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Abstract

Actors in various settings have been increasingly relying on algorithmic tools to
support their decision-making. Much of the public debate concerning algorithms—
especially the associated regulation of new technologies— rests on the assumption
that humans can assess the quality of algorithms. We test this assumption by con-
ducting an online experiment with 1263 participants. Subjects perform an estimation
task and are supported by algorithmic advice. Our first finding is that, in our setting,
humans cannot verify the algorithm’s quality. We, therefore, argue that algorithms
exhibit traits of a credence good — decision-makers cannot verify the quality of such
goods, even after “consuming” them. Based on this finding, we test two interven-
tions to improve the individual’s ability to make good decisions in algorithmically
supported situations. In the first intervention, we explain the way the algorithm
functions. We find that while explanation helps participants recognize bias in the
algorithm, it remarkably decreases human decision-making performance. In the sec-
ond treatment, we reveal the task’s correct answer after every round and find that
this intervention improves human decision-making performance. Our findings have
implications for policy initiatives and managerial practice.
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1 Introduction

Human decision makers increasingly receive advice from algorithmic recommendation
systems—for example, when physicians decide which patients to give which treatment,
when judges make punishment decisions, or when price managers set product discounts
at online retailers. A common view among policymakers and in the academic literature
implicitly assumes that human decision-makers can accurately assess the advice quality
after observing the algorithm’s recommendation, for instance, by comparing it to their own
judgment (e.g. in the Artificial Intelligence Act as proposed by the European Commission,
2021). From an economic point of view, this suggests that algorithm advice is perceived
as an experience good, i.e., consumers can accurately assess the quality after consumption
of the good. We challenge this assumption and argue that algorithms are often perceived
to be credence goods. Even after “consumption” of the good — repeated interaction with
the algorithm — humans cannot correctly assess its advice quality.

Our first contribution is to provide experimental evidence from a reasonable setting
that many people cannot correctly assess the quality of algorithmic advice even after “con-
suming” it. It follows that they perceive algorithmic advice as a credence good.! Based
on this finding, our second contribution is to test two commonly discussed interventions
designed to improve a human’s ability to make good decisions in such situations. First,
we provide participants with an explanation of how the algorithm arrives at its recom-
mendation, which could allow them to assess the algorithm more accurately. Second, we
reveal the solution to the prediction task after each round. This allows participants to
better assess the algorithm’s quality as well as their own ability.

To do so, we conduct an online experiment and asked 1263 participants to estimate
how many dots are in an image. Our subjects receive algorithmic advice and are free to
choose to what extent—if at all—they want to incorporate this advice in their answer.
The task is repeated for 16 rounds, and the image has so many dots that counting them
directly is infeasible. As the ongoing debate focuses on a human’s ability to recognize and
correct an algorithm when it malfunctions, we manipulate the algorithm and introduce
a bias such that the algorithm considerably underestimates the number of dots in each
image. Our algorithm is exhibits a downward bias, i.e. it systematically underestimates
the number of dots.

Over 16 rounds of playing this simple game, participants follow the algorithm closely,
such that the average of the revised guesses never moves away from the downward biased
algorithm recommendation and closer to the true number of dots. This behavior emerges
despite the fact that, just as in many real-life decision situations, our participants can
compare their initial guess with the algorithm’s guess in every round and realize that the

algorithm performs poorly. This is particularly true for participants who do not benefit

'In this sense, our work focuses on whether algorithms are perceived as credence goods from a consumer
(i.e., decision-maker) perspective. The classic definition of a credence good market includes a second
element: an (expert) provider of a good who can observe its quality (Darby and Karni, 1973). In this
article, we remain agnostic to whether or not the developer of the algorithm can judge its quality.



from following the algorithm because their initial guess was already closer to the truth.
Even this group of participants fails to correctly evaluate the algorithm’s input.

Regarding our first intervention, we find that providing an explanation of the algo-
rithm decreases participants’ algorithm adherence, but, remarkably, it hurts their guessing
performance. This illustrates important nuances that need to be considered before one
can hope to have humans successfully oversee algorithms: The human decision-maker
needs not only to recognize the existence of a bias but also to accurately assess the size
and direction of bias. Further, humans need to be able to assess their performance in
relation to the algorithm’s performance. In our experiment, participants seem to recog-
nize a bias exists but fail to assess its size and direction as well as their performance in
relation to the algorithm, all of which ultimately decrease their performance when seeing
an explanation.

Informing participants of the true number of dots at the end of the round also makes
participants follow the algorithm less, but in this case, it improves participants’ guessing
performance. This is most likely because the correct answer from the last round(s) gives
the participants a superior orientation point for future guesses. While participants do not
perform very well at guessing the absolute number of dots, they are very much capable
of assessing the relative change in the number of dots from round to round.?

Although there is already a large and rapidly growing body of literature on empir-
ical human-subject studies on human-Al decision-making in multiple disciplines (for an
overview see Lai et al., 2021), we are, to the best of our knowledge, the first to point
out and empirically document the credence good nature of algorithmic advice and its
implications. For a recent review of the literature on credence goods, see Balafoutas and
Kerschbamer (2020). Two papers that are closely related to ours are Green and Chen
(2019) and Park et al. (2019). In line with our results, the former paper finds that the
participants in their experiment are unable to correctly asses their own ability as well
as the algorithm’s quality. The latter paper finds that their participants can assess an
algorithm better if the algorithm’s response time is increased. Glaeser et al. (2021) is one
of the few field experiments on this topic; it finds that human decision-makers prefer to
follow their own judgment despite the fact that the algorithm performs better than hu-
mans. Closely related to our topic is also the question about the determinants of and the
extent to which humans trust in algorithms. Zhang, Liao, and Bellamy (2020) attempt to
calibrate human trust in an algorithm by providing local explanations. Yin et al. (2019)
explore how trust in a model is affected by its accuracy. Alufaisan et al. (2021) survey the
relevant literature and find that the evidence on whether explainability improves decisions
remains inconclusive. Human collaboration with algorithms is also strongly influenced by
a variety of psychological effects. Dietvorst, Simmons, and Massey (2018) document al-

gorithm aversion, Logg, Minson, and Moore (2019) find conditions under which humans

2For example, many subjects are capable of realizing that the number of dots in a given round has
roughly doubled compared to the last round. Knowing the correct number from the previous round, they
can provide good (initial) estimates.



display algorithm appreciation. Moreover, the assessment of an algorithm might also de-
pend on the nature of the task. Castelo, Bos, and Lehmann (2019) show that people are
more willing to trust algorithms that are perceived as objective in nature.

