3 Implementation

We show that the first-best policy (x∗, α∗) can be implemented. To achieve this, we build

on ideas by Bergemann and Välimäki (2010) and employ a variant of the dynamic pivot

mechanism to construct a transfer rule that satisfies incentive compatibility and individual

rationality conditions. The dynamic pivot mechanism represents a dynamic extension of

the Vickrey-Clarke-Groves (VCG) mechanism.

Incentive compatibility encompasses both obedience and truth-telling conditions. The

obedience conditions are satisfied if buyers acquire information according to the optimal

information acquisition path α∗, meaning they follow the mechanism’s recommendations.

The truth-telling conditions require that buyers report their signals sji truthfully. Indi-

vidual rationality requires that a buyer’s expected payoff to exceed his outside option,

which we normalize to zero.

In a dynamic setting, the concepts of ex post incentive compatibility and individual

rationality are defined on periodic basis. A mechanism is periodic ex post incentive com-

patible if, at the time a buyer is asked to acquire information and to report his signal, his

best response is to follow the mechanism’s recommendation and report truthfully, given

that the other buyers do the same. A dynamic mechanism is periodic ex post individually
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rational if, at the time of reporting, a buyer’s expected payoff exceeds his outside option

zero. Note that the report is ex post with respect to all the information acquired up to the

current period but not necessarily for information that may be acquired in future periods.

The main idea of a static VCG mechanism is that buyers internalize the externality

they impose on other buyers. By paying the externality they impose on others, buyers

receive a payoff equal to their marginal contribution to social welfare. Consequently, the

transfer incentivizes buyer i to maximize social welfare and report his value truthfully.

This logic extends to the dynamic version of the mechanism. The main challenge in

this setting is to incentivize information acquisition according to the welfare-maximizing

policy.

Recall that Wt(st−1, αt−1) represents social welfare in period t, given the belief πt(ω |

st−1, αt−1), under the optimal allocation and information acquisition policy (x∗, α∗). Sim-

ilarly, define the social value excluding buyer i as

W−i,t(st−1, αt−1) = max
xt,αt

∑
j 6=i

(
xj,t

∫
Ω

ωj dπt(ω | st−1, αt−1)

)
+

(
1−

∑
j 6=i

xj,t

)

×

(
−
∑
j 6=i

κj(αj,t, αj,t−1) +

∫
W−i(st, αt) dF

αt(st | st−1)

)
.

(2)

The welfare-maximizing allocation without buyer i is denoted by x∗,−i = {x∗,−it }Tt=0, and

the corresponding information acquisition policy by α∗,−i = {α∗,−it }Tt=0.

The marginal contribution of buyer i is the change in social welfare due to their

inclusion in the mechanism, and is defined as

Mi,t(st−1, αt−1) = Wt(st−1, αt−1)−W−i,t(st−1, αt−1). (3)

The marginal contribution of buyer i can be decomposed into flow marginal contributions

mi,t(st−1, αt−1), defined recursively as follows:

mi,t(st−1, αt−1) =Mi,t(st−1, αt−1)

−

(
1−

n∑
i=1

xi,t(st−1, αt−1)

)∫
Mi,t+1(st, αt) dF

αt(st | st−1).
(4)

We are now ready to define the transfer payments in the dynamic pivot mechanism.
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First, assume without loss of generality that transfers are made when the good is allocated.

The transfer payment of a buyer reflects the externality he imposes on other buyers. In

other words, the transfer payment equals a buyer’s value minus his marginal contribution

to social welfare. The transfer payment of buyer i at belief πt(ω | rt, αt−1) is defined as 2

p∗i (rt, αt−1) = xi,t(rt, αt−1)

∫
Ω

ωi dπt(ω | rt, αt−1)−mi,t(rt, αt−1). (5)

We are now in the position to state our first result.

Proposition 1. The transfer rule p∗(rt, αt−1) implements the first-best information ac-

quisition and allocation rule (x∗, α∗), ensuring periodic ex post incentive compatibility

(truth-telling and obedience) and periodic ex post individual rationality.

Proof. The proof is relegated to the appendix.

