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Abstract

The ongoing digital transformation has raised hopes for ICT-based climate protection within
manufacturing industries, such as dematerialized products and energy efficiency gains. However,
ICT also consume energy as well as resources, and detrimental effects on the environment are
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the use of digital technologies and energy savings exist. Our analysis sheds light on the most
important drivers of the relationship between ICT and energy use in manufacturing. We apply
flexible tree-based machine learning to a German administrative panel data set including more
than 25,000 firms. The results indicate firm-level heterogeneity, but suggest that digital tech-
nologies relate more frequently to an increase in energy use. Multiple characteristics, such as
energy prices and firms’ energy mix, explain differences in the effect.
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1. Introduction

The growing number of applications as well as the rapidly evolving performance of information

and communication technologies (ICT) have raised hopes of increasing productivity while simul-

taneously reducing greenhouse gas emissions and energy use (Kander et al., 2015; IEA, 2019).

New digital technologies, such as smart sensors and advanced data analytics, offer the oppor-

tunity to make energy use more efficient and thus save resources. However, as more and more

digital devices are produced, used, and disposed, negative environmental impacts are increasingly

being scrutinized (Williams, 2011; Andrae and Edler, 2015; Belkhir and Elmeligi, 2018; Lange

et al., 2020). Thus, whether the ongoing digital transformation contains synergies or trade-offs

between technological progress and environmental benefits is heavily debated. The use of digital

technologies may also involve both, as effects are potentially context-dependent, i.e., heteroge-

neous. Despite this ambiguity and the need for more research, policies that propose pathways

towards a sustainable economy consider digitalization as a key element in lowering environmental

impacts. To enable a “green and digital transition”, ICT shall support the decrease in energy

use and the decarbonization of the energy mix (European Commission, 2021).

In general, selective targeting of digitalization that relates to lower levels of non-renewable energy

demand may allow greater progress toward climate targets. Since the manufacturing sector is

responsible for a large share of global CO2 emissions, improving its environmental footprint

is especially important. For example, manufacturing industries accounted for 26% of global

CO2 emissions and for 38% of global energy use in 2020 (IEA, 2021). Accordingly, associated

industries receive special attention in policies that address the role of digital technologies in

achieving climate targets at the European level (European Commission, 2019, 2020, 2021). In

practice, however, a considerable share of European industrial digitalization policies also include

subsidies and funding for small and medium-sized enterprises (SMEs) as well as for regions that

are considered structurally weak. As digital technologies can also spark energy-relevant output

growth (Lange et al., 2020), it is important to better understand the relationship between digital

technologies and energy use and how it varies across firm and structural characteristics. For

instance, the amount of energy consumed in a digitalized production process may depend on

the industry association, such as the chemical or the automotive industry. Moreover, market

characteristics such as market concentration or price levels can impact relationships. For example,

less competition lowers firms’ incentives to save costs, and this potentially influences a firm’s

willingness to accept an increase in energy costs due to ICT usage. Profound insights in this
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regard may enable policymakers to improve the synchronization of industrial and climate policy

objectives.

Previous empirical studies on the relationship between ICT and environmental impacts mainly

attempt to prove a linear and directional link between ICT and CO2 emissions (Zhang and Liu,

2015; Chen et al., 2019; Kopp and Lange, 2019) or energy efficiency and energy use (Collard et al.,

2005; Bernstein and Madlener, 2010; Schulte et al., 2016; Axenbeck and Niebel, 2021; Huang

et al., 2022). However, as the relationship may be heterogeneous or non-linear (Ben Lahouel

et al., 2021; Taneja and Mandys, 2022; Xu et al., 2022), standard regression models fall short

of fully uncovering the complexity of the relationship. In view of effect heterogeneity, non-

parametric econometric methods have the potential to provide more detailed insights.

In the article at hand, we analyze firm-level differences in energy demand with respect to the

use of digital technologies in manufacturing. We aim to reveal effect heterogeneity by applying

a non-parametric, flexible tree-based algorithm, which is called the Generalized Random Forest

(GRF) algorithm (Athey et al., 2019). Related studies already demonstrate the usefulness of

tree-based algorithms to analyze heterogeneous relationships (Davis and Heller, 2017; Johnson

et al., 2020; Knaus et al., 2021), and apply them to evaluate environmental outcomes. For

instance, previous literature identifies nonlinear relationships with respect to the introduction of

new pricing schemes for households: Valente (2021) analyzes waste prices in Italian municipalities

and O’Neill and Weeks (2019) as well as Prest (2020) focus on time-of-use electricity prices. Miller

(2020) adapts the algorithm to panel data in order to analyze the temporal effect of exposure

to environmental policies. Recent literature also uses the GRF to provide recommendations to

improve environmental policies. For example, Knittel and Stolper (2021) show that reactions

to behavioral nudges toward household energy conservation are heterogeneous and that selective

targeting, i.e., treating households that are more likely to have desired treatment effects, can

increase social benefits. Besides, Burlig et al. (2020) demonstrate the usefulness of machine

learning techniques when forecasting counterfactual energy consumption.

We contribute to the GRF literature as well as to studies on the effects of digitalization on en-

vironmental outcomes by analyzing an extensive administrative panel data set on German man-

ufacturing firms (AFiD data) for the years 2009 to 2017. We perform an analysis of subgroups

using the GRF algorithm combined with R-learning (Nie and Wager, 2021) and a difference-in-

difference approach to exploit the panel structure of our data. This procedure accounts for sources

of self-selection and considerably reduces potential endogeneity issues. Allowing for heteroge-
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neous effects of observables across decision-making units, this method enables the identification

of specific firm-level and external characteristics that influence energy demand. For instance,

we evaluate whether current industrial digitalization policies that especially involve subsidies

and funding for small and medium-sized enterprises (SMEs) and for regions that are considered

structurally weak reduce or foster energy demand. Besides, previous microeconometric studies

on the relationship between digitalization and energy use solely focus on energy intensity or spe-

cific energy carriers. Hence, we also extend previous literature by firstly analyzing ICT-related

changes in overall energy demand at the firm level.

Our results confirm a heterogeneous relationship, but generally indicate a trade-off between the

use of digital technologies and absolute energy savings (for the majority of firms). On average,

an increase in the firm-level degree of digitalization, which is approximated by a binary variable

that is one if software capital rises and zero otherwise, relates to a simultaneous rise in energy

use of 1.03%. Analyzing electricity use and non-electric fossil fuel use separately reveals that

the magnitude of the effect is even larger for electricity use (1.34%), yet we do not find a

significant effect for fossil fuel use, and the respective point estimate is close to zero. Thus,

results suggest that the overall increase is driven by an intensified use of electricity, which is

intuitive as digital technologies consume electric power. Linking this finding to policy objectives,

contrary to expectations, digital technologies do not appear to largely decrease firm-level energy

use, but are related to an increase in that energy source that is potentially renewable and thus

allows for decarbonization.

Moreover, we identify multiple characteristics that explain heterogeneity. For instance, an in-

crease in market concentration is associated with a higher rise in energy use. Also, we observe

that sensitivity to the electricity price (and price policies) decrease for digital firms. A subgroup

analysis additionally reveals that smaller firms in structurally weak regions show higher aver-

age growth in energy use than larger firms in regions that are considered economically strong.

Therefore, the results also indicate a policy trade-off between lowering energy use and supporting

technological progress in firms with a need for economic assistance.
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The remainder of this paper is organized as follows: The next section deciphers the link between

energy use and digitalization in the light of the current literature. Section 3 explains our empirical

strategy with a focus on the Generalized Random Forest methodology to measure heterogeneous

relationships. Our empirical analysis relies on an extensive administrative firm-level panel data

set that will be described in Section 4. Section 5 presents and discusses the main results, while

Section 6 discusses the robustness of our results and Section 7 concludes.

2. Digitalization and Energy Use in Manufacturing

In economic literature, the introduction of digital technologies is usually linked to productivity

improvements, for example, due to increased process efficiency and the optimization of work

practices (Brynjolfsson and Hitt, 2000; Brynjolfsson and McAfee, 2011; Cardona et al., 2013).

Additionally, more and more studies focus on the environmental impacts connected to digitalized

production processes, in particular, on the effect on energy consumption. In this context, the

literature identifies four impact channels that drive or mitigate the overall effect on energy

demand. At the economy-wide level, these transmission channels can be characterized by the

following keywords: (1) direct effects, (2) economic growth, (3) energy efficiency, and (4) sectoral

change (Lange et al., 2020).

Direct effects comprise the energy that is embodied in the production, usage, and disposal of

ICT and lead to an increase in energy demand (Williams, 2011). The same holds for the second

channel, which subsumes that digital technologies can act as a multiplier for economic growth.

Subsequently, the resulting enhanced consumption of products and services can increase energy

use indirectly (Belkhir and Elmeligi, 2018; Lange et al., 2020). The third channel implies that

energy efficiency improvements may lower energy intensity. Especially, gray literature assigns

high climate protection potentials to the application of ICT. For instance, GeSI & Accenture

(2015) state that digital technologies could abate 2.7Gt of CO2 emissions by 2030 in manufac-

turing industries.1 This is asserted because, for example, industrial control systems allow for an

improved fault-detection, which potentially reduces per-unit energy and resource consumption as

well as wastage (Berkhout and Hertin, 2001; Baer et al., 2002). Also, simulation methods and 3D

printing can considerably decrease the environmental footprint during product design and engi-

neering processes (OECD, 2017). More generally, Berkhout and Hertin (2001) identify five areas

1It should be noted here that the study is financially related to telecommunication companies.
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in which ICT can lower relative energy use: a) Simulation of production processes, b) intelligent

design and operation of products and services, c) intelligent distribution and logistics, e.g., supply

chain efficiency or alternative distribution structures, d) changing seller-buyer relationships, e.g.,

mass customization, and e) work organization, e.g., teleworking. However, Lange et al. (2020)

point out that the desired effects of energy efficiency improvements on energy demand can be

mitigated by rebound effects. These describe the energy-increasing consequences that might be

triggered by energy efficiency improvements and lead to a situation where potential savings will

not be fully realized (c.f. Khazzoom, 1980; Gillingham et al., 2016). Last but not least, sectoral

change, i.e., tertiarization, relates to a shift to a more service-oriented economy. For instance,

software-based solutions do not need to be physically manufactured and thus potentially require

less energy and capital.