Our results have implications for both policymakers and managers. We show that
there are situations in which humans are not able to accurately assess an advising al-
gorithm’s quality. In the context of regulation, this casts doubt on the effectiveness of
individual human decision-makers to recognize biased algorithms and to correct this bias
to prevent harm. In the context of management, it means that organizations generally
can neither rely on individual decision-makers to optimize decisions nor can they rely
on feedback from their decision-makers about the quality of an algorithm as a product.
Just as with any other market for credence goods this entails the possibility of harming
consumers of algorithmic advice.

The remainder of this paper proceeds as follows: Section 2 describes the experimental
set-up. Section 3 introduces the data and explains some pre-processing important for the
analysis. Section 4 presents the results, and section 5 discusses the findings. Section 6

concludes.

2 Experimental Design

2.1 The experimental task

The central component of our experiment is the dot-guessing task. Subjects see images
showing dots that follow a triangular distribution (such that they are clustered more
densely in the center) and are asked to guess how many dots they think each of the
images contains. Examples of dot images are shown in figure 2. The number of dots in
the images is chosen randomly and varies between 942 and 3084 dots. Participants have
60 seconds to make their guesses, making it infeasible to count the dots in the image.?
Every round of the experiment consists of three stages: In the first stage, participants
see the image for the first time and submit their guesses. In the second stage, subjects see
the same image again and additionally receive an algorithmic prediction of the number
of dots, before submitting a new guess. We call the two entries the subjects make initial
guess guess; and revised guess guess;, both of which are incentivized. In the third stage,
participants can see their guesses guess; and guess, and some additional information
depending on the treatment. They do not take any action at this stage. Every subject
plays 16 rounds, each round including a new image and a new recommendation. In
every round, all participants see the same image (i.e. the same number of dots) and
receive the same recommendation. We employ a between-subject design and randomize

our participants on an individual level.

30ur task is rooted in the tradition of Galton (1907). His research has produced the “wisdom of the
crowd” finding and involved a contest in which people guessed the weight of a butchered ox.



2.2 Description of treatments

The treatments vary along two dimensions: explaining how the algorithm arrives at its
prediction and revealing the true answer after the revised guess has been recorded.

When ALGORITHMEXPLAINED = 1, participants receive both a written explanation
regarding how the algorithm derives its prediction and a visual enhancement of the image
supporting the verbal explanation. When ALGORITHMEXPLAINED = 0 participants never
learn about the functional principle of the algorithm. Explaining the algorithm provides
an opportunity for participants to assess its quality of it in an abstract way based on the
functioning of the algorithm.?

Furthermore, when TRUTHREVEALEDEXPOST = 1 participants receive the informa-
tion about the correct number of dots in the image at the end of every round. When
TRUTHREVEALEDEXPOST = 0, participants never find out the correct answer to the
task. Seeing the solution provides an opportunity to assess the performance of the algo-
rithm in a specific round. It also opens the chance to learn about one’s own performance.

To sum up, the two dimensions result in the four treatments TRUTHREVEALEDEX-
PosT = 0 & ALGORITHMEXPLAINED = 0, TRUTHREVEALEDEXPOST = 0 & ALGO-
RITHMEXPLAINED = 1, TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED =
0, TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED = 1. These treatments
enable us to analyze which type of information empowers humans to effectively asses the
quality of algorithmic advice and how they influence task performance. The experimental

design is visualized in figure 1.

2.3 Description of the dot guessing algorithm

We employ a simple dot-counting algorithm. It randomly samples subareas, but only
from the edge of an image, calculates the average of dots within these subareas, and
extrapolates this average to the entire surface of the image. The dots follow a triangular
distribution with a denser center and fewer dots at the edges. By choosing a triangular
distribution and limiting the sampled subareas to the edges of the image, we introduce a
bias in the algorithm: The algorithm will always predict and recommend a dot number
that is too low. Note that this provides participants with a lower bound of how many
dots are visible. We do not explicitly tell participants about this bias in the algorithm,
although participants in the two treatments where ALGORITHMEXPLAINED = 1 have
all the necessary information available to arrive at this conclusion themselves. When
ALGORITHMEXPLAINED = 1, participants in the second stage of each round, i.e. when
they can state their revised guess, get to see the same image of dots they saw in the
first stage, but this time it is overlaid with squares indicating the subareas the algorithm

samples from. This visual overlay is illustrated in figure 2, for more details on how the

4To see the exact wording and visual presentation of the explanations, see the experimental interfaces
in the appendix.



Figure 1: Visualization experimental design
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Figure 2: Functioning dot guessing algorithm

(a) Example dot image in treatments with (b) Example dot image in treatments with
ALGORITHMEXPLAINED = 0 ALGORITHMEXPLAINED = 1

Notes: The algorithm arrives at its prediction by first randomly sampling three subareas from the
edges of each image and counting the number of dots within each subarea. It then calculates the
average number of dots over areas and projects this average to the entire image. Importantly, the
algorithm always samples the three subareas at the edges of a given image, never from the center.
Through the combination of triangular dot distribution and biased sampling from the edges, we
introduce a bias in the algorithm prediction. The image in panel (a) is an example of a dot image
that all participants see in the first stage of the experiment. Panel (b) shows the same image but
this time overlaid with the rectangular subareas from which the algorithm samples dots. Only
participants in the treatments where ALGORITHMEXPLAINED = 1 see this image from panel (b)
in the second stage, complementing the verbal algorithm explanation.

algorithm works see the explanation in the appendix.®

2.4 Payment scheme and experimental procedure

Our subjects receive a flat fee of $0.9 for completing the study. Every guess a participant
makes is incentivized. More specifically, participants receive $0.15 for a perfect guess
and this bonus is diminished by $0.0002 for every point deviation. That implies that
participants receive some bonus when their guess is within the range of 4 /- 749 dots from
the true answer. The experiment contains 16 rounds and each of the rounds involves two
incentivized guesses (initial and revised). Therefore, subjects could earn a maximum of
$4.80 bonus payment in addition to the flat fee.

