
DISCUSSION 
PAPER

/ /  J A C O P O  G A M B AT O

/ /  N O . 2 4 - 0 3 2  |  0 5 / 2 0 2 4

Search on a Grid: Directed  
Consumer Search With Correlated 
Products



Search on a Grid: Directed Consumer Search with
Correlated Products∗

Jacopo Gambato†

April 2, 2024

Abstract

The consumer search literature mostly considers independently distributed products.
In contrast, I study a model of directed search with infinitely many products
whose valuations are correlated through shared attributes. I propose a tractable,
systematic, history-dependent scoring system based on nests of correlated products
that leverages the predictability of the optimal search process along different paths.
This scoring system generates an optimal search policy conceptually equivalent to
the familiar optimal policy with independently distributed search products. The
policy instructs the consumer to inspect unrelated products until an attribute the
realization of which surpasses the added informational value of inspecting two new
attributes is found. The search paths emerging from this policy match recent
evidence of consumer learning through search, and can rationalize backtracking to a
previously abandoned attribute.
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1. Introduction

The consumer search literature has highlighted the role of search frictions as deter-
minants of market outcomes.1 The effect of these frictions, however, has so far been
studied almost exclusively under the assumption of products’ value being independently
distributed.2 I propose a framework for consumer search that incorporates correlation
across products mechanically through shared attributes. I consider consumers that value
products based on their attributes (Lancaster, 1966): initially, consumers observe all
products and respective attributes, but they do not know how much they value them. For
example, laptops may differ in their processing speed and graphical capabilities, which
depend on the processor and the graphic card that are installed.

Consumers decide which products to search for and inspect, and then, based on their
findings, adapt their strategy accordingly for their next search. The reasoning is as follows:
if two products share an attribute, consumers value them identically with respect to that
attribute. Through the search process, consumers learn their preferences for attributes
and, depending on what they learn about specific attributes, can redirect their subsequent
search because they know which products share the same attributes and which ones do
not. The result of any given inspection makes consumers update her expectations for the
remaining products based on which attributes they share. This, in turn, instructs the
next inspection. The proposed framework allows inspection of one product to affect the
expected return of inspecting a different one, and allows for the direction of search to be
endogenously determined rather than being predetermined.

In many circumstances, these learning dynamics represent well consumer search
behavior: if a consumer learns that she dislikes a certain attribute in a product, she would
rationally try to avoid other products that share that attribute. For example, Hodgson
and Lewis (2020) shows evidence of “spatial learning” in search: consumers inspect more
differentiated products early and get closer to the eventually purchased option as search
progresses. I show that this multi-attribute structure generates a version of Weitzman
(1979)’s optimal search in an environment with correlated products that matches this
dynamic. Further, I show that “backtracking” to a previously inspected and abandoned
attribute can be optimal in this environment.

The main contribution of this paper is to bring together observable attributes instruct-
ing the search process,3 and shared attributes that allow the consumer to adapt as they
search, and to score the value of inspecting new products by nesting them based on the
attributes they share. Novel to the directed consumer search literature is an optimal search

1Consumers generally do not make consumption choices with perfect information; evidence of this can
be found in the empirical industrial organization literature (Sovinsky Goeree, 2008) and in the marketing
literature (Mayzlin and Shin, 2011).

2Prominent exceptions are Ke and Lin (2022), Bao et al. (2022), and Hodgson and Lewis (2020).
3Already a core component of contributions by Choi et al. (2018), Haan et al. (2018), and Greminger

(2022).
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order which, unlike in almost all existing papers on directed consumer search, cannot be
pinned down before the search process has started but that can still be characterized by
an index policy.4

The ordered consumer search literature pioneered by Weitzman (1979) still largely
relies on its seminal result that characterizes the optimal process for a consumer costly
searching among n independently distributed boxes. Each box is characterized by a
reservation value, a score representing the value that would make the consumer indifferent
between opening the box and keeping a certain reward equal to the score. The optimal
search order has the consumer opening boxes from the highest to the lowest score. The
consumer optimally stops when no unopened box has a score higher than the highest past
realization.

Weitzman (1979)’s seminal optimal policy relies on the assumption that boxes are
independently distributed. I relax this assumption and propose a tractable, history-
dependent scoring system that incorporates the value of searching beyond the target of
inspection. The score is determined accounting for the paths that would be optimally
taken by the consumer after the realization they refer to and, therefore, reflect the full
value of inspecting new attributes and the respective continuation value. Through this
scoring system, I show that a dynamic, adaptive version of Weitzman (1979)’s optimal
search policy can be characterized in this environment.

The proposed approach builds on recent contributions by Ke and Lin (2022), Bao et al.
(2022), and the aforementioned Hodgson and Lewis (2020). Ke and Lin (2022) provides
conditions under which correlation in search leads to complementarity of the products
available. Bao et al. (2022), instead, studies Bayesian updating when the consumer cannot
distinguish the role of each attribute in the ex post utility each product grants.5

While in their frameworks search order cannot be predetermined either, the set-up
does not allow for generalizations, nor it generates an applicable optimal search policy.
In contrast, my approach and the intuition behind it can be reasonably applied to a
wide variety of search environments. Nesting correlated products and obtaining statistics
representing the value of searching optimally inside these nests allows to seamlessly carry
over the value of the relevant information learned as search progresses. The resulting
optimal search policy allows for more nuanced predictions regarding rational consumer
search behavior.

The rest of the paper is structured as follows: in Section 2, I present the framework. I
characterize the optimal search process with multiple attributes and the learning process
they imply in an environment with infinitely many products in Section 3. I explore several

4Conditional search order is famously at the core of a recent contribution by Doval (2018): The paper
extends Weitzman (1979)’s search process by allowing the consumer to consider all uninspected products
as viable outside options.

5Other prominent examples of correlation in search can be found in Shen (2015) and Armstrong
and Zhou (2011), that embed the search process in a Hotelling framework so that, in both settings, the
available products are perfectly negatively correlated.

2



A1

A2

...

B1 B2 ...

(1, 1) (1, 2)

...

...(2, 1) (2, 2)

...

...

...

Figure 1: Products in the same row (resp. column) share attribute Ai (resp. Bj).

extensions in Section 4, among which I obtain equilibrium pricing for correlated products
when a single agent prices the whole menu: I show that only a uniform pricing scheme can
ever be optimal in this environment with infinitely many products. In the same section, I
explore some limitations to my approach before concluding in Section 5.

2. Framework

I consider an environment with products differentiated with respect to two attributes.
A product (i, j) is identified by attributes Ai ∈ A and Bj ∈ B. There are infinitely many
variants Ai, Bj , and infinitely many products (i, j). Each variant Ai can be found combined
with all variants Bj, i, j ∈ {1, 2, 3, ...}, and vice versa. One can visualize the products as
displayed in a grid, with the rows representing the A variants, the columns representing
the B variants, and the cells representing products defined by a specific combination of A

and B as depicted in Figure 1. Products are only differentiated horizontally through their
attribute compositions and are otherwise identical in quality.

A representative, risk-neutral consumer (she) has unit demand, is aware of the available
products and their attribute composition, and can inspect the products in any order
she likes. The consumer has no prior knowledge of her preferences over the available
attributes; she learns the realization of each attribute separately by inspecting a product
characterized by it. In line with existing models,6 I assume that ex post utility generated
by a generic product (i, j) takes the form:

u(Ai, Bj) = Ai + Bj = ui,j.

I assume each attribute to be an i.i.d random variable distributed according to a
cumulative distribution function F : given a generic attribute y ∈ A ∪ B, F (y) is assumed
to have support [0, ŷ] for some positive ŷ, and to be twice-differentiable everywhere on it.
The assumption that attributes enter ui,j additively crucially implies that there are no

6For example: Choi et al. (2018) and Greminger (2022).
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complementarities between attributes: once an attribute is discovered, its realized value
affects all products that are defined by it in the same way.

In this environment, I study the optimal sequential search process with free recall: a
consumer can always go back to a previously inspected product at no additional cost. The
cost of inspecting a product is indexed by the constant s ∈ (0, 2 E[y]). The consumer’s
outside option is normalized to u0 = 0.

Finally, I consider Subgame Perfect Equilibria for a game with the following timing:

1. The consumer observes the infinitely large product menu, chooses between searching
and her outside option, and, if she searches, what to inspect.

2. After each inspection, the consumer chooses between stopping and inspecting a
different product (and what to inspect next) until she either purchases an inspected
product or leaves without making a purchase.

3. Optimal Search with Multi-Attribute Products

For illustrative purposes, consider first the simpler case of Figure 2. The two products
available share one attribute (A1) and are independent along the other (Bj, j ∈ {1, 2}).
Suppose that the consumer already inspected (1, 1): she has learned her valuation for
A1, shared by both products, and B1. She still does not know her valuation for B2. At
this stage, it is clear that choosing between stopping at (1, 1) and costly inspecting (1, 2)
is governed by the standard myopic search process illustrated in Weitzman (1979).7 In
particular, u1,1 is known, and (1, 2)’s value is only unknown in B2.

The value of inspecting (1, 2) at this point can be expressed using Weitzman (1979)’s
familiar reservation value. The certain equivalent that makes a consumer indifferent
between that value and costly discovering realization B2 is the value z that solves:

s =
∫ ŷ

z
(B2 − z) dF (B2).

Then, the reservation value of inspecting (1, 2) when A1 is known is simply:8

r1,2 = A1 + z.