In a nutshell, ICT directly consume energy and stimulate economic growth, which can increase

energy use indirectly, but digital technologies can also foster energy-efficient manufacturing as

well as the dematerialization of goods. Consequently, their usage may have simultaneous positive

and negative impacts on energy use, and the respective net environmental impact is a priori

ambiguous from a theoretical perspective.

The wide range of mechanisms may explain why it is still under debate whether digital technolo-

gies increase or decrease energy use. Studies that find synergies between energy savings and ICT

highlight that the energy mix, sector association, production factors and regional characteristics

may play a part: Analyzing ten OECD countries, Schulte et al. (2016) conduct a parametric

econometric analysis at the sectoral level and confirm that reductions in relative energy demand

can be linked to ICT usage. They highlight that relative demand decreases in particular for

non-electric energy, while relative demand for electric energy is not significantly affected. Ac-

cordingly, the relationship may depend on the energy source. Bernstein and Madlener (2010) find

mixed results with respect to the effect of computers and software on relative electricity demand

for European manufacturing industries. They state that the sign of the effect depends heavily

on the involved sector-specific production processes. Applying quantile regression, Taneja and

Mandys (2022) find a reduction in relative energy demand, but the magnitude of the reduction

varies depending on the level of energy intensity. Focusing on industrial robots, as well as con-

sidering 38 countries and 17 manufacturing industries, Wang et al. (2022) find energy intensity
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improvements due to robot usage.2 A closer look at the mechanism reveals that the level of

energy use is barely affected, while output increases in response to the intensified use of robots.

Thus, the authors do not find absolute environmental improvements. In addition, their results

indicate effect heterogeneity with respect to labor and capital intensity. Using a compound index

to measure digitalization, Xu et al. (2022) find reductions in absolute energy use and improve-

ments in the share of renewable energy in total energy at the country-level. They also show

that effects are mediated by technological innovation and are more pronounced in low-income

countries. Therefore, they postulate heterogeneous effects with respect to regional characteris-

tics. Majeed (2018) confirms diverging effects of ICT on CO2 emissions between developed and

developing countries. Moreover, applying a nonlinear model Ben Lahouel et al. (2021) find that

ICT have increased carbon efficiency in Tunisia within the last decades.

In contrast to these rather optimistic findings, other studies indicate a trade-off between envi-

ronmental outcomes and technological progress. Ren et al. (2021) find that internet development

can be linked to an increase in energy use per capita in China. Sadorsky (2012) measures that

digital technologies are positively linked to an increase in electricity consumption in emerging

economies. Covering 93 countries over the period 1995–2016, Alataş (2021) confirms that ICT

increase CO2 emissions at the country level.

Econometric evidence at the firm-level is scarce. To the best of our knowledge, no econometric

study to date examines absolute energy use in the manufacturing sector, yet empirical evidence

exists with respect to changes in energy intensity. Applying a large administrative panel data

set on manufacturing firms, Axenbeck and Niebel (2021) observe only marginal average energy

intensity improvements related to software usage. Besides, the authors find that, even though

overall effects are small, the relationship is more pronounced in energy-intensive industries, which

indicates effect heterogeneity with respect to different production processes. Applying propensity

score matching and focusing on the effect of industrial robots on coal consumption, Huang et al.

(2022) find improvements in coal intensity. However, as described in Wang et al. (2022) above,

the origin of the improvements is mainly an increase in output. A study conducted by Wen et al.

(2021) focuses on environmental pollution measured by chemical oxygen demand (COD) and

sulfur dioxide (SO2). The authors find that an increase in ICT investments and services at the

provincial-city level relates to a significant firm-level reduction of pollutants. On the contrary, a

2Energy intensity denotes the ratio between energy demand and output.
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study conducted by Brozzi et al. (2020) states that firms seldom consider digital improvements

(summarized under the term ”Industry 4.0”) beneficial for environmental targets but pursue

predominately economic opportunities in this regard. A questionnaire-based survey with 1,700

German firms indicates diverging effects. According to non-technical self-assessments, 65% of all

surveyed manufacturing firms said that their ICT-related energy use remained constant during

the last three years, 22% stated it decreased, and 13% mentioned an increase (Bertschek et al.,

2020).

To sum up, previous studies on the relationship between digital technologies and energy use

show ambiguous results. One reason for different study outcomes could be that parallel mech-

anisms might lead to heterogeneous and diverging effects of ICT on the environment. In this

vein, Berkhout and Hertin (2004, p. 903) argue for moving “beyond the dichotomy between pes-

simism and optimism” to recognize that the relationship between ICT and energy is “complex,

interdependent, deeply uncertain and scale-dependent”. It is an urgent political task to create

the conditions for placing digitalization at the service of sustainable development. To optimally

use the potential of digital technologies for climate protection, Lange et al. (2020) argue that

fields of application or mechanisms with a positive environmental impact should be promoted

without favoring effects that have negative environmental impacts. Horner et al. (2016, p.16)

also conclude from their review study that a “focus on identification of important parameters

driving the energy use in ICT-infused systems” is important in future research studies. Our

contribution is to identify certain characteristics that moderate effects of ICT on energy use in

manufacturing.

3. Methodology

The literature review shows that identifying the role and importance of ICT for energy use

is a complex endeavor. Accordingly, the identification of characteristics that moderate energy

consumption in digitalized production processes by applying a linear OLS model would quickly

result in estimating too many interaction coefficients. Interpreting all of them would get soon out

of hand and hardly be useful from a scientific perspective (Prest, 2020; Gulen et al., 2021). As

a consequence, we apply a flexible tree-based algorithm, which is suitable to measure complex

nonlinear relationships. Our estimation approach builds on the Generalized Random Forest

(GRF) algorithm (Athey et al., 2019), which is a non-parametric modeling approach that allows

us revealing heterogeneity and uncovering subgroup differences by applying the potential outcome
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framework (Rubin, 1974). In particular, we are interested in the three following questions:

1. What role do digital technologies generally play for energy consumption in manufac-

turing firms?

2. Which firm-level and external characteristics relate to heterogeneity?

3. To what extent does current targeting of industrial digitalization policies influence

energy use?

3.1. Measuring Heterogeneous Relationships

In order to capture the effect that digital technologies may have on energy use, we compare

a sample of i = 1, . . . , n firms F over a time period of t = 1, . . . , T years. For each firm, we

define a binary variable Wi,t = 1 {∆Di,t > 0} that indicates whether the firm i increases its use

of digital technologies D in period t or not. As we follow a method that has its origin in the

causal inference literature, we consider firms for which W = 1 as “treated” and firms for which

W = 0 as “untreated” or “control group”. Our variable of interest is energy consumption, Yi,t,

at time t. We denote the potential energy consumption of a firm that increases its use of digital

technologies in period t as Yi,t(Wi,t = 1) and the corresponding energy consumption that we

would have observed if the firm had not increased its use of digital technologies as Yi,t(Wi,t = 0).

We define the expected difference between the two potential energy outcomes as the average

treatment effect (ATE) τ . If we additionally condition on different covariates Xi,t = x, we

receive the conditional average treatment effect (CATE), which is formally defined as (Athey

and Wager, 2019):

τ(x) = E [Yi,t(Wi,t = 1)− Yi,t(Wi,t = 0) | Xi,t = x] . (1)

3.2. Generalized Random Forests

A promising method to reveal these heterogeneous treatment effects from observational data

is the causal forest algorithm (Wager and Athey, 2018; Knaus et al., 2021). While the name

promises to automatically determine causal relationships, in fact it allows the measurement of

high-dimensional interaction. The causal forest is a special case of the GRF approach introduced

by Athey et al. (2019). This approach builds on the recursive partitioning, sampling, and split

selection of the random forest algorithm (Breiman, 2001), an aggregation method applied to

decision trees, i.e., classification and regression trees (CART). The goal is to predict an outcome
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ŷ using a non-parametric function of splitting variables, for instance, various covariates. Within

one decision tree, the sample is recursively split into subgroups, optimizing the accuracy of the

prediction. If a further split does not result in accuracy improvements, we call the subgroup at

this node a final “leaf” of the tree.

Variation, and hence, decorrelation between decision trees is achieved, on the one hand, by basing

each tree on a subsample Sb of the entire data set (bagging), and on the other hand, by choosing

a random subset of all possible covariates to build each tree. This procedure also allows for

out-of-bag predictions. Hence, we only consider trees where i ̸∈ Sb to determine relationships

and predict ŷ−i(Xi,t) (Athey and Wager, 2019). This encounters problems, when working with

panel data, as a firm constitutes a cluster of observations. This means that we have to exclude

trees containing the same observation, i.e., firm i at period t, and trees including the same firm

i at period t+ s to avoid information leakage.

To account for the clustered structure of our data when drawing subsamples for each decision

tree, we manipulate the sampling of observations as follows (Athey et al., 2020): Instead of

directly drawing Sb, we first sample clusters Jb from {F1, ..., Fn}. Based on each sampled Jb, we

then draw k observations to build each tree.

The ensemble method applied to single trees can be described as a data-adaptive kernel method

and formulated by the following when considering clusters:

ŷ(x) =

n∑
i=1

T∑
t=1

αi,t(x)Yi,t, αi,t(x) =
1

B

B∑
b=1

1 ({Xi,t ∈ Lb(x), Fi ̸∈ Jb})
|{i : Xi,t ∈ Lb(x), Fi ̸∈ Jb}|

, (2)

where B indicates the number of “grown” trees, indexed by b = 1, . . . , B, Lb(x) is the leaf of the

b-th tree containing test point x. Accordingly, αi,t(x) indicates how often an observation falls

in the identical leaf as x and it can be used to calculate a weighted average of Yi,t based on the

forest-based adaptive neighborhood of x.
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The weighting procedure is one of the main building blocks of the “Generalized Random Forest”

framework (Athey et al., 2019). It is implemented in the grf package in R, on which we base our

analysis.

All firms

. . .

West
Germany?

. . .

≥ 100 employees?

control

no increase?

treatment

incr
ease

in

ICT?

< 100
employ

ees?

Eas
t Germ

any
?

CATE

= 3 %

Figure 1: Illustration of causal forest partitioning. The conditional average treatment effect (CATE) is
calculated by comparing the effect of an increase of digital technologies between firms within groups of similar
firms.