We conducted our online experiment in December 2021. The experiment was devel-
oped using the software oTree (Chen, Schonger, and Wickens, 2016). We recruited our
subjects via Amazon’s crowd-working platform Mechanical Turk (MTurk). All of them
are based in the US, have completed at least 500 tasks on MTurk, and have an approval
rate of at least 95%. We conducted five sessions (two sessions with 200 and 3 sessions

and 400 participants). On average, participants have taken 14 minutes and 18 seconds to

Details on the algorithm’s performance and its performance relative to our participants will be ad-
dressed in the results section.



complete the study and have earned $2.33. This translates to a hypothetical hourly wage
of $9.82.

3 Data

The main data we elicit from our subjects is their guesses with respect to the number
of dots in the image they see. When eliciting these guesses, we do not set an upper
bound (e.g. by employing a slider) as such an upper bound would serve as an orientation
point for some of our subjects. As a result, participants can enter very high numbers,
and in fact, some choose to do so. We, therefore, see large outliers in our distributions.
Three approaches are common to address the issue of outliers in the data: top-coding,
winsorizing, and taking the natural logarithm. We employ the latter method. It has the
advantage of not requiring us to exclude any observations from our analysis. Our data
contains 1263 observations.

Further, since the number of dots and the algorithmic advice changes every round,
examining (the logarithm of) the guesses at their face value would have little meaning.
We are rather interested in the relation between guesses and i.) the algorithmic advice
or ii.) the correct number of dots. Therefore, we focus on two main outcome variables
throughout the paper: algorithm adherence, calculated as |log(algo) — log(guess)|, and
guessing performance, calculated as |log(truth) — log(guess)|.

Various parts of the analysis are based on a comparison among treatments in which
case we pool all rounds together. We recognize that the guesses of each individual are not
independent of each other. We, therefore, preprocess the data by conducting the mean of
the values of interest (e.g. distance to algorithmic recommendation) of all 16 rounds for

each individual.

4 Results

We ask the question of whether people can assess the quality of algorithmic advice (and
if they act accordingly) after “consuming” this advice. To answer this question, one can
inspect figure 3, which shows the densities of the initial and revised guesses of the first
four rounds in treatment TRUTHREVEALEDEXPOST = 0 & ALGORITHMEXPLAINED =
0.

In the first round, the initial guess density is flat: Participants vary vastly in their
initial guess. After observing the algorithm recommendation, participants state their
revised guess, resulting in the revised guess density. Participants strongly react to the
algorithmic advice and many subjects follow the advice closely. This can be directly
inferred from the revised density: It is centered above the algorithm recommendation and
its variance is greatly reduced. The second round illustrates that the initial guesses in
round two are still influenced by the algorithmic advice from round one: The density of

the initial distribution is centered above the previous rounds algorithm recommendation.



The algorithm recommendation in one round serves as an orientation point for the next
initial guess. The revised guess density in round two peaks again above the algorithm
recommendation. In rounds three and four one again observes the two effects (1) the
revised guesses move closer to the algorithm and (2) their variance is reduced (both
compared to the initial guess density in the same round). In fact, this pattern holds for
all subsequent 12 rounds (see figures 5 to 8).

Table 1 quantifies these differences and shows the average of the individual log dis-
tances to the algorithm and the standard deviation for the initial and revised guesses.
It also exhibits p-values from a t-test comparing the initial and revised distance to the
algorithm recommendation and Levene’s test for homogeneity of variances of the initial
and revised densities.

The average distance to the algorithm recommendation is smaller for the revised
guesses than for the initial guesses in all 16 rounds (this difference is always significant
except for one round). In other words, revised guesses move closer to the algorithm. The
standard deviations of the revised guess densities are smaller for the revised guesses in a
majority of cases.”

If the algorithmic advice would exhibit traits of an experience good, we would expect
our subjects to learn to optimally incorporate this advice into their decision-making and
adjust how strongly they adhere to the algorithm. Note that in each round, participants
have the possibility to compare the algorithm recommendation with their own guess, which
was elicited in the first stage. Given their own guess as a reference point, participants
could realize that the algorithm recommendation is consistently too low. Over time (i.e.
over rounds), if participants would have this realization repeatedly, and assuming they
would also optimally react based on this insight, we would see a shift in the revised guess
density away from the algorithm and closer to the true number of dots. As can be seen
from figure 3 and table 1 we see no evidence for this. In figure 3 there is no increase
in probability mass in the region above the algorithm recommendation for the revised
guesses over rounds. In table 1 average distance of the revised guesses to the algorithm
is in every round smaller than the distance for the initial guesses. In other words, the
revised guesses always move closer to the algorithm. So the participants never learn to

move further away from the algorithm recommendation (or ignore it).

Table 1: Distances to algorithmic recommendation per round: TRUTHREVEALED-
ExPosT = 0 & ALGORITHMEXPLAINED = 0

llog(algo) — log(guess;)| |log(algo) — log(guess,)| p-values
Round mean sd mean sd t-test levene
1 1.29 1.78  0.59 1.39 0.00 0.00
2 1.20 0.73 088 1.13  0.00 0.00

5Due to outliers that remain even after the logarithmic transformation of our data the p-values of these
differences paints a less clear picture.



