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Abstract

This Discussion Paper deals with the issue of greenwashing, i.e. the false portrayal of com-

panies as environmentally friendly. The analysis focuses on the US metal industry, which is a

major emission source of sulfur dioxide (SO2), one of the most harmful air pollutants. One way

to monitor the distribution of atmospheric SO2 concentrations is through satellite data from the

Sentinel-5P programme, which represents a major advance due to its unprecedented spatial resolu-

tion. In this paper, Sentinel-5P remote sensing data was combined with a plant-level firm database

to investigate the relationship between the US metal industry and SO2 concentrations using a spatial

regression analysis. Additionally, this study considered web text data, classifying companies based

on their websites in order to depict their self-portrayal on the topic of sustainability. In doing so,

we investigated the topic of greenwashing, i.e. whether or not a positive self-portrayal regarding

sustainability is related to lower local SO2 concentrations. Our results indicated a general, positive

correlation between the number of employees in the metal industry and local SO2 concentrations.

The web-based analysis showed that only 8% of companies in the metal industry could be classified

as engaged in sustainability based on their websites. The regression analyses indicated that these

self-reported ”sustainable” companies had a weaker effect on local SO2 concentrations compared to

their ”non-sustainable” counterparts, which we interpreted as an indication of the absence of general

greenwashing in the US metal industry. However, the large share of firms without a website and

lack of specificity of the text classification model were limitations to our methodology.
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1 Introduction

Air pollution has been described as one of the most crucial global health risks (Chatkin et al., 2021).

Mainly as a consequence of growing industries and populations, the concentrations of many air pol-

lutants in the troposphere have risen over the past decades (Oxoli et al., 2020). Among the primary

pollutants that are emitted directly into the atmosphere, sulfur oxides (SOx) are considered some of

the most harmful. One of these oxygen compounds is sulfur dioxide (SO2), which is emitted by both

natural and man-made sources, with emissions from transport and industry being especially prominent

(Goudarzi et al., 2016; Theys et al., 2017). One of the main contributors to industrial SO2 emissions

is the metal industry, which was therefore the focus of this study (Garg et al., 2001).

Due to the high levels of industrial pollution, the topic of sustainability has become increasingly more

important in recent years (Lee, 2017). The Brundtland Commission famously defined sustainable

development as ”development that meets the needs of the present generation without compromising

the ability of future generations to meet their own needs” (Brundtland, 1987). Social pressure and the

need for a ”clean” image can lead companies to present themselves as particularly sustainable. At the

same time, however, the same company may shy away from the costs associated with transforming

its business model and thus settle for ”empty words”. This is commonly referred to as greenwashing

(Delmas & Burbano, 2011). Arguably, the most important medium for the external presentation of

a company to a broad audience today is the company’s own website. In this article, we used the

webAI web analytics tool developed by ISTARI.AI to evaluate the websites of 9,430 companies in the

United States (US) metal industry with Natural Language Processing (NLP) in terms of how they

present themselves with respect to sustainability. By contrasting these web-based self-representations

and SO2 measurements from satellite sensors, this study aimed to investigate whether greenwashing is

prevalent in the US metal industry. Accordingly, this paper aspired to answer the following research

questions:

• RQ 1: What conclusions can be drawn about sustainability in the US metal industry based on

web text mining?

• RQ 2: Does the self-representation of metal industry companies regarding sustainability coincide

with findings based on SO2 remote sensing data?

In order to answer these research questions, non-spatial and spatial regression models were used, which

were based on variables representing different natural and man-made influences on SO2 concentrations.

The most appropriate model in terms of model type, variable combination and spatial weights matrix

was selected. In addition, metal industry companies were classified individually as sustainable or non-

sustainable based on their websites (RQ 1). The results were then entered into the regression model

in the form of weighted and aggregated variables to answer RQ 2. The effect of the sustainable metal

industry on SO2 concentrations according to the regression model was ultimately used to confirm or

deny greenwashing. We are not aware of any study that utilised a similar data fusion of remote sensing

data, a firm database and information from company websites. This paper therefore represents a first

approach to measuring greenwashing at large scale.
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2 Background

2.1 US metal industry

The US iron and steel sector provides jobs for approximately two million people and generates an

annual output of over US$ 520 billion (AISI, 2020). Although production peaked in 1973 and has

since been on the decline, the US is still the fourth largest producer of steel in the world (USGS, 2020;

Hasanbeigi & Springer, 2019; Fenton, 2005). Current political upheavals surrounding restrictions on

imports of ”dirty steel” from China to the US in favour of domestic production show that the industry

remains highly relevant (Financial Times, 2021).