The causal forest algorithm aims to predict treatment effects τ̂ , which denote the difference

between treated and untreated observations within leaves. Accordingly, splits are conducted

by maximizing treatment effect heterogeneity. Nevertheless, the work horse of the algorithm

remains a decision tree. See Figure 1 for a graphical illustration of a respective causal tree. The

sample is split at each node recursively into two child nodes according to the covariates that

maximize the discrepancy between the subgroup ATE. Unequal child node sizes are penalized.

Final nodes report the estimated ATE conditional on the covariates that were responsible for

the splitting, which is also known as CATE (Athey et al., 2019).

The size of our database allows us to follow an “honest” estimation procedure, which means

that we split the firm panel in two groups: With the first half of the sample, we build the tree

structure to calculate weights. Based on these weights, we use the second half of the training

sample to estimate CATEs. Next to the decorrelation of single decision trees, this procedure

prevents overstating the goodness of fit (Athey and Imbens, 2019).
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For the analysis, we grow a forest of 10,000 trees. In addition to the size of the sample and

the covariates used, the forest estimation is also influenced by the maximum split imbalance

(between treatment and control in the child-node) and the minimum node size (minimum number

of observations in a final leaf). We tune all parameters by using cross-validation.3

3.2.1. Identifying Assumptions

Since it is not possible to observe both, firm i increasing its use of digital technologies and not

increasing its use in period t, we need the following additional assumptions to accurately estimate

Equation (1). We refer here to Knaus et al. (2021):

A.1 Overlap: 0 < P[Wi,t = 1 | Xi,t = x] < 1, ∀x ∈ [0, 1]d .

A.2 Unconfoundedness: {Yi,t(1), Yi,t(0)} ⊥ Wi,t | Xi,t .

A.3 Exogeneity of covariates: X1
i,t = X0

i,t .

A.4 Stable Unit Treatment Value Assumption (SUTVA): Yi,t = Wi,tY
1
i,t + (1−Wi,t)Y

0
i,t .

The first assumption requires that no subgroup of firms defined by the covariates Xi = x is

located in either the treatment or the control group only, which implies that the (inverse) treat-

ment probability must be bounded away from zero and one. The second assumption ensures that

potential outcomes are independent of the treatment status, conditional on the covariates. The

third assumption imposes that covariates are not affected by the treatment. The fourth assump-

tion requires that there is no interference or no spillover effects between treated and untreated

observations.

In our analysis, all assumptions might be challenged. For instance, selection effects are induced if

investments in digital technologies correlate with specific firm characteristics (Athey and Wager,

2019; Gulen et al., 2021). To provide an example, firms that generate more output might consume

more energy and have a higher probability to invest in digital technologies. This phenomenon may

result in confounding effects and also increase the difficulty to identify counterfactual observations

for these firms.

To ensure a more substantial degree of overlap, we trim our sample and only use observations

which have propensity scores that match the counterfactual group (Dehejia and Wahba, 1999,

2002). For instance, we drop all observations in the group that does not increase its use of

3See Athey and Imbens (2019) for details.
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digital technologies with an estimated propensity score lower (larger) than the smallest (highest)

estimated propensity score in the group that increases its use of digital technologies and vice

versa.

Second, we have to ensure unconfoundedness. In Section 3.2.2 and 3.2.3, we describe how we

improve robustness to confounding by employing orthogonalization and exploiting the panel

structure of our data.

Since the use of digital technologies can, in addition to energy use, influence other production

function inputs, such as tangible capital, labor as well as output, the assumption of exogeneous

covariates might also be violated. To solve this issue, we refrain from including critical variables

measured concurrently in the same period as the treatment status. Instead, we incorporate them

in lagged levels. This procedure allows for the consideration of these variables without risking

that the assumption of exogeneity of covariates is violated.

We cannot assume with certainty that the fourth assumption of Stable Unit Treatment Values

(SUTVA) is fulfilled a priori. Network effects are a potential argument why the SUTVA may

not be valid. For instance, digital technologies can improve the efficiency of entire supply chains

and alternate distribution structures. We expect network effects to be most strongly pronounced

between subsidiaries within a firm. As we consider companies and not plants as one observational

unit, we are able to integrate these type of network effects. However, also network effects between

companies are possible, which is an issue that we will not solve but acknowledge here.

3.2.2. Orthogonalization

The assumption of independent assignment of treatment conditional on the features X is im-

portant for unbiased estimates (Assumption A.2). To fulfill this assumption, we orthogonalize

treatment and outcome variables by regressing X on Y and W , and then subtracting predictions

(Robinson, 1988; Nie and Wager, 2021). This procedure allows differencing out the variation

in outcome and treatment due to covariates. To this end, we train separate random forests

to compute estimates of propensity scores e(x) = P [Wi,t | Xi,t = x] and expected outcomes

m(x) = P [Yi,t | Xi,t = x]. This approach is also known as R-learning or local centering.

The (−i)-superscript in this case stands for leave-one-out estimates, indicating that the i-th

observation was not used to compute, e.g., m̂(−i) (Xi,t). The resulting residualized outcome

(Y − m(x)) and treatment (W − e(x)) variable, as well as the weights are combined in the
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estimation. Hence, treatment effects are estimated by solving the following equation:

τ̂ =

∑n
i=1

∑T
t=1 αi,t(x)

(
Yi,t − m̂(−i) (Xi,t)

) (
Wi,t − ê(−i) (Xi,t)

)∑n
i=1

∑T
t=1 αi,t(x)

(
Wi,t − ê(−i) (Xi,t)

)2 . (3)

Table 1 summarizes the main steps of the causal forest algorithm including orthogonalization

and honesty.

Table 1: Summary of the steps of the causal forest algorithm with orthogonalization and honesty.

1. Regress Wi,t on Xi,t to obtain a prediction model for ê(−i)(Xi,t).

2. Regress Yi,t on Xi,t to obtain a prediction model for m̂(−i)(Xi,t).

3. With the first half of the sample generate causal trees but replace Wi,t and Yi,t with
Wi,t − p(−i) (Xi,t) and Yi,t −m(−i) (Xi,t). Then calculate αi,t as in Equation (2).

4. Use the second half of the sample and weights obtained in step 3 to calculate τ̂(x) by
solving Equation (3).

3.2.3. Panel Structure

To reduce confounding due to unobservable characteristics, which can either be time-invariant

or time-varying, we exploit the panel structure of our data. Firstly, similar to Athey et al.

(2020) and Knittel and Stolper (2021), we take first differences from our outcome variable as

well as from control variables to remove individual fixed effects.4 This enables the elimination of

a potential time-invariant omitted variable bias. Secondly, in the spirit of Prest (2020), Knittel

and Stolper (2021), and Valente (2021), we additionally include a lagged outcome variable, to

reduce possible time-varying confounding due to unobservables. The intuition why this lowers

potential confounding is that the outcome from the previous period may be influenced by the same

unobservables as current firm characteristics (Lechner, 2015). In other words, conditioning on

pre-treatment outcomes allows controlling for previous behavior that might motivate investment

in ICT.

4. Data

4.1. Microdata on the German Manufacturing Sector

Our analysis builds on firm-level data on the German manufacturing sector (AFiD5) collected

by the Research Data Centres of the Statistical Offices of the Federation and the Federal States

4Note here that our treatment is also dichotomized based on the growth rate of ICT usage.
5“Amtliche Firmendaten für Deutschland”
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(RDC) between 2009 and 2017 (Research Data Centre of the Statistical Offices Germany, 2022).

We combine two different AFiD data sources: (1) The AFiD-Panel Industrial Units and (2) the

AFiD-Module Use of Energy with additional information such as energy prices and deflators.6

Our final panel contains annual information on German manufacturing firms with at least 20

employees at the firm level (yielding around 90,000 observations in total). The longitudinal

data set covers basic information about production value, employees, wages as well as details

on production function inputs (e.g., machines and resources). Most importantly, it contains

information about energy use, the related energy sources, and software investments.

Even though our data set covers an extensive set of firms, it is a rolling window survey, which

means that not every firm is participating in the survey every year. This makes it difficult to

assess whether firms are exiting or entering the market, and therefore aggregated effects at the

sectoral level cannot be assessed properly. However, as our analysis concentrates on the firm

level, this is only a minor limitation.

We base our variable selection on an energy consumption model that is introduced in the next

subsection, before we describe the main variables of the analysis in Section 4.3.

4.2. Modeling Energy Demand

To select relevant variables for our estimation, we model observed energy use Y ∗ as follows:

Y ∗ = Y (Q, pE , pM ,K, L,D, ϑ(X, t)) . (4)

Energy demand Y is a function of a given level of output Q. In addition to energy, Q is generated

by the inputs of tangible capital, labor, and materials. Energy and materials are treated as

flexible inputs. Therefore, they are included via the price for energy pE and materials pM . In

contrast, we consider labor L and tangible capitalK as quasi-fixed inputs. Thus, they are directly

integrated in the energy demand function. Following Stiroh (2002) and Schulte et al. (2016), we

additionally augment the energy demand function by the firm-level degree of digitalization D.

In addition, energy demand depends on the level of energy efficiency, which is approximated by

ϑ. Firm characteristics X influence energy efficiency, such as the use of different energy sources

or investments in R&D as well as market attributes, such as the competitive situation or existing

regulations (cf. Porter and Van der Linde, 1995). Also, energy efficiency improvements certainly

6The dataset is also used and described in detail in Axenbeck and Niebel (2021)
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depend on disembodied technological change, which can be captured by time t. Thus, energy

efficiency is formulated as a function of X and t.

4.3. Variable Description

In this section, we briefly characterize the variables included in the analysis. Unless stated

explicitly, first differences are taken. Please find an overview of all employed variables in Table

2 and a detailed description of the variables in Appendix A. We provide detailed descriptive

statistics in Appendix B.

We look at three different outcomes of interest (denoted by Y ): energy use, electricity use,

and non-electric energetic fossil fuel use (hereafter abbreviated by fossil fuel use). Energy use

represents the sum of consumed energy sources (renewable and fossil, e.g., natural gas or biomass)

plus electricity consumption. All variables are measured in kWh and are log-transformed.7

The degree of firm-level digitalizationD is approximated via a software capital stock. We consider

software capital to be a suitable indicator for firm-level ICT usage, as it is a precursor to almost all

digital hardware. In particular in manufacturing, technologies that optimize production processes

usually require additional software. The monetary measurement of the software capital stock

makes it easy to compare the proxy across different sectors and provides a certain generality

in contrast to investments in single technologies, such as Cloud Computing or robotics.8 Not

without reason, it is a commonly used indicator at the firm level (cf. Almeida et al., 2020; Bessen

and Righi, 2020; Axenbeck and Niebel, 2021; Barth et al., 2022). We also integrate a tangible

capital stock K. We calculate both capital stocks by applying the perpetual inventory method

(PIM), which allows generating a productivity-relevant capital stock (c.f. Griliches, 1980; Lutz

et al., 2017). For this purpose, we use deflated investments. Moreover, we base the calculation of

software capital on information on software investments, while tangible capital is approximated

using information on investments in property, plants, and equipment.