3 0.78 0.93 042 0.74  0.00 0.13
4 0.51 0.67  0.45 1.02  0.28 0.33
5 0.66 0.89 0.35 0.74  0.00 0.77
6 0.67 1.16  0.42 1.00  0.00 0.22
7 0.60 1.06  0.33 0.90 0.00 0.06
8 0.61 091 037 0.81  0.00 0.21
9 0.58 0.96 0.42 1.03  0.00 0.66
10 0.62 0.99 0.40 0.98  0.00 0.60
11 0.46 0.74 031 0.90  0.00 0.69
12 0.47 0.70  0.29 0.68  0.00 0.68
13 0.53 1.08  0.33 0.89  0.00 0.19
14 0.64 0.74 042 0.95  0.00 0.82
15 0.52 1.07  0.34 1.01  0.00 0.31
16 0.68 0.89  0.49 0.98  0.00 0.24

Notes: Table contains the mean and standard deviation of the distance between the guesses
and the algorithmic recommendation for every round. This distance is included with re-
spect to the initial and the revised guesses. All values are logs. Table also contains the
p-values for the t-test and the Levene-test for homogeneity of variance to test the differ-
ence between the values for initial and revised guesses for every round. Values refer to
TRUTHREVEALEDEXPOST = 0 & ALGORITHMEXPLAINED = 0.

Especially participants whose initial guesses fall within this range between the algo-
rithm and the true value should not move closer to the algorithm to maximize their payoff.
Yet, our data shows that participants move closer to the algorithmic advice. Our results
therefore rather indicate that the algorithmic advice exhibits traits of a credence good:
Even after “consuming” the advice repeatedly, our participants appear not to be able to
assess the quality of the advising algorithm.

Consequently, we document as our first result:

Result 1: The human deciston makers perceive the algorithmic advice as a credence good.

The fact that decision-makers cannot reliably ascertain the quality of the advising
algorithm entails two major problems: First, it challenges the idea that humans can
judiciously oversee algorithmic decisions to prevent harm in high-stake decisions. Second,
markets for credence goods are prone to economic inefficiencies. We will discuss these
implications further in section 5. Knowing these negative traits of credence goods, we
ask how one can improve decision-making in this situation. More specifically, we are
interested in whether immediate feedback (revealing the correct answer at the end of the
round) and an explanation of the mechanics of the algorithm can help subjects learn from
the interaction with the algorithm.

In our setting, ideally, one of our two treatment dimensions (explaining the algo-

rithm or revealing the truth ez post) would enable participants to simultaneously lower
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Figure 3: Densities of initial and revised guesses by treatment for the first four rounds
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Notes: Initial (black line) and revised (dotted line) guess densities for TRUTHREVEALEDEXPOST
= 0 & ALGORITHMEXPLAINED = 0 for the first five rounds. Algorithm recommendation (AR) is
the leftmost vertical line and the true number of dots (TR) is indicated by the rightmost vertical
line. The figure only shows the range of log(guess) from 5 to 8 and therefore does not display the
tails of the distributions. The range of the axis showing the density differs between rounds.
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algorithm adherence (i.e., moving further away from our biased algorithm) because they
understand the bias and improve their guessing performance (i.e. moving closer to the
true number of dots) due to this better understanding. First, we examine the effects of
providing an explanation and revealing the truth ex post on algorithm adherence. We
do so by looking at the distance between the average revised guess and the algorithm for
each treatment. The bar graph in figure 4a allows us to compare algorithm adherence by
treatment. Table 2 in the appendix contains more specific numeric information regarding
algorithm adherence. Figure 4a illustrates that feedback reduces algorithm adherence
compared to the baseline treatment. The same is true for explanations with an even
stronger effect. In treatment TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED

= 1 algorithm adherence is also the most reduced.

Result 2a: Ezplanation reduces algorithm adherence (weakest effect).
Result 2b: Revealing the truth reduces algorithm adherence (medium effect).

Result 2c: Combining explanation and revealing truth reduces algorithm adherence (strongest

effect).

Knowing that both interventions reduce algorithm adherence, we now turn to the
question of how the treatments influence guessing performance. We hence examine the
distance between the revised guess and the correct answer. We present the results in
figure 4 and table 3 in the appendix. Figure 4 reveals that compared to the baseline
treatment TRUTHREVEALEDEXPOST = 0 & ALGORITHMEXPLAINED = 0 providing the
explanation increases the average distance to the true number of dots, i.e. the explanation
makes participants perform worse.

In contrast, revealing the truth improves guessing performance. Remarkably, the ef-
fects of these two treatments have approximately the same size (and opposite directions).
As a result, in treatment TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED =
1, the two effects appear to cancel each other out. Hence, the average performance under
TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED = 1 is statistically indistin-
guishable from TRUTHREVEALEDEXPOST = 0 & ALGORITHMEXPLAINED = 0 (t-test is

not significant on a 5%-level). The effects on guessing performance can be summarized as:

Result 3a: Ezplanation hurts performance.
Result 3b: Feedback improves performance.
Result 3c: When providing participants with both explanation and feedback, the two as-

pects neutralize each other and performance remains unchanged.

12



Figure 4: Mean distance to the algorithm

=]
=]

o
9
o

Mean log distance to algorithm recommendation
o o
N o
o o

nd
o
s}

and the true number of dots by treatment

L

1

1T

0
o]
©
—
S10
— 2
Q
£ I
=]
c
: L
=]
=
e
T :
o
§o5
B .
©
o)
kel
c
©
]
=
0.0
TruthRevealed  TruthRevealed — TruthRevealed — TruthRevealed TruthRevealed TruthRevealed TruthRevealed TruthRevealed
ExPost =0 & ExPost =0 & ExPost =1 & ExPost=1 & ExPost =0 & ExPost =0 & ExPost=1 & ExPost =1 &
Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm
Explained = 0 Explained = 1 Explained = 0 Explained = 1 Explained = 0 Explained = 1 Explained = 0 Explained = 1
Treatments Treatments

(a) Mean distance to the algorithm recommenda-(b) Mean distance to the true number of dots by
tion by treatment.

treatment.

Notes: The bar graph in panel (a) illustrates the treatment effects on algorithm adherence (mean

distance of the revised guesses to the algorithm recommendation per treatment). The numerical
treatment effects on algorithm adherence can be found in table 2 in the appendix. The bar graph

in panel (b) illustrates the treatment effects on guessing performance (mean distance of the revised

guesses to the true number of dots per treatment). The numerical treatment effects on guessing
performance can be found in table 3 in the appendix. The barplots also include the standard
errors around the mean. We pre-process the data by taking log values and calculating the mean

over all 16 rounds for each individual. For more details see section 3.
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5 Discussion

Participants in the baseline treatment TRUTHREVEALEDEXPosST = 0 & ALGORITH-
MEXPLAINED = 0 repeatedly see biased advice in a task that does not require expert
knowledge. Akin to many real-life decision situations, in this treatment, they therefore
can compare their own prediction (note that we prime participants by specifically eliciting
their initial guesses before seeing the algorithm) with the algorithm prediction. In princi-
ple, this could allow any participant to realize that the algorithm is biased and produces
dot predictions that are too low. The question is how many participants realize this and
if they can correctly adjust for this bias.