While the metal industry is undeniably an important catalyst for economic development, it has a rather

bad reputation for being ”dirty and unsustainable” (Lee, 2017). Apart from its high energy consump-

tion (Worrell et al., 2010), the mining and processing of metals has led to long-lasting consequences

for many industrial districts. While some impacts are directly visible (e.g. changes in topography),

many forms of persistent pollution are not, e.g. highly contaminated top soils or aquatic ecosystems

(Johnson et al., 2016). Particularly, the impact of the metal industry on the atmosphere is often

the focus of attention. With a global share of 24%, the iron and steel industry is a major industrial

contributor of carbon dioxide (CO2) emissions (Hasanbeigi & Springer, 2019). Other pollutants, such

as SO2, nitrogen oxides (NOx), carbon monoxide (CO) and metal oxides, are produced in heating,

smelting and sintering processes (Cirtina et al., 2016; Ma et al., 2012).

The term metal industry is used as a kind of hypernym in this paper, since we refer to all companies

involved in the extraction and basic processing of metals. This corresponds with the first part of the

anthropogenic metal cycle (Chen et al., 2016). We rely on the popular North American Industry Clas-

sification System (NAICS) to delineate the metal industry. The definition we apply is based on the SIC

Major Group: 33 - Primary Metal Industries, using the respective NAICS codes (NAICS Association,

2018). Additionally, companies from metal ore mining, forging and stamping were included.

2.2 Air pollution from SO2

Sulfur dioxide (SO2) is a highly toxic, gaseous air pollutant and atmospheric trace gas (Metya et al.,

2020; Zheng et al., 2018). Due to its high impact on morbidity and mortality rates, it is described

as a criteria air pollutant by the United States Environmental Protection Agency (EPA), i.e. a

particularly harmful substance for the environment and human health (He et al., 2016; EPA, 2021).

It has a seasonally varying but relatively short residence time (12-78 hours) in the lower troposphere,

which can be further decreased by precipitation due to the solubility of SO2 (Hidy & Blanchard, 2016;

Lee et al., 2011). Consequently, SO2 concentrations tend to be particularly high in the emission region

(Lewinschal et al., 2019).

SO2 is quite reactive in the atmosphere, resulting e.g. in the formation of sulfate (SO4
2-) (Hidy &

Blanchard, 2016; Lee et al., 2011), which is the main component of particulate matter with a diameter

≤ 2.5 µm (PM2.5) (Zhang et al., 2007). PM2.5 has a considerable effect on global and local climates

(Smith et al., 2011), in addition to being the main cause of smog (Cheng et al., 2017). SO2 has also
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been identified as the main trigger for the emergence of acidic deposition, more commonly called acid

rain. Since the 1970s, it has been one of the most discussed ecological damages, particularly affecting

the eastern US, Europe and China. Acidic deposition has manifold effects on soils, vegetation, and

bodies of water (Menz & Seip, 2004). With regard to human health, air pollution is the reason for

more than four million premature deaths worldwide each year (Lewinschal et al., 2019). Concerning

SO2, crucial health consequences include the worsening and even emergence of asthma, bronchitis,

and lung carcinoma (Chatkin et al., 2021).

The emission sources of SO2 can be both natural and anthropogenic and include volcanoes, industrial

processes, transportation (cars, ships, airplanes) and energy generation (Kumar et al., 2018; Goudarzi

et al., 2016). In fact, most SO2 emissions come from the combustion of fossil fuels (coal, crude oil,

natural gas) and smelting activities (Theys et al., 2017). The global emission peak of anthropogenic

SO2 was in the 1970s. Ever since, particularly coal-based emissions have declined in Europe and North

America (Smith et al., 2011). In the US, the U.S. Clean Air Act of 1970 and its 1990 amendments have

been named among the most important steps in the emission reduction process (Mitchell & Likens,

2011). The increased use of low-sulfur coal, desulfurization, emission abatement technologies, and the

reduction of sulfur in metal ores used for smelting have contributed to decreasing the SO2 emissions

in the US (Smith et al., 2011; Mallik et al., 2019). A political measure was the introduction of a

SO2 Allowance Trading System (Schmalensee & Stavins, 2013). Nevertheless, significant industrial

emitters still exist in the US, such as the steel industry (Zhong et al., 2020).