The transfer payment is designed so that every buyer pays the difference between his

expected payoff and his flow marginal contribution to social welfare. This key feature of

any VCG mechanism ensures that a buyer’s transfer does not depend on his report. This

incentivizes buyers to report truthfully. In a dynamic setting, we must also address the

possibility of multiple joint deviations from truthful reporting. In the proof of Proposition

1, we use a backward induction argument to demonstrate that such deviations are not

profitable.

Furthermore, we show that the dynamic pivot mechanism satisfies the obedience con-

ditions, meaning that buyers acquire information as recommended by the mechanism. To

see why this is true, observe that the continuation utility of a buyer can be decomposed

into flow utility. The flow utility of buyer i in period t is given by:

x∗i,t(rt, α
∗
t−1)

∫
Ωi

ωi dπi,t(ωi | s1
i , . . . , s

α∗
i,t−1

i )−

(
n∑
i=1

x∗i,t(rt, α
∗
t−1)

)
p∗i (rt, α

∗
t−1)

−

(
1−

n∑
i=1

x∗i,t(rt, α
∗
t−1)

)
κi(ai,t, ai,t−1).

Note that the flow utility of a buyer matches his flow marginal contribution. Specif-

ically, if the good is not allocated in period t (i.e.
∑n

i=1 x
∗
i,t = 0), a buyer’s flow utility

2Note that signals received in period t are reported at the start of the following period, t+ 1; hence,
the vector of signals st−1 is reported as rt.
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equals his information acquisition cost, −κi(ai,t, ai,t−1), which also represents his contribu-

tion to social welfare. If the good is allocated in period t, a buyer’s flow utility equals his

expected payoff, E[x∗i,t ωi], minus his transfer p∗i (rt−1, αt−1). Thus, every buyer internalizes

his social externality when deciding on information acquisition.

4 The Dutch auction is nearly optimal

Thus far, we havenot explicitly addressed the first-best information and allocation policy.

In this section, we apply our insights to a commonly studied setting for analyzing infor-

mation acquisition in standard auctions. In this setting, bidders possess initial private

information about their value and may, at a moderate cost, acquire a fully informative

signal. Specifically, acquiring information allows a bidder to learn their value perfectly.

We draw on results of Doval (2018) to derive the first-best information acquisition and

allocation strategy for this setting. As shown in Proposition 1, this first-best policy is

implementable. We demonstrate that the optimal policy closely resembles the equilibrium

strategy of the Dutch auction, as derived in Gretschko and Wambach (2014). In this

particular setting, the welfare loss from running a Dutch auction instead of the optimal

mechanism is bounded above by the information acquisition cost of a single bidder. Thus,

the Dutch auction performs at most slightly worse than the first-best policy in terms of

efficiency. By contrast, we will demonstrate that the welfare loss of the English auction

can be substantial.

Model. The model consists of n bidders who are imperfectly informed. Each bidder

knows his expected value µi ∈ [µ, µ̄], which is private information and is drawn from a

continuous distribution function G.3 A bidder’s value, ωi, is defined as the sum of his

expected value µi and a noise term εi, such that ωi = µi + εi. We assume that for every

bidder the noise parameter εi is drawn from the same symmetric distribution function

F , εi ∼ F ∀i. The distribution is symmetric around zero and admits density function f .

Thus, the value ωi of a bidder is distributed according to F , shifted by the prior µi, and

we write ωi ∼ Fi.

3We slightly abuse notation, as in the previous sections µi is common knowledge. However, we assume
without loss of generality that the first signal is free, and µi represents the updated expected value after
observing its realization. In this case, the first-best mechanism requires that all bidders acquire this
signal, and they will comply since it is free.
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Every bidder can acquire one signal and this signal is fully informative. We assume

the cost of acquiring this signal is identical for all bidders and we denote it by c. When

a bidder decides to acquire information, he learns the realization of the noise parameter

εi, and thus, his value ωi. Furthermore, we assume that the information acquisition cost

is sufficiently small.

Assumption 1. Assume that

∫ ∞
µ̄

(ωi − µ̄)dF (ωi − µ) > c.