From the written feedback that participants could state at the end of the experiment,
we know that some participants in the baseline treatment indeed recognize that the al-
gorithm is downward biased (e.g. “I thought the algorithm consistently underestimated
the number of dots”, “I did not trust the algorithm. It seemed to be generating numbers
that were too low.”), yet others fail to assess the existence, magnitude, or direction of the
bias (e.g. “I quickly began to depend on the algorithm and as the study progressed, got
close to guessing what the algorithm predicted”, “I figured that it was overestimating”).
Ultimately, the question about the nature of the algorithm as a good is an empirical one:
How do the majority of participants assess the algorithm? As described in the previous
section, most participants follow the algorithm closely and never realize that they could
improve their payoff if they move away from a biased recommendation.

The fact that algorithms can be perceived as credence goods has, broadly speaking,
implications for two areas: policy initiatives regulating algorithmic systems and manage-
rial practice. Attempts at regulating algorithms rely—among other measures—on the
idea of “human oversight”: algorithmic systems should be designed and developed in
such a way that natural persons can recognize biased decisions to adjust or overrule the
algorithm (e.g. Article 14 of the proposed Artificial Intelligence Act, European Commis-
sion, 2021). Entertaining the assumption that humans are in principle able to provide
oversight, entails implicitly several assumptions: Humans need to be able to recognize
that a bias exists, they need to be able to correctly assess the magnitude and direction
of the bias, and finally they need to be able to judge their performance and biases in
relation to the algorithm. For example, a physician using a medical image recognition
algorithm might notice irregularities around race and gender, but be unable to determine
which group is negatively affected or be unable to quantify the extent of negative effects.

Managerial practice is equally affected. Even if decisions in non-high-stake situations
do not require regulation, it is still of interest whether humans can provide oversight, as it
is in an organization’s best interest to optimize algorithm-advised decisions. Moreover, in
markets for credence goods inefficiencies often arise due to an information asymmetry be-
tween consumers and producers. Typically, producers can exploit their expert knowledge
to the consumers’ detriment. In this paper we do not make any claims about whether

producers of algorithmic advice software are aware of its quality, as this is a different
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empirical question and it does not affect the central implication: Organizations cannot
rely on their individual decision-makers to provide high-quality feedback about the per-
formance of an advising algorithm. For example, when a manager makes pricing decisions
and receives advice from an algorithm, they might recognize that the algorithm recom-
mendation is biased. Yet it still remains an open question if the price manager can suggest
a superior (in the sense of profit-maximizing) price.

In our experiment, the best way to compare human and algorithm performance is to
compare initial guesses in the first round with the algorithm prediction, as only the first-
round initial guesses have been stated entirely without the influence of the algorithm. In
later rounds, the algorithm recommendation serves as a strong orientation point, thereby
influencing human performance. In the first round, the logarithm of the true number is
7.4, while the algorithmic advice is 6.4 and the average guess is 6.0. This suggests that the
algorithm is somewhat better than the average participant in the initial round. However,
there is a sizable proportion of people who have performed better as well as worse than
the algorithm. This evidence shows that there is heterogeneity in whether more or less
algorithm adherence is better for performance. Despite the fact that we introduced a
strong bias in the algorithm prediction, some participants would still benefit from follow-
ing the algorithm more closely. This illustrates that increased algorithm adherence can
both hurt or improve performance. At any rate, we know that the participants whose
initial guess was above the algorithm and below the true value in treatment TRUTHRE-
VEALEDEXPOST = 0 & ALGORITHMEXPLAINED = 0 fail to recognize its bias because
in all rounds they revise their initial guesses closer to the algorithm (and thereby further
away from the true value).

We now turn to a discussion of the results from treatment TRUTHREVEALEDEXPOST
= 0 & ALGORITHMEXPLAINED = 1. Compared to the baseline treatment, providing an
explanation increases the participants’ average distance to the algorithm. This suggests
that participants correctly infer from the explanation that the algorithm is biased. At
the same time explanation hurts performance. This is in line with the superior algorithm
performance mentioned in the previous paragraph. It also nicely illustrates that the
ability to recognize bias and the ability to correctly address this bias are separate skills.
This result can also be explained in light of the findings provided by Dietvorst, Simmons,
and Massey (2015). The authors show that humans lose trust in algorithms when they
see them making mistakes. Similar behavior is likely in our setting: Our explanation
illustrates that the algorithm is biased, participants recognize this and follow the advice
less. However, many are overconfident with regard to their own performance. They fail
to realize that while the algorithm is far from perfect, it would still be optimal for them
to follow its advice to some extent.

In treatment TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED = 0 partici-
pants move further away from the algorithm, but in this treatment, they also move closer
to the true number of dots. One potential mechanism of how subjects arrive at their

guess is the following: They start with an orientation point and adjust this amount of
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dots based on their judgment. Examining figures 5 to 8 (in the appendix) provides some
evidence that this is indeed an important mechanism. The distribution of initial guesses
is very flat in the first round. In addition, participants strongly react to the algorithmic
advice. The specific number of dots recommended by the algorithm gives the participants
a potential orientation point to use.

The algorithmic advice is an orientation point that is always available when revising
the guess. Importantly, in the treatments where REVEALTRUTHEXPOST = 1 an alterna-
tive orientation point is provided: The true answer from the previous round(s). Therefore
revealing the true answer does not only offer the opportunity to better access the quality
of the algorithmic advice. It also provides an alternative orientation point. Further, it
can also influence participants through a third channel: Providing feedback about their
own abilities.

