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Abstract

We use micro-level data on fuel consumption, mileage, and travel mode to study

plug-in hybrid drivers’ response to fuel prices. When fuel prices rise, plug-in hybrids

reduce fuel consumption more than gasoline and diesel cars. They do not reduce

their mileage but increase electric recharging, without evidence of habit formation.

As the share of kilometers driven in electric mode by plug-in hybrids is only half

the official test cycle value, fuel prices are effective in improving the environmental

performance of these vehicles. We estimate drivers’ value of charging time at e15

to e41/hour.
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1 Introduction

Automobile usage imposes substantial negative externality costs. It accounts for around

28 percent of global greenhouse gas emissions and significantly contributes to outdoor

air pollution. The pressure to address climate change has brought major economies to

encourage the adoption of cleaner vehicles, including battery and plug-in hybrid electric

vehicles. Plug-in hybrids, in particular, have been heralded by policymakers as a transi-

tion technology to aid in the electrification of the transportation sector. Their cross-over

characteristics (internal combustion engine combined with a battery) make them attrac-

tive to consumers hesitant to switch to a fully electric car due to concerns about range

and the availability of charging infrastructure.1

In the U.S. and Europe, plug-in hybrids account for around half of the stock of elec-

tric vehicles, largely thanks to substantial purchase subsidies. These incentives target

adoption, while usage subsidies primarily aim to support the development of charging

infrastructure. Usage incentives are generic in their scope; presently, there are no direct

policies affecting the intensity of use for plug-in hybrids, encouraging driving in electric

mode, or penalizing driving in internal combustion mode. Evidence from real-world usage

data (Plötz et al., 2021) suggests that plug-in hybrids tend to be used mainly in internal

combustion mode, so actual fuel consumption and emissions of those vehicles are much

higher than indicated by official figures. Ironically, official emissions (based on test cy-

cles) are used to justify purchase subsidies and calculate manufacturers’ compliance with

emission standards.2

In this study, we evaluate how plug-in hybrid usage responds to gasoline prices in

the short run. Unlike drivers of traditional internal combustion engines, who can re-

duce gasoline consumption mainly through mileage, drivers of plug-in hybrids can charge

1According to the U.S. Energy Information Administration (eia.gov), plug-in-hybrid sales are cur-

rently growing at a rate that outpaces electric vehicle growth. The same trend is observed in Asia (Asia

Pacific). Automakers are also increasing their offer of plug-in-hybrid models to consumers (GM and

Toyota).
2In the U.S., federal tax incentives available for plug-in hybrids can reach $7,500, depending on the

vehicle price, assembly location, battery component sourcing, and the buyer’s income (US incentives).

In Europe, various incentives are available in the form of purchase subsidies and tax benefits (European

incentives).

1
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their vehicles more frequently and increase the share of mileage driven in electric mode.

Reliable estimates of both elasticities are crucial for understanding the response of fuel

consumption and carbon emissions to fuel prices and for designing effective regulatory

policies to promote plug-in hybrids in electric mode, specifically.

To answer our research question, we use detailed micro-level data from a German

mobile phone application that allows users to record fuel consumption, distance traveled,

and the price paid for each refueling. The dataset spans six years (from 2016 to 2021) and

comprises 71,040 drivers; around 4 percent of users drive a plug-in hybrid, 65 percent drive

a gasoline car, and 31 percent a diesel car. Our sample accounts for about one percent of

Germany’s total stock of plug-in hybrids. Our data comprises drivers voluntarily engaging

with the application. Using additional data from a representative sample, we validate

the representativeness of our sample and the external validity of our results.

In the first step, we document that the share of mileage driven in electric mode (the

utility factor) by plug-in hybrids is, on average, only 39 percent. This is well below the

official percentage adopted by international and European standards (WLTP and NEDC)

for determining the level of pollutants emitted by plug-in hybrids, which is around 70 to

85 percent (Plötz et al., 2022). Consequently, the fuel consumption of plug-in hybrids

is, on average, double that of official estimates. We provide a descriptive analysis of the

determinants of the low utility factor for plug-in hybrids.

In the second step, we assess the impact of fuel prices on fuel demand, focusing on the

travel mode (electric versus combustion) for plug-in hybrids. We exploit the detailed data

to estimate the elasticity of fuel consumption and mileage to fuel prices at the vehicle-

driver level. We address endogeneity concerns related to the actual price drivers pay by

using an innovative instrumentation strategy that accounts for consumer switching across

fuel grades. We estimate an elasticity of fuel consumption of around -0.23 for gasoline car

drivers and between -0.25 and -0.22 for diesel car drivers. Our estimates are consistent

with the most recent studies investigating how fuel consumption responds to gasoline

prices, which find elasticity estimates between -0.16 and -0.37.

Zooming in on plug-in hybrids, we have three main findings. First, the average esti-

mated fuel consumption elasticity is larger than that of gasoline and diesel drivers (be-

tween -0.29 and -0.40). In contrast, the elasticity of mileage is not significantly different
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from zero. Notably, the share of mileage driven in electric mode increases as fuel prices

rise: a ten percent rise in fuel price increases the share of kilometers driven in electric

mode by 1.6 percentage points. Higher fuel prices thus encourage plug-in hybrid drivers

to increase the use of their vehicles in electric mode without substantially sacrificing their

driving capability. That improves the environmental benefits of plug-in hybrids. Around

53 percent of CO2 savings generated by higher fuel prices derive from the increase in the

utility factor.

Second, we estimate a distributed lag model including recent past prices and do not

find evidence of habit formation in recharging due to past fuel shocks. Our findings are

consistent with the results of a recent field experiment by Bailey et al. (2023), showing

the absence of habit formation in the timing of charging for electric vehicles.

Third, building on the finding that the share of electric driving is only 39 percent,

we focus on drivers’ disutility of charging. Drivers may find charging costly because of

the limited battery range (especially when traveling long distances), the lack of access

to charging points (especially when at-home charging is unavailable), the lack of finan-

cial incentives (when the car is company-owned and fuel is paid by the employer), and

multiple unobserved sources of behavioral barriers, such as limited attention or imperfect

information about fuel and charging costs. To obtain an approximation of drivers’ cost of

charging, we specify and estimate a simple model of recharging and fueling choice based

on the charging time. For a reasonable range of electricity prices, we find that drivers’

value of charging time is between e15 and e41/hour; this value is high considering the

German average wage rate of e22.6/hour but aligns with the median wage rate of buyers

of battery vehicles (e35/hour). The high value is unsurprising given the prevalent disutil-

ity of electric recharging shown by drivers in our sample; at the same time, our estimates

align with Dorsey et al.’s (2022) estimates of drivers’ value of time (around $28/hour).

These numbers are essential to evaluate the benefits of time-saving investments, such as

expanding the charging network.