Assumption 1 ensures that information acquisition plays a significant role under the

first-best policy. Specifically,it implies that the object is almost never allocated to a bidder

who has not acquired information. This condition is satisfied if either c is sufficiently small

or the uncertainty about the true valuation is sufficiently pronounced as compared to the

range of expected values.

First-best mechanism. The first-best policy is derived from Doval (2018). The first-

best mechanism implementing this policy first requires bidders to report their expected

values µi. The bidder with the highest expected value is asked to acquire information first

and report his valuation to the mechanism. The first-best information acquisition policy

follows a cutoff rule. Specifically, the good is allocated to the bidder with the highest

valuation if his valuation exceeds a cutoff determined by the reservation values (defined

below) of those who have not acquired information. If only one bidder remains without

acquired information and his back-up value (defined below) exceeds the highest reported

valuation of the other bidders, the good is allocated to this bidder without requiring

additional information acquisition.

The cutoffs for each bidder, as described above, are determined by their reservation

value ωRi and backup value ωBi . The reservation value, ωRi , is defined as

c =

∫ ∞
ωR
i

(ωi − ωRi ) dFi(ωi).
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Similarly, the backup value ωBi , is defined as

c =

∫ ωB
i

0

(ωBi − ωi) dFi(ωi).

The optimal policy can be formally stated as follows.

Proposition 2 (Theorem 1 in Doval, 2018). Assume that Assumption 1 holds true. Order

the n bidders in decreasing expected value order, such that µ1 ≥ . . . ≥ µn.

The optimal policy is as follows:

Order Have bidders acquire information in decreasing expected value order.

Stopping 1. Stop if the highest sampled valuation exceeds all non-sampled reservation

values, and allocate the good to the bidder with this highest value.

2. If only one bidder remains who has not acquired information, stop if the highest

sampled valuation is less than his backup value, and allocate the good to the

remaining bidder.

To maximize welfare, if any bidder acquires information it should be the bidder with

the highest expected value. This follows from the symmetry of the noise parameter and

equal information acquisition costs. Assumption 1 ensures that the reservation value of a

bidder with the the lowest possible expected value exceeds the highest possible expected

value. In this case, it is never optimal to allocate the good to any bidder other than the

nth without first requiring them to acquire information.

The cutoffs define the optimal stopping conditions. At the cutoffs, the mechanism is

indifferent between asking a bidder acquire information or choosing the optimal outside

option. If the outside option exceeds the bidder’s reservation value, ωRi , the mechanism

will choose the outside option. Specifically, if the value of a bidder who has acquired infor-

mation exceeds the reservation values of all bidders without information, the mechanism

stops and allocates the good. This is reflected in stopping condition 1. When the outside

option lies between the cutoffs, the mechanism asks bidder i to acquire information, as the

outside option is sufficiently close to bidder i’s expected value µi. One outside option is

the continuation value obtained by having at least one more bidder acquire information.

The restriction on the cost parameter ensures that the continuation value prevents alloca-

tion of the good to any bidder (except bidder n) who has not acquired information. If the
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outside option is lower than bidder i’s backup value, ωBi , the mechanism maximizes so-

cial welfare by allocating the good to bidder i without additional information acquisition.

This corresponds to stopping condition 2. The assumption on the cost parameter ensures

that the continuation value is sufficiently high to prevent allocation of the good to any

bidder other than the one with the lowest expected value without acquiring information.

Equilibrium in the Dutch auction In a descending auction, a bidder’s strategy

involves deciding when to acquire information, if at all, and when to stop the clock, given

that any bidder’s acceptance ends the auction as the clock price decreases. Gretschko and

Wambach (2014) demonstrate that an equilibrium with information acquisition exists in

the Dutch auction, and that both equilibrium bidding and information acquisition can be

characterized by a single increasing function β(·).

Proposition 3 (Gretschko & Wambach, 2014). There exists c̄D > 0 such that, for all

c ≤ c̄D, an equilibrium β(·) of the descending auction exists with the following properties:

(i) Bidder i acquires information if and only if the clock price reaches β(ωRi ).

(ii) If, at the clock price of information acquisition p, the bidder learns that β(ωi) ≥ p,

he stops the clock immediately;

(iii) If, at the clock price of information acquisition p, the bidder learns that β(ωi) < p,

he stops the clock at β(ωi).