The concept of the orientation point might be considered particularly important after
realizing that figures 5 to 8 suggest that participants are remarkably often very close
to the true answer in treatments where TRUTHREVEALEDEXPoOST = 1. It appears
that participants are strong in taking the true number of dots as an orientation point,
estimating the relative change of dots in the next round, and delivering a good estimate
for the current round.

The results from treatment TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED
= 0 suggest that participants do not have a better understanding of the algorithm qual-
ity. Nonetheless, their performance improves due to the availability of a better orientation
point. The practical implication of this is that whenever the decision environment does
not fundamentally change (including the task, the algorithm, and the human decision-
makers) revealing the solution as soon as it is available can help improve decisions. This
will not always be possible. But in cases where it is, it seems appropriate to consider.

Treatment TRUTHREVEALEDEXPOST = 1 & ALGORITHMEXPLAINED = 1 shows
an interesting cumulative result: Since providing an explanation and revealing the truth
both increase the distance to the algorithm, their combination does as well. And as these
treatments individually have opposed effects on guessing performance, their combination
seems to annihilate any effect. Guessing performance remains unchanged compared to
the baseline. This illustrates that practitioners must be careful when considering tools
to improve decision-making. Generally, one cannot simply assume the more help for the
decision-maker, the better.

Finally, another important aspect is whether our interventions show their effect im-
mediately or some repeated interaction is required for the effect to unfold. Overall, there
appears to be no pattern that evolves. The interventions do not seem to require warm-up
time. One exception is the first round of TRUTHREVEALEDEXPOST = 0 & ALGORITH-
MEXPLAINED = 1. Participants move closer to the algorithm in the first two rounds after
receiving the advice. In round three, the average distance remains the same. Starting
from round four, participants always move further away from the recommendation (note

that the t-test indicates that the differences are often insignificant). This suggests that
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participants must see the explanation multiple times before the effect starts unfolding.

Some important caveats are in order. We do not claim that all algorithms are always
perceived as credence goods. We merely point out that algorithms can be perceived
as credence goods in many applications. Clearly, one important determinant for this is
how the human and algorithm abilities compare. Our results and implications could be
considered in scenarios where neither human nor algorithm is obviously better, but where
there is ambiguity about performance comparison. Moreover, the nature of our task is
rather mathematical and objective. Humans might react very differently when the task
nature is more subjective (Castelo, Bos, and Lehmann, 2019).

In this section, we have stated the assumption that individual humans can successfully
provide oversight for algorithms is flawed and discuss the implications of this. None of
the two interventions that we tested can fully remedy this problem. A natural adjustment
is, therefore, to put less emphasis on individual oversight and instead shift the focus to
collective oversight. For example, organizations could audit algorithmic advice systems.
This could entail checking possible training data, systematically challenging the algorithm

or controlled human-subject field experiments before deployment.”

6 Conclusion

We design an experiment in which subjects are asked to guess the number of dots they
see in an image while receiving advice from a (biased) algorithm. We find strong evidence
that our participants perceive the algorithmic advice to be a credence good: Even after
“consumption” of the algorithm advice (i.e., observing the algorithm advice repeatedly),
our participants have difficulties assessing its quality correctly. This can lead to a variety
of problems with managerial implications for the use of algorithm advice in organizations:
If individual decision-makers cannot generally be expected to correctly infer the quality
of an advising algorithm, the idea that humans can improve and correct an algorithm
through oversight is flawed.

And yet, currently, human oversight is of great importance in many recent policy
initiatives to ensure unbiased algorithmic decisions and avoid disparate impact. Certainly,
the feasibility and efficacy of human oversight as a means to ensure unbiased decisions
depend on various aspects, including the task and the decision context. Still, our work
provides evidence in a reasonable setting showing that the idea of people being able to
learn and oversee algorithms is fundamentally problematic.

We also test a set of interventions - providing an explanation of the algorithm, revealing
the solution ez post, or both - and ask whether they can reduce adherence to a biased
algorithm and improve decision performance. We find that while the explanation decreases
participants’ adherence to a biased algorithm, it hurts their performance. Importantly,

subjects guess on average worse than the biased algorithm. This points to an interesting

"This idea is similar to Green (2022), which suggests “institutional oversight”.
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effect: decision-makers correctly identifying a bias does not guarantee better decisions.
What matters is the relation between the human’s and the algorithm’s decision ability,
whether humans can correctly assess this relationship and the magnitude and direction
of the algorithm bias. This finding is in line with the results from the literature on
algorithm explainability: Its ability to improve decisions also depends on various factors,
and explanations are no panacea.

Finally, we find that only revealing the truth ex post decreases algorithm adherence
and improves decision performance. One should be careful to attribute this solely to
participants learning about the algorithm’s quality. This treatment also provides feedback
on their own performance as well as a benchmark for calibrating future guesses.

Several practical recommendations are suggested from these findings. First, in orga-
nizational settings, if concrete feedback about previous decisions can be provided and the
decision environment does not fundamentally change, managers should seek to disclose
the outcome of past decisions. Second, our study indicates that explanations concerning
how an algorithm functions must be provided with caution, as they do not necessarily
improve human assessment of algorithm quality. Third, given the difficulty that individu-
als have in assessing algorithm performance, mechanisms focusing on individual oversight
are likely insufficient. Instead, one conceivable path forward for policymakers and man-
agers could be to focus less on individual decision makers to prevent harm and optimize
decisions but instead to lean more heavily on what could be called collective oversight.
This could involve conducting algorithm audits in which training data could be tested for
representativeness and timeliness or the algorithm could be systematically challenged to

identify undesired predictions.
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A Tables and figures

Table 2: Treatment effect on algorithm adherence: Log-distance to algorithm rec-
ommendation: Overview

Treatment n min mean max std. err.

TruthRevealedExPost = 0
& AlgorithmExplained = 0 | 324 0.001 0.426 9.514 0.035
TruthRevealedExPost = 0
& AlgorithmExplained = 1 | 314 0.001 0.842 5.188 0.052
TruthRevealedExPost = 1
& AlgorithmExplained = 0 | 312 0.001 0.711 1.989 0.017
TruthRevealedExPost = 1
& AlgorithmExplained = 1 | 313 0.001 0.969 4.271 0.034

Notes: The values in this table refer to the barplot in panel (a) of figure 4a.