Furthermore, we take first differences of the software capital stock. Based on this transformation,

we define a binary treatment indicator W that approximates an increase in the use of digital

technologies. Accordingly, the indicator is one if firm i shows an increase in software capital in

the year t and zero otherwise. We include a dichotomized treatment indicator, as a continuous

7Note here that electricity consumption and fossil fuel use do not sum up to energy use, since non-electric
non-fossil energy, such as biomass, cannot be accounted to either of the two.

8For a detailed description of the capital stock approximation as well as for a descriptive analysis of the software
capital indicator, we refer to Axenbeck and Niebel (2021).
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Table 2: Variable overview.

variable description variation transformation

Outcome

Y energy use firm, year ∆ln

electricity use firm, year ∆ln

(non-electric) fossil fuel use firm, year ∆ln

Treatment

W binary indicator for an increase in digitalization firm, year 1 {∆D > 0}

Covariates

Q output firm, year t− 1

K tangible capital firm, year t− 1

L number of employees firm, year t− 1

pM producer price index year, sector ∆ ln

pE energy price year, sector/district ∆ ln

prices for electricity and gas year, consumption level ∆ ln

prices for other energy sources year ∆ ln

X lagged outcome (Yt−1) firm, year t− 1

share of energy source (e.g., natural gas/energy use) firm, year t− 1

R&D intensity (R&D divided by Q) firm, year ∆

tax intensity firm, year ∆

subsidy intensity firm, year ∆

trading intensity firm, year ∆

HHI year, sector ∆

relative use of self-produced fossil-based energy firm, year ∆

relative use of self-produced renewable energy firm, year ∆

proxy for renewable levy (EEG) exemption firm, year one-hot

multi/single unit firm, year one-hot

main industrial grouping firm, year one-hot

structurally weak region district one-hot

sector association sector LASSO vector

location federal state LASSO vector

t time or disembodied technological change year LASSO vector
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treatment would result in the estimation of linear treatment effects, which we believe is a rather

unrealistic assumption. In summary, we observe for approximately 30 percent of firms an increase

in software capital. Thus, we consider them as quasi-treated. We include tangible capital in

logarithmized lagged levels in the estimation.

For each firm, we additionally observe numerous covariates that we group in five categories:

Production function in- and outputs, external factors, firm structure, policy situation, and energy

mix. We provide a brief description of the variables here, but refer to the overview in Appendix A

(Table A.4) for a detailed description and the data sources.

As motivated in the previous section, in addition to the tangible capital stock, production func-

tion in- and outputs relate to labor use L, which is approximated by the number of employees,

the price for materials, and the energy price as well as the firm-level production value Q. The

number of employees and the firm-level production value are integrated in lagged levels to ensure

that the exogeneity of the covariates is fulfilled (Assumption A.3 in Section 3.2.1). We approx-

imate the price for materials pM by the producer price index. For the energy price pE , we use

the location-specific industry average of firm-level expenditure for one kilowatt-hour of energy.

We additionally add prices for different energy carriers from external data sources: We merge

electricity, natural gas, coal, heating oil, district heat, biomass, and liquid gas prices. Also, we

log-transform all price variables.

The variables described in the following pre-dominantly relate to firm and sector characteristics

X that potentially influence energy efficiency ϑ. Data on external factors cover variables, such

as location (federal state), year of observation, which approximates disembodied technological

change t, and industry association. In a standard OLS regression, all three characteristics would

typically be included as one-hot-encoded fixed effects. However, trees-based algorithms have

difficulties with large one-hot-encoded matrices. Therefore, we follow Jens et al. (2021) and

modify them in a two-step procedure. First, we estimate the effect of each variable, coded as

fixed effects dummies in a LASSO regression, on Y . For instance, we estimate the effect of

each manufacturing industry, such as the automotive industry, on energy use. Second, we create

a vector of the respective estimation coefficients for each variable and include this vector as a

feature in the GRF estimation instead of a one-hot-encoded matrix. Jens et al. (2021) show

the effectiveness of this approach in Monte Carlo simulations. Further external factors that are

integrated in the estimation are the competitive situation in each industry approximated by the

Herfindahl–Hirschman Index (HHI) and a dummy indicating whether the firm is situated in a
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region considered “structurally weak” due to its limited economic productivity.

Additionally, we include information on the firm structure, such as information on the number

of plants, industrial grouping (intermediate goods, capital goods, durable consumer goods, non-

durable consumer goods, and energy producer), and the volume of traded commodities as well

as investment in research and development (R&D) relative to output. Except for the last two

variables, which are continuous, we integrate all information in levels and one-hot-encoded. Here,

we refrain from applying LASSO-based fixed effects vectors, as the number of categories is small.

The policy situation of the firm is characterized by paid taxes and received subsidies. The

information is considered proportional to output. Information whether the firm is potentially

fully or partly exempt from the EEG levy9, which is the case for various energy-intensive firms,

is also included as a categorical variable.

Last but not least, we include covariates that describe the energy mix of the firm, starting with

the share of different energy sources used in the production process. All shares are integrated as

lagged levels, as current changes may be strongly correlated with the outcome variable. Moreover,

we add the share of self-generated energy (fossil and renewable energies).

After this preprocessing our dataset contains p = 78 covariates and our sample includes 92,315

observations based on 28,734 firms.

5. Results

We structure our results according to the three research questions posed in Section 3. Hence, we

first discuss the general role of digital technologies for energy consumption in the manufacturing

sector. Then we turn to heterogeneity-driving characteristics before presenting results on selective

targeting of current industrial digitalization policies and their influence on energy use.

5.1. Conditional Average Treatment Effects

We start by estimating the conditional average treatment effects of an increase in the use of

digital technologies, approximated by a binary indicator, on total energy use, electricity, and

fossil fuels. We use each outcome in a separate analysis, i.e., we estimate three separate causal

forest models.

9A levy paid in Germany for electricity consumption to promote renewable energies.
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Figure 2: Distribution of the Conditional Average Treatment Effect (CATE) for the three different
outcome variables: energy use, electricity use, and fossil fuels use.

Figure 2 depicts the distributions of the treatment effects predicted by the causal forest for

the three different outcomes. All panels show out-of-bag (OOB) predictions, which are average

predictions for each observation, using only trees that do not include the respective observation

(James et al., 2021).10 We find for total energy use that the ICT-related increase in energy

consumption ranges roughly from −3% to 6% and has its mean at 1.03%. When electricity

use is our dependent variable, the ICT-related increase in electricity consumption is slightly

higher and at 1.34%. The contrary holds for fossil fuels, where the ATE decreases to 0.23% and

becomes insignificant. It has to be acknowledged here that the range of the CATE distribution

is now much broader and spans roughly from −30% to 30%. Overall, the average treatment

effect indicates that an increase in the firm level degree of digitalization is significantly related

to higher levels of energy use. However, there is a small share of firms for which the potential

outcome declines. Thus, we conclude that for some firms we can observe both, energy savings

and an increase in digital technologies, i.e., potential synergies. Nonetheless, firms for which an

increase in the software capital stock relates to growing energy use are far more frequent. The

positive relationship seems to be particularly pronounced for the electricity use of a firm, while

we cannot determine an unambiguous direction of ICT-related changes in energy consumption

10We excluded a small test sample of 2% of our observations from the training procedure of the Causal Forest
model to analyze the external validity. Figure E.13 in the Appendix shows the CATE predictions for this test
sample. The similarity between the distributions indicates that the model is well calibrated.

20



for fossil fuel use. Accordingly, results suggest that the change in overall energy use is driven by

an increase in electricity use. This is in line with the reasoning that ICT consume mainly electric

energy.

At first sight, this finding contradicts previous results from Schulte et al. (2016), who observe that

ICT relate to a reduction in non-electric energy, but do not significantly affect the demand for

electric energy. However, comparing both studies reveals that Schulte et al. (2016) use different

outcome variables. For instance, instead of considering absolute electricity use, they use the

share of electricity costs in variable costs as a dependent variable. This divergence may explain

the differences between the two studies.

We evaluate the Causal Forest fit by applying the Best Linear Prediction Test (Chernozhukov

et al., 2018). The test uses the OOB predictions of ICT-related changes in energy consumption

to predict actual changes and thereby evaluates the quality of estimates with the following linear

model:11

(Yi,t − Yi,t−1)− m̂(−i) (Xi,t) = βATEτ̄
(
Wi,t − ê(−i) (Xi,t)

)
+ βCATE

(
τ̂ (−i) (Xi,t)− τ̄

)(
Wi,t − ê(−i) (Xi,t)

)
+ ϵi,t.

(5)

The results for the two β-coefficients are reported in Table 3 with respect to overall energy

use. Since βATE is close to 1, the model captures the average ICT-related changes in energy

consumption well. We also find evidence that the covariates adequately capture the underlying

heterogeneity, as the second coefficient (βCATE) is also close to 1 and significant. The results

of the other two outcomes are reported in Table E.7. Although the results for the electricity

model are comparable to those of the overall energy model, the fossil fuel model does not appear

to adequately predict ICT-related changes in fossil fuel consumption. Thus, for fossil fuels, we

cannot reject the null that no heterogeneity exists.

Table 3: Best Linear Predictor Test for the forest with total energy use as outcome.

Estimate SE t-stat p-value

βATE 0.998 0.235 4.245 1.09e− 05∗∗∗

βCATE 1.261 0.366 3.448 0.0003∗∗∗

Notes: Results of the best linear predictor test for model calibration and heterogeneity that seeks to
fit the estimated CATE as a linear function of the out-of-bag predictions (see Equation (5)).

11Accordingly, the model is calibrated well if βATE and βCATE are close to one.
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As our results confirm an increase in energy use at the firm-level. It is intuitive to ask how this

result affects the overall energy consumption of the manufacturing sector. However, we have to

face a limitation in this regard, as even though our data set covers an extensive set of firms, it

is a rolling window survey, which means that not every firm of the manufacturing sector has to

answer the survey every year. This makes it difficult to assess whether firms exit or entry the

market and therefore aggregated effects at the sectoral level cannot be assessed properly. Thus,

we refrain from conclusions with respect to changes in aggregated energy consumption.