Our results have important policy implications. First, policies to support the adoption

of plug-in hybrids and calculate compliance with emission regulations by manufacturers

should account for real-world electric driving shares and emissions. Second, financial

incentives matter. In particular, policies increasing the carbon price paid by drivers of
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plug-in hybrids would be an effective tool to increase the electrification of miles driven

without a significant impact on mileage. Our findings bolster recommendations for ra-

tionalizing carbon prices presented by Rapson and Muehlegger (2023). Third, financial

incentives are proving to be much more important in encouraging drivers to recharge

due to the absence of habit formation. Finally, the estimated value of charging time

(between e15 and e41/hour) is an essential input for policymakers when evaluating the

cost-benefits of making time-saving investments in the charging infrastructure for drivers

of battery vehicles.

Related literature Our work contributes to four strands of literature.

First, we relate to the work of economists documenting the large discrepancies be-

tween ex-ante estimates produced by engineering models and real-world energy savings:

Allcott and Greenstone (2017), Fowlie et al. (2018), and Reynaert and Sallee (2021). We

demonstrate that monetary incentives play a crucial role in ensuring that plug-in hybrids

contribute to environmental improvements. Ignoring usage incentives to encourage elec-

tric driving can significantly undermine the anticipated reductions in emissions. Specific

to plug-in hybrids, Plötz et al. (2021) provide a systematic review of real-world usage and

fuel consumption of 100,000 vehicles in North America, China, and Europe; they show

that the share of kilometers driven in electric mode by plug-in hybrids is only half the

official test cycle values for private vehicles and even lower for company cars because of

the low charging frequency. The real-world electric range is also lower than estimated

from test cycles; these factors raise tailpipe CO2 emissions by two to four times. We

confirm their findings in our study, adding an analysis of the determinants of the low

share of electric driving. Tsanko (2023) studies the environmental benefits of subsidizing

plug-in hybrids when emissions are higher than officially estimated.3

Second, we contribute to the literature discussing consumers’ behavioral biases re-

garding fuel consumption: Allcott and Knittel (2019). The literature has extensively

3Dong and Lin (2012) is an early study based on survey data looking at the charging network’s impact

on plug-in hybrids’ fuel consumption. Raghavan and Tal (2022) also use survey data to investigate the

variables influencing the charging choices of plug-in hybrid owners. Our study uses micro-level data with

more extensive coverage to understand the response of fuel consumption and charging choices to fuel

prices.
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studied the relationship between fuel prices, fuel economy, and automobile purchases:

Busse et al. (2013); Allcott and Wozny (2014); Sallee et al. (2016); Grigolon et al. (2018).

Beresteanu and Li (2011) investigate environmental policies targeting the adoption of

hybrid vehicles. Similar to our study, Salvo and Huse (2013) look at the usage of flex-fuel

cars (ethanol and gasoline), documenting a low rate of switching between fuels.

Third, our paper complements a growing literature on the usage of battery vehicles.

Davis (2019), Burlig et al. (2021), and Nehiba (2024) show that electric vehicles tend to

be driven less than other vehicles. Johansen and Munk-Nielsen (2022) and Davis (2022)

provide context to these findings, showing the importance of portfolio complementarities

in the adoption and usage of electric vehicles. While our dataset does not contain in-

formation on multi-vehicle ownership, we leverage its unique high-frequency and panel

features to pin down plug-in-hybrid usage patterns, mileage and charging responses to

fuel prices, and habit formation.

Fourth, we relate to the sizeable number of studies investigating how fuel consumption

and mileage respond to fuel prices. Earlier studies mainly relied on aggregate gasoline

expenditure data and cross-sectional variation. Aggregation creates an endogeneity issue,

as movements in demand cause fuel prices and consumption to shift in the same direc-

tion. Such correlation results in an upward bias of the estimated elasticities (Kilian and

Zhou, 2023). Table A.I in the Appendix summarizes selected price elasticity estimates of

gasoline demand from recent studies developed in the last decade. These studies mostly

use individual-level data (thus avoiding aggregation biases) or panel-level data at the

month and state level (addressing the endogeneity concerns using instrumental variable

techniques); their elasticity estimates are an order of magnitude larger than earlier ones,

ranging between -0.16 and -0.37. Our estimates are consistent with these studies; we find

a gasoline price elasticity of around -0.23. We contribute to the empirical debate on fuel

elasticity by looking at different fuel and engine types in addition to gasoline (diesel and

plug-in hybrids). Furthermore, we estimate how plug-in hybrid charging responds to fuel

prices, which has not been investigated so far in the literature.
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2 Data

Our primary dataset comes from Spritmonitor, an application where users record their

refuelings and track their effective on-road fuel consumption. Our records range between

2016 and 2021 and refer to cars built in 2016 or thereafter. We observe the refueling date,

the amount fueled, the distance traveled since the previous refueling, the total amount

paid, and whether the users completely or partially filled up their tanks; Figure A.1 in

the Appendix provides sample screenshots of the application used by drivers to track

themselves. We match the observed vehicle nameplate, engine type (gasoline, diesel,

or plug-in hybrid), and engine power with additional car characteristics scraped from

the General German Automobile Club (ADAC), adding information on the official fuel

economy, the emission values, the driving ranges and charging times (for battery cars).

The official fuel economy and emission values are based on the New European Driving

Cycle (NEDC).4

We obtain the average daily fuel prices from Tankerkönig (for gasoline grades normal

E10, super, and standard diesel) and fuelo.net (for gasoline grades super plus and pre-

mium, and for diesel premium). We use the prices of different fuel grades to investigate

the behavior of drivers switching from premium to less-expensive mid and regular-grade

fuel when prices are high; this level of detail is usually unavailable in other studies.

Electricity prices are sourced from the German Federal Statistical Office (Statistisches

Bundesamt). Figure A.2 in the Appendix shows that electricity prices remained stable

throughout the sample; the rates depend on each household’s contract (which, in turn,

depends on their consumption level). Finally, we collect information from the Federal

Network Agency (Bundesnetzagentur) on the number and type of charging points.

We aggregate our data to the monthly level for two reasons. First, aggregation helps

minimize the impact of typing errors when labeling a refueling as partial or full; such

mislabeling would limit our ability to analyze data at the refueling level. Second, we

compare elasticities across different fuel and engine types (gasoline, diesel, and plug-in

4In September 2018, the European Union gradually adopted the Worldwide harmonized Light vehicles

Test Procedure (WLTP). Using our extensive set of car attributes, we impute the NEDC values for the

vehicles whose fuel economy is expressed in WLTP to harmonize the measure of fuel economy across all

cars in our sample.
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hybrids). Aggregating data monthly is helpful in interpreting our estimated elasticities

consistently and in avoiding issues of anticipatory behavior regarding fuel purchases in

response to fuel tax fluctuations (Coglianese et al., 2017). We also remove records corre-

sponding to the top 30 percent of the distribution of daily distance traveled by fuel and

engine type, as long-distance trips (for example, holiday travel) are assumed to reflect

exceptional driving circumstances for German drivers.