Bidders acquire information in decreasing reservation value order. Due to the sym-

metry of the noise parameter, the ordering of the reservation values coincides with the

ordering of expected values. Therefore, the order of information acquisition is identical

in the optimal policy and the Dutch auction. A bidder stops the clock when the clock

price equals the value of the bidding function of his value or when he learns that the value

of the bidding function of his value exceeds the clock price. Notably, since the bidding

function is identical for all bidders, whenever a bidder stops the clock, his value exceeds

the reservation values of all bidders who have not yet acquired information. Thus, the

stopping condition of the Dutch auction aligns with the first-best stopping condition for

all bidders except the one with the lowest expected value. In the Dutch auction, if no

bidder stops the clock earlier, the final bidder also acquires information. In the optimal
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mechanism, the good may be allocated to the bidder with the lowest prior without re-

quiring him to acquire information. Consequently, the expected welfare loss of the Dutch

auction relative to the first-best policy is bounded above by the information acquisition

cost of a single bidder.

Corollary 1. For all information acquisition costs c ≤ c̄D, the welfare loss of the Dutch

auction relative to the first-best mechanism is bounded above by c.

Overall, if the information acquisition cost is sufficiently small and the bidders ex-ante

symmetric, the Dutch auction nearly implements the first-best policy.

Equilibrium in the English auction In an English auction, a bidder’s strategy in-

volves determining whether and when to acquire information and deciding when to exit

the auction without obtaining the good. Rezende (2018) demonstrates the existence of an

equilibrium with information acquisition in the English auction. We focus on sufficiently

low information acquisition costs, ensuring that all bidders acquire information provided

at least one other bidder is also bidding at the optimal time for information acquisition.

In equilibrium, bidders bid up to their respective value. Bidders must decide when to

acquire information.

Proposition 4 (Rezende, 2018). There exists c̄E > 0 such that for all c ≤ c̄E an equilib-

rium β(·) of the English auction exists with the following properties:

(i) Bidder i acquires information if and only if the clock price reaches ωBi .

(ii) If at the clock price of information acquisition p the bidder learns that ωi ≥ p, he

will remain in the auction.

(iii) If at the clock price of information acquisition p the bidder learns that ωi < p, he

will drop out of the auction.

When bidders decide to acquire information, they face a trade-off between acquiring it

early and delaying it. The benefit of delaying information acquisition lies in potential cost

savings, which occur only if the auction concludes during the delay. The risk of delaying

information acquisition is that the true value of the item is below the price paid. Bidders

acquire information in order of increasing backup values. In this symmetric setting, this
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implies that all bidders acquire information in order of increasing expected values. The

only bidder who may not acquire information is the one with the highest expected value,

as he will win without acquiring information if all other bidders drop out before it becomes

optimal for him to do so.

Comparing the English auction to the first-best mechanism shows that the welfare

loss from the English auction can be as large as (n− 1)c. This occurs when, in the first-

best mechanism, only the bidder with the highest expected value acquires information

and discovers a high value, leading to an immediate allocation of the object. In this

scenario, the English auction allocates the object to the same bidder. However, before the

allocation, all other bidders - potentially including the winner - must acquire information,

resulting in the described welfare loss.

Corollary 2. The welfare loss of the English auction can be as large as (n− 1)c.

5 Conclusion and discussion

This paper challenges conventional wisdom about auction design, particularly regarding

the relative merits of Dutch and English auctions. While English auctions are often

favored for their transparency and ability to achieve efficient allocations, our analysis

reveals that Dutch auctions can outperform English auctions when bidders face significant

information acquisition costs.

The key insight is that the Dutch auction’s descending price format naturally imple-

ments an information acquisition order that closely mirrors the socially optimal sequence,

where bidders with higher expected values acquire information first. This alignment re-

sults in a welfare loss that is bounded by a single bidder’s information acquisition cost. In

contrast, the English auction’s ascending format induces bidders to acquire information

starting from those with lower expected values, potentially causing substantial ineffi-

ciencies as multiple bidders may incur unnecessary information costs before the auction

concludes. However, this insight comes with important caveats. The superiority of the

Dutch auction relies on the assumptions that bidders are ex-ante symmetric and that

information acquisition costs are moderate. In settings where these assumptions fail to

hold, different auction formats may be optimal.