5.2. Analyzing Effect Heterogeneity

While the CATE distributions indicate that the relationship is heterogeneous for total energy and

electricity use, it does not clarify how the observed covariates are associated with ICT-related

changes in energy consumption.
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Figure 3: Bivariate distributions and smoothed regression lines for ICT-related changes in energy
consumption and selected variables (total energy use). The color of the hexagons symbolizes the density
of the observations and each hexagon comprises at least 5 individual observations. Individual observations cannot
be presented due to anonymity constraints.

Figure 3 shows bivariate distributions and smoothed regression lines for predicted ICT-related

changes in overall energy consumption with respect to the following variables: energy use and
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relative electricity consumption in the previous period, changes in market concentration, and

changes in the overall energy price. The four variables were chosen according to the variable

importance in the splitting algorithm for overall energy consumption (see Figure D.11).12

Previous level of energy use and share of electricity. The upper right panel of Figure 3 indicates

that firms that used relatively little energy in the previous period are associated with a greater

increase in ICT-related energy use. This may imply that smaller firms increase their energy use

to a greater extent when investing in ICT, which can be explained by the phenomenon that

digital technologies spark economic growth. In addition, the joint distribution of ICT-related

changes in overall energy consumption and the electricity share in the previous period indicates a

positive relationship (upper left panel). This result potentially confirms that digitalization more

strongly affects electricity-using firms.

HHI. The HHI is positively correlated with predicted CATEs (lower left). This might imply

that digital firms that face less competition use relatively more energy than digital firms in less

concentrated markets. Accordingly, fierce competition may provide larger incentives to save costs

and mitigate the additional energy consumed by digital technologies.

Energy prices. The lower right panel of Figure 3 relates to the overall energy price. It suggests

that the association between ICT-related changes in energy consumption and changes in the

energy price is positive. Assuming a negative “baseline” effect for energy prices (Labandeira

et al., 2017), i.e., a negative own price elasticity, this result indicates that the sensitivity to the

energy price decreases for firms that increase their use of digital technologies, since the slope of

their energy demand curve potentially becomes less steep compared to firms that do not increase

their use of digital technologies.

The energy price only reflects the average price of the energy sources consumed, weighted by their

usage. However, in fact, the effects for different energy outcomes may diverge with respect to

prices for different energy sources. We assume this because different energy sources can be used as

substitutes, and digital technologies may influence own and cross-price elasticities differently. As

digital technologies consume electricity, we conjecture that firms that increase their use of digital

technologies become more dependent on electricity. Thus, on the one hand, their sensitivity to

an increase in the electricity price may decline. On the other hand, if firms increase their use

of digital technologies, they may also respond differently to changes in fossil fuel prices. We

12The importance of prices is considered jointly.
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assume this because they can potentially substitute fossil fuels more easily by electricity and,

therefore, may become more sensitive to fossil fuel prices. In summary, we hypothesize that own

and cross-price sensitivity for different energy sources is affected if a firm increases its use of

digital technologies.

To analyze this claim, we compare the difference between the prices of different energy sources

between the 20% of firms (Q5) with the highest predicted increase in ICT-related energy con-

sumption and the 20% of firms (Q1) with the lowest predicted increase. The first panel of Figure

4 depicts results for the overall energy use. Each bar represents the price difference of an energy

source. We see that the electricity price per kWh is higher in Q5 than in Q1. Hence, the firms

for which the ICT-related difference in energy consumption is the largest face higher electricity

prices. For natural gas, district heat, and coal, we do not observe any notable price differences

between Q1 and Q5. For heating oil and liquid petroleum gas (LPG), we find a negative di-

vergence. Hence, we observe lower respective prices where the difference in energy consumption

between ICT-increasing and not ICT-increasing firms is the largest.
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Figure 4: Difference between energy prices with respect to the 20% percent of firms with the highest
ICT-related change in electricity, fossil fuel, or energy consumption and the 20% with the lowest
ICT-related change. We calculate Q5 -Q1.

The second panel of Figure 4 shows price differences for changes in electricity consumption. It

is straightforward to see that electricity and fossil fuel prices are higher where the difference in

electricity consumption between ICT-increasing and not ICT-increasing firms is the largest. As

explained above, two different mechanisms that work in parallel may explain this difference. On
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the one hand, sensitivity to electricity prices declines for digital firms. On the other hand, digital

firms can more easily switch to electricity if prices of fossil fuels increase; hence, the sensitivity

to other prices may increase.

The third panel of Figure 4, shows for fossil fuel use that a higher respective positive divergence

between ICT-increasing and not ICT-increasing firms can be associated with lower fossil fuel

prices. Furthermore, there is no difference between both quintiles with respect to the electricity

price. This result is in line with our assumption that price sensitivity increases for fossil fuel

prices. However, since the Best Linear Prediction Test does not confirm heterogeneity for fossil

fuels, results for fossil fuel use should be interpreted with caution.

In summary, we find that when the electricity difference between ICT-increasing and not ICT-

increasing firms is larger than electricity prices are also higher. Furthermore, we find that a

smaller increase in energy consumption is more frequently linked to higher fossil fuel prices.

Policymakers should be aware that this result suggests that digital firms may be less responsive

to an electricity price policy, such as a levy to promote renewable energies, but may be more

responsive to a fossil fuel price policy (targeting non-electric energy consumption).

5.3. Group Differences in the Light of Current Policies

In the following, we look at the differences between subgroups with respect to current digital-

ization policies. So far, German and also European digitalization policies,13 involve subsidies

and funding for small and medium-sized enterprises (SMEs) and for regions that are considered

structurally weak. To analyze the interplay of this strategy with climate targets, we conduct a

subgroup analysis investigating whether and how the estimated ICT-related increase in energy

consumption varies along firm size and regional structure.

We use Group Average Treatment Effects (GATEs) for the analysis. GATEs refer to the average

of individual treatment effects over pre-defined, low-dimensional characteristics (Knaus et al.,

2021). Therefore, they are more granular than the overall ATE but are easier to interpret than

the previously described firm-level effects. In the spirit of Athey et al. (2020), we split the sample

into quintiles for the exercise.14

13For instance “go digital” https://www.innovation-beratung-foerderung.de/INNO/Navigation/DE/
go-digital/Foerdermodell/foerdermodell.html [online; accessed 17. Mar. 2022] and “digital jetzt”,
see https://www.foerderdatenbank.de/FDB/Content/DE/Foerderprogramm/Bund/BMWi/digital-jetzt-
investitionsfoerderung-kmu.html [online; accessed 17. Mar. 2022]

14Note that we do not estimate GATEs doubly robust, as AIPW-scores tend to not perform well on smaller
samples and the overlap assumption may not be fulfilled anymore (Glynn and Quinn, 2010).
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We estimate GATEs for firms located in regions that are considered either structurally weak or

strong along three continuous variables that indicate firm size: the number of employees, the

tangible capital stock and output. We consider these variables all from the previous period,

as decision makers usually observe firm characteristics, and funding decisions are subsequently

made. Figure 5 shows the GATEs for each of the three “size” variables separately. The horizontal

axes depict quintiles for “size” variables. The vertical axes show the estimated ICT-related

increase in energy consumption. Note that we calculate the quintiles before grouping the data

by region. Green lines relate to firms in structurally weak regions and purple lines to firms in

structurally strong regions.

Figure 5: Group Average Treatment Effects (GATE) grouped by the economic strength of the
corresponding region for different quintiles of labor (number of employees; L), tangible capital (KN ) and
output (Q). The two lines relate to the economic strengths of the region, shaded areas denote 10% confidence
intervals

All three panels indicate that the ICT-related increase in energy consumption declines with

firm size in both structurally weak and strong regions. The effects in structurally weak regions

vary between 1.45% for firms in the lowest quintiles of labor and output and 0.9% for firms in

respective highest quintiles. Furthermore, the effect size is smaller for structurally strong regions,

for which the effect range is between 1.25% − 0.85% for quintiles of labor and output. Effect

differences for quintiles of tangible capital are slightly less pronounced. Besides, the difference

between the energy use of firms with increasing software capital and those without is in particular

strong for small firms in structurally weak regions, while the difference between regions is partly
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insignificant for higher quintiles for each “size” variable and never significant for the highest

quintile.

One potential explanation for the higher increase in energy consumption in small firms in struc-

turally weak regions is the fact that digital technologies are a catalyst for economic growth by

improving productivity, especially for laggard firms (Borowiecki et al., 2021). Related efficiency

improvements exist for economic reasons, such as the generation of scale and scope economies and

the reduction of transaction costs (Brynjolfsson and Hitt, 2000). Since larger firms in industri-

alized regions potentially have advantages in economies of scale and scope and fewer transaction

costs, digital technologies may spark here efficiency improvements and economic growth to a

lower magnitude. This phenomenon may explain why we observe a larger increase in energy

consumption for smaller firms in structurally weak regions. We conclude that a policy trade-

off between the goal of saving energy and economic assistance by increasing the use of digital

technologies may be especially pronounced for those firms.

In the next step, we analyze group differences with respect to energy-intensive and other indus-

tries. We already put forward the hypothesis that relationships may diverge between industries

as production processes vary and, hence, can be differently affected by digitalization. Consider-

ing that a large share of manufacturing’s total energy consumption is driven by a few industries,

differences between industries are policy relevant and may be crucial for achieving climate targets.

Similarly to differences between structurally strong and weak regions, we calculate GATEs for

energy-intensive and other industries. We consider the following industries as energy-intensive,

as they jointly account for more than 80% of the total energy consumption in manufactur-

ing: “Food, beverages, tobacco products (Division 10–12, 5.8%)”, “Paper & paper products”

(Division 17, 5.7%), “Coke, refined petroleum products” (Division 19, 14.4%), “Chemicals &

chemical products” (Division 20, 32.9%) “Non-metallic products” (Division 23, 7.4%), “Basic

metals” (Division 24, 16.9%).15 We also calculate sector GATEs with respect to quintiles of

different “size” variables, as the previous analysis shows large differences in this regard.