2.3 Remote sensing for air pollution monitoring

While the traditional ground-based measuring networks are quite extensive in most developed countries

and deliver consistent data, they have several shortcomings, e.g. concerning the coverage of rural

regions (Oxoli et al., 2020; Cromar et al., 2019). Therefore, satellite data has been used increasingly

to monitor the concentration of certain gases in the stratosphere and troposphere since the launch

of the Total Ozone Mapping Spectrometer (TOMS) in 1978. In particular, the launch of the Ozone

Monitoring Instrument (OMI) in 2004 and the Tropospheric Monitoring Instrument (TROPOMI) in

2017 have been named as landmarks in this regard (Kaplan & Avdan, 2020). With their improved

spatial resolution, they overcame a central limitation for the use of satellite data in air pollution

monitoring (Cromar et al., 2019).

As part of the Sentinel-5 Precursor programme, TROPOMI is a push-broom imaging spectrometer

that is able to record eight wavelength ranges from ultraviolet (UV) to short wavelength infrared

(SWIR) with a swath width of 2,600 km on a low-Earth, early afternoon orbit. TROPOMI has an

unprecedented spatial resolution of initially 7× 3.5 km and, since August 2019, 5.5× 3.5 km. Global

measurements are possible for CO, formaldehyde (CH2O), methane (CH4), nitrogen dioxide (NO2),

ozone (O3), SO2, aerosol distribution and cloud coverage (Romahn et al., 2020; Hedelt et al., 2019;

Veefkind et al., 2012).
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While ground sensors actually measure the concentration of air pollutants directly, satellite sensors

approximate the concentration based on spectral signatures, using numerical models (Oxoli et al.,

2020). The information on SO2 measured by TROPOMI is the so-called vertical column density,

which describes the total of SO2 molecules in an air column over a unit area (Fioletov et al., 2017).

It can be calculated based on the strong absorption of solar radiation by SO2 in the near UV spectral

range (Wang et al., 2020; Theys et al., 2019). For this detection, a technique called Differential

Optical Absorption Spectroscopy (DOAS) is applied, leading to three separate heights of vertical

column density (1 km, 7 km, 15 km) (Romahn et al., 2020; Hedelt et al., 2019).

3 State of the Art

Due to the longer duration of its mission, more studies draw data from OMI than from TROPOMI.

These mainly investigate the spatial and temporal distribution of different pollutants and their sources.

For instance, a study in China uses TROPOMI data to show seasonal and agglomeration effects in the

distribution of NO2 (Zheng et al., 2019). Remote sensing data is also deemed a suitable substitute for

ground-based measurements for studies on natural SO2 emissions, as shown by research on volcanoes

(Queißer et al., 2019). A greater focus in research, however, is on anthropogenic SO2 emissions. At

that, many studies deal with the analysis of major emitters, such as power plants (e.g. Song and

Yang, 2014). A study in Mongolia finds that the daily and seasonal trends of SO2 concentrations are

not only influenced by man-made emissions, but also by meteorological factors (e.g. boundary layer

height) (Zheng et al., 2018). In recent months, the global COVID-19 pandemic has given rise to new

research topics. Several studies on air pollution are able to show a decrease in pollutants that can be

attributed to reduced human activity (e.g. Hashim et al., 2021).

Several machine learning methods have been used in air pollution monitoring and prediction in the past

few years, including deep neural networks (Karimian et al., 2019), extreme gradient boosting models

(Xu et al., 2018), kriging (Li et al., 2019) and random forests (Brokamp et al., 2017). Some studies use

non-spatial regression models for air pollution analyses, such as ordinary least squares (OLS) models

(Zhao et al., 2019), quantile regression models (Xu & Lin, 2020) or land-use regression models (Han

et al., 2020). However, since air pollution is an inherently spatial issue, many studies employ spatial

regression models, such as a spatial lag model (SLM) (Ren & Matsumoto, 2020), a spatial error model

(Zhou et al., 2018) or a spatial Durbin model (Chen et al., 2017). For instance, Yang et al., 2017a

find that temperature and precipitation can have different regional effects on SO2 concentrations by

employing a SLM. Geographically weighted regression models have also been employed in numerous

studies, e.g. by Zhao et al., 2020.