The broader takeaway is that coordinating information acquisition can be as important
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for efficiency as the allocation rule itself. This suggests that mechanism designers should

pay careful attention to how different auction formats shape bidders’ incentives to acquire

information, rather than focusing exclusively on allocation outcomes. For practitioners,

our results provide a novel argument for considering Dutch auctions in settings where

English auctions have traditionally been preferred.

Appendix

Proof of Proposition 1

We demonstrate that the mechanism {x∗t , α∗t , p∗}Tt=0 satisfies periodic ex post incentive

compatibility and individual rationality. For simplicity, we omit the stars in the notation.

The proof is structures into three parts. First, we demonstrate that one-shot deviations

from truthful reporting and obedience do not yield a profit. Next, we examine multi-step

deviations and demonstrate that no profitable deviations exist.

Truthful reporting

Recall that the mechanism considers only those signals that are on path, meaning those

that would be acquired according to the optimal information acquisition path α. We prove

that agent i is incentivized to report his signal, s
αi,t−1

i , truthfully in period t. Writing

signals as reports whenever buyers tell the truth, the vector (si,t−2, r
t
i , s−i,t−1) denotes

the reports by all players until and including period t where all buyers tell the truth

in every period except for player i who reports rti in period t. Note that a report in

period t reflects a signal received in period t − 1. Therefore, under truthful reporting

rti = s
αi,t−1

i . Future information acquisition recommendations αt, αt+1, . . . depend on

prior signal reports (si,t−2, r
t
i , s−i,t−1). When a report is not truthful, the recommendation

may differ from the recommendation given after a truthful signal. To simplify notation,

we denote the possible change in recommendation as α̂t. It suffices to show that a buyer

receives his marginal contribution as his continuation value to ensure truthful reporting.
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That is, for all s
αi,t−1

i ∈ Sαi,t−1

i the following must hold:

xi,t(st−1, αt−1)

∫
Ωi

ωi dπi,t(ωi | s1
i , . . . , s

αi,t−1

i )−

(
n∑
i=1

xi,t(st−1, αt−1)

)
pi(st−1, αt−1)

+

(
1−

n∑
i=1

xi,t(st−1, αt−1)

)(
− κi(αi,t, αi,t−1)

+

∫
Ω

Mi,t+1(st, αt) dF
αt(st | st−1)

)
≥ xi,t(si,t−2, r

t
i , s−i,t−1, αt−1)

∫
Ωi

ωi dπi,t(ωi | s1
i , . . . , s

αi,t−1

i )

−

(
n∑
i=1

xi,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)
pi(si,t−2, r

t
i , s−i,t−1, αt−1)

+

(
1−

n∑
i=1

xi,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)(
− κi(α̂i,t, αi,t−1)

+

∫
Ω

Mi,t+1(si,t−2, r
t
i , s

α̂i,t

i , s−i,t, α̂t) dF
α̂t(st | st−1)

)
.

(6)

The optimal allocation decisions, xt, and information acquisition recommendations, αt,

may differ depending on whether buyer i participates. Let x−it denote the efficient al-

locations without buyer i, and let α−it denote the corresponding efficient information

acquisitions.

By construction of pi(rt−1, αt−1) in (5), the left hand side of (6) equals buyer i’s

marginal contribution to social welfare. We express marginal contributions in terms of

social values, as defined in (3), and plug in the payment rule pi(rt−1, αt−1) to rewrite the
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right hand side.