As the travel logs are self-reported by users, drivers may change their recording be-

havior according to the price level. Thus, we follow Solon et al. (2015) and account

for the possibility of endogenous sampling by weighing each observation by the inverse

probability of selection, based on the number of travel logs recorded in a month.5

To study the usage behavior of drivers of plug-in hybrids, we construct the utility

factor, namely the share of kilometers driven in electric mode. Because many drivers do

not report electric recharges or do so only irregularly, we follow Plötz et al. (2021) and

calculate the utility factor based on the on-road and official fuel economy. Specifically,

we calculate the utility factor as follows:

UF = 1− On-road fuel economy

1.5×Official fuel economy
, (1)

where the official and on-road fuel economy values are measured in liters per 100 km. The

variable “On-road fuel economy” is calculated using the driver’s logs of fuel consumption

and mileage. The variable “Official fuel economy” is provided by ADAC and refers to

the official fuel economy of plug-in hybrid vehicles in charge-sustaining mode (a combi-

nation of engine and motor management to maintain the battery state of charge). The

denominator of Equation (1) approximates the fuel economy in charge-sustaining mode;

the 50 percent addition accounts for the discrepancy between real-world fuel economy

and actual fuel economy. This method is optimistic as a 50 percent deviation is above

the mean deviation for conventional vehicles; in our data, the mean deviation for conven-

tional vehicles turns out to be 30 to 40 percent, which would imply a lower utility factor.

We test the robustness of our results using a range of deviation values (1.3 to 1.7).

5In Section 3.2, we show that our results are robust to the inclusion of observations with long-distance

traveled (with a maximum daily mileage of 111.4 km for plug-in hybrids) and the use of OLS instead of

weighted linear regressions.
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Table 1 presents the summary statistics. As our sample includes only drivers who

engage with the app, we suspect that these drivers could be either more motivated to save

fuel than the general population or could drive company cars and, therefore, be required

to track their mileage and fuel consumption. In our sample, before removing long-distance

trips, the average annual mileage is 14,389 km for gasoline cars and 22,333 km for diesel

cars. We study how representative our sample is by comparing these numbers with the

averages reported by the German Federal Highway Research Institute (Bundesanstalt

für Straßenwesen). The reported average annual mileage is between 10,400 km (private)

and 15,300 km (company) for gasoline cars and 17,400 km (private) and 29,100 km

(company) for diesel cars. Accounting for the fact that our sample includes only recent

cars, our sample averages are very close to the ones reported for the general population.

As a further test, we use complementary data from the German Mobility Panel (MOP),

which surveys a representative sample of the German population once a year to monitor

their mobility patterns. The monthly mileage of vehicles driven in normal circumstances

(excluding, for example, vacation trips) reported in the MOP is within the range of the

averages reported in our sample after excluding long-distance trips: 709 km for gasoline

cars and 1,240 km for diesel cars. The monthly mileage in our sample is 670 for gasoline

and 1,018 for diesel cars.

Table 1 shows that the on-road emissions for cars of all fuel types exceed the official

fuel economy rating measured by standard test cycles; this result aligns with previous

studies (Reynaert and Sallee, 2021; Plötz et al., 2018). Plug-in hybrids feature the most

striking difference between official and on-road fuel economy ratings because they are used

predominantly in combustion mode: the average utility factor (electric driving share) in

our sample is 39 percent. Panel (a) of Figure 1 plots the histogram of monthly utility

factors for each vehicle-driver; the histogram displays a mass point at zero: drivers often

do not charge their plug-in hybrid at all. In addition, only 25 percent of drivers use

the car in electric mode for more than 50 percent of the mileage. Panel (b) of Figure

1 plots the average utility factors for each vehicle-driver throughout the sample period.

Compared to Panel (a), the mass point at zero shrinks; drivers charge their cars some

months but not every month. Still, a substantial share of users never charge their cars.
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Table 1: Summary statistics

Gasoline Diesel PHEV

Fueling level data Mean SD Mean SD Mean SD

Fuel usage (liter/month) 49.45 25.94 65.19 33.84 42.80 26.97

Mileage (km/month) 669.72 338.93 1,017.80 523.69 928.22 491.56

Mileage (km/year) 8,036.67 4,067.13 12,213.61 6,284.30 11,138.63 5,898.71

On-road fuel economy (liter/100km) 7.52 1.62 6.51 1.16 4.71 1.78

Official fuel economy (liter/100km) 5.74 1.08 4.62 0.68 1.67 0.36

Utility factor 0.39 0.22

Fuel price (e/km) 1.30 0.14 1.16 0.12 1.33 0.14

Sample sizes

Number of refuelings 841,065 393,518 29,934

Number of drivers 46,071 22,290 2,679

The table reports summary statistics of the main variables. The total number of observations (refuelings

by each driver/vehicle) is 1,264,517.

Figure 1: Utility factor analysis
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(b) Vehicle/driver utility factor

The figure reports: in Panel (a), the histograms of monthly utility factors for each vehicle-driver; in

Panel (b), the average utility factors for each vehicle-driver throughout the sample period.

2.1 Usage patterns for plug-in hybrids

Why do drivers charge their plug-in hybrids infrequently? We provide two descriptive

facts to answer this question. First, we establish that recharging plug-in hybrids is cheaper

than refilling the tank. We calculated the difference in usage cost per 100 km for all plug-in
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hybrid users in our sample, assuming a fuel price of e1.37 per liter (the average fuel price

in 2021) and an electricity price of e0.30 per kWh.6 Figure A.3 in the Appendix plots

the histogram of cost differences (e per 100 km) between using fuel and electricity across

users. Using plug-in hybrids in electric mode is cheaper than using them in combustion

mode, with the average cost difference equal to e2.9 per 100 km. For a user driving

10,000 km per year, using the plug-in hybrid exclusively in electric mode would generate

cost savings of e290 compared to solely using the car in combustion mode. Notably,

these financial incentives do not play a role for drivers of company cars in Germany; the

employer often bears the fuel costs, and company car drivers might not even have a choice

but to pay privately to charge their vehicles at home.

Second, we use data from the MOP survey to monitor their mobility patterns. The

latest survey waves (2021/2022 and 2022/2023) collect fueling and charging logs for 42

plug-in hybrids; we also obtain information on whether the owner can charge at home

and if the car is privately owned. Notwithstanding the small sample size, Table A.II in

the Appendix reveals interesting usage patterns. Consistent with the financial incentives

illustrated above, privately owned plug-in hybrids are more often operated electrically;

the share of mileage driven in electric mode is almost double that of company cars. The

utility factor is lower for owners frequently driving long-distance (routes over 100 km), as

the car requires a longer break to recharge the battery during the journey, and for drivers

that cannot recharge their vehicle at home.