Figure 6 shows that the increase in energy consumption is less for firms in energy-intensive

industries. For the lowest quintile of labor, for example, the increase in energy consumption for

energy-intensive industries is only 1.1%, whereas it is 1.35% for other industries. However, the

15See German Environmental Agency; www.umweltbundesamt.de/daten/umwelt-wirtschaft/industrie/
branchenabhaengiger-energieverbrauch-des#primarenergienutzung-des-verarbeitenden-gewerbes [online;
accessed 2. August. 2022].
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differences decrease for the higher quintiles of “size” variables and are only significant for the

highest quintile of tangible capital.

As assumed, the results suggest that industry differences affect ICT-related changes in energy

consumption.16 Energy-intensive industries are part of the European Union Emissions Trading

System (EU ETS). This system generates an additional incentive to save carbon emissions.

Hence, an increase in energy consumption may be attenuated for energy-intensive firms by an

increasing pressure to save energy-related carbon emissions.17

Figure 6: Group Average Treatment Effects (GATE) grouped by energy-intensive (Divisions: 10-
12, 17,19, 20, 23, 24) and remaining industries for different quintiles of labor (number of employees; L),
tangible capital (KN ) and output (Q). The two lines relate to the economic strengths of the region, shaded areas
denote 10% confidence intervals

6. Robustness

The fact that digital technologies can also spark economic growth and via this channel increase

energy use points us to an issue. The role of output, labor use, and tangible capital for the

relationship between ICT and energy use is ambiguous in our analysis. On the one hand, these

variables might be influenced by digital technologies and are part of the impact mechanism.

16This result does not contradict findings of Axenbeck and Niebel (2021), who find that energy intensity
improvements are rather statistically significant in energy-intensive industries. If output increases parallel to ICT
investments than energy intensity can decrease. It will probably improve to a greater extent where the rise in
absolute energy consumption is smaller.

17We have to acknowledge that prices of emission allowances were rather low between 2011 and 2017.
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Therefore, they are a potential source of biased results, as this would violate Assumption A.3,

and we cannot consider contemporaneous changes in variables. However, on the other hand,

production function in- and outputs may also be potential confounders. For instance, an increase

in tangible capital may correlate with the use of digital technologies. This might lead to the rise

in tangible capital being the reason for a higher energy consumption, while digital technologies

had actually no impact on energy use. Consequently, by integrating only lagged levels, we

cannot fully control for confounding due to simultaneous changes in production function in- and

outputs. Therefore, we reestimate our model, and replace lagged output, tangible capital, and

labor use by logarithmized growth rates (see Appendix E). This enables controlling for respective

simultaneous changes. Since the results are comparable to those of our main model, we conclude

that the results are robust and contemporaneous changes only play a minor role.

Moreover, we conduct a second robustness check in which we constrain our definition of an

increase in digitalization and only consider firms as digital for which the software capital stock per

employee increases additionally. In this specification, the ATE is now 0.006 percent. With a p-

value of 0.12, the null hypothesis of no increase in energy use cannot be rejected (see Appendix E).

The Best Linear Prediction Test shows significant results at the 95%-level. Hence, considering

software capital per employee, our results confirm firm-level heterogeneity. However, it should

be acknowledged that this result is significant at a much lower level. An explanation for an

attenuated statistical power may be, on the one hand, that we now control more strictly for firm

growth (also for the ICT-induced one). On the other hand, we observe firms now in the control

group which have been previously considered as digital, i.e., firms with an increasing software

capital stock but with a decreasing software capital stock per employee. Observing these firms in

the control group may decrease measured ICT-related changes in energy consumption. A further

study should shed more light on whether electricity consumption rises because digital firms grow

faster or whether ICT capital and electricity are complements and, thus, digital technologies

spark electricity use independent of economic growth.

7. Summary and Conclusion

On the one hand, the ongoing digital transformation has raised hopes of climate protection poten-

tials in the energy-intensive manufacturing sector. On the other hand, digital technologies may

actually contribute further to environmental damage because they themselves consume energy

and resources. However, there is little evidence in the literature that identifies key parameters
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that determine this relationship.

The main contribution of the article is to disentangle the heterogeneity at the firm level regarding

the relationship between ICT and energy use in manufacturing. For this purpose, we apply the

Generalized Random Forest algorithm proposed by Athey et al. (2019) to a large administrative

panel data set. We harness the panel structure of the data to reduce confounding and mitigate

endogeneity issues.

We find that for most firms with an increase in ICT capital, energy use increases relative to firms

that do not or barely invest in ICT. Comparing electricity and non-electric fossil fuel use, we

additionally show that the relationship differs with respect to different energy sources. We find

no significant changes in the use of non-electric fossil fuels, but an average increase in electricity

use of 1.34%. Contrary to political hopes, digital technologies seem to increase energy use at

the firm level. However, the increase is particularly related to electricity consumption, for which

decarbonization can be realized by renewable energy sources. Furthermore, there is a small share

of firms for which energy use declines. Looking closer at the external and firm-level characteristics

that may explain heterogeneity, our analysis confirms anticipated rationales. Most interestingly,

we observe a growing ICT-related increase in energy consumption with respect to the electricity

price, which indicates that the sensitivity to the electricity price declines for digital firms.

Analyzing current policy rationales to target SMEs and firms in regions that are considered

structurally weak, the analysis reveals that digitalization policies might not mitigate energy use,

while simultaneously fostering technological progress. However, since our study is the first to shed

light on characteristics that determine a change in firms’ energy consumption as a response to the

ongoing digital transformation, there is a strong need for further research. As digital technologies

become even more important in the next few years, so will the question of how to actively shape

this process into a direction that supports sustainability goals. To be able to systematically

align both policies that support technological progress and instruments that reduce energy use,

a better understanding of drivers and moderators, i.e., of firm-level heterogeneity, is essential.
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Appendix A. Description of Variables

Table A.4: Description of Variables

Main variables

total energy use Overall firm-level energy use, i.e. the sum of energetic use of different energy carriers

plus electricity use (in kWh) observed in the AFiD-Module Use of Energy.

electricity use Total electricity consumption (in kWh) observed in the AFiD-Module Use of Energy.

fossil fuel use The sum of firm-level use of natural gas, coal, heating oil, district heat and liquid

petroleum gas (in kWh) observed in the AFiD-Module Use of Energy.

treatment Software capital approximates the degree of firm-level digitalization (in e). We

calculate firm-level software capital stocks as in Axenbeck and Niebel (2021) and

base them on software investments reported in the AFiD-Panel Industrial Units.

Firstly, we generate real software investments using software deflators from Eurostat.

Secondly, we apply the perpetual inventory method (PIM) to estimate capital stocks

(Griliches, 1980; Lutz et al., 2017). We consider a depreciation rate of 31.5%. The

value is retrieved from the EU KLEMS database.18 Based on these software capital

stocks, we calculate software capital growth rates and dichotomize them to generate

treatment W . Accordingly, W is one if the software capital stock of firm i increases

in period t and zero otherwise. It has to be acknowledged that we only account for

purchased software capital and firms may also use open source software. We refer to

Axenbeck and Niebel (2021) for a detailed description of the calculation of software

capital stocks and a discussion of their representativeness for the firm-level degree

of digitalization. Moreover, Axenbeck and Niebel (2021) conduct robustness checks

with different depreciation rates and find that the link between software capital

intensity and energy intensity is robust to different depreciation values (25%, 33%,

and 50%).

Covariates

lagged outcome We include the lagged outcome in log-levels in the estimation. If we integrated

change rates from the previous period, we would need to consider t− 2 as well. This

would imply that we loose a large share of observations, as our panel is imbalanced.

output We take the gross production value and subtract turnover from trade and other

activities to calculate output (in e). All variables are observed in the AFiD-Panel

Industrial Units.

tangible capital Tangible capital is calculated using real investments in property, plant and equipment

(AFiD-Panel Industrial Units, in e) and applying the PIM. Deflators and depreci-

ation rates are taken from the EU KLEMS data. We refer also to Axenbeck and

Niebel (2021) for a detailed description of the calculation of tangible capital stocks.

18 See EU KLEMS database - 2019 release, Germany capital input data, see Stehrer, R., A. Bykova, K. Jäger, O.

Reiter and M. Schwarzhappel (2019): Industry level growth and productivity data with special focus on intangible

assets, wiiw Statistical Report No. 8. link to data (Retrieved on: 18.04.2020).
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labor use Labor use is measured by the number of employees observed in the AFiD-Panel

Industrial Units. We convert part-time employees to full-time employees and adjust

the number of employees in this regard.

producer price index Average material prices are approximated by the index of producer prices of indus-

trial products (domestic sales) retrieved from Destatis. Link to data (retrieved on:

12.11.2020).

price energy We calculate overall firm-level energy prices in a two-step procedure. Firstly, we

divide firm-level energy costs by firm-level energy use to approximate the firm-level

energy price (in e/kWh). However, this approach may be endogenous and prone to

issues resulting from misreporting. Consequently, we calculate in a second step, based

on the firm-level energy price, the average energy price within an industry (4-digit

NACE level) in one region (5-digit AGS level [Kreisbene]). We then approximate

the firm-level energy price by the regional industry average. This allows considering

a more robust energy price. Moreover, if we observe less than five firms in a region

within one industry, we approximate the firm-level energy price by the federal-state

average at the 2-digit NACE level.

price electricity Electricity prices are retrieved from Eurostat (status: 08.04.2019, in e/kWh). We

consider prices for non-household consumers, which is bi-annual data and we, there-

fore, take the yearly average. Moreover, prices dependent on the consumption level

and we exclude VAT and other recoverable taxes and levies. As firms switch their

consumption level over time, we consider the consumption level of the first period

we observe a firm to match prices. This allows for not considering price variations

due to changes in the consumption level. Link to data (retrieved on: 15.07.2020).

price natural gas Natural gas prices are also retrieved from Eurostat (status: 10.02.2020, in e/ GJ).

We consider bi-annual natural gas prices (average price per year is calculated) for

non-household consumers. Natural gas prices dependent on the consumption level.