No web data was used in previous studies on air pollution, even though web-based methods generally

open up new possibilities for research in economic geography. Nowadays, almost every company has its

own website, where it discloses information about e.g. its goods, markets and customers (Gök et al.,

2015). Many companies also use their website to build up their public image regarding environmental

protection and sustainability. Since web-based methods make it possible to collect large amounts of

data in a timely manner, web scraping is also seen as a cost-effective alternative for classic business

surveys (Kinne & Axenbeck, 2020). Even though web data is generally freely available, it is of large-

scale and in an unstructured form, which poses serious methodological challenges. However, relevant
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advances in machine learning applications for this purpose have already been made, e.g. regarding

deep neural networks (Kinne & Lenz, 2021) and general progress in NLP (Li, 2017). So-called web

text mining has already been used to generate economic indicators in studies regarding firm-level

innovation activities (Kinne & Lenz, 2021), R&D and collaboration (Beaudry et al., 2016), the impact

of the COVID-19 pandemic (Kinne et al., 2020) and 3D printing diffusion (Schwierzy et al., 2022).

4 Methodology

4.1 Study area

The study area was the contiguous US, thus, encompassing 48 states (including Washington D.C.)

and approximately 82.2% of the total area of the US (USCB, 2018). Due to its large extent, there is

a high spatial variation concerning land cover, climate and population density. The research area was

mainly chosen due to the size of the US metal industry, which is an important prerequisite for the

feasibility of the analysis.

4.2 Data

TROPOMI data

The TROPOMI data - as well as all other remote sensing data and derived products - were obtained

via the Google Earth Engine (GEE) (Gorelick et al., 2017). We used the georeferenced, orthorectified

and pre-processed (Level 3) SO2 Offline (OFFL) data product (Sentinel-5P, 2021; Romahn et al.,

2020). Compared to the also available Near Real-Time (NRTI) product, it had the advantage that

more elaborate air mass factors were used in the conversion process (Verhoelst et al., 2021). The

vertical column density at ground level (1 km) was chosen for this analysis as emissions from metal

industry plants were expected to be concentrated closer to the surface, whereas e.g. volcanic emissions

reach higher layers of the troposphere (Hedelt et al., 2019). Data from this band was selected on

the basis of a rectangular polygon. A large time period from 01.01.2019 to 31.12.2020 was chosen

to capture continuous emission centres. For this purpose, the year 2019 was the first fully available

year on the GEE. The resulting composite consisted of 10,318 images, for which the mean values were

calculated, as it was already done by Kaplan et al., 2019. The spatial resolution of TROPOMI data

on the GEE is 0.01 arc degrees. As it is not possible to access the data with the native pixel size and

aspect ratio, downsampling to a spatial resolution of 7×7 km was employed. This resolution was used

as the reference grid for the entire analysis.

Business data

The Infogroup US Historical Business Data contains annual, plant-level, geo-coded information of

companies and organisations in the US, such as industry description, annual revenues, number of

employees and year of foundation (Infogroup, 2018). For this analysis, we used the 2018 data set

from which the relevant locations of the metal industry were filtered based on the NAICS codes (cf.

Table 5). For multi-site companies, all locations marked as headquarters were excluded as they are

usually office buildings and therefore do not contribute significantly to SO2 emissions. A thorough,
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positive manual validation was performed to check the validity of this filtering, using Bing Maps

imagery and Google Street View. Besides the coordinates, the number of employees per location

was another central information needed for the analysis. According to the data, 475,517 people were

employed in 9,430 locations of the metal industry in 2018. If there was no information on the number

of employees (< 1% of all locations), the missing value was set to the average value in the respective

NAICS category. In order to operationalise a measure for the local presence of the metal industry,

we created a weighted count of plant locations per raster cell based on their respective number of

employees.