“Std. err.” refers to the standard error of the mean.

Table 3: Treatment effect on guessing performance: Log-distance to true number
of dots: Overview

Treatment n min mean max std. err.

TruthRevealedExPost = 0
& AlgorithmExplained = 0 | 324 0.001 0.897 9.122 0.033
TruthRevealedExPost = 0
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& AlgorithmExplained = 1 | 314 0.001 1.258 4.678 0.057
TruthRevealedExPost = 1
& AlgorithmExplained = 0 | 312 0.001 0479 2.025 0.022
TruthRevealedExPost = 1
& AlgorithmExplained = 1 | 313 0.001 0.792 5.087 0.052

Notes: The values in this table refer to the barplot in panel (b) in figure 4.

“Std. err.” refers to the standard error of the mean.

Table 4: Distances to algorithmic recommendation per round: TRUTHREVEALED-
ExPosT = 0 & ALGORITHMEXPLAINED = 1

llog(algo) — log(guess;)| |log(algo) — log(guess,)| p-values
Round mean sd mean sd t-test levene
1 1.45 1.95 1.26 1.89 0.14 0.58
2 1.44 1.19 1.24 1.16  0.00 0.04
3 0.82 1.12 0.84 1.17  0.77 0.04
4 0.65 0.93 0.79 1.14  0.03 0.00
5 0.75 0.94 091 1.46  0.04 0.00
6 0.66 0.99 0.80 1.25  0.06 0.00
7 0.63 0.98 0.76 1.30  0.05 0.00
8 0.62 0.77  0.70 1.02  0.19 0.00
9 0.60 0.69 0.78 1.20  0.00 0.00
10 0.70 1.02  0.79 1.12  0.20 0.00
11 0.58 0.68 0.75 1.13  0.00 0.00
12 0.56 0.82  0.75 1.21  0.00 0.00
13 0.60 0.95 0.73 1.12 0.04 0.00
14 0.63 0.66  0.69 1.02 0.34 0.00
15 0.59 0.87 082 1.33  0.00 0.00
16 0.81 0.81  0.86 1.01  0.32 0.00

Notes: The structure of the table is the same as in table 1, but the values refer to TRUTHRE-
VEALEDEXPOST = 0 & ALGORITHMEXPLAINED = 1.

Table 5: Distances to algorithmic recommendation per round: TRUTHREVEALED-
ExPosT = 1 & ALGORITHMEXPLAINED = 0

|log(algo) — log(guess;)| |log(algo) — log(guess,)| p-values
Round mean sd mean sd t-test levene
1 1.25 1.76  0.44 1.05  0.00 0.00
2 1.71 0.72  1.52 0.94  0.00 0.00
3 0.71 0.86  0.68 0.87  0.58 0.50
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4 0.80 0.87 0.72 0.7 0.14 0.73
) 0.52 0.35 0.59 0.99 0.23 0.01
6 0.82 0.89  0.77 0.82  0.20 0.94
7 0.56 0.66 0.51 0.64 0.36 0.99
8 0.76 0.74  0.63 0.52  0.00 0.15
9 0.85 0.75 0.71 0.42  0.00 0.13
10 0.86 0.77  0.75 0.71  0.06 0.93
11 0.75 0.60  0.69 0.51 0.11 0.74
12 0.64 0.70  0.61 0.69 047 0.86
13 0.76 0.58 0.70 0.60  0.06 0.58
14 0.42 0.37 045 0.69  0.39 0.11
15 0.65 0.51  0.59 0.50  0.00 0.70
16 1.07 0.54 1.01 0.56  0.12 0.61

Notes: The structure of the table is the same as in table 1, but the values refer to TRUTHRE-
VEALEDEXPOST = 1 & ALGORITHMEXPLAINED = 0.

Table 6: Distances to algorithmic recommendation per round: TRUTHREVEALED-
ExPosT = 1 & ALGORITHMEXPLAINED = 1

llog(algo) — log(guess;)| |log(algo) — log(guess;)| p-values
Round mean sd mean sd t-test levene
1 1.23 1.86 1.25 1.89 0.90 0.14
2 1.74 0.71 1.64 0.96 0.09 0.00
3 0.81 0.95 0.92 0.99 0.06 0.19
4 0.84 0.82 0.91 0.90 0.19 0.19
D 0.67 1.02 0.89 1.35 0.00 0.01
6 0.85 0.84 0.95 0.91 0.07 0.12
7 0.64 0.85 0.74 0.91 0.15 0.12
8 0.79 0.87 0.91 1.05 0.06 0.08
9 0.89 0.79  0.96 0.85 0.15 0.16
10 0.89 0.71 1.07 1.26 0.01 0.00
11 0.86 0.79 0.93 0.92 0.16 0.10
12 0.73 0.82 0.85 0.89 0.04 0.16
13 0.88 0.90 0.91 0.88  0.61 0.48
14 0.51 0.67 0.59 0.70 0.08 0.11
15 0.75 0.80 0.84 0.90 0.12 0.05
16 1.10 0.63 1.14 0.68 0.41 0.04

Notes: The structure of the table is the same as in table 1, but the values refer to TRUTHRE-
VEALEDEXPOST = 1 & ALGORITHMEXPLAINED = 1.

22



Figure 5: Distribution of initial and revised guesses by treatment for rounds 1 to 4
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Notes: Initial and revised guess densities for round 1 to 4.
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Figure 6: Distribution of initial and revised guesses by treatment for rounds 5 to 8
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Figure 7: Distribution of initial and revised guesses by treatment for rounds 9 to 12
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Figure 8: Distribution of initial and revised guesses by treatment for rounds 13 to 16
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B Prediction Algorithm

The algorithm used to provide recommendations for participants is intended to be as
simple as possible, while also allowing for easy experimental control. Each dot image is a
measuring 100 x 100 units. The algorithm randomly samples three areas of size 20 x 20,
as shown in panel (b) in figure 2. Importantly, it only samples from the fringes of each
image, never from the center. It then counts the number of dots in each of the three areas
separately and calculates the average of these three areas. This average is then multiplied
by 25, as the entire image is covered by 5 x 5 subareas. The procedure is described in

algorithm 1.