Accordingly, we consider the consumption level of the first period we observe a firm

to match prices. Prices are retrieved excluding VAT and other recoverable taxes and

levies. Natural gas prices are converted from GJ to kWh. Link to data (retrieved

on: 15.07.2020).

prices of other energy carriers Other energy prices are retrieved from IEA (liquid petroleum gas, retrieved on:

04.09.2019), Destatis & DEPI (biomass, retrieved on: 16.07.2020 [Destatis], and

retrieved on: 13.09.2019 [DEPI]), AGFW (district heat, retrieved on: 14.08.2019),

BMWK former BMWi (heating oil, retrieved on: 01.04.2020). For a more detailed

description on sources for energy prices see Axenbeck and Niebel (2021).

share of energy sources To consider the energy mix, we divide the use of electricity, natural gas, coal, heating

oil, district heat, liquid petroleum gas and biomass by overall energy consumption

and consider each share as a variable in the causal forest model. All variables are

observed in the AFiD-Module Use of Energy. We include each energy share in lagged

levels in our estimation.

R&D intensity We divide the total expenditure on research & development observed in the AFiD-

Panel Industrial Units by output.

tax intensity The amount of taxes (e.g. property tax, motor vehicle tax, excise duties; excluding

income and corporation tax, equalization levies on burdens and VAT) observed in

the AFiD-Panel Industrial Units is divided by output.

40

https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Erzeugerpreisindex-gewerbliche-Produkte/Publikationen/Downloads-Erzeugerpreise/erzeugerpreise-lange-reihen-pdf-5612401.html
https://appsso.eurostat.ec.europa.eu/nui/show.do?query=BOOKMARK_DS-052782_QID_2667E911_UID_-3F171EB0&layout=TIME,C,X,0;TAX,B,Y,0;CONSOM,B,Y,1;PRODUCT,B,Z,0;UNIT,B,Z,1;CURRENCY,B,Z,2;GEO,B,Z,3;INDICATORS,C,Z,4;&zSelection=DS-052782INDICATORS,OBS_FLAG;DS-052782PRODUCT,6000;DS-052782CURRENCY,EUR;DS-052782TAX,I_TAX;DS-052782GEO,DE;DS-052782UNIT,KWH;&rankName1=UNIT_1_2_-1_2&rankName2=CURRENCY_1_2_-1_2&rankName3=INDICATORS_1_2_-1_2&rankName4=PRODUCT_1_2_-1_2&rankName5=GEO_1_2_1_1&rankName6=TIME_1_0_0_0&rankName7=TAX_1_2_0_1&rankName8=CONSOM_1_2_1_1&sortC=ASC_-1_FIRST&rStp=&cStp=&rDCh=&cDCh=&rDM=true&cDM=true&footnes=false&empty=false&wai=false&time_mode=FIXED&time_most_recent=false&lang=EN&cfo=%23%23%23%2C%23%23%23.%23%23%23
https://appsso.eurostat.ec.europa.eu/nui/show.do?query=BOOKMARK_DS-052778_QID_-6C610A18_UID_-3F171EB0&layout=TIME,C,X,0;TAX,B,Y,0;CONSOM,B,Y,1;PRODUCT,B,Z,0;GEO,B,Z,1;UNIT,B,Z,2;CURRENCY,B,Z,3;INDICATORS,C,Z,4;&zSelection=DS-052778TAX,X_TAX;DS-052778PRODUCT,4100;DS-052778GEO,DE;DS-052778INDICATORS,OBS_FLAG;DS-052778UNIT,KWH;DS-052778CURRENCY,EUR;&rankName1=UNIT_1_2_-1_2&rankName2=CURRENCY_1_2_-1_2&rankName3=INDICATORS_1_2_-1_2&rankName4=PRODUCT_1_2_-1_2&rankName5=GEO_1_2_0_1&rankName6=TIME_1_0_0_0&rankName7=TAX_1_2_0_1&rankName8=CONSOM_1_2_1_1&sortC=ASC_-1_FIRST&rStp=&cStp=&rDCh=&cDCh=&rDM=true&cDM=true&footnes=false&empty=false&wai=false&time_mode=FIXED&time_most_recent=false&lang=EN&cfo=%23%23%23%2C%23%23%23.%23%23%23
https://www.oecd-ilibrary.org/energy/data/iea-energy-prices-and-taxes-statistics_eneprice-data-en
https://www.destatis.de/DE/Themen/Wirtschaft/Preise/Publikationen/Energiepreise/energiepreisentwicklung-pdf-5619001.pdf?__blob=publicationFile
https://depi.de/de/pelletpreis-wirtschaftlichkeit#dau2v
https://www.agfw.de/energiewirtschaft-recht- politik/wirtschaft-und-markt/markt-preise/preisanpassung/
https://www.bmwi.de/Redaktion/DE/Artikel/Energie/energiedaten-gesamtausgabe.html


subsidy intensity The amount of subsidies received for current production in the business year observed

in the AFiD-Panel Industrial Units is divided by output.

trading intensity The total turnover of trading goods during the business year observed in the AFiD-

Panel Industrial Units is divided by output. Trading goods are considered to be goods

of foreign origin that are generally resold unprocessed and without a production-

related connection to own products.

Herfindahl–Hirschman Index The HHI captures the competitive situation that a firm has to face. It is calculated

using yearly revenue-based market shares at the 4-digit NACE level observed in the

AFiD-Panel Industrial Units. For a detailed description of the HHI see Rhoades

(1993). We exclude industries for which we observe less than five firms per year.

share renewable production Own electricity generation from renewable power observed in the AFiD-Module Use

of Energy is divided by overall energy use.

share fossil production Own electricity generation from fossil sources observed in the AFiD-Module Use of

Energy is divided by overall energy use.

weak region We include a dummy indicating whether a firm is situated in a region (5-digit AGS

level) that is considered as “structurally weak” (0) due to its limited economic

productivity or “structurally strong” (1). An overview map of structurally weak

regions can be found at: https://www.bmwi.de/Redaktion/DE/Dossier/Digital-

Jetzt/digital-jetzt-infografik-strukturschwache-regionen.html

EEG exemption A one-hot encoded variable is generated that indicates whether a firm is partly (1)

or fully (2) exempted from charges under the law on renewable energies (EEG). This

is calculated by means of the approximated ratio between electricity costs and value

added as well as electricity use. For this purpose, we combine information from the

AFiD-Panel Industrial Units and the AFiD-Module Use of Energy.

energy intensive industry We define an energy-intensive industry as an industry or a group of industries at the

2-digit NACE level that accounts for more than 5 % of total energy consumption of

the manufacturing sector (Divisions: 10-12, 17,19, 20, 23, 24). The information is

retrieved from the German Environmental Agency.

main industrial grouping We add a one-hot encoded variable that indicates the industrial main group of the

firm (intermediate goods producer (1), capital goods producer (2), durable goods

producer (3), consumer goods producer (4), and energy producer(5))

single- / multi-unit firm A one-hot encoded variable is included that indicates whether a firm is a single-unit

firm (1), a multi-unit firm in one federal-state (2), or a multi-unit firm in several

federal states (3).

industry association A LASSO-based fixed effects vector controlling for the industry assignment is cal-

culated based on 2-digit NACE codes. For a detailed description see Jens et al.

(2021).

year A LASSO-based fixed effects vector controlling for the observation period (year) is

generated based on Jens et al. (2021).

federal states A LASSO-based fixed effects vector controlling for the federal state of the company’s

registered office is calculated based on Jens et al. (2021).
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Appendix B. Descriptive Statistics

Table B.5: Averages and (standard errors) of firm characteristics for treated and untreated firms (2010 to 2017).

variable mean control s.d. control mean treated s.d. treated

total energy use (in GWh) 29.64 414.65 45.14 396.57

total energy use ln∆ 0.02 0.27 0.03 0.27

total energy use log t − 1 14.72 1.9 15.2 1.92

electricity use (in GWh) 9.61 74.67 16.18 132.21

electricity use ln∆ 0.02 0.27 0.03 0.28

electricity use log t − 1 13.88 1.9 14.42 1.9

fossil fuel use (in GWh) 17.71 281.98 25.89 262.55

fossil fuel use ln∆ 0.05 1.38 0.06 1.34

fossil fuel use log t − 1 13.23 3.55 13.84 3.29

treatment (W) 0.0 0.0 1.0 0.0

output (in million e) 62.15 572.48 122.86 1250.08

output ln∆ 0.04 0.2 0.06 0.21

output log t − 1 16.53 1.44 17.11 1.44

tangible capital (in million e) 16.55 152.71 33.75 326.58

tangible capital ln∆ 0.02 0.24 0.05 0.22

tangible capital log t − 1 14.78 1.93 15.51 1.76

number of employees 241.07 1699.02 431.28 2836.52

number of employees ln∆ 0.01 0.13 0.03 0.13

number of employees log t − 1 4.59 1.09 5.04 1.16

producer-price index 99.5 3.63 99.57 3.74

producer-price index ln∆ 0.01 0.03 0.01 0.03

price energy 0.13 0.03 0.13 0.03

price energy ln∆ 0.01 0.12 0.01 0.13

price biomass 0.04 0.0 0.04 0.0

price biomass ln∆ 0.02 0.08 0.02 0.07

N 64933 27382
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variable mean control s.d. control mean treated s.d. treated

price coal 0.01 0.0 0.01 0.0

price coal ln∆ 0.02 0.19 -0.0 0.21

price district heat 0.07 0.0 0.07 0.0

price district heat ln∆ 0.01 0.05 0.01 0.05

price electricity 0.14 0.03 0.14 0.02

price electricity ln∆ 0.04 0.06 0.05 0.06

price heating oil 0.06 0.01 0.06 0.01

price heating oil ln∆ 0.0 0.22 -0.01 0.24

price liquefied petroleum gas 0.06 0.01 0.06 0.01

price liquefied petroleum gas ln∆ -0.02 0.16 -0.03 0.18

price natural gas 0.04 0.01 0.04 0.01

price natural gas ln∆ -0.01 0.09 -0.02 0.1

biomass share [in %] 0.02 0.1 0.02 0.09

biomass share [in %] t − 1 0.02 0.1 0.01 0.09

coal share [in %] 0.01 0.06 0.01 0.06

coal share [in %] t − 1 0.01 0.05 0.01 0.06

district heat share [in %] 0.03 0.12 0.04 0.13

district heat share [in %] t − 1 0.03 0.12 0.03 0.13

electricity share [in %] 0.49 0.25 0.51 0.24

electricity share [in %] t − 1 0.49 0.25 0.51 0.24

natural gas share [in %] 0.32 0.29 0.33 0.28

natural gas share [in %] t − 1 0.31 0.29 0.32 0.28

heating oil share [in %] 0.11 0.22 0.09 0.19

heating oil share [in %] t − 1 0.12 0.22 0.1 0.2

liquefied petroleum gas share [in %] 0.01 0.06 0.01 0.05

liquefied petroleum gas share [in %] t − 1 0.01 0.06 0.01 0.05

R&D intensity [in %] 0.01 0.03 0.02 0.04

R&D intensity [in %] ∆ -0.0 0.02 0.0 0.02

tax intensity [in %] 0.01 0.02 0.01 0.03

tax intensity [in %] ∆ -0.0 0.01 -0.0 0.01

subsidy intensity [in %] 0.0 0.01 0.0 0.01

N 64933 27382
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variable mean control s.d. control mean treated s.d. treated