Guided by the complementary evidence provided by the German Mobility Panel,

we turn to our dataset to obtain further descriptive evidence on the determinants of

the utility factor. We estimate a regression model for fractional dependent variables

(Papke and Wooldridge, 1996) and regress the monthly utility factor on: (i) an indicator

identifying that more than half of the trips of a user exceed the electric range of the

car by 50 percent; (ii) an indicator identifying drivers whose mileage is above the 90th

percentile of the mileage distribution to capture the most likely drivers of company cars;

and (iii) the monthly density (in km2) of public charging points suitable for plug-in hybrid

charging.

6The electricity price of e0.30 per kWh is higher than what most households paid in Germany in

2021 to reflect that some charging may occur at higher prices at public chargers.
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The patterns emerging from the German Mobility Panel are confirmed in our sample.

Column 1 of Table A.III shows that the utility factor is lower when: (i) car owners

frequently drive beyond the car’s range (by 3.0 percentage points); (ii) the car is most

likely a company car (by 2.6 percentage points); and (iii) the density of public charging

points decreases by 0.01 units (by 2.1 percentage points). In column 2 of Table A.III,

we add driver-specific fixed effects; the sign of the parameter estimates does not change;

the coefficient of the indicator for frequent trips above the range is noisy as we exploit

only within-driver variation for the identification, while the effect of the availability of

charging points persists. These descriptive regressions help explain the variation in the

utility factor across drivers and the small share of electric charging; although our sample is

unique for the level of detail, the current data cannot fully reveal the importance of these

drivers and disentangle them from behavioral aspects as we do not have driver-specific

attributes.

3 Estimation and Results

3.1 Empirical design

To study the impact of fuel prices on fuel demand, we regress measures of fuel consump-

tion, travel distance, and travel mode (electric versus fuel) on fuel prices. We begin with

the following specification:

yit = α + β × ln(Pit) + γt + ηi + εit, (2)

where ln(Pit) represents the log of per-liter fuel price paid by driver i in month t, γt are

time fixed effects (year and month) controlling for unobserved time-varying effects, and

ηi are driver fixed effects controlling for any unobserved driver specific characteristics

affecting the relationship between our variables of interest and fuel prices. Each driver is

associated with only one vehicle, so the unit of observation is driver-vehicle-month.

We define three dependent variables, yit: (i) the log of per-month fuel consumption

(in liters); (ii) the log of per-month mileage (in km); and (iii) the per-month utility

factor for plug-in hybrids, namely the share of kilometers driven in electric mode. In all

specifications, we cluster the standard errors at the driver level and weight by the number
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of fueling logs recorded by each user in month t. We do not include the electricity prices

as a control because they exhibit very little variation throughout the sample period: see

Figure A.2 in the Appendix.7

Thanks to the granularity of our data, our coefficient of primary interest is identified

by the within-driver deviations in fuel prices from their own average. Our fixed effects

at the month and year levels absorb persistent differences in fuel prices. Similarly to

Knittel and Tanaka (2021), heterogeneity across drivers generating a correlation between

fuel consumption and fuel prices does not threaten identification.

While posted fuel prices are exogenous for drivers, an endogeneity concern remains as

fuel prices that drivers pay might be endogenous to the individual’s fuel consumption and

mileage. First, consumers may change their search behavior when fuel prices increase,

leading to a downward bias in elasticity estimates. This concern is probably not of

particular importance in our setting. Using data on search queries in 2015 from a German

smartphone application that enables users to compare fuel prices across stations, Montag

et al. (2023) find that online search intensity did not correlate with price levels. In

addition, Figure A.4 in the Appendix shows that self-reported fuel prices closely match

average posted fuel prices, and the discrepancy between effective and posted fuel prices

does not systematically increase when prices rise. Second, gasoline and diesel are offered in

different grades or quality levels; modern cars can use any quality level without resulting

in engine damage.8 Most gas stations in Germany offer at least standard and premium

grades of gasoline, allowing consumers to switch to a cheaper, lower-grade fuel when

prices increase. In our setting, we find empirical evidence of consumers switching fuel

grades when prices change. Among gasoline users, including drivers of gasoline plug-in

hybrids, 39.8 percent use more than one fuel grade over the sample period, and 11.0

percent switch within a quarter. We regress the quarterly shares of fuel grades defined

at the driver level on the prices of the fuel grades. We define four grades of gasoline: (i)

7In robustness checks, we include logged electricity prices and the logged number of charging stations

as controls. The inclusion of these additional covariates does not substantially alter our results. Nehiba

(2024) finds that a 10% increase in electricity prices results in a modest 0.82% reduction in mileage for

electric vehicles.
8Using a lower-grade fuel when the premium is recommended slightly affects the fuel economy and

the car’s performance.
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normal; (ii) super; (iii) super plus; and (iv) premium. Table A.IV in the Appendix shows

that price changes are associated with switching across fuel grades. For instance, column

1 of Table A.IV shows that drivers reduce their share of normal grade when the price

of normal gasoline increases (holding the price of other grades fixed). The same pattern

holds for the other grades, as well.

We build two sets of instruments to address endogenous switching between fuel grades

and, more generally, to tackle any concern about the endogeneity of actual prices drivers

pay. First, following Knittel and Tanaka (2021), we instrument the user-reported fuel

price using the national average fuel prices for the corresponding fuel grade in the same

period. Second, after determining each driver’s most used fuel grade, we reconstruct the

per-period national average price of their most used fuel grade.9

After accounting for year, month, and driver fixed effects, our two sources of iden-

tifying variation are month of the year and within-driver variation. The within-driver

variation, after accounting for the month of the year, originates from variation in the

grade mix that drivers use over time. Before presenting the coefficient estimates, we as-

sess the importance of each source of variation. A variance decomposition reveals that, for

plug-in-hybrids, around 78 percent of the variation in prices is absorbed by year, month,

and driver-fixed effects. The month of the year accounts for around 19 percent of the

residual variance, while individual variation accounts for around 3 percent, conditional

to a certain month of the year. The variance decomposition provides similar results for

all prices used in the analysis (the price paid by the drivers and the instruments).

3.2 Results

Table 2 reports the estimation results of Equation (2). The first three columns of Table

2 report the WLS estimates; columns 4 to 6 (“IV 1”) report the IV results using the

average fuel prices of the corresponding fuel grade to instrument for the actual price

paid; columns 7 to 9 (“IV 2”) report the IV results using the average price of the most

used fuel grade as instrument. The first stage of the IV specifications is reported in

Table A.V in the Appendix. Our two instrumentation strategies produce similar results

9Specifically, we use the national average fuel price of the fuel grade most used by users whose share

of said fuel grade is greater than 50%, which suggests strategic switching.
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for estimated elasticities of fuel consumption and mileage; the estimated coefficients are

over three times larger than the WLS estimates and statistically significant at the one

percent level. While our focus is on plug-in hybrids, we estimate the elasticity for other

fuel types, as well. For gasoline car drivers, we estimate an elasticity of fuel consumption

of around -0.23 and an elasticity of mileage of -0.21. For diesel car drivers, the elasticity

of fuel consumption is between -0.22 and -0.25, and the elasticity of mileage is between

-0.16 and -0.18.