Following Weitzman (1979), the consumer would inspect (1, 2) if and only if B1 < z,
or u1,1 < r1,2. We cannot go backwards and apply the same myopic logic to the choice of
inspecting (1, 1): because the reservation value of each individual product depends on the
other, we cannot apply Pandora’s search algorithm.

7This intuition can be found, for example, in Ke and Lin (2022).
8Notice that this is the same utility structure studied in Choi et al. (2018).
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A1

B1 B2

(1, 1) (1, 2)

Figure 2: Two products available

Suppose however that the products were in a bigger box, and that the consumer had
to decide whether to open one box containing (1, 1) and a nested box containing (1, 2), or
nothing at all.9 I henceforth refer to this larger box as “compound”, and the smaller one
containing (1, 2) as “nested”. Further, I henceforth refer to a compound box built around
product (i, j) as Xi,j.

If the consumer opens the box, she discovers u1,1, the implied reservation value r1,2,
and searches accordingly. Because we know how search takes place inside this box, X1,1

can be scored in a way that reflects not just the value of inspecting (1, 1) but also the
value of the information learned through the possibility of correcting towards (1, 2). When
applied to each product separately, this intuition generates an environment in which
products sharing attributes can be appropriately scored to reflect the information they
carry.

The consumer could also want to inspect (1, 2) first. We can imagine another compound
box, X1,2, containing (1, 2) and a nested box containing (1, 1). The two are ex ante identical
before either is opened and, once one is opened, the other becomes the smaller nested
box contained in the one inspected first. Henceforth, I make the assumption that the
consumer inspects unknown attributes in increasing order of their index when indifferent,
which is without loss of generality.

3.1. Searching Inside a Compound Box

A generic compound box Xi,j contains products (i, j), immediately available, and all
products (i, j′ ̸= j), (i′ ̸= i, j) inside smaller boxes that must be opened by paying an
additional search cost s. In words, Xi,j contains all products defined by Ai, Bj, or both.
Notice that all products are contained in multiple boxes.

The assumption that the consumer inspects new attributes in ascending order of their
index implies that, if the consumer wants to inspect two new attributes and has never
inspect a single attribute before, she will inspect (i, i), i ∈ {1, 2, 3, ...}. It also implies
that, if she does so, all attributes Aj<i, Bj<i must have been inspected already and are,
therefore, known before (i, i) is. As the indices are a simple label, this is without loss of
generality. Formally, we can define I ⊂ A × B to be the set of already inspected attributes

9This approach was inspired by the work contained in Anderson et al. (2021); I thank Daniel Savelle
for his many helpful comments.
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at any given point of the search process.

Suppose the consumer is about to open Xi,i and pay the relative search cost s. Let
AH = max{y ∈ A ∩ I}, BH = max{y ∈ B ∩ I} be the highest past realization of the
previously inspected Aj<i, Bj<i. If max{AH , BH} is low enough, the choice of opening
Xi,i is unaffected by all realizations that took place before. On the other hand, if either or
both AH and BH are high enough, the choice is predictably affected by said realization.

The consumer is aware that inside Xi,i she will find product (i, i) and will have the
option to stop or inspect products (i, j ̸= i), (j ̸= i, i). How would she do so? All
attributes Aj<i, Bj<i have already been inspected and are known. Suppose the consumer
already opened the box. The consumer can choose between

• stopping at (i, i), generating utility ui,i = Ai + Bi, or

• searching again keeping Ai and

– inspect a product defined by Bj<i, whose realization is already known, after
paying cost s: ui,j<i = Ai + Bj − s,

– search a product defined by Bj>i, whose realization is unknown after paying
cost s: E[ui,j>i] = Ai + E[Bj] − s,

• searching again keeping Bi and:

– search a product defined by Aj<i, whose realization is already known, after
paying cost s: ui,j<i = Aj + Bi − s,

– search a product defined by Aj>i, whose realization is unknown after paying
cost s: E[uj>i,i] = E[Aj] + Bi − s.

After opening Xi,i, these choices can be ranked according to the classic result of
Weitzman (1979).10 In particular, after Xi,i has been opened, the remaining options inside
the compound box are independent of each other because all attributes are assumed
to be i.i.d. Therefore, we can assign a score to all by finding the certain equivalent of
each. Stopping and inspecting a product whose realization is fully known trivially has
certain equivalent matching the known ex post utility: ri,i = ui,i, ri,j<i = ui,j<i − s,
rj<i,i = uj<i,i − s. Keeping the classic nomenclature, I refer to this as “reservation values”
of these options.

The unknown nested boxes, instead, are only unknown in one attribute after Xi,i has
been opened. This is the same object whose reservation value is provided in Choi et al.
(2018).11 In particular, because all attributes y ∼ F (y) with support [0, ŷ], the certain

10The result relies on the fact, proven in Appendix A, that if the consumer optimally decides to open a
nested box with unknown content in a newly opened compound box, she never stops and never deviates,
making the process of searching forward equivalent to a myopic one.

11In Appendix A I show that once a nested boxes is optimally opened, the consumer either stops or
opens more nested boxes depending on the current realized payoff, making this branch of the optimal
search policy myopic in nature.
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equivalent of spending a search cost s to discover the realization of any unknown attribute
y is z that solves:

s =
∫ ŷ

z
(y − z) dF (y), (1)

and therefore: ri,j>i = Ai + z, rj>i,i = z + Bj.

Notice that the choice between moving forward towards (i, j > i) or (j > i, i) and
going backward to any known (i, i′ < i), (i′ < i, i) is resolved again simply by applying
Weitzman (1979)’s optimal search policy: if there is at least one product (i, j < i) (or
(j < i, i)) such that ui,j<i − s > Ai + z (or uj<i,i − s > z + Bi), no nested box with score
ri,j>i = Ai +z (or rj>i,i = Bi +z) would be opened, and the product generating the highest
ui,j<i − s (or uj<i,i − s) would be inspected and selected. This happens if AH > z + s (or
BH > z + s). Otherwise, all products (i, j < i) (or (j < i, i)) would be ignored. Because
AH , BH are the highest past realizations, they are known before Xi,i is opened. Therefore,
the consumer opens Xi,i knowing already whether she would go forwards (that is, open
nested boxes (i, j > i) or (j > i, i)) or backwards (that is, inspecting a product (i, j < i)
or (j < i, i)) if she decides to search again.

This observation implies that unopened compound boxes that are constructed around
products not sharing attributes are de facto independent for all values of AH , BH at the
moment of making the choice of opening a new compound box. The possible configurations
in which compound boxes can be found is illustrated in Figure 3. Depending on AH and
BH , the effective path inside each unrelated box does not cross. We can then compute
the expected value of searching box Xi,i in isolation by tracing the optimal search therein
for different values of AH , BH . This, in turn, means that each configuration as in Figure
3 can be solved independently and then combined to obtain the actual, history dependent
optimal search policy.

3.2. Four Independent Configurations

3.2.a. Configuration 1

If max{AH , BH} < z + s, the consumer will either stop at (i, j) or open nested boxes
with unknown content if she chooses to search inside the newly opened compound box.
In this configuration the consumer searching inside a compound box always keeps the
highest between Ai, Bj and either stops if the lowest is above z or opens nested boxes
paying search cost s. In the latter case, the consumer will keep doing so until she finds
something that beats z paying a search cost for each inspection.

To leverage the independence of compound boxes locked in a given configuration, it is
necessary to obtain the distribution of values the consumer expect to find inside of it. Let
w be the expected payoff of a consumer opening a compound box in this configuration
and searching optimally inside of it, and H(w) be its CDF. Given optimal search inside
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A1

A2

A3

...

B1 B2 B2 ...

X1,1

X2,2

X3,3

Configuration 1

A1

A2

A3

...

B2 B3 B4 ...

X2,2

X3,3

X4,4

Configuration 2

A2

A3

A4

...

B1 B2 B3 ...

X2,2

X3,3

X4,4

Configuration 3

A1

A2

A2

...

B1 B2 B3 ...

X2,2

X3,3

Configuration 4

Figure 3: Possible configurations of compound boxes. Configuration 1 represents boxes
when max{AH , BH} < z + s; Configurations 2 and 3 represent boxes when A1 = AH >
z + s > BH and B1 = BH > z + s > AH respectively and, therefore, reroute search
towards themselves; Configuration 4 represents boxes in which A1 = AH > z + s and
B1 = BH > z + s.
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the compound box, wi,i of opening box Xi,i is:

wi,i = max{Ai, Bi} + max{z, min{Ai, Bi}}.

To compute H(w), we must consider how different realizations for Ai and Bi interact.
Fix a generic value Bi. If Bi < z, it is kept if and only if Bi > Ai. Otherwise, Ai is kept.
In this case, w = max{Ai, Bi} + z. If Bi > z, it is always kept over nested boxes (i, j > i);
Ai is also kept if its realization is above z, or: w = Bi + max{Ai, z}.

Because Fa(A) ≡ Fb(B) ≡ F (y) have support [0, ŷ], H(w) has support [z, 2ŷ] and can
be expressed as:

H(w) =
∫ z

0
Fa

(∫ B

0
Fb (w − z) dFa(A) +

∫ ŷ

B
Fb (w − z) dFa(A)

)
dFb(B)+

+
∫ ŷ

z
Fa

(∫ z

0
Fb (w − z) dFa(A) +

∫ ŷ

z
Fb (w − A) dFa(A)

)
dFb(B).