In addition to the metal industry, we also extracted companies from the manufacturing sector (all

NAICS codes starting with 31-33, excluding the metal industry) and applied the same pre-processing

procedure described above. The manufacturing sector could also be responsible for SO2 emissions and

was therefore used as a control variable in the subsequent regression analyses.

Additional data

In order to control for power plant SO2 emissions, we used data released by the EPA as part of their

CSAPR programme (EPA, 2019b). The data set includes the SO2 emissions in tons for 1,535 power

plants in the US for the year 2019 and was used to calculate the SO2 emissions per cell (EPA, 2019a).

Data on 2017 vehicle emissions in the US was accessed from the Database of Road Transportation

Emissions (DARTE), which releases a grid with annual CO2 emissions in tons/km2 with a spatial

resolution of 1 km (Gately et al., 2019). While this data does not contain any direct information on

SO2 emissions, it can be seen as an approximation for traffic density and, therefore, also for vehicle-

based SO2 emissions.

Data on annual precipitation was acquired from the gridMET data set on the GEE for the year 2019.

As it did not contain any information on precipitation over oceans, the Great Lakes and the Florida

Keys, the SAGA (Conrad et al., 2015) interpolation tool Close gaps was used to fill these missing

values. Data on average temperature was acquired based on the temperature 2m variable in the ERA5

data set on the GEE, which has a spatial resolution of 0.1 arc degrees (Muñoz Sabater, 2019). The

year 2019 was chosen, as the data for 2020 was incomplete.

Additionally, data from the USGS National Land Cover Database (NLCD) from 2016 was used (Yang

et al., 2018). We reduced the number of classes to seven by combining similar land use classes using

QGIS (QGIS Development Team, 2021) (cf. Table 6). The distance of each grid cell to the closest

major body of water was considered another sensible control variable for the analysis, as bodies of water

play a central role in human activities and influence climate and local wind systems decisively. Data

on commercially navigable waterways (NPMS, 2019), the major lakes and the two coastlines (USGS,

2011) were downloaded and converted to linestrings. The distance from each grid cell centroid to

the next linestring was then calculated using geopandas (Jordahl et al., 2020). For observations that

were assigned the land cover class water, the distance was set to 0. Furthermore, data on elevation

was accessed from USGS, 2012 and data on population density in the year 2020 was acquired from

WorldPop, 2020.

We followed Kaplan and Avdan, 2020 and downsampled all data to TROPOMI’s spatial resolution,

as it constitutes the central research object and the most coarse data set. For this, the gdal.Warp
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function in Python was used, specifying a bilinear resampling algorithm and pixel alignment. Only

for the land cover data a nearest neighbour algorithm was chosen. The data was then combined based

on the coordinates of the grid cell centroids.

A land mask was created as a further pre-processing step for the regression analysis. This was neces-

sary, as there was a lot of missing data for various variables for areas outside of the contiguous US.

To achieve the filtering, all the cells without land cover information were dropped from the data set,

reducing the number of cells from 440,840 to 216,058. Consequently, maritime areas as well as the

Canadian and Mexican territories were excluded. However, inland waters within the contiguous US

and a small coastline were preserved for the regression analysis. None of the remaining cells had any

missing values.

4.3 Regression analysis

4.3.1 Variables

Table 1: Descriptive statistics of regression variables. The units of some variables were adjusted for better readability of
the regression coefficients.

Variable Description Source Unit mean min median max

SO2 19 20 SO2 emissions Sentinel-5P, 2021 mol/km2 0.17 -0.02 0.16 0.62

cover land cover classification Yang et al., 2018 - - - - -

elev elevation USGS, 2012 m 762.78 -81.08 457.21 3,797.81

manuf log

employees in manufac-

turing industry (exclud-

ing metal industry)

Infogroup, 2018 log(count) 0.65 0.00 0.00 11.19

metal log
employees in metal in-

dustry
Infogroup, 2018 log(count) 0.08 0.00 0.00 8.52

pop log population density WorldPop, 2020 log(count) 0.40 0.00 0.43 9.85

power log
SO2 power plant emis-

sions
EPA, 2019a log(t) 0.01 0.00 0.00 7.19

prec precipitation Abatzoglou, 2012 m/a 0.94 0.07 0.93 4.14

temp
average annual temper-

ature

Muñoz Sabater,

2019
°C 11.41 -2.31 10.86 25.83

veh log CO2 vehicle emissions
Gately et al.,

2019
log(t/km2) 9.30 0.00 9.59 17.61

water
distance to body of wa-

ter

NPMS, 2019;

USGS, 2011
km 64.69 0.00 46.59 359.98

Table 1 provides an overview and basic descriptive statistics for all variables used in the regression

analysis. Economic variables frequently tend to be skewed due to the underlying complexity of an-

thropogenic phenomena (Xu & Lin, 2020). The particularly right skewed variables were, therefore,

log-transformed.