Wt(st−1, αt−1)−W−i,t(st−1, αt−1)

≥ xi,t(si,t−2, r
t
i , s−i,t−1, αt−1)

∫
Ωi

ωi dπi,t(ωi | s1
i , . . . , s

αi,t−1

i )

−

[
−
∑
j 6=i

(
xj,t(si,t−2, r

t
i , s−i,t−1, αt−1)

∫
Ωj

ωj dπj,t(ωj | s1
j , . . . , s

αj,t−1

j )

)

+

(
1−

n∑
i=1

xi,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)(∑
j 6=i

κj(α̂j,t, αj,t−1)

)

+
∑
j 6=i

(
x−ij,t(si,t−2, r

t
i , s−i,t−1, αt−1)

∫
Ωj

ωj dπj,t(ωj | s1
j , . . . , s

αj,t−1

j )

)

+

(
1−

∑
j 6=i

x−ij,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)(
−
∑
j 6=i

κj(α̂
−i
j,t , αj,t−1)

)

−

(
1−

∑
j 6=i

x−ij,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)

×
∫

Ω

W−i,t+1(si,t−2, r
t
i , s

t
i, s−i,t, α̂

−i
t ) dF α̂−i

t (st | st−1)

+

(
1−

n∑
i=1

xi,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)

×
∫

Ω

W−i,t+1(si,t−2, r
t
i , s

t
i, s−i,t, α̂t) dF

α̂t(st | st−1)

]

+

(
1−

n∑
i=1

xi,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)(
− κi(α̂i,t, αi,t−1)

+

∫
Ω

Wt+1(si,t−2, r
t
i , s

t
i, s−i,t, α̂t) dF

α̂t(st | st−1)

−
∫

Ω

W−i,t+1(si,t−2, r
t
i , s

t
i, s−i,t, α̂t) dF

α̂t(st | st−1)

)
.
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We rewrite the inequality.

Wt(st−1, αt−1)−W−i,t(st−1, αt−1)

≥
n∑
j=1

(
xj,t(si,t−2, r

t
i , s−i,t−1, αt−1)

∫
Ωj

ωj dπj,t(ωj | s1
j , . . . , s

αj,t−1

j )

)

+

(
1−

n∑
j=1

xj,t(si,t−2, r
t
i , s−i,t−1, αt−1)

)(
−

n∑
j=1

κj(α̂j,t, αj,t−1)

+

∫
Ω

Wt+1(si,t−1, r
t
i , s−i,t, α̂t) dF

α̂t(st | st−1)

)
−W−i,t(st−1, αt−1).

The above inequality holds for all rti by the social optimality of xt and αt.

Obedience

We demonstrate that acquiring information is a best response for a buyer i in period t

when the mechanism recommends it. Recall that, in the optimal mechanism, only one

buyer is asked to acquire information in any period t, and assume that this buyer is i

in period t. Let M̂i,t+1(st−1, r
t+1
i , αt) denote agent i’s marginal contribution starting in

period t+ 1, assuming he did not acquire information in period t and reports rt+1
i . Since

agent i does not receive a signal in period t, he can report any signal or choose not to

report. To incentivize information acquisition in period t, the following condition must

hold.

xi,t(st−1, αt−1)

∫
Ωi

ωi dπi,t(ωi | s1
i , . . . , s

αi,t−1

i )−

(
n∑
i=1

xi,t(st−1, αt−1)

)
pi(st−1, αt−1)

+

(
1−

n∑
i=1

xi,t(st−1, αt−1)

)(
− κi(αi,t, αi,t−1) +

∫
Ω

Mi,t+1(st, αt) dF
αt(st | st−1)

)

≥ xi,t(st−1, αt−1)

∫
Ωi

ωi dπi,t(ωi | s1
i , . . . , s

αi,t−1

i )−

(
n∑
i=1

xi,t(st−1, αt−1)

)
pi(st−1, αt−1)

+

(
1−

n∑
i=1

xi,t(st−1, αt−1)

)(
M̂i,t+1(st−1, r

t+1
i , αt)

)
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As before, we rewrite the equation by plugging in pi(st−1, αt−1) from (5) and combining

terms.

Wt(st−1, αt−1)−W−i,t(st−1, αt−1)

≥
n∑
j=1

(
xj,t(st−1, αt−1)

∫
Ωj

ωj dπj,t(ωj | s1
j , . . . , s

αj,t−1

j )

)

+

(
1−

n∑
j=1

xj,t(st−1, αt−1)

)(
−
∑
j 6=i

κj(αj,t, αj,t−1)

+Wt+1(st−1, r
t+1
i , αt)

)
−W−i,t(st−1, αt−1).