Suppose that the all compound boxes are “locked” in this configuration as in Figure 3
(top left corner).12 The optimal search in this simplified case can be obtained through
definition of a value function as shown in McCall (1970) and Kohn and Shavell (1974). In
particular, we want to find W that solves the dynamic programming problem:

W = −s + max{w, E[W ]}, (2)

where w follows the cumulative distribution function H(w), and W is the maximum
return the consumer would obtain after opening a compound box (and searching optimally
therein if she stopped there). In this case, the optimal process sees the consumer stopping
and keeping w ≥ E[W ] and searching if w < E[W ]. Because compound boxes locked in a
configuration are effectively independent objects, this problem bears the same solution as
Weitzman (1979). In particular, the relevant threshold value above which a box is kept is
W that solves:

s =
∫ 2ŷ

W
(w − W ) dH(w). (3)

3.2.b. Configurations 2, 3, and 4

The same procedure allows to obtain static reservation value associated with boxes
locked in different configurations. Consider first configurations 2 and 3: if max{AH , BH} >

z + s > min{AH , BH}, the consumer will not open nested boxes along one attribute but
would do so along the other. W.L.O.G., assume AH > z + s > BH so that after opening
Xi,i, the consumer would always go back to a product (j < i, i) rather than opening nested
boxes (j > i, i) (but could still open nested boxes (i, j > i) as per the top right corner of

12That is, imagine boxes to be unchangeable and such that the value of its content always follows w
without possibility of being updated.
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Figure 3). In particular:

• if Bi > z, the consumer chooses between keeping (i, i), ui,i = Ai + Bi, and returning
to (j < i, i), uj<i,i = AH + Bi − s

• if Bi < z, instead, the consumer chooses between (j < i, i) and inspecting nested
boxes (i, j > i), ri,j>i = Ai + z.

Let wa(AH) be the expected payoff of a consumer opening a compound box in configu-
ration 2 and Ha(wa(AH)) be its CDF.13 Assuming again that unopened compound boxes
are locked in this configuration, their static reservation value is W a(AH) that solves:

s =
∫ ŷ

W a(AH)
(wa − W a(AH)) dHa(wa). (4)

The same exact exercise leads to W b(BH) (bottom left corner of Figure 3), relevant when
AH < z + s < BH .

Consider now configuration 4 (bottom right corner of Figure 3): if min{AH , BH} > z+s,
the consumer will not open any nested box. In particular:

• if Bi > BH − s and Ai > AH − s, the consumer stops,

• if Bi > BH − s and Ai < AH − s, the consumer inspects and keeps (i′, i), ui′,i =
AH + Bi − s,

• if Bi < BH − s and Ai > AH − s, the consumer inspects and keeps (i, i′), ui,i′ =
Ai + BH − s,

• if Bi < BH − s and Ai < AH − s, instead, the consumer chooses between (i′, i) and
(i, i′), depending on which has the highest utility.

Labeling wa,b(AH , BH) and Ha,b(wa,b(AH , BH)) the expected payoff and CDF of boxes
locked in this configuration, their reservation value is W a,b(AH , BH) that solves:

s =
∫ ŷ

W a,b(AH ,BH)
(wa − W a,b(AH , BH)) dHa,b(wa,b). (5)

The final step requires to combine these thresholds to account for the fact that
compound boxes are not locked in any given configuration but, rather, can move from
one configuration to the next depending on the realizations AH and BH found along the
search process.

13A closed form expression for this and all subsequent CDFs can be found in Appendix A.
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3.3. Optimal Search Process

The values W , W a(AH), W b(BH), and W a,b(AH , BH) can be appropriately combined
to obtain the reservation values of unopened compound boxes when they are not locked
in any given configuration. Once again, which of this values is relevant depends on past
realizations: if some Aj<i > z + s and/or some Bj<i > z + s is found, this affects the
value of all future boxes because by construction all compound boxes contain at least one
product defined by all attributes.

The relevant value of the unopened compound boxes can evolve only in one direction,
from configuration 1 to 4, and never backwards. Indeed, once Aj<i > z + s is found, it can
never be forgotten: once the relevant reservation value of the current configuration of Xi,i

changes from W to W a(AH), it can never revert to W or change to W b(BH). From this
point onward, it can only stay at W a(AH) or change to W a,b(AH , BH). Moreover, once
configuration 4 is reached, all unopened compound boxes will keep this configuration.

Suppose all closed boxes reached configuration 4. This implies that min{AH , BH} >

z + s. Suppose the consumer has observed these AH and BH and must choose whether
to open the next box. If boxes were to be locked, with any future A and B realization
not being able to affect the next, the value of all closed boxes would be W a,b(AH , BH).
However, this does not capture the search dynamics appropriately.

Suppose the next box were to be opened and that Ai > AH was be found. The next
compound box would have a different reservation value, W a,b(Ai, BH). The expected
value of future boxes given the current values AH , BH can be obtained recursively. Let
W ∗

a,b(AH , BH) be the expected equivalent of costly opening the next box on the search
path. This can be rewritten as a linear combination of expected W a,b values:

W ∗
a,b(AH , BH) =W a,b(AH , BH)

∫ BH

0

∫ AH

0
dFa(A)dFb(B)+

+
∫ BH

0

∫ ŷ

AH
W a,b(A, BH) dFa(A)dFb(B)+

+
∫ ŷ

BH

∫ AH

0
W a,b(AH , B) dFa(A)dFb(B)+

+
∫ ŷ

BH

∫ ŷ

AH
W a,b(A, B) dFa(A)dFb(B).

Consider the choice of the consumer. If she opens the next compound box, Xi+1,i+1,
she knows that she will stop only if wi+1,i+1 is higher than the new value W a,b(AH , BH),
which in expectation is equal to W ∗

a,b(AH , BH) before Xi+1,i+1 is opened.

Notice that W ∗
a,b(AH , BH) is strictly higher than W a,b(AH , BH) because W a,b(AH , BH)

is increasing in AH and BH . This threshold captures not only the value of inspecting the
next box, that by itself would have had reservation value W a,b(AH , BH), but also that of
the updating that opening the box might lead to. In words, the value of opening the next
box is the expected “certain equivalent” of opening the next, which in itself depends on
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the outcome of the inspection.

We can repeat the same exact exercise with the other configurations. For configuration
2, we write:

W ∗
a(AH) =W a(AH)

∫ z+s

0

∫ AH

0
dFa(A)dFb(B)+

+
∫ z+s

0

∫ ŷ

AH
W a(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ AH

0
W a,b(AH , B) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ ŷ

AH
W a,b(A, B) dFa(A)dFb(B).

which is both higher than W a(AH) and the hypothetical W̃ a(AH) one would compute
ignoring the possibility that the next box could change in value. An equivalent formulation
can be found for configuration 3.

Finally, for configuration 1, we can write:

W ∗ =W
∫ z+s

0

∫ z+s

0
dFa(A)dFb(B)+

+
∫ z+s

0

∫ ŷ

z+s
W a(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ z+s

0
W b(B) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ ŷ

z+s
W a,b(A, B) dFa(A)dFb(B).

By taking into account all possible configurations, and all the ways in which this
configurations can evolve into one another, we can then write the reservation value of all
unopened boxes as:

W(AH , BH) =



W ∗ if max{AH , BH} < z + s,

W ∗
a(AH) if AH > z + s > BH ,

W ∗
B(BH) if BH > z + s > AH ,

W ∗
a,b(AH , BH) if min{AH , BH} > z + s.

The values above reflect the value of inspecting any given compound box given all
information learned so far and anticipating how the game could change given future
realizations: W(AH , BH) incorporates the value of searching along all possible paths,
defined by the number of attributes found above z + s. Once a path is taken, that path
can never be left. Each path is built through the optimal search process when boxes are
in the appropriate state, which is pinned down by the optimal search process inside the
compound box as per its current configuration. Because each branch of the search path is
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optimized, the whole process is too.

While the optimal search order cannot be determined ex ante because of the learning
component, whenever the consumer must choose what to do there is no ambiguity regarding
the value of her possible options. Therefore:

Proposition 1. Let AH = max{y ∈ A ∩ I}, BH = max{y ∈ B ∩ I} be the highest
discovered realization for A and B. Optimal search is characterized as follow:

• Compound box selection: compound boxes are opened until the expected payoff
according to the optimal search policy inside of it, wi,j, is higher than the reservation
value of all unopened compound boxes, W(AH , BH).

• Search inside the selected compound box: Given selection of compound box
Xi,j, (i, j) is kept if ui,j > max{ri,k ̸=j, rk ̸=i,j}; otherwise, the next box opened is the
nested box with the highest ri,k or rk,i.

• Stopping rule: Boxes (compound or nested) are opened until all unopened (com-
pound or nested) boxes have updated reservation value below the highest realized
payoff.

Proof. All calculations and closed form equations for the four relevant CDFs can be found
in Appendix A. ■

The multi-attribute structure proposed here allows one to score search options appro-
priately by leveraging the fact that at any given point compound boxes can be thought
of as effectively independent object along the search path. This, in turn, generates an
environment in which the standard intuition behind optimal search can be adapted. This
process can be thought of as a consumer sampling unrelated products until at least an
attribute worth keeping is found. When this happens, the consumer ignores all remaining
compound boxes and searches inside the one that let her find that first attribute to keep
in order to find an appropriate other one to pair with it, be it previously discovered or
not.