The estimated elasticities for plug-in hybrid car drivers are the most interesting. Their

elasticity of fuel consumption is substantially greater in magnitude than gasoline and

diesel car users (between -0.29 and -0.40). However, these drivers do not seem to reduce

their mileage in response to fuel price increases (their elasticity of mileage is estimated

noisily and close to zero). Compared to traditional internal combustion vehicles, plug-in

hybrids offer an additional margin of adjustment in one’s recharging behavior. Columns

6 and 9 suggest that a one percent rise in fuel prices leads to a utility factor increase

of 0.15 to 0.16 percentage points. Higher fuel prices encourage plug-in hybrid drivers to

increase the use of their vehicles in electric mode.
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Table 2: Results

WLS IV 1 IV 2

ln(Fuel Use) ln(VKT) UF ln(Fuel Use) ln(VKT) UF ln(Fuel Use) ln(VKT) UF

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PHEVs

ln(Price) -0.1033 -0.0683 0.0200 -0.4023∗∗∗ -0.1295 0.1545∗∗∗ -0.2860∗∗ -0.0239 0.1501∗∗∗

(0.0945) (0.0900) (0.0209) (0.1421) (0.1370) (0.0290) (0.1370) (0.1314) (0.0280)

R2 0.33820 0.25481 0.72538 0.33780 0.25479 0.72417 0.33805 0.25480 0.72425

Observations 29,242 29,242 29,242 29,242 29,242 29,242 29,242 29,242 29,242

Gasoline

ln(Price) -0.0723∗∗∗ -0.0628∗∗∗ -0.2331∗∗∗ -0.2101∗∗∗ -0.2348∗∗∗ -0.2065∗∗∗

(0.0175) (0.0176) (0.0238) (0.0239) (0.0232) (0.0234)

R2 0.25457 0.22474 0.25443 0.22463 0.25444 0.22464

Observations 832,330 832,330 832,330 832,330 832,300 832,300

Diesel

ln(Price) -0.1241∗∗∗ -0.0909∗∗∗ -0.2221∗∗∗ -0.1549∗∗∗ -0.2507∗∗∗ -0.1792∗∗∗

(0.0224) (0.0226) (0.0286) (0.0288) (0.0280) (0.0282)

R2 0.25343 0.24389 0.25337 0.24386 0.25333 0.24385

Observations 393,204 393,204 393,204 393,204 393,190 393,190

Fixed effects

Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (2). The dependent variables are: (i) the log of

fuel consumption (in liters) in columns 1, 4, and 7; (ii) the log of vehicle kilometers traveled (VKT) in

columns 2, 5, and 8; and (iii) the utility factor (UF; the share of driving in electric mode) in columns

3, 6, and 9. Columns 1, 2, and 3 present the WLS parameter estimates. Columns 4 to 9 are estimated

using the instrumental variable approach. All specifications include fixed effects for driver, year, and

month. PHEVs: plug-in hybrid electric vehicles. Standard errors are clustered at the driver level and

reported in parentheses. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10%

levels, respectively.
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Implications on CO2 emissions As fuel consumption maps approximately one-to-

one to CO2 emissions, the fuel use elasticities can also be interpreted as CO2 elasticities.
10

In our setting, a change in fuel price has a stronger impact on CO2 emissions for plug-in

hybrids than for conventional fuel cars. The additional CO2 savings deriving from the

increased electrification of driving account for roughly 52 percent of the CO2 reduction.

In addition, the cost of absorbing fuel price shocks is lower for plug-in hybrid owners

thanks to their ability to switch to their vehicle’s electric power source when fuel prices

rise. Together, these results suggest that fuel prices are indeed effective at improving the

environmental benefits of plug-in hybrids as they determine a more pronounced reduction

in fuel demand for drivers; at the same time, absorbing fuel shocks is less costly for these

drivers.

Robustness We conduct an extensive set of robustness checks on these results. Our

results are robust to: (i) the use of a range of deviation values (1.3 and 1.7) in the

denominator of Equation (1) in order to calculate the utility factor (Table A.VI in the

Appendix); (ii) the inclusion of observations with long-distance traveled, with a maximum

daily mileage of 111.4 km for plug-in hybrids (Table A.VII in the Appendix); and (iii)

the use of OLS instead of WLS (Table A.VIII in the Appendix).

3.3 Habit formation

The evidence thus far suggests that fuel prices have a contemporaneous effect on electric

recharging behavior. To test for the presence of habit formation, we estimate a distributed

lag model that includes in Equation (2) past fuel prices:

UFit = α +
t∑

j=0

βj lnPit−j + γt + ηi + εit, (3)

where Pit−j represents the log of per-liter fuel price paid by driver i in month t−j, and the

outcome variable of interest is the utility factor. Table 3 reports the coefficients of the six

most recent past refueling prices paid by the driver; these prices are instrumented using

monthly average prices. The estimates indicate no empirical evidence of habit formation

10Burning one liter of gasoline emits 2,390g of CO2 while burning one liter of diesel emits 2,640g of

CO2.
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as a result of past price shocks; even the most recent past fuel price does not influence

the current charging behavior. Our findings thus align with evidence from Knittel and

Tanaka (2021) on fuel economy and Bailey et al. (2023) on electric vehicles charging

times.

4 Value of charging time

In section 2, we showed that the share of electric driving is only 39%. Drivers may

find charging costly because of the limited battery range (especially when traveling long

distances), the lack of access to charging points (especially when at-home charging is

unavailable), the lack of financial incentives (when the car is company-owned and fuel

is paid by the employer), and multiple possible sources of behavioral barriers, such as

limited attention or imperfect information about fuel and charging costs. To quantify

drivers’ cost of charging, we specify and estimate a simple model of recharging versus

fueling choice based on the charging time. On a given trip s, a driver i has the choice j

to drive in electric mode, namely charge the battery (j = C), or in internal combustion

mode, namely use fuel because the battery is empty (j = F ). Trips are conducted during

a period t; the term θs denotes the mileage of each trip s. The utility that a driver

receives from choice j is given by:

Uijs = (α1pijt + α2dij + ξijt + εijs)θs,

where pijt is driver i’s expenditure per kilometer associated with charging or refueling in

period t. The driver’s utility also depends on the dij, the charging or fueling time per kilo-

meter, ξijt, which denotes period-specific unobservables, as well as εijs, an idiosyncratic

trip-specific preference shock. The driver chooses to charge if UiCs > UiFs. Assuming

that εijs is i.i.d. according to a Type 1 Extreme Value distribution, we can write the

choice probability of recharging as follows:

siCs =
1

1 + exp(α1∆pit + α2∆di +∆ξit︸ ︷︷ ︸
δit

)
,

where ∆pit = piF t − piCt, and ∆di = diF − diC . Let δit = α1∆pit + α2∆di +∆ξit.
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Table 3: Habit formation

Dependent variable Utility factor

(1) (2) (3) (4) (5) (6)

PHEVs

ln(Pricet) 0.1720∗∗∗ 0.1876∗∗∗ 0.1969∗∗∗ 0.1841∗∗∗ 0.1285∗ 0.1922∗∗∗

(0.0482) (0.0536) (0.0600) (0.0636) (0.0740) (0.0736)

ln(Pricet−1) -0.0280 -0.0906 -0.0848 -0.1177 -0.0636 -0.0916

(0.0457) (0.0618) (0.0708) (0.0771) (0.0831) (0.0846)

ln(Pricet−2) 0.0278 -0.0279 0.0170 -0.0223 -0.0217

(0.0488) (0.0726) (0.0756) (0.0809) (0.0825)

ln(Pricet−3) 0.0503 0.0032 0.0412 0.0389

(0.0591) (0.0813) (0.0888) (0.0966)

ln(Pricet−4) 0.0218 -0.0074 0.0482

(0.0597) (0.0985) (0.1085)

ln(Pricet−5) -0.0197 -0.0905

(0.0713) (0.0932)

ln(Pricet−6) -0.0062

(0.0629)

R2 0.74350 0.75192 0.76405 0.77121 0.77964 0.78306

Observations 23,067 18,091 14,658 12,090 10,078 8,509

Fixed effects

Driver Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

Month Yes Yes Yes Yes Yes Yes

The table reports the coefficients of the six most recent prices paid based on the distributed lag model as

specified by Equation (3). The dependent variable is the utility factor. All specifications are estimated

using the instrumental variable approach, where monthly average prices are used as the instrument. All

specifications include fixed effects for driver, year, and month. Standard errors are clustered at the driver

level and reported in parentheses. ***, **, and * correspond to statistical significance at the 1%, 5%,

and 10% levels, respectively.
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We aggregate at the period t (month) level and set the choice probabilities of charging

equal to the observed shares as follows:

St∑
s=1

siCsθis = siCtθit = θiCt, (4)

siCt =
θiCt

θit
= UFit. (5)

We solve for δit and use the value in the linear regression:

δit = α1∆pit + α2∆di +∆ξit. (6)

By taking the ratio of the estimated coefficients on time and price differences (α2/α1),

we obtain estimates of drivers’ value of charging time, which is determined by the marginal

rate at which drivers trade off time savings and the expected (negative) dollar savings

in terms of fueling versus recharging. To calculate ∆di, we set the time of fueling at

zero and use data on the battery size (in kWh), the battery efficiency (in km/kWh),

and charging time (in hours) to calculate the vehicle-specific charging time in hour/km.

To compute ∆pit, we use information on the fuel price per liter, the fuel economy in

internal combustion mode, the electricity price, and the fuel economy in electric mode

and calculate the price of fueling and charging per kilometer. As for electricity prices, we

use e0.30 and e0.35 per kWh.

Table 4 reports the OLS and IV coefficients of the estimation of Equation (6); prices

are instrumented using monthly average prices. Our estimates are based on the time

cost associated with recharging; drivers, on average, tend not to recharge their vehicles

often, which means they prefer saving the time costs associated with recharging. The IV

estimates show that drivers’ value of charging time is between e15 and e41/hour. Our

estimates align with Dorsey et al.’s (2022) estimates of drivers’ value of time (around

$28/hour).

Finally, Figure A.5 in the Appendix reports the distribution of the driver-specific

fixed effects. These estimates are obtained after regressing δit on the price differences

∆pit and fixed effects at the driver level; they show the individual level (dis)utility of

charging relative to refueling. The distribution is left-skewed with a mass below zero,

revealing strong heterogeneity in charging preferences across drivers. The strong disutility
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of charging exhibited by some drivers also explains the inelastic response of the utility

factor to fuel prices.

Table 4: Value of Charging Time

Electricity price e0.30/kWh e0.35/kWh

OLS IV OLS IV

(1) (2) (3) (4)

∆ Price (∆pit) 0.211*** 0.285*** 0.213*** 0.286***

(0.006) (0.007) (0.006) (0.007)

∆ Charging time (∆di) 12.455*** 11.601*** 6.985*** 4.293***

(1.304) (1.353) (1.328) (1.390)

R2 0.054 0.049 0.057 0.051

Observations 26,850 26,658 26,850 26,658

Implied value of time (e/hour)

59.05 40.65 32.75 15.00

(6.58) (5.00) (6.48) (4.97)

The table reports the estimation results of Equation (6) for plug-in hybrid electric vehicles (PHEVs) using

OLS and IV. The dependent variable is δit, which is defined in Section 4. Electricity price is e0.30/kWh

in columns 1 and 2, and e0.35/kWh in columns 3 and 4. The IV specifications are estimated using

the instrumental variable approach, where monthly average prices are used as the instrument. Standard

errors are reported in parentheses. ***, **, and * correspond to statistical significance at the 1%, 5%,

and 10% levels, respectively.

5 Conclusion

Plug-in hybrids combine an internal combustion engine with an electric battery. These

cars can deliver critical environmental benefits by acting as bridge technology toward

fully electrified private transport, but only if used to maximize electric driving. In this

paper, we investigate the usage behavior of plug-in hybrid cars and the extent to which

fuel prices influence such usage.

Using detailed micro-level data, we document that plug-in hybrids are only occasion-

ally used in electric mode, with only 39 percent of their mileage driven on an electric

motor on average. This is a problem because the assumed utility factor used to deter-

20



mine the official fuel economy rating suggests that plug-in hybrids are clean vehicles and

allow car manufacturers to comply more easily with fuel economy standards. In reality,

the environmental benefits of plug-in hybrids are overstated if they are not used in electric

mode as much as expected.

We study the extent to which the usage of plug-in hybrids responds to fuel prices.

Unlike combustion engine car drivers, who can only reduce their mileage to absorb fuel

price shocks, drivers of plug-in vehicles can also change their charging behavior and

increase the share of mileage driven in electric mode. We find that a ten percent increase

in fuel prices leads to an increase in the utility factor of 1.6 percentage points. We find

no evidence of habit formation in charging behavior. Finally, we estimate a drivers’ value

of time between e15 and e41/hour.