Algorithm 1 Dot guessing algorithm

sumq < numbero fdotsinareay
sumg <— numberofdotsinareas
sums < numberofdotsinareas
Average <+ w

Prediction + Average x 25

Since the dots follow a triangular distribution and the algorithm is restricted to sam-
ple from the sparsely populated areas, the algorithm will produce a downward-biased
prediction. Participants in treatments where ALGORITHMEXPLAINED = 1 see the expla-
nation provided in figure 18. In principle any participant is therefore enabled to draw the
conclusion that the algorithm at best suggests a lower bound: the true number of dots

will necessarily be larger than the algorithm prediction.
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C Experimental Interface

Figure 9

Welcome & Informed Consent

Thank you for participating in this study! The purpose of this study is to explore human decision-making.
This study is anonymous. We will not ask for your name or any information that will make you identifiable.
There is no deception in this study. Everything you see or read is true.

The study takes most participants less than 10 minutes to complete.
You will receive a fixed payment of $0.90 (base reward) for your participation. You will also have the chance to earn up to $4.80
additional dollars depending on your behavior during the study (bonus rewards).

The risks to participating are no greater than those encountered in everyday life. Your parti ion in this study is voluntary, and you
may refuse to participate or withdraw from the study without penalty. Compensation will be awarded upon completion of the entire study. If you

have any questions, please contact us via MTurk. Please feel free to print or save a copy of this consent form.

Please tick the following box to be able to continue:
I have read and understood this consent form and wish to participate in this study.

Notes: All participants saw this text as their first page.

Figure 10

Feedback

You're almost done!

We value your feedback! Did you find anything unclear or misleading? Any technical issues? Any other feedback regarding any
aspects of the study? Would you like to explain your behavior in the study? (For example, did you trust the algorithm? How did this
develop over time?) Let us know!

Feedback

Click below to receive the completion code and finish the study.

Next

Notes: All participants saw this as their final page before exiting the experiment.

Figure 11

Final Result

Your bonus payoff is $0.00

You have completed the study. Your completion code is MERRY_CHRISTMAS. Please copy this code and return to MTruk.

Notes: All participants learned about their final payoff and received a completion code.
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Figure 12

Guess: How many dots are in this graph? Round 1/2

Time left to complete this page: 0:49

Below you see a new image.

Notes: Upper part of initial guess page: All participants saw a this page (with the number of
dots changing from round to round) before stating their initial guess. Participants had 60

seconds to state their guess.
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Figure 13

Payment info

You will earn additional money for a good guess. You will receive $0.15 if you guess the correct number. This amount will be
reduced by $0.0002 for every dot by which you deviate form the correct number.

Please enter your guess:

Notes: Lower part of initial guess page: All participants saw this when stating their initial guess.
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Figure 14

Machine guess: Round 1/2

Time left to complete this page: 0:23

Below you see the image from the previous page.

Notes: In treatments where ALGORITHMEXPLAINED = 0, participants saw the same image

again before stating their revised guess.
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Figure 15

We will now provide you with an algorithmic prediction regarding the number of dots in this picture.
This prediction comes from an algorithm that is trying to solve the same problem as you have.

The algorithm predicts that there are 617 dots in this picture.
Your initial guess was 2333.
In light of the new information, you can now modify your guess. Please enter your revised guess below.

Payment info

You will earn additional money for a good guess. You will receive $0.15 if you guess the correct number. This amount will be
reduced by $0.0002 for every dot by which you deviate form the correct number.

Please enter your revised guess:

Notes: All participants saw the algorithm prediction before stating their revised guess.

Figure 16

Result Round 1/2

Your initial guess was 2333.
Your final guess was 333.

This round has ended. Click below to get to the next round.

Notes: Participants in treatments where TRUTHREVEALEDEXPOST = 0 saw their initial and

revised guess again, before moving on to the next round.
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Figure 17

Machine guess: Round 1/2

Time left to complete this page: 0:51

Below you see the image from the previous page.

Notes: Participants in treatments where ALGORITHMEXPLAINED = 1 saw the same image again

but overlaid with red rectangles indicating the areas from which the algorithm sampled.
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Figure 18

‘We will now provide you with an algorithmic prediction regarding the number of dots in this picture.
This prediction comes from an algorithm that is trying to solve the same problem as you have.

The algorithm predicts that there are 617 dots in this picture.

Explanation of algorithm:

1. The algorithm counts the number of dots within each red square.
2. It then calculates the average of dots over the three squares.
3. Finally, it multiplies this average by 25, because 25 squares cover the entire area.

Your initial guess was 33.

In light of the new information, you can now modify your guess. Please enter your revised guess below.

Payment info

You will earn additional money for a good guess. You will receive $0.15 if you guess the correct number. This amount will be
reduced by $0.0002 for every dot by which you deviate form the correct number.

Please enter your revised guess:

Notes: Participants in treatments where ALGORITHMEXPLAINED = 1 additionally were
provided a verbal explanation of the algorithm.

Figure 19

Result Round 1/2

Your initial guess was 22.
Your final guess was 33.
The true number was 1637.

This round has ended. Click below to get to the next round.

Notes: Participants in treatments where TRUTHREVEALEDEXPOST = 1 saw their initial and
revised guess as well as the solution before moving on to the next round.

34



Download ZEW Discussion Papers:

orsee:

/]

IMPRINT

ZEW - Leibniz-Zentrum fiir Europdische
Wirtschaftsforschung GmbH Mannheim
ZEW - Leibniz Centre for European
Economic Research

L7,1-68161 Mannheim - Germany
Phone +49 621 1235-01
info@zew.de - zew.de

Discussion Papers are intended to make results of ZEW
research promptly available to other economists in order
to encourage discussion and suggestions for revisions.
The authors are solely responsible for the contents which
do not necessarily represent the opinion of the ZEW.



	Introduction
	Experimental Design
	The experimental task
	Description of treatments
	Description of the dot guessing algorithm
	Payment scheme and experimental procedure

	Data
	Results
	Discussion
	Conclusion
	Tables and figures
	Prediction Algorithm
	Experimental Interface