Notice that the structure of the compound boxes reflect the internal consistency of
the search process: opening a compound box always carries more information than a
nested box inside a previously opened one. Therefore, if a compound box is selected, the
attribute that is kept when searching inside of it must have had a realization high enough
to compensate for the lower informational value of not inspecting two new attributes.
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4. Extensions

4.1. Optimal Pricing by a Single Seller

Suppose a multiproduct monopoly seller (he) were to price the infinitely many products
defined as above. He is aware of distribution F and search costs s. This seller can influence
the search pattern over available products through prices, which are set before the search
process starts, cannot be changed, and are observed costlessly by the consumer before she
starts searching. Assuming all production costs to be equal to zero, we are interested in
finding the subgame perfect equilibrium pricing under the following, updated timing:

1. The consumer and the seller observe distribution F and search cost s.

2. The seller commits to a vector of posted prices pi,j for all products (i, j).

3. The consumer observes all products and their relative prices.

4. The consumer makes searching and purchasing decision.

In order to solve for the optimal pricing scheme in this complex environment, we
leverage once again the structure of compound boxes. The structure presented above
can be readily adapted to incorporate prices. In particular, the value associated with
each product must be reduced by the posted price; these new values can be used to score
compound boxes appropriately and accounting for the price of all products on the relevant
search paths. In other words, prices affect the value of opening any compound box; the
effect cascades to the reservation values W , which allows to solve for optimal pricing.

Consider the compound box X1,1 built around product (1, 1) priced at p1,1; the box
contains all products (1, j), priced at p1,j, and all products (i, 1), priced at pi,1. Suppose
the consumer opened X1,1 and decided to search in it keeping attribute A1. Then, she
would inspect next the product (1, j) that satisfies:

max
j

(A1 + z − p1,j) ≥ A1 + B1 − p1,1,

Three things are worth noticing: first, if p1,j is not uniform, the consumer would
always select to inspect products (1, j) in increasing order of price. Second, for (1, 1) to be
inspected before all other (1, j) products, it must have been the cheapest of them. Third,
if p1,1 ̸= p1,j, (1, j) would be inspected next if and only if:

B1 ≤ z − (p1,j − p1,1) < z.

The same structure governs inspection of products (j, 1).
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In principle, all products (1, j) could be priced differently. Suppose that prices where
increasing in j and always strictly below z. Then, if the consumer decided to inspect
(1, 2) after discovering A1, B1, he would expect to either keep it if it beats the reservation
value of (1, 3), or keep searching, and so on for all subsequent inspections. The total value
associated with this path given vector of prices p1,k of all products (1, k > 1) is then:

y(p1,j) =
∞∑

k=1
F (z − (p1,k+1 − p1,k))k

∫ ŷ

z−(p1,k+1−p1,k)
(y − p1,k+1) dF (y).

To see the effect of prices, it is useful to compute the expected value of a compound box
when the products therein have prices posted. Consider the generic compound box Xi,j in
the first configuration (for simplicity and for illustrative purposes). Let ∆i,k ≡ pi,k+1 − pi,k

and ∆k,j ≡ pk+1,j − pk,j; further, let:

ȳi,k = E[y|y > z − ∆i,k], ȳk,j = E[y|y > z − ∆k,j].

Then:

E[wi,j(pi,j)] =[1 − F (z − ∆i,i+1)][1 − F (z − ∆j+1,j)](ȳi,i+1 − ȳj+1,j − pi,j)
+ [1 − F (z − ∆i,i+1)]F (z − ∆j+1,j)(ȳi,i+1 + y(pi,k))
+ F (z − ∆i,i+1)[1 − F (z − ∆j+1,j)](y(pk,j) + ȳj+1,j)
+ F (z − ∆i,i+1)F (z − ∆j+1,j) (y(pi,k) + y(pk,j)}) ,

While a high price that does not make a product never worth inspecting makes it more
profitable to sell, it also pushes the product attached to it further away from the optimal
starting point of the consumer. Suppose all products were priced a some uniform level pu

and one was slightly more expensive. Then, not only the more expensive product would
have lower value in any search path in which it could be found, but all compound boxes
that contain it would also have a lower E[w(p)], which translates to a lower reservation
value. None of the boxes associated with this product, then, would ever be inspected as
there are infinite better alternative for the consumer.

Another difficulty relates to the updating process described in the pages above. At-
tributes can still have realizations that reroute search towards themselves, and in a way
that is much more cumbersome to keep track of when prices are accounted for. Moreover,
because the relationship between the different possible scores W· depends on the specific
realization or realizations that triggered the update, the updating could lead to all un-
opened boxes to become less valuable than they originally were, which could lead the
consumer to end his search prematurely.

Both concerns can be addressed, and the following result emerges:
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Proposition 2. Consider a multiproduct seller pricing infinite products defined by two
infinite sets of i.i.d. attributes. There exist a unique, uniform equilibrium pricing vector
such that pi,j = p∗ = W ∗, ∀(i, j).

Proof. All calculations can be found in Appendix B. ■

Proposition 2 states that the only possible equilibrium features uniform pricing. In
principle, given the reservation value of a compound box, different products could be
priced differently to capitalize on the information learned through inspection. In Appendix
B, I show that this cannot be optimal. The intuition is as follows: suppose that compound
box X1,1’s products were priced according to p1,1 = p for some p > 0 and p1,j = pi,1 = p+δ

for some δ > 0.14 Plugging in these prices in the score of the compound box, one finds:

E[w1,1(p1,1)] =[1 − F (z − δ)]2(2ȳδ − p)
+ 2F (z − δ)[1 − F (z − δ)](ȳδ + z − (p + δ))

+ F (z − δ)2
(
y

δ
+ z − (p + δ)

)
,

where y
δ

is the expected value of the highest of two realizations below z − δ.

Studying E[w1,1(p1,1)] reveals that any positive δ would be detrimental to the expected
profit of the seller. On one hand, the probability that the consumer finds a realization
that induces her to keep searching after inspecting (1, 1) shrinks as δ increases because
F (z − δ) is decreasing in δ. On the other hand, the participation constrain implied by the
fact that the consumer must decide to open the first box becomes tighter as δ increases.

To see why, notice that the expected value of opening a compound box net of prices is
equivalent to that of opening the same box when search costs are higher, and in particular
s′ > s such that z′ = z − δ. It follows that δ > 0 makes starting the search process less
valuable, which tightens the consumer participation constraint and, therefore, how high
prices that do not discourage search can be.

That p∗ = W ∗, the initial reservation value of any compound boxes, follows from the
updating dynamic detailed in the previous section. In particular, it follows from the
fact that all updates increase the value of subsequent boxes rather than shrink it: the
lowest value of a compound box after any updating can be shown to be W ∗

a,b(AH , BH) ≥
W ∗

a,b(z + s, z + s) = W ∗. Therefore, the highest prices that the monopolist can set is the
highest price that does not prevent search from taking place and, in particular, p∗ = W ∗.

4.2. More than Two Attributes

In the baseline model, two attribute products are scored by building fictitious boxes
including the product itself and closed boxes with all other products sharing attributes

14In the Appendix, I show that if an equilibrium with differential prices exists, it must have prices
following this structure.
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(1, 1, 1)

(1, 1, 2)

(1, 1, 3)
...

(1, 2, 1)
(1, 3, 1)

(2, 1, 1)
(3, 1, 1)

(1, 2, 2)

(1, 2, 3)

(1, 3, 2)

(1, 3, 3)

...

...

...

...

(2, 1, 2)

(2, 1, 3)

(3, 1, 2)

(3, 1, 3)

...

...

...

...

(2, 2, 1)

(2, 3, 1) (3, 2, 1)

(3, 3, 1)
... ...

... ...

Figure 4: Graphical representation of a three attribute compound box centered around
(1, 1, 1). Products that share two attributes with (1, 1, 1) can be displayed along the edges
of a cube (north for products sharing A1, B1, south-west for products sharing A1, C1,
south east for products sharing B1, C1); Products that share one attribute with (1, 1, 1)
can be displayed along the sides of the cube (north-west for products sharing only A1,
north-east for products sharing only B1, south for products sharing only C1).

with it. The same logic can be applied to three attribute products. With three attributes,
two kinds of closed boxes must be included in the compound box with the product it
represents. On one hand, all products sharing exactly two attributes with the central
product can be represented as small nested boxes equivalent to the ones contained in the
two attributes case.

On the other, products that share only one attribute with the central one are unknown in
two dimensions, and must be placed in two-dimensional boxes equivalent to the compound
boxes of the baseline model. These “intermediate” boxes themselves contain infinite small
nested boxes as well. One can imagine multiple grids representing two attribute products
side by side to resemble a cube, with the intermediate boxes representing search along one
of the sides, and the small boxes representing search along one of the edges as in Figure 4.

We can conceptualize the same process to find the optimal search path for a consumer
searching in this environment. First, it is necessary to rethink the structure of a generic
nested box Xi,i,i. If Xi,i,i is built around product (i, i, i), it contains all products that
share at least one attribute with it. Therefore, it can be represented as the three edges of
a cube and the sides delimited by them. Each side can be thought of as a two-dimensional
grid in which “intermediate” compound boxes akin to the ones defined in the main model
can be found. The choice of opening these boxes is governed by the same W· functions
defined above. The choice of opening a different three-dimensional box, instead, requires
computing the reservation value of the possible “locked” configurations this box can come
out of. All configurations will always be made of three edges and three sides. Whether
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the edges stretch forward, towards undiscovered attributes, or backward, to known past
realizations, depends once again on whether single attributes are found above or below
z + s, or combinations of two attributes above or below W .

4.3. Purchase Without Inspection

It is assumed throughout the paper that consumers must expend a search cost to inspect
any product. Because products in this environment share attributes some uninspected
products could be fully revealed without being inspected. If search is understood as the
physical action of finding a product, this distinction is immaterial. If, however, one were
to interpret search as the time and effort necessary to ascertain the quality of the match
of a product, it would be sensible to suggest that products uninspected but nonetheless
known in their realization should not need search costs to be expended. This alternative
interpretation affects the search dynamic in a straightforward manner.