Multicollinearity, as a common problem in regression analysis (Dormann et al., 2013), was checked

by means of the Spearman correlation coefficient which is relatively robust to outliers and does not

require a normal distribution of the data (de Winter & Gosling, 2016). For bivariate correlations > 0.7,

one of the variables was excluded from the regression analysis. Due to the high correlation of 0.78
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between vehicle emissions and population density, the latter was dropped, as vehicle emissions were

considered to be a better estimation for SO2 emissions. Furthermore, they might be able to portray

emission sources in regions with a low population density better (e.g. industrial zones, where metal

industry firms are often located). In addition, we used the Variance Inflation Factor (VIF) (Dormann

et al., 2013) as a measure of muliticollinearity for the selected models.

4.3.2 Regression models

Different sets of predictors were tested in the regression analysis that always considered the emission

sources (metal log, manuf log, veh log, power log) along with additional variables. The dependent

variable for all specifications was the averaged SO2 concentration for 2019 and 2020 from TROPOMI.

First, only the total number of employees in the metal industry (metal log) was used and then compared

to a model that used the number of employees for the different sustainability categories from the web

text mining analysis (see below).

Since atmospheric phenomena are innately spatial (Zhou et al., 2018), we expected spatial structures

in the data. To address the problem of spatial autocorrelation, we compared different spatial regression

models. We also calculated an OLS model as a non-spatial baseline model (equation 1):

y = αιn +Xβ + ϵ (1)

where y is the dependent variable, ”ιn is a n × 1 vector of ones associated with the constant term

parameter α, X denotes an n×K matrix of explanatory variables associated with the K×1 parameter

vector β” and ϵ is an error term (Halleck Vega & Elhorst, 2015).

In order to take spatial effects into account in a regression model, topological relations have to be

considered, which are represented by a spatial weights matrix W . Due to the large sample size and

the resulting high computational demand, we refrained from using a distance based weights matrix.

Instead, we used a contiguity matrix based on the queen neighbourhood definition (Chen & Ye, 2015),

which seemed well suited for the grid-based data structure. The resulting spatial weights matrix did not

have any so-called islands, i.e. all cells had at least one neighbour. All calculations were performed

using the Python module libpysal (Rey & Anselin, 2007). A variance-stabilising transformation of

the weights was performed for the spatial weights matrix. This transformation is seen as a sensible

procedure to handle frequent problems such as heteroscedasticity (Bagnall et al., 2006; Tiefelsdorf

et al., 1999).

In this study, the presence of global spatial autocorrelation was verified using the Moran’s I measure,

one of the most common specification tests for spatial autocorrelation (Anselin, 2001). The employed

SO2 concentrations from TROPOMI had a Moran’s I of 0.901 (p=0.001), indicating a strong clustering.

Moran’s I was also calculated for the residuals of all regression models.

We considered two classes of spatial regression models: the spatial lag of X (SLX) model (equation

2), which uses spatially lagged predictors, and the SLM (equation 3), which includes a spatial lag on

the dependent variable. The SLX model considers a n × n spatial weights matrix W which is used

to generate lagged versions of all or a subset of the predictors of the design matrix X. Regression

coefficients are fitted for both lagged (θ) and non-lagged (β) predictors (Halleck Vega & Elhorst, 2015).
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In the SLM, Wy represents the spatially lagged dependent variable and ρ a spatial autoregressive

coefficient (Anselin, 2001). As values of explanatory variables within the SLM are assumed dependent

on their adjacent values, the resulting spatial lag term can be used as an additional predictor W (Wu

et al., 2020). For the SLM, the two stage least squares estimation from the spreg library was used

(Rey & Anselin, 2007).

y = αιN +Xβ +WXθ + ϵ (2)

y = ρWy +Xβ + ϵ (3)

4.4 Web text mining

In order to differentiate metal industry companies with regard to their attitude towards sustainability,

a complementary, sophisticated web-based analysis was carried out. In this context, the entirety of a

firm’s web presence is referred to as a website that may contain several web pages. The start page is

called main page, while any other web page is referred to as subpage (Kinne & Axenbeck, 2020).