Our results suggest that fuel prices are effective at promoting the use of plug-in hybrids

in electric mode, ultimately contributing to the goal of reducing greenhouse gas emissions

and mitigating climate change.
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Plötz, Patrick, Steffen Link, Hermann Ringelschwendner, Marc Keller, Cor-

nelius Moll, Georg Bieker, Jan Dornoff, and Peter Mock, “Real-world usage of

plug-in hybrid vehicles in Europe: a 2022 update on fuel consumption, electric driving,

and CO2 emissions,” Technical Report, ICCT White Paper 2022.

24



Raghavan, Seshadri Srinivasa and Gil Tal, “Plug-in hybrid electric vehicle observed

utility factor: Why the observed electrification performance differ from expectations,”

International Journal of Sustainable Transportation, 2022, 16 (2), 105–136.

Rapson, David S. and Erich Muehlegger, “The Economics of Electric Vehicles,”

Review of Environmental Economics and Policy, June 2023, 17 (2), 274–294.

Reynaert, Mathias and James M Sallee, “Who benefits when firms game corrective

policies?,” American Economic Journal: Economic Policy, 2021, 13 (1), 372–412.

Sallee, James M., Sarah E. West, and Wei Fan, “Do consumers recognize the

value of fuel economy? Evidence from used car prices and gasoline price fluctuations,”

Journal of Public Economics, 2016, 135, 61 – 73.

Salvo, Alberto and Cristian Huse, “Build it, but will they come? Evidence from

consumer choice between gasoline and sugarcane ethanol,” Journal of Environmental

Economics and Management, September 2013, 66 (2), 251–279.

Solon, Gary, Steven J. Haider, and Jeffrey M. Wooldridge, “What Are We

Weighting For?,” The Journal of Human Resources, 2015, 50 (2), 301–316.

Tsanko, Ilona, “Would You Like to Super-size Your Car? The Effect of Environmental

Subsidies on Emissions,” Technical Report, SSRN Electronic Journal 2023.

25



Appendix

Tables

Table A.I: Selected elasticity estimates

Paper Market/time
Temporal/cross-

sectional variation

Type of price

elasticity
Elasticity

Panel A: Literature

Kilian and Zhou (2023)
US

1989-2022
Month/state Fuel use

-0.20

(post 2014)

Gelman et al. (2023)
US

2013-2016
Week/individual Fuel spending -0.16

Knittel and Tanaka (2021)
Japan

2005-2014
Day/individual

Fuel use

VMT

-0.37

-0.30

Gillingham and Munk-Nielsen (2019)
Denmark

1998-2011
Biennial/vehicle VMT -0.30

Coglianese et al. (2017)
US

1989-2008
Month/state Fuel use -0.37

Levin et al. (2017)
243 US cities

2006-2009
Day/metropolitan area Fuel use -0.27 to -0.35

Gillingham (2014)
California

2006-2009
Biennial/vehicle VMT -0.22

Panel B: This paper

Germany

2016-2021
Month/individual

Fuel use - PHEV

VMT - PHEV

Fuel use - gasoline

VMT - gasoline

Fuel use - diesel

VMT - diesel

-0.40 to -0.29

0.13 to -0.02

-0.23

-0.21

-0.22

-0.16

The table summarizes the elasticity of fuel prices to fuel demand estimated in prior studies from the

last decade (panel A) and our own estimated elasticities (panel B). For each study, the table lists the

relevant market and time frame, the temporal and cross-sectional variation, the type of elasticity, and

the estimated values. VMT: Vehicle Miles Traveled; PHEV: Plug-in Hybrid Electric Vehicle
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Table A.II: Utility factor by driver characteristic

Driver charascteristics Average utility factor

Private car 0.67

Company car 0.38

Frequent use on routes > 100km 0.37

Occasional use on routes > 100 km 0.56

Charging availability at home 0.53

No charging availability at home 0.38

Overall 0.52

Observations 42

The table reports summary statistics of usage patterns for 42 plug-in hybrids. The data comes from the

2021-2022 German Mobility Panel.

Table A.III: Determinants of utility factor

Dependent variable Utility factor

(1) (2)

Trip lengths exceed range -0.0802*** -0.0133

(0.0247) (0.0150)

Charging points density 5.467*** 4.157***

(1.061) (0.717)

“Company car” -0.0685***

(0.0137)

Observations 29,934 29,934

Fixed effects

Driver No Yes

Year Yes Yes

Month Yes Yes

The table reports the parameter estimates of a fractional response model and robust standard errors

(in parentheses). The dependent variable in each specification is the utility factor, the share of driving

in electric mode. Column 1 includes year and month-fixed effects. Column 2 includes driver, year, and

month fixed effects. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% level,

respectively.
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Table A.IV: Switching between gasoline grades

Dependent variables: Share Normal Super Super Plus Premium

(1) (2) (3) (4)

ln(Price Normal) -1.572∗∗∗ 1.119∗∗∗ -0.1069 0.5595∗∗∗

(0.1562) (0.1921) (0.1061) (0.1194)

ln(Price Super) 0.9076∗∗∗ -0.6072∗∗∗ 0.0800 -0.3803∗∗∗

(0.1297) (0.1614) (0.0935) (0.1010)

ln(Price Super Plus) 0.2738∗∗∗ -0.0923∗ -0.0118 -0.1697∗∗∗

(0.0396) (0.0497) (0.0292) (0.0310)

ln(Price Premium) 0.6667∗∗∗ -0.4879∗∗∗ -0.0172 -0.1616∗

(0.1244) (0.1527) (0.0849) (0.0941)

R2 0.84050 0.82302 0.79541 0.80399

Observations 371,596 371,596 371,596 371,596

Fixed effects

Driver Yes Yes Yes Yes

Year Yes Yes Yes Yes

Quarter Yes Yes Yes Yes

The table reports the parameter estimates of an OLS model showing switching across fuel grades. The

dependent variables are: (i) the share of fuel grade Normal over the total fuel pumped in a quarter in

column 1; (ii) the shares of fuel grade Super over the total fuel pumped in a quarter in column 2; (iii) the

shares of fuel grade Super Plus over the total fuel pumped in a quarter in column 3; and (iv) the shares

of fuel grade Premium over the total fuel pumped in a quarter in column 4. All specifications include

driver, year, and quarter fixed effects. Standard errors are clustered at the driver level and reported

in parentheses. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% levels,

respectively.
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Table A.V: First stage results for IV estimates

Dependent variable ln(Price paid)

PHEV Gasoline Diesel

IV1 IV2 IV1 IV2 IV1 IV2

log(Posted price) 0.8416∗∗∗ 0.9233∗∗∗ 0.8590∗∗∗ 0.9261∗∗∗ 0.9002∗∗∗ 0.9576∗∗∗

(0.0119) (0.0098) (0.0023) (0.0019) (0.0032) (0.0022)