If taking a product whose attribute have been fully independently discovered is free,
the only optimal search process would be one that involves searching new attributes in
pairs until the highest realization for each attribute is such that they, together surpass
the value of all uninspected products. This can be accomplished by modifying the way
reservation values update after each observation. The lowest realization that reroutes
search towards itself inside all unopened compound boxes is (without loss of generality)
A1 > z rather than A1 > z + s. With this change, the choice of keeping an attribute is
always dominated because all products sharing an attribute with an inspected product
would be contained, at zero additional cost, in all unopened compound boxes, and affects
them all through the same updating detailed above.

4.4. Limitations and Directions Forward

4.4.a. On the Eventual Purchase Theorem

The eventual purchase theorem (henceforth, EPT), first proposed in Armstrong (2017)
and Choi et al. (2018), states that the outcome of a search process to find one out
of independently distributed products can be obtained through a simple statistic. In
particular, the product i that is ultimately selected by a consumer will be the one with
the highest statistic:

Wi = min{ri, ui},

or, the highest minimum between reservation and match value of a product.

Obtaining a similar statistic in this environment comes with a few challenges. First,
a product is kept as long as it’s match value surpasses that of different objects, namely
the closed compound boxes and the closed reachable nested boxes. These objects are
associated with different scores, one reflecting the value of the implied search paths that
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Figure 5: Three products available.

would follow from it, one reflecting the value of only its inspection. A statistic like the
one governing the EPT, then, should account for both.

Another difficulty is the threshold over which attributes are kept. In the main analysis
I show that an attribute is kept as long as it has realization above W . Besides the obvious
difficulty caused by W having an history-dependent value, the more challenging issue
comes from the fact that search in the selected compound box follows different directions
for different past realizations. An appropriate statistic, then, should be able to account
for all possible directions the optimal search policy could instruct to take inside any given
compound box.

4.4.b. Finite number of products

The structure proposed for the infinitely many products does not immediately translate
to the finite product menu case. Consider a box like the one in Figure 5: Since pinning down
the optimal search path inside this box, and its value besides, is not as straightforward as
before, scoring this box requires significant nuance. To see why, Suppose A1 and B1 < A1

both had very low realizations, and suppose the consumer optimally inspects (1, 2) next.
She now might want to inspect (2, 1) if z + B1 > A1 + max{B1, B2}. This affects the
value of inspecting (1, 2), and therefore the threshold dictating whether the consumer
would stop at (1, 1) instead.

The complexity of the problem is apparent even with this simple example, but it is
worth stressing out that in a finite grid environment every additional product generates
several possible search paths that must be scored and compared. In turn, this implies
that every finite product menu requires building every possible search path by backward
induction in order to select the optimal one. While solvable for any given configuration, a
general optimization problem with this structure might not be immediately in reach.

Another problematic difference with the infinitely large boxes of the baseline model
follows from the fact that even if the issue above was resolved, and a compound box
structure could be feasibly built, when a compound box is opened and discarded in
a finite grid, the following boxes “shrink” by one variant per attribute. Suppose X1,1
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contained products characterized by n variants of A and m variants of B. Further, suppose
realizations A1 and B1 were very low. Then, X2,2 would effectively contain products
characterized by n − 1 variants of A and m − 1 variants of B. Assuming consumers search
in increasing order of the index, then, the size of each subsequent compound box Xi,i

would have n + 1 − i variants of A and m + 1 − i variants of B.

The implication of this last remark is that while thinking about boxes as locked in
some configuration achieves the same conceptual independence between objects, now
every subsequent choice is “discounted” by the value associated with one more variant
for each attribute. Effectively, this means that the choice of searching now and searching
again later can never be the same. While in principle this could be accounted for, as the
structure resembles of that of Weitzman (1979), combining the resulting locked reservation
values to generate adaptive ones to take the place of W quickly leads to a computationally
intractable problem.

4.4.c. Different distributions

In principle, removing the assumption of attributes following the same distribution
can be accommodated. One can imagine a variant of the model above in which all A

attributes were i.i.d and all B attributes were too, but the two sets followed a different
distribution. This does not affect the analysis significantly. Far more challenging is
accounting for different distributions across different variants of the same attribute in the
general framework. The reason stems from the way compound boxes are constructed: with
different distributions come different reservation values z for the same search cost s, which
means that the expected value of searching along one dimension is not straightforward to
compute.

A possible solution might be to use the EPT as characterized by Armstrong (2017)
and Choi et al. (2018) to pin down said value, and the value of all other dimensions. A
general solution of this more complex problem, however, becomes quickly intractable, and
is therefore left for future research.

5. Conclusion

The framework’s predicted search patterns align well with recent evidence of spatial
learning in search: Hodgson and Lewis (2020) reports evidence of search for digital cameras
to be characterized by a learning process consistent with the one in this framework.
Consumers are shown to inspect a broader set of attributes early only to close in on
their preferred alternatives in later stages, getting closer and closer to the product they
ultimately choose to purchase. This pattern cannot be easily reconciled with standard
search models, but is well in line with the prediction of this framework. Further, the
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model presented here can more easily rationalize the pervasive tendency of consumers to
retrace their steps while searching for products.

The learning process detailed in this paper has implications on our understanding of
search costs in markets with horizontally differentiated products. The consumer in my
framework searches more than one that does not update her expectations to account for
the information learned. This is immediate when one considers that a realization that
would induce a consumer to stop searching before accounting for the updating proposed
here might not induce her to stop afterwards. Since the thresholds governing the choice
of stopping become higher with better realizations, they would suggest that searching
becomes “less costly” as it progresses. Studying search frictions in markets ignoring the
learning component presented in this paper, then, would lead to an underestimation
of search frictions precisely because the cut-off rule with learning is by construction
higher than an alternative one without. Search friction estimation should then strive to
incorporate learning when appropriate to.

Future research should aim at generating resulting for environments that are not
constrained by the assumption of attributes coming in infinitely many varieties, and
that go beyond the two-attributes structure used throughout this paper. The resulting
insight would allow to better estimate search frictions empirically, and to generate more
sound considerations with regard to the way consumers approach searching with complex,
multi-dimensional products. In particular, extending the framework to address its current
limitations could greatly improve our understanding of online consumers’ search decisions
and sellers’ strategic reactions.
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Appendix

A. Optimal Search Policy - Proof of Proposition 1

Step 1: The first compound box Let X1,1 be the compound box containing (1, 1)
and infinitely many nested boxes containing (1, j > 1), (j > 1, 1). Suppose the consumer
had already opened the box. Her current payoff is k = max{u0, A1 + B1}. To determine
how she would act afterwards, consider the value function:

V (k) = max{k, −s + E[V (max{k, Aj + B1})],
− s + E[V (max{k, A1 + Bj})]}.

Suppose V (k) = k. Then:

k > −s + E[V (max{k, Aj + B1})] = −s + E[max{V (AijB1), k}],

s > E[max{V (Aj + B1) − k, 0}] =
∫ ŷ

k
(V (Aj + B1) − k) dF (y).

k > −s + E[V (max{k, A1 + Bj})] = −s + E[max{V (A1 + Bj), k}],

s > E[max{V (A1 + Bj) − k, 0}] =
∫ ŷ

k
(V (A1 + Bj) − k) dF (y).

Therefore, there exist values rA, rB such that if k > max{rA, rB}, V (k) = k. Suppose
that −s + E[V (max{k, Aj + B1})] > max{k, −s + E[V (max{k, A1 + Bj})]}. Then:

V (k) = −s + E[max{V (A1 + Bj), V (k)}],
s = E[max V (A1 + Bj, V (k))] → V (k) = rA

Suppose now that −s+E[V (max{k, A1+Bj})] > max{k, −s+E[V (max{k, Ak+B1})]}.
Then:

V (k) = −s + E[max{V (Aj + B1), V (k)}],
s = E[max V (Aj + B1, V (k))] → V (k) = rB

To compute rA and rB, the optimal policy conditional on V (k) = rA and V (k) = rB

respectively must be defined. Assuming that the consumer inspects products in increasing
order of their indices when indifferent, I make the following:

Claim 1. If V (max{u0, A1 + B1}) = rA, V (max{u0, A1 + B1, A1 + B2}) = max{A1 +
B2, rA}; if V (max{u0, A1+B1}) = rB, V (max{u0, A1+B1, A2+B1}) = max{A2+B1, rB}.
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By contradiction, suppose that V (max{u0, A1 + B1}) = rA. Then:

V (max{u0, A1 + B1, A1 + B2}) = max{u0, A1 + B1, A1 + B2,

− s + E[V (max{k, Aj + B1})], −s + E[V (max{k, A1 + Bj})]}.

This is immediate: because V (max{u0, A1 + B1}) = rA, it must hold:

−s + E[V (max{k, A1 + Bj})] > max{u0, A1 + B1, −s + E[V (max{k, Ai + B1})]}.

To see why, suppose max{u0, A1 + B1} = A1 + B1. Then, by the same argument as
above, for V (max{u0, A1 + B1}) = rA it must be that k < rA. If max{u0, A1 + B1} >

A1 + B2, the same condition applies. Otherwise, if max{u0, A1 + B1} < A2 + B2, then
for V (max{u0, A1 + B1, A2 + B, 2}) = rA to be true, A2 + B2 must also be below rA.
Because V (max{u0, A1 + B1}) = rA, it must be that A1 + B1 < rA. It follows that
V (max{u0, A1 + B1, A1 + B2}) = max{A1 + B2, rA}.