The Infogroup Business data set does not contain information about the web presence of each company.

Therefore, a two-part, automated URL search was performed. In the first step, the company’s name

and address were sent as a search query to a web search engine. In the second step, the three top hits

were validated by scraping the indexed websites and checking for both the searched company’s name

and address. Websites were classified as valid if the name and/or address of the searched company

appeared on several sub-pages of the website. A manual validation of the resulting URLs was carried

out for a random sample of 50 companies. Our search algorithm found the correct website for 44 firms

(88%), while only two results were actually incorrect. For the remaining websites, it was unclear to

the reviewer whether the result was valid.

In the next step, the company websites were scraped, which means that their respective HTML content

and metadata were downloaded. The maximum number of subpages accessed per website was set to

125. The download priority of these subpages was ordered according to the length of their respective

URL, as it is expected that the most important information can be found on the top-level webpages

(e.g. main page), which usually have the shortest URLs (Kinne & Axenbeck, 2020). In addition,

webpages in English were preferred.

In the downloaded content, text paragraphs were identified in which keywords on the topic of ”sustain-

ability” occurred (cf. Table 7). Since the model was developed for cross-sectoral applications, some

of the featured keywords were not necessarily relevant for the metal industry, such as bio or organic.

These paragraphs were then analysed and classified using ISTARI’s webAI, which is based on an en-

semble of several transformer style language models and transfer learning. The base models used in

transfer learning are pre-trained on vast amounts of textual data and, thus, have a basic understanding

of the structure of natural languages (Malte & Ratadiya, 2019). This means that a relatively small

amount of training data is sufficient to achieve good classification results. In the training phase of the

model, HTML paragraphs that contained at least one of the keywords were randomly extracted and

then labelled manually (n=3,247). Five different categories were assigned (ordinal ranking: frontrun-

ner, enabler, engaged, information, not engaged ; cf. Table 8), and the resulting label-text pairs were

used for fine-tuning the models.
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The final classification results of the models in the ensemble were then combined on the basis of a

majority decision rule. For example, if six out of ten models classified a paragraph as engaged, this

class was chosen (Dörr et al., 2021). The resulting paragraph-level classifications were then aggregated

to the company-level. Thus, a website may contain several paragraphs with different classification

outcomes, e.g. 15 paragraphs that were assigned to the category engaged and 5 paragraphs classified

as not engaged. For such mixed cases, the aforementioned ordinal ranking of categories was used to

classify the entire website (i.e. the company). The highest ranked category was selected for a website,

if it corresponded to at least 10% of its classified paragraphs. If this was not the case, the next highest

category with more than 10% was chosen. For example, a website that had 5 paragraphs classified

as frontrunner, 10 paragraphs as engaged and 25 paragraphs as not engaged was, thus, categorised as

frontrunner.

Websites with no keyword hits were classified as not engaged, while companies for which no URL

was found were given their own category no website. Additionally, companies whose URL was not

unique and was also assigned to more than five other companies were classified as no website. The

reason for this is that these were usually misidentified URLs, which e.g. point to online databases

like yellowpagesdirectory.com. A second, aggregated classification was also carried out by combining

the classes frontrunner, enabler and engaged to form the class sustainable, while information and

not engaged were aggregated to create the class non sustainable. For the validation of the web-based

classification, a random sampling (n=100) was carried out and manually assessed independently of

the model predictions.

In order to take the results of the web-based classification into account in the regression, we split the

population of metal industry companies into groups corresponding to their classification. Analogous

to the original variable metal log, the number of employees was again taken as a measure of the size

of the metal industry and the variables were logarithmised due to their high skewness. The created

web-based variables then replaced the variable metal log in the regression model.