subsidy intensity [in %] ∆ -0.0 0.01 0.0 0.01

trading intensity [in %] 0.11 1.06 0.12 0.5

trading intensity [in %] ∆ 0.01 1.0 -0.0 1.54

share self-produced fossil-based energy [in %] 0.0 0.02 0.01 0.03

share self-produced fossil-based energy [in %] ∆ 0.0 0.01 0.0 0.02

share self-produced renewable energy [in %] 0.01 0.04 0.01 0.04

share self-produced renewable energy [in %] ∆ 0.0 0.03 0.0 0.03

HHI 0.07 0.09 0.07 0.09

HHI ∆ 0.0 0.03 0.0 0.03

no EEG exemption [in %] 0.92 0.28 0.92 0.28

partial EEG exemption [in %] 0.08 0.27 0.07 0.26

full EEG exemption [in %] 0.01 0.09 0.01 0.1

single-unit firm 0.78 0.41 0.75 0.43

multi-unit firm in one federal state [in %] 0.08 0.27 0.07 0.26

multi-unit firm in several federal states [in %] 0.14 0.35 0.18 0.38

intermediate goods producer [in %] 0.44 0.5 0.44 0.5

capital goods producer [in %] 0.29 0.45 0.34 0.47

durable goods producer [in %] 0.04 0.19 0.04 0.2

consumer goods producer [in %] 0.23 0.42 0.18 0.39

energy producer in [in %] 0.0 0.02 0.0 0.03

year 2010 [in %] 0.14 0.35 0.13 0.34

year 2011 [in %] 0.14 0.34 0.15 0.36

year 2012 [in %] 0.06 0.23 0.07 0.25

year 2013 [in %] 0.14 0.35 0.13 0.34

year 2014 [in %] 0.15 0.36 0.13 0.34

year 2015 [in %] 0.15 0.35 0.13 0.34

year 2016 [in %] 0.08 0.28 0.13 0.33

year 2017 [in %] 0.14 0.35 0.12 0.33

Industry: Food products [in %] 0.14 0.35 0.09 0.29

Industry: Beverages [in %] 0.02 0.13 0.02 0.12

Industry: Tobacco products [in %] 0.0 0.0 0.0 0.0

N 64933 27382
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variable mean control s.d. control mean treated s.d. treated

Industry: Textiles [in %] 0.02 0.15 0.02 0.14

Industry: Wearing apparel [in %] 0.01 0.11 0.01 0.1

Industry: Leather & related products [in %] 0.01 0.08 0.0 0.07

Industry: Wood, wood & cork products [in %] 0.02 0.15 0.02 0.13

Industry: Paper & paper products [in %] 0.03 0.17 0.03 0.16

Industry: Printing, recorded media [in %] 0.02 0.14 0.02 0.13

Industry: Coke, refined petroleum products [in %] 0.0 0.02 0.0 0.03

Industry: Chemicals & chemical products [in %] 0.06 0.23 0.06 0.24

Industry: Basic pharmaceutical products [in %] 0.01 0.1 0.02 0.12

Industry: Rubber & plastic products [in %] 0.06 0.23 0.06 0.24

Industry: Other non-metallic mineral prod. [in %] 0.05 0.22 0.05 0.21

Industry: Basic metals [in %] 0.05 0.21 0.05 0.21

Industry: Fabricated metal products [in %] 0.13 0.34 0.12 0.33

Industry: Computer, electro, optical prod. [in %] 0.04 0.2 0.05 0.23

Industry: Electrical equipment [in %] 0.06 0.24 0.07 0.25

Industry: Machinery and equipment n.e.c. [in %] 0.13 0.34 0.18 0.38

Industry: Motor vehicles, (semi-)trailers [in %] 0.04 0.19 0.05 0.21

Industry: Other transport equipment [in %] 0.01 0.12 0.02 0.12

Industry: Furniture [in %] 0.02 0.14 0.02 0.14

Industry: Other manufacturing [in %] 0.04 0.19 0.04 0.19

Industry: Repair and installation [in %] 0.03 0.17 0.02 0.15

N 64933 27382
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Appendix C. Evaluating Assumptions and the Fit of the Causal Forest

To assess the overlap assumption, we plot the propensity scores that indicate the probability

of treatment for each observation in Figure C.7. Note that we lose four observation due to

trimming. The histograms for the (trimmed) treated and not treated firms overlap in a way that

makes it impossible to deterministically decide on the treatment status of a firm, as the scores are

bounded away from zero and one. Hence, the overlap assumption is fulfilled. Furthermore, the
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Figure C.7: Distribution of propensity scores between treatment and control group.

internal validity of the causal forest approach is based on the idea, that the sample is reweighted

in a way that makes the treatment random. Therefore, we assess the balance of the covariates

between firms that increase software capital and firms that do not increase software capital.

Figure C.10 depicts these differences in the distributions of the treated and untreated samples

after reweighting the covariates with the inverse propensity score. Except for some very rare

outliers, the distributions do not show any notable differences between both groups. Thus, our

model is able to appropriately balance covariates.

Additionally, we test the model calibration by comparing OOB predictions to actual changes in

energy consumption using the training sample (see Equation 5). The results for all three model

outcomes are presented in Table E.7. According to the test results, the model for electricity

use seems to be calibrated well and the performance is comparable to the model with energy

use as an outcome variable. In contrast, the model using fossil fuels as an outcome variable

fails in predicting an average treatment effect that is different from zero and does not seem to

capture the underlying heterogeneity adequately. Model results of this outcome should therefore

be interpreted cautiously.
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Table C.6: Best Linear Predictor Test for the forest with all energy use outcomes.

Outcome variable Coefficient Estimate SE t-stat p-value

Energy use βATE 0.998 0.235 4.245 1.09e05∗∗∗

βCATE 1.261 0.366 3.448 0.0003∗∗∗

Electricity use βATE 0.980 0.172 5.695 1.96e−09∗∗∗

βCATE 0.914 0.316 2.897 0.002∗∗∗

Fossil fuel use βATE 1.442 3.870 0.373 0.355

βCATE −0.833 0.784 −1.061 0.856

Notes: Results of the best linear predictor test for model calibration and heterogeneity that seeks to
fit the estimated CATE as a linear function of the out-of-bag predictions (see 5)
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Output Energy price Multi-unit firm Industrial grouping

Time (fixed effect) Tangible capital Number of employees Lagged energy use (t-1)

Location (fixed effect) Renewable levy (EEG) exemption HHI (4-digit level) R&D intensity
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Figure C.8: Inverse-propensity weighted histograms for treated and untreated observations (Part I).
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Share fossil production Share renewable production Subsidy intensity Tax intensity

Price electricity Price heat oil Price LPG Price natural gas

Producer price index Price biomass Price coal Price distict heat
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Figure C.9: Inverse-propensity weighted histograms for treated and untreated observations (Part II).
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Regional economic productivity Sector association (fixed effect)
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Figure C.10: Inverse-propensity weighted histograms for treated and untreated observations (Part III).
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Appendix D. Variable Importance

To understand the main drivers of treatment heterogeneity, we analyze the firm characteristics

that were used as splitting variables in the forest. Variable importance (V I) measures how many

times a covariate was used for splitting at level l across all trees t, where relative split frequency

(RSF ) denotes the split frequency (SF ) of variable m divided by all splits at level l. Additionally,

weights (wl = l−2) are used that exponentially favor higher tree levels.

V Im =

∑L
l=1 RSFml ∗ wl∑L

l=1 wl

(D.1)

RSFml =
SFml∑M

m=1 SFml

(D.2)
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Figure D.11: Variable Importance for the three causal forests with the outcome variables total energy use,
electricity use, and fossil fuels.

Figure D.11 lists the 15 most important variables for splitting the sample into groups. Combined,

energy prices are by far the most important variable, if we sum up the importance values of the

energy prices (total energy price, price of heat oil, price of LPG, price of electricity and price

of coal). Furthermore, the share of electricity use (of the previous period) is important for the

splitting procedure of all three outcomes.

Appendix E. Robustness Analysis

We conduct the following robustness analysis:
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Growth rates: We repeat our analysis and replace output, tangible capital, and labor use in

lagged levels by logarithmized growth rates as one alternative specification.

D/L: In a further robustness test, we modify our treatment variable and consider only firms as

treated if their software capital per employee increases. We repeat the analysis and replace

the treatment dummy D with a relative dummy that represents the change in the capital

stock (∆KICT ) relative to the number of employees (L).

Table shows estimated ATEs as well as the performance of the Best Linear Prediction Test for

both robustness checks. In the first specification (growths rates), the ATE is now at 0.01 and

significant. The mean and differential forest predication indicate that treatment effects are well

calibrated. Hence, different formulations of production function in- and outputs does not alter

main results. However, it is noteworthy that the variable importance of these critical variables

increases when they are included in logarithmized growth rates (not displayed). In the second

robustness test (D/L), the ATE is now at 0.006, which is slightly smaller than in our main

specification and the p-value is at 0.12. The Best Linear Prediction Test confirms that the

model is well calibrated. Hence, we can also confirm heterogeneity by our modified digitalization

indicator.

Table E.7: Robustness tests.

Robustness type Outcome variable Variable Estimate SE t-stat p-value

Growth rates Energy use ATE 0.010 0.003 3.330 0.0004∗∗∗

βATE 1.052 0.308 3.413 0.0003∗∗∗

βCATE 1.117 0.420 2.660 0.0004∗∗

D/L Energy use ATE 0.006 0.005 1.180 0.119

βATE 1.011 0.459 2.202 0.012∗

βCATE 0.815 0.418 1.950 0.026∗

Notes: Results for the different robustness models.
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Figure E.12: Bivariate distributions of the predicted treatment effect and production factors. Com-
parison of the original model (lagged input variables) and the robustness check (differenced inputs).
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Figure E.13: Comparison between OOB predictions and predictions of the test sample.
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