In words: if it is optimal to inspect A1 + B2 after opening the compound box, it
must also be optimal to inspect A1 + B3 if the consumer does not want to stop searching.
Therefore, the optimal policy conditional on V (max{u0, A1 + B1}) = rA is a myopic policy
in which the current highest realization is compared to the value of inspecting the next
product. The consumer is indifferent between stopping at (1, j) and inspecting (1, j + 1),
j ≥ 1, if:

A1 + Bj = − s + A1 + Bj

∫ Bj

0
dF (y) +

∫ ŷ

Bj

Bj+1 dF (y),

s =
∫ ŷ

Bj

(Bj+1 − Bj) dF (y).

Let z be the value of Bj that satisfies the condition above. It follows that rA = A1 +z.15

In the same fashion, from V (max{u0, A1 + B1}) = rB one obtains that rB = z + B1. It
follows that the value function representing the choice of opening the compound box X1,1

and searching optimally in it is:

V (u0) = max
{

u0, max
{
u0, max{A1, B1} + max{z, min{A1, B1}}

}}
,

because the consumer would always select A1 + z over B1 + z if and only if A1 > B1, and
will stop at (1, 1) if min{A1, B1} > z She would also take her outside option, u0, if she
opens the box and none of these options had value above it. The consumer is indifferent

15as found in McCall (1970) and Kohn and Shavell (1974)
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between opening the compound box and not opening if:

u0 = − s + u0

∫ u0

0
dF (y) +

∫ 2ŷ

u0
w dH(w),

s =
∫ 2ŷ

u0
(w − u0) dH(w),

where w = max{A1, B1} + max{z, min{A1, B1}} ∈ (z, 2ŷ), and its CDF satisfies:

H(w) =
∫ z

0
Fa

(∫ B

0
Fb (w − z) dFa(A) +

∫ ŷ

B
Fb (w − z) dFa(A)

)
dFb(B)+

+
∫ ŷ

z
Fa

(∫ z

0
Fb (w − z) dFa(A) +

∫ ŷ

z
Fb (w − A) dFa(A)

)
dFb(B).

Keeping the standard nomenclature, I refer to the value u0 that satisfies the above
equation as the reservation value of the the compound box.

Result 1. Let W be the reservation value of X1,1 and z the reservation value of any
y ∈ A ∪ B. The optimal policy with only one compound box X1,1 is:

• Open X1,1 if u0 < W , otherwise keep u0,

• if u0 > max{A1, B1} + max{z, min{A1, B1}}, stop and keep the outside option,
otherwise:

– if max{z, min{A1, B1}} = min{A1, B1}, stop and keep A1 + B1,

– if max{z, min{A1, B1}} = z, inspect (1, j) until Bj ≥ z is found if A1 > B1,
and inspect (i, 1) until Ai ≥ z is found if A1 < B1.

Step 2: Uncorrelated compound boxes Let X̃i,i, i ≥ 1, be the compound box
containing (i, i) and infinitely many compound boxes containing (i, j > i), (j > i, i).
We want to show that, in this environment, the optimal search policy follows a myopic
optimal policy such that if u0 < W , the consumer starts searching and stops after finding
a product with ex post utility higher than the reservation value of all closed boxes.

Suppose the consumer opened X1,1. Let k = max{u0, A1 + B1}; consider the value
function:

V (k) = max{k, −s + E[V (max{k, Aj + B1})],
− s + E[V (max{k, A1 + Bj})], −s + E[V (max{k, Aj + Bj})]}.

Compared the value function of the last paragraph, we must now also compare the
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first three options with the last one. Suppose once again that V (k) = k. Then, it holds:

k > −s + E[V (max{k, Ai + Bj})] = −s + E[max{V (Ai + B1), k}],
s > E[max{V (Ai + B1) − k, 0}].

which once again implies that there exist a value R2,2 such that if k > max{rA, rB, R2,2},
V (k) = k.

We must verify that rA andrB are still the value associated with a myopic policy. This
is once again immediate: if rA > max{k, rB, R2,2} (resp., rB > max{k, rA, R2,2}), then
V (max{u0, A1 + B + 1, A1 + B2}) = max{A1 + B1, rA} (resp., V (max{u0, A1 + B + 1, A1 +
B2}) = max{A1 + B1, rB}). In words: if keeping A1 or B1 and inspecting B2 or A2 has
value higher than searching (2, 2), keeping the same attribute and inspecting A3 or B3

must also have a higher value. This implies that once an attribute is optimally kept, it is
never abandoned.

To fully characterize the search process, we must compute the optimal policy after
opening X2,2. To do so, we prove the following:

Claim 2. If V (max{u0, A1 + B1}) = R2,2:

V (max{u0, A1 + B1, A2 + B2}) = max{A2 + B2, −s + E[V (max{A2 + B2, Aj + B2})],
− s + E[V (max{A2 + B2, A2 + Bj})], −s + E[V (max{A2 + B2, Aj + Bj})]},

where once again Aj, Bj are unsampled attributes.

Since currently all compound boxes are uncorrelated, opening X2,2 does not generate
any new information about the content of X1,1. This will not be the case when we prove
the statement in the final step of the proof. For now: since we know that optimally
keeping an attribute leads to an myopic optimal policy, the result follows from the same
observation than before. In particular:

• If V (max{u0, A1 + B1, A2 + B2}) = −s + E[V (max{A2 + B2, A2 + Bj})] = A2 + z,
or V (max{u0, A1 + B1, A2 + B2}) = −s + E[V (max{A2 + B2, Ai + B2})] = B2 + z

the consumer will open nested boxes myopically forever,

• If V (max{u0, A1 + B1, A2 + B2}) = A2 + B2, the consumer would stop,

• If V (max{u0, A1 +B1, A2 +B2}) = −s+E[V (max{A2 +B2, Ai +Bj})], the consumer
would open the next compound box.

It must hold that V (max{u0, A1 + B1, A2 + B2}) ̸= max{u0, A1 + B1, A1 + z, B1 + z}
because V (max{u0, A1 + B1}) = R2,2. In particular, to see that V (max{u0, A1 + B1, A2 +
B2}) ̸= max{A1 + z, B1 + z} – that is, that it is sub optimal to go back to X1,1 after
opening X2,2, suppose by contradiction that the optimal policy makes the consumer go
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back to A1 + z or B1 + z after opening X2,2 with probability q ∈ (0, 1] and proceed
optimally afterwards. We already established that after inspecting (1, 2) or (2, 1) the
consumer would optimally keep searching keeping either A1 or B1 fixed. If this is the
case, since R2,2 > rA because the consumer opened X2,2 instead of opening nested boxes,
it must hold:

R2,2 =qrA + (1 − q)(R2,2 − rA),
R2,2q =2qrA − rA,

R2,2 =2rA − rA

q
> rA,

q >1.

which is a contradiction.

It follows that the optimal policy after opening X2,2 is to myopically select between
max{A2, B2}+max{z, min{A2, B2}} and R3,3. Since this was the same policy the consumer
followed at (1, 1), the consumer is once again following a myopic policy. Therefore,
R2,2 = W , which proves the claim.

Result 2. Let W i,i = W be the reservation value of uncorrelated compound boxes X̃i,i and
z the reservation value of any y ∈ A ∪ B. The optimal policy with infinitely many X̃i,i is:

• Open X̃1,1 if u0 < W , otherwise keep u0,

• if max{A1, B1} + max{z, min{A1, B1}} > W :

– if max{z, min{A1, B1}} = min{A1, B1}, stop and keep A1 + B1,

– if max{z, min{A1, B1}} = z, inspect (1, j) until Bj > z is found if A1 > B1

and inspect (i, 1) until Ai > z is found if A1 < B1,

• if max{A1, B1} + max{z, min{A1, B1}} < W , open X̃2,2 and go back to the second
point.

Step 3: General model We now remove the assumption of compound boxes being
uncorrelated. This implies that the consumer can move freely on the grid of products
inspecting one or two new attributes as she sees fit. We want to show that the optimal
search process still follows a process that can fully characterized with threshold rules.

Suppose for now that the consumer never optimally goes back to a previously discarded
attribute. That is, suppose that k = max{u0, A1 + B1, A1 + B2}. Then:

V (k) = max{k, −s + E[V (max{k, A1 + Bj})],
− s + E[V (max{k, Aj + B2})], −s + E[V (max{k, Aj + Bj})]}.
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Notice that this value function does not allow the consumer to inspect combinations
of discovered attributes. This will be addressed shortly. For now, we want to show that:

Claim 3. If the consumer cannot backtrack to a combination of discovered attributes,
V (max{u0, A1 + B1}) = rA implies:

V (max{u0, A1 + B1, A1 + B2}) = max{A1 + B2, −s + E[V (max{A1 + B2, A1 + Bj})],

where Bj are unsampled B attributes.

In words: we want to show that the if the consumer cannot backtrack to a combination
of undiscovered attributes, keeping an attribute and still searching follows an optimal
policy that is still myopic.

From the last paragraph, we know that if V (max{u0, A1 + B1}) = rA, it must hold:

V (max{u0, A1 + B1, A1 + B2}) ̸= max{u0, A1 + B1,

− s + E[V (max{k, Ai + B1})], −s + E[V (max{k, Ai + Bj})].