R2 0.85195 0.85671 0.88339 0.88311 0.87295 0.87234

F-test 906.48 941.83 20,530.2 20,474.7 9,008.2 8,959.0

Observations 29,242 29,242 832,330 832,300 393,204 393,190

Fixed effects

Driver Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

Month Yes Yes Yes Yes Yes Yes

The table reports the first stage results for the IV estimates, including the F -statistics of the excluded

instruments. All specifications include driver, year, and month fixed effects. Standard errors are clustered

at the driver level and reported in parentheses. ***, **, and * correspond to statistical significance at

the 1%, 5%, and 10% levels, respectively.
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Table A.VI: Robustness check using a range of deviation values

WLS IV 1 IV 2

Deviation value 1.3 1.5 1.7 1.3 1.5 1.7 1.3 1.5 1.7

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PHEVs

ln(Price) 0.0176 0.0200 0.0198 0.1529∗∗∗ 0.1545∗∗∗ 0.1497∗∗∗ 0.1504∗∗∗ 0.1501∗∗∗ 0.1459∗∗∗

(0.0218) (0.0209) (0.0192) (0.0302) (0.0290) (0.0265) (0.0290) (0.0280) (0.0255)

R2 0.70053 0.72538 0.73314 0.69934 0.72417 0.73183 0.69939 0.72425 0.73191

Observations 29,242 29,242 29,242 29,242 29,242 29,242 29,242 29,242 29,242

Fixed effects

Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (2) for plug-in hybrid electric vehicles (PHEVs)

using a range of deviation values for the calculation of the utility factor. The dependent variable is the

utility factor (UF; the share of driving in electric mode) calculated according to Equation (1) using the

deviation value of 1.3 (in columns 1, 4, and 7), 1.5 (in columns 2, 5, and 8), and 1.7 (in columns 3,

6, and 9). Columns 1, 2, and 3 present the WLS parameter estimates. Columns 4 to 9 are estimated

by the instrumental variable approach. All specifications include driver, year, and month fixed effects.

Standard errors are clustered at the driver level and reported in parentheses. ***, **, and * correspond

to statistical significance at the 1%, 5%, and 10% levels, respectively.

30



Table A.VII: Robustness check including observations with long distance traveled

WLS IV 1 IV 2

ln(Fuel Use) ln(VKT) UF ln(Fuel Use) ln(VKT) UF ln(Fuel Use) ln(VKT) UF

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PHEVs

ln(Price) -0.0160 -0.0059 0.0042 -0.3793∗∗∗ -0.0876 0.1660∗∗∗ -0.2389∗ 0.0266 0.1523∗∗∗

(0.0970) (0.0902) (0.0206) (0.1358) (0.1288) (0.0287) (0.1348) (0.1269) (0.0284)

R2 0.36865 0.29465 0.72129 0.36807 0.29461 0.71952 0.36843 0.29464 0.71981

Observations 30,191 30,191 30,191 30,191 30,191 30,191 30,191 30,191 30,191

Fixed effects

Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (2) for plug-in hybrid electric vehicles (PHEVs)

including observations with long-distance traveled, with a maximum daily mileage of 111.4 km. The

dependent variables are: (i) the log of fuel consumption (in liters) in columns 1, 4, and 7; (ii) the log

of vehicle kilometers traveled (VKT) in columns 2, 5, and 8; and (iii) the utility factor (UF; the share

of driving in electric mode) in columns 3, 6, and 9. Columns 1, 2, and 3 present the WLS parameter

estimates. Columns 4 to 9 are estimated by the instrumental variable approach. All specifications

include driver, year, and month fixed effects. Standard errors are clustered at the driver level and

reported in parentheses. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10%

levels, respectively.
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Table A.VIII: Robustness check using OLS

OLS IV 1 IV 2

ln(Fuel Use) ln(VKT) UF ln(Fuel Use) ln(VKT) UF ln(Fuel Use) ln(VKT) UF

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PHEVs

ln(Price) -0.1592∗ -0.0625 0.0489∗∗∗ -0.2867∗∗ -0.0194 0.1435∗∗∗ -0.2044∗ 0.0802 0.1538∗∗∗

(0.0827) (0.0782) (0.0171) (0.1212) (0.1154) (0.0250) (0.1181) (0.1117) (0.0244)

R2 0.31598 0.23584 0.73617 0.31591 0.23583 0.73556 0.31598 0.23573 0.73542

Observations 29,934 29,934 29,934 29,934 29,934 29,934 29,934 29,934 29,934

Fixed effects

Driver Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes Yes

Month Yes Yes Yes Yes Yes Yes Yes Yes Yes

The table reports the estimation results of Equation (2) for plug-in hybrid electric vehicles (PHEVs)

using OLS. The dependent variables are: (i) the log of fuel consumption (in liters) in columns 1, 4, and

7; (ii) the log of vehicle kilometers traveled (VKT) in columns 2, 5, and 8; and (iii) the utility factor

(UF; the share of driving in electric mode) in columns 3, 6, and 9. Columns 1, 2, and 3 present the

OLS parameter estimates. Columns 4 to 9 are estimated by the instrumental variable approach. All

specifications include driver, year, and month fixed effects. Standard errors are clustered at the driver

level and reported in parentheses. ***, **, and * correspond to statistical significance at the 1%, 5%,

and 10% levels, respectively.
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Figures

Figure A.1: Sample screenshots of the application Spritmonitor

These pictures illustrate how the application users record their travel logs in the application Spritmonitor.
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Figure A.2: Electricity Prices
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The figure plots household electricity prices, including taxes, levies, and VAT, adjusted by the consumer

price index (CPI) with 2015 as the base year. The unit is e per kWh. Source: Statistisches Bundesamt.

Figure A.3: Cost differences refueling versus recharging
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The figure reports the histogram of cost difference (fuel cost - electricity cost) for each vehicle in our

sample in e per 100km. We assume a fuel price of e1.37 per liter (the average fuel price in 2021) and

an electricity price of e0.30 per kWh.
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Figure A.4: Reported and posted fuel prices

1.0

1.2

1.4

1.6

2016 2017 2018 2019 2020 2021 2022
Year

P
ric

e 
(E

U
R

/L
ite

r)

Average price paid National average price

Panel (a): Gasoline

1.0

1.2

1.4

1.6

2016 2017 2018 2019 2020 2021 2022
Year

P
ric

e 
(E

U
R

/L
ite

r)

Average price paid National average price

Panel (b): Diesel

The figure plots: in Panel (a) the national average prices of normal gasoline in Germany (dotted line) and

average actual price paid as reported by the application user (solid line); in Panel (b) the national average

prices of diesel in Germany (dotted line) and average actual price paid as reported by the application

user (solid line). The unit is e per liter.
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Figure A.5: Distribution of the (dis)utility of charging versus refueling
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The figure plots the distribution of driver-specific fixed effects representing the driver (dis)utility of

charging relative to refueling. The coefficients are obtained after regressing δit, specified in Equation (4),

on the price differences ∆pit and fixed effects at the driver level.
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