Since buyer i is asked to acquire information in period t, the good is not allocated

in this period; therefore
∑n

i=1 xi,t(st−1, αt−1) = 0. As buyer i is asked to acquire in-

formation in period t, no other agent acquires information in this period; therefore∑
j 6=i κj(αj,t, αj,t−1) = 0. Next, we focus on the term Wt+1(st−1, r

t+1
i , αt). The signal

space is sufficiently rich such that an uninformative signal s0
i exists for every buyer i

in any set Sji , which does not alter the belief held by the mechanism when reported:

πt(st−1, αt−1) = πt+1(st−1, r
t+1
i , αt). When buyer i does not acquire information, his be-

lief πi,t(st−1, αt−1) remains unchanged. Under truthful reporting, the best response is to

report the uninformative signal s0
i when his information remains unchanged. We now

rewrite the inequality.

− κi(αi,t, αi,t−1) +

∫
Ω

Wt+1(st, αt) dF
αt(st | st−1)

≥ Wt(st−1, αt−1) ≥ Wt+1(st−1, s
0
i , αt)

The first inequality holds by the optimal information acquisition path, α∗. When it is

optimal to ask buyer i to acquire information in period t, the expected value doing so

and continuing optimally from period t + 1 onward exceeds the value in period t. The

second inequality holds because the belief about the values remains unchanged, πt(ω |

st−1, αt−1 = πt+1(ω | st−1, s
0
i , αt), but the value of search is weakly higher on the left-hand

side due to the option to acquire one additional signal.
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Multi-step deviations

Examining one-shot deviations is not sufficient. It is also necessary to rule out cases where

buyers deviate from the recommended information acquisition or fail to report truthfully

over multiple consecutive rounds. Recall that each buyer can acquire a maximum of li

signals. No buyer will acquire information or report a signal unless recommended to do

so, as a result of pessimistic off-path beliefs.

We first consider multi-step deviations. Assume, for the sake of contradiction, that a

profitable multi-step deviation exists for player i. The supposed profitable deviation for

player i is to misreport his signals p consecutive times when asked to report them. We

showed that a one-shot deviation from truthful reporting is not profitable. Thus, the final

deviation in the multi-step deviation is not profitable, and the multi-step deviation must

yield a weakly larger payoff due to the first p − 1 deviations. By repeatedly applying

the same reasoning, the first deviation in the p deviations must be profitable, which

contradicts the earlier result that no one-shot deviations are profitable.

Similarly, we show that no multi-step deviation in acquiring information can be prof-

itable. Assume there exists a multi-step deviation from the optimal information path,

where buyer i does not acquire information p ≤ li times despite being recommended to

do so. Suppose we are in the final period of the profitable multi-step deviation, denoted

by P . Let M̃i,P (r̃i,P , s̃−i,P−1, α̃P−1) represent the marginal contribution when buyer i has

deviated p − 1 times from the recommendation and reports optimally as r̃P . We use

s̃−i,P−1 and α̃P−1 to emphasize that changes in buyer i’s reports may alter the informa-

tion acquisition recommendations, αt, and consequently the vector of signals st. Since the

mechanism designer is unaware of the previous deviations and recommends information

acquisition based on her belief, the following holds

− κi(α̃i,P , α̃i,P−1) +

∫
Ωi

M̃i,P+1(r̃i,P , s̃
P
i , s̃−i,P , α̃P ) dF α̃P (s̃P | s̃P−1)

≥ M̃i,P+1(r̃i,P+1, s̃−i,P , α̃P ).

Specifically, the expected marginal contribution from acquiring the recommended signal

in period P and truthfully reporting it in period P + 1 exceeds the marginal contribution

from not acquiring information and reporting optimally. Thus, the final step of the multi-
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step deviation is not profitable, implying the previous p − 1 deviations must be. By

repeating this argument, we establish that for the multi-step deviation to be profitable,

the first deviation must be profitable. Since we previously demonstrated that one-shot

deviations are not profitable, it follows that no multi-step deviation can be profitable.

This concludes the proof.
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