We must now prove that rA > R2,2 implies that V (max{u0, A1 + B1, A1 + B2}) ̸=
−s + E[V (max{k, Ai + B2})], that is, inspecting (2, 2) after (1, 2) cannot be optimal.
Suppose by contradiction that the optimal policy was such that, after inspecting (1, 2),
the consumer would optimally inspect (2, 2) with probability q ∈ (0, 1) and then follow
the optimal policy from there. Then, it must hold:

rA =qR2,2 + (1 − q)(rA − R2,2),
rAq =2qR2,2 − R2,2,

rA =2R2,2 − R2,2

q
> R2,2,

q >1.

Which is clearly a contradiction: if (1, 2) is optimally picked over (2, 2), it can never
be optimal to inspect (2, 2) afterwards. This proves the claim.

When compound boxes share products, each combination of known attributes, inspected
or not, becomes effectively an outside option. Suppose that the consumer opened X1,1,
X2,2, and X3,3. Then, the highest available payoff for the consumer is:

k = max{u0, A1 + B1, A2 + B2, A3 + B3,

A1 + B2 − s, A1 + B3 − s, A2 + B3 − s,

A2 + B1 − s, A3 + B1 − s, A3 + B2 − s}.

Only a subset of these can ever be relevant. Consider A2 + B3 − s and A1 + B3 − s. If
the consumer decides to backtrack to one of these two available payoffs after opening X3,3

28



and observing the realization B3, it is clear that she woulds select the former if A2 > A1

and the latter otherwise. Importantly, this information is known to the consumer before
opening the compound box X3,3.

We must now prove that if the consumer decides to open nested boxes, he never
backtracks. Suppose the consumer optimally opened in sequence: X1,1, X2,2, (2, 3). We
want to show that the consumer does not backtrack to (1, 2) or (2, 1) nor to the newly
discovered (1, 3). For the first two, notice that the sequencing implies:

V (max{u0, A1 + B1, A2 + B2}) = rA2 > max{R3,3 = R2,2, A1 + B2 − s, A2 + B1 − s},

where rA2 is the continuation value of the optimal policy after keeping A2.

For the last one, notice that V (max{u0, A1 + B1}) = R2,2 implies R2,2 > rA1 , where
rA1 is the continuation value of the optimal policy after keeping A1. But then it holds:

rA2 > R3,3 = R2,2 > rA1 ⇐⇒ A2 > A1 ⇐⇒ A2 + B3 > A1 + B3 − s.

Since keeping (2, 3) must better than backtracking to known (1, 3), backtracking is never
optimal. Therefore, once again keeping an attribute leads to a myopic optimal policy:
once an attribute is kept, it is never dropped.

The choice of backtracking then must be pinned down by the highest past realization.
Suppose the consumer opens X3,3. If she chooses to keep A3, she chooses between:

• A3 + B3, readily available,

• A3 + z, opening nested boxes,

• A3 + B1 − s or A3 + B2 − s, backtracking.

Without loss of generality, suppose B2 > B1. Suppose further that B3 < z. Then, the
consumer chooses max{A3 + z, A3 + B1 − s}. Notice that:

max{A3 + z, A3 + B1 − s} = A3 + B1 − s ⇐⇒ B1 ≥ z + s.

Because the realization B1 is known before opening the box, the consumer is already
aware of whether she would backtrack or go forward. Moreover, if V (k) = A3 + z, it is
clear that the consumer would never choose to backtrack afterwards. This confirms that
the optimal policy conditional on inspecting a single attribute is myopic.

We can finally prove the main statement. In words, we now use the predictability of
the search process when the highest past realization of A attributes, AH , and B attributes,
BH , are above or below z + s to define these thresholds.

Formally, suppose the consumer needs to decide whether to open Xi,i. let k =
max{u0, maxj<i{uj,j}, AH + BH − s} be the current highest sure payoff for the consumer.
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Define:

V (k) = max{k, −s + E[V (max{k, Aj + Bk})], −s + E[V (max{k, Ak + Bj}),
− s + E[V (max{k, Ak + Bk})]], ∀k > i.

We already established that there exist a value k̂ such that if k > k̂, V (k) = k.
Further, we proved above that if V (k) = −s + E[V (max{k, Ak + Bi}) or V (k) = −s +
E[V (max{k, Ai + Bk}), the optimal policy has the consumer only opening nested boxes
keeping the same attribute Ai or Bi fixed. Finally, we established that if AH and/or BH are
above z+s, either one or both −s+E[V (max{k, Ak +Bi}) and −s+E[V (max{k, Ai+Bk})
will be dominated by backtracking. With these considerations we can define the value
W such that the consumer opens compound box Xi,i if and only if W > max{k, Ai−1 +
Bi, Ai + Bi−1}.

If max{AH , BH} < z + s, the myopic (but incorrect) value of inspecting the next
compound box is the same is in the last paragraph: W . Suppose Xi,i is opened next and
Ai > z + s. The next box will have a different reservation value. The correct reservation
value must account for the possibility of discovering attributes that change the search from
that point onward. To do so, we must first compute the value of inspecting a compound
box when max{AH , BH} > z + s. We first do so assuming, as in the last paragraph,
that boxes are uncorrelated but in different configurations depending on the number of
attributes above z + s that were found. Then, we combine them appropriately to produce
the correct reservation values.

Suppose an attribute AH was found above z + s. The consumer would go back
to it rather than opening nested boxes unknown in their A component. Let wa(AH)
be the expected payoff of opening a compound box locked in this configuration. Let
this box be Xi,i. Suppose Bi < z is found. Then, the consumer must choose between
opening nested boxes with score ri,j>i = Ai + z > Ai + Bi = ui,i and backtracking to a
box with score ri,j<i = AH − s + Bi. Therefore, the consumer inspects nested boxes if
Ai > AH − s − (z − Bi), and backtrack otherwise. If Bi > z, the consumer stops at (i, i)
if Ai > AH − s and backtrack otherwise. The CDF then can be obtained by fixing the
value Bi and then integrating for it as it was done for configuration 1:

Ha(wa) =
∫ z

0
Fa

(∫ AH−s−(z−B)

0
Fb

(
wa − (AH − s)

)
dFa(A)+

+
∫ ŷ

AH−s−(z−B)
Fb (wa − z) dFa(A)

)
dFb(B)+

+
∫ ŷ

z
Fa

(∫ AH−s

0
Fb

(
wa − (AH − s)

)
dFa(A)+

+
∫ ŷ

AH−s
Fb (wa − A) dFa(A)

)
dFb(B).
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The equivalent formulation for Hb(wb), relevant if AH > z + s > BH is:

Hb(wb) =
∫ z

0
Fb

(∫ BH−s−(z−A)

0
Fa

(
wb − (BH − s)

)
dFb(B)+

+
∫ ŷ

BH−s−(z−A)
Fa (wb − z) dFb(B)

)
dFa(A)+

+
∫ ŷ

z
Fb

(∫ BH−s

0
Fa

(
wb − (BH − s)

)
dFb(B)+

+
∫ ŷ

BH−s
Fa (wb − B) dFb(B)

)
dFa(A).

Suppose now min{AH , BH} > z: the consumer will not inspect any nested box of which
he does not already know the value of. Now, the relevant thresholds determining whether
something is kept or not are AH − s and BH − s: (i, i) is only kept if both Ai > AH − s

and Bi > BH − s. Otherwise, the highest between AH − s + Bi and Ai + BH − s is kept.
Therefore:

Ha,b(wa,b) =
∫ BH−s

0
Fa

(∫ AH−BH+B

0
Fb

(
wa,b − (AH − s)

)
dFa(A)+

+
∫ ŷ

AH−BH+B
Fb

(
wa,b − (BH − s)

)
dFa(A)

)
dFb(B)+

+
∫ ŷ

BH−s
Fa

(∫ AH−s

0
Fb

(
wa,b − (AH − s)

)
dFa(A)+

+
∫ ŷ

AH−s
Fb (wa,b − A) dFa(A)

)
dFb(B).

When boxes are assumed to be locked in any of these configurations, the value function
governing search is exactly the same as the one in the last paragraph since all boxes are
independent. Then, we construct myopic reservation values:

s =
∫ 2ŷ

W κ

(wκ − W κ)dHκ(wκ).,

with κ ∈ {{a}, {b}, {a, b}}.

Let W ∗
a,b(AH , BH) be the expected equivalent of costly opening the next box on the
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search path:

W ∗
a,b(AH , BH) = W a,b(AH , BH)

∫ BH

0

∫ AH

0
dFa(A)dFb(B)+

+
∫ BH

0

∫ ŷ

AH
W a,b(A, BH) dFa(A)dFb(B)+

+
∫ ŷ

BH

∫ AH

0
W a,b(AH , B) dFa(A)dFb(B)+

+
∫ ŷ

BH

∫ ŷ

AH
W a,b(A, B) dFa(A)dFb(B).

Consider the choice of the consumer. If she chooses to open the next compound box,
Xi+1,i+1, she knows that she will stop only if wi+1,i+1 > W a,b(max{Ai+1, AH}, max{Bi+1, BH}).
All future boxes will have this updated value. Suppose the consumer does open the box.
The choice of opening the box after it will follow the same logic, with possibly new values
of AH , BH . Notice that the value of this follow-up search is already incorporated in
W ∗

a,b(AH , BH), as it accounts for possible upward changes in the value of future boxes.
Therefore, W ∗

a,b(AH , BH) represents the value of inspecting the next box and following up
optimally given the new information acquired with the new box, and fully capture the
value of the search process from that point onward.

In the same way, for configuration 2 we write:

W ∗
a(AH) =W a(AH)

∫ z+s

0

∫ AH

0
dFa(A)dFb(B)+

+
∫ z+s

0

∫ ŷ

AH
W a(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ AH

0
W a,b(AH , B) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ ŷ

AH
W a,b(A, B) dFa(A)dFb(B).

An equivalent formulation can be found for configuration 3. Finally, for configuration
1, we write:

W ∗ =W
∫ z+s

0

∫ z+s

0
dFa(A)dFb(B)+

+
∫ z+s

0

∫ ŷ

z+s
W a(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ z+s

0
W b(B) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ ŷ

z+s
W a,b(A, B) dFa(A)dFb(B).
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Therefore:

W(AH , BH) =



W ∗ if max{AH , BH} < z + s,

W ∗
a(AH) if AH > z + s > BH ,

W ∗
B(BH) if BH > z + s > AH ,

W ∗
a,b(AH , BH) if min{AH , BH} > z + s.

represents the history dependent value of the search process from that point onward
accounting for all possible search paths conditional on them arising during the search
process itself.

B. Optimal Monopoly Pricing - Proof of Proposition 2

The proof of Proposition 2 comes in three steps. First, I show that if a non-uniform
equilibrium price vector exists, it must be such that lower uniform prices are set for exactly
one product characterizing all attributes, and higher uniform prices are set for all other
products. Next, I show that all such price vectors are dominated by a uniform price vector.
Finally, I show that the optimal uniform price vectore is the one as per Proposition 2.

Optimal differentiated price vector Suppose the seller wanted to set differential
prices for his infinitely many products. First, it is obvious that at least one product must
be priced differently than all others. For notational clarity, I define p1 < p2 < p3 as a set
of three price levels. I show that any optimal differential price vector must be such that a
set of products sharing no attributes with each other must be priced at p1 and all other
products must be priced at either p2 or p3, but there cannot be any vector with more
than two price levels.

First suppose that more than one product sharing an attribute Ai has price set at
p1. The geometry of the product space implies that there must be one attribute Bj for
which the same applies. For example, if (1, 1) and (1, 2) were priced at p1, (1, 2) and (2, 2)
would also need to be. Then, the consumer would optimally start her search process from
(1, 2) because compound box X1,2 contains the most cheap products. If the consumer then
wanted to open a new compound box, she would optimally select X3,3 and proceed along
the diagonal.

If p1 is such that the consumer would want to open X1,2 but not X3,3 without updating,
the seller would have the incentive to set a lower p1 to all products on the diagonal and
increase the price of (1, 2); on the other hand, if the consumer is willing to open X3,3

without updating, then p1,2 = p1 implies that with positive probability the consumer will
choose to keep either A1 or B2 and purchase (1, 1) or (2, 2) at a lower price that he would
have been willing to. Therefore, the seller would have the incentive to increase p1,2 to
re-establish the canonical order of search. This intuition extends to any number n > 1
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of products for each attribute, and to all attributes. Therefore, at most one product per
attribute can be optimally set to be cheaper than the others.

Suppose now that a strict subset of attributes has all associated products priced at
either p1 or p2, while all other attributes follow the pricing detailed above. If the selected
price is p1, all products with such attributes are cheaper than all others, and are therefore
more valuable to the consumer. If the consumer is willing to exhaust these products and
still inspect the attributes with differentiated prices, with positive probability the seller
sells at a lower price than the consumer was willing to pay. If the selected price is p2, all
such attributes would be pushed to the end of the search order and never reached because
the consumer has infinite better alternatives available.16

Finally, suppose that exactly one product per attribute is priced at p1 and all others
are priced at either p2 or p3. Suppose first that a finite subset of attributes has products
priced at either p1 or p2 and all other attributes have products priced at either p1 or p3. A
consumer that optimally decides to start searching will search first the compound box or
boxes in which the most cheap products can be found. If he is willing to keep searching
the boxes until only the ones with the highest number of expensive products and stop
without updating, having the latter group cannot be optimal, and all products should
belong to the former group. If the consumer is still interested in searching, instead, all
products should belong to the latter group.

Suppose now that all attributes are such that one product is priced at p1, a finite
subset of products is priced at p2 and all others are priced at p3. If the consumer optimally
elected to keep an attribute after inspecting a product priced at p1, she would select to
inspect the ones priced at p2 first. If after exhausting them she would stop, all other
products should also have been priced at p2. Otherwise, all products should have been
priced at p3. The result immediately extends to any number of price levels larger than
two. The result follows.

Optimality of uniform prices Next, I show that for any vector of differential prices
structured as above, there exist an uniform price vector that preserves probability of trade
and returns strictly higher expected profit. As discussed in the main text (and detailed in
the next part of the proof), probability of trade conditional on the consumer starting to
search depends on the probability of finding realizations such that the resulting updating of
unopened compound boxes makes the consumer stop searching and not purchase anything.
The highest uniform price is such that:

W(punif ) = W − punif = 0, ∀(i, j).

Where W is the initial value of inspecting a closed nested box net of prices. From the
16This implies that the pricing scheme with infinitely many products has infinitely many payoff-

equivalent equilibria in which the seller sets a high price for all products defined by a finite subset of
attributes which are never reached.
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discussion above and from the proof of proposition 1, all updating to W is upward and,
therefore, probability of trade in case of the highest uniform price is 1. Therefore, it must
be shown that no pricing scheme with differential prices can generate a higher expected
profit than W .

To do so, it is sufficient to show that when differential prices are set, the value of
inspecting any closed compound box is lower than with uniform prices. Suppose this is
the case: the threshold above which a compound box is kept when locked in configuration
1 would then be lower. This cascades into a reduction of the overall value of searching
and, therefore, reduces expected profits of the firm.

Notice that, as per the main text, without prices it holds:

wi,i = max{Ai, Bi} + max{z, min{Ai, Bi}},

when all products are priced uniformly, purchasing any of the products inside the compound
box is equivalent. When they are not, instead, the price spread affects when consumers
would keep searching instead of stopping at (i, i). Suppose pi,i = p and pi,j ̸=i = pj ̸=i,i = p+δ

for some δ > 0. Then, a consumer would elect to inspect nested boxes if z − δ >

min{Ai, Bi}, because now the prices associated with the nested boxes is higher. Notice
that this implies that wi,i when differential prices are set is equivalent to wi,i with uniform
prices when search costs are higher, or:

max{Ai, Bi} + max{z − δ, min{Ai, Bi}} = max{Ai, Bi} + max{z′, min{Ai, Bi}},

where z′ solves:
s′ =

∫ ŷ

z′
(y − z′) dF (y)

and because z′ = z − δ and z is decreasing in s.

The result follows: since differential prices reduces the value of search when there are
infinitely many attributes, this in turn means that any pricing vector with differential
prices limits the value of search compared to an equivalent one with uniform prices.
Therefore, any differential pricing vector that makes the consumer indifferent between
searching or not (which makes it equivalent to p∗ = W) must generate lower expected
profits than its equivalent counterpart.

Optimal uniform prices vector Finally, it must be shown that p∗ = W is indeed
optimal. To do so, it sufficient to show that Wa,b(z + s, z + s) is the lowest updated value
a compound box can ever have and that Wa,b(z + s, z + s) ≥ W .
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For the former, recall that it holds:

Wa,b(AH , BH) = W a,b(AH , BH)
∫ BH

0

∫ AH

0
dFa(A)dFb(B)+

+
∫ BH

0

∫ ŷ

AH
W a,b(A, BH) dFa(A)dFb(B) +

∫ ŷ

BH

∫ AH

0
W a,b(AH , B) dFa(A)dFb(B)+

+
∫ ŷ

BH

∫ ŷ

AH
W a,b(A, B) dFa(A)dFb(B)

Wa(AH) = W a(AH)
∫ z+s

0

∫ AH

0
dFa(A)dFb(B) +

∫ z+s

0

∫ ŷ

AH
W a(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ AH

0
Wa,b(AH , B) dFa(A)dFb(B) +

∫ ŷ

z+s

∫ ŷ

AH
Wa,b(A, B) dFa(A)dFb(B)

(which has an equivalent counterpart for Wb(BH)), and

W = W
∫ z+s

0

∫ z+s

0
dFa(A)dFb(B) +

∫ z+s

0

∫ ŷ

z+s
Wa(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ z+s

0
Wb(B) dFa(A)dFb(B) +

∫ ŷ

z+s

∫ ŷ

z+s
Wa,b(A, B) dFa(A)dFb(B),

and notice that if AH = z + s (equivalently, BH = z + s), it holds:

Ha,b = Ha(= Hb) = H,

W a,b(z + s, z + s) = W a(z + s)(= W b(z + s)) = W.

and that all are weakly increasing in AH and/or BH , with W being constant in both and
the other being strictly increasing in either or both.

Therefore:

Wa,b(z + s, z + s) = W a,b(z + s, z + s)
∫ z+s

0

∫ z+s

0
dFa(A)dFb(B)+

+
∫ z+s

0

∫ ŷ

z+s
W a(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ z+s

0
W b(B) dFa(A)dFb(B) +

∫ ŷ

z+s

∫ ŷ

z+s
W a,b(A, B) dFa(A)dFb(B) =

= W
∫ z+s

0

∫ z+s

0
dFa(A)dFb(B) +

∫ z+s

0

∫ ŷ

z+s
W a(A) dFa(A)dFb(B)+

+
∫ ŷ

z+s

∫ z+s

0
W b(B) dFa(A)dFb(B) +

∫ ŷ

z+s

∫ ŷ

z+s
W a,b(A, B) dFa(A)dFb(B) = W ,

which proves the result.
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