5 Results

5.1 Web text mining

The number of paragraphs that were assigned to the different sustainability categories by the text

analysis model (cf. Table 2) was skewed in favour of the categories not engaged (29.2%) and engaged

(61.2%). On average, each website had 13.1 identified paragraphs, with the median being only 3.0.

Accordingly, there was a wide range of identified paragraphs between 0 and 897 per website.

The classification of the entire website - based on the number of paragraphs per category - showed

an unbalanced distribution across the five categories (cf. Table 2). Therefore, the categories were

aggregated into two classes: 51.3% of the companies were classified as non sustainable and 8.1% as

sustainable. The remaining 40.6% did not have their own website, so that no statement could be made

about how sustainable they described themselves.

The analysis of the random sample of websites for the validation of the web-based classification showed

that approximately 87% of the companies were classified correctly (cf. Table 3). For three websites,

11



Table 2: Results of web text mining based classification of the company websites.

narrow classification
paragraphs number of companies

broad classification
category category

frontrunner 546 111
760 sustainableenabler 429 48

engaged 7,492 601

information 1,492 62
4,821 non sustainable

not engaged 15,681 4,759

no website 25,640 3,822 no website

manual classification could not be performed because the websites were not accessible at the time of

validation. According to the f1-score of 0.86, the model performed well to very well overall. In partic-

ular, the precision (0.88) and recall (0.96) of the non sustainable class were very good. However, the

model showed weaknesses in the recall of the sustainable class (0.57), meaning that a high proportion

of sustainable companies were not detected during classification (false negatives). At the same time,

the precision in this class was good (0.81), i.e. if the model classified a company as sustainable, it

was usually correct (true positives). For the purpose of this study, the model can thus be described as

well suited, as the methodology was particularly dependent on the reliable identification of sustainable

companies and hence a high degree of precision. Misclassification occurred e.g. when the keyword

environment referred to a working atmosphere or with some keywords like durable, waste or circular,

which can stand for sustainability in other contexts.

Table 3: Confusion matrix

precision recall f1-score support

non sustainable 0.88 0.96 0.92 74
sustainable 0.81 0.57 0.67 23

accuracy 0.87 97

The relative densities of sustainable and non-sustainable metal industry locations showed spatial

clusters (cf. Figure 1): Centres with high shares of non-sustainable metal industry locations were

found e.g. in Detroit, Cleveland, New York, Seattle, Tulsa, Minneapolis and Los Angeles. On the

other hand, Dayton, Toledo, Buffalo, Pittsburgh, Salt Lake City, Sacramento, Knoxville, Oklahoma

City and particularly the northern outskirts of Chicago were identified as hubs of the sustainable

metal industry. In the Western US, there were significantly fewer areas with high sustainable metal

industry shares. In some cities there even seemed to be an internal division of the metal industry

(e.g. Chicago, Houston, Dallas, St. Louis), meaning that the sustainable metal industry appeared

to be concentrated in one part of the city, while environmentally uncommitted companies clustered

in other districts. This can be illustrated by the example of Chicago, where sustainable businesses

were mainly found in the northern part of the city and the southern neighbourhoods contained rather

uncommitted metal industry companies (cf. Figure 2).
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Figure 1: Heat map of the distribution of sustainable metal industry companies. The map was based on the combination
of two separate bi-square kernel density maps with a pixel size of 1 km: one based on the locations of the sustainable
and one for the non-sustainable metal industry. These were then normalised and subtracted from each other, creating a
new raster with positive values in areas with a high (normalised) count of sustainable company locations.

Figure 2: Heat map of the distribution of the sustainable metal industry on the East Coast. The same method as for
Figure 1 was used.

Sustainable metal industry companies had more employees (average: 65.6, median: 30.0) than non-

sustainable companies (average: 46.2, median: 18.0; t-test: 4.11 (p=0.000)). Companies without

websites were also significantly smaller (average: 53.1, median: 14.0; t-test: 2.00 (p=0.045)). Con-

cerning the average year of foundation, there was no major difference between the categories. However,

since there was no year of foundation in the database for 48.4% of the firms, this statement is not too

reliable.
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5.2 Regression analysis

We calculated various specifications for OLS, SLX and SLM, considering the entire metal industry

(metal log). The results of the most suitable specifications can be found in Table 10. As variables

with high VIF values should be removed from a model (Naughton et al., 2018), we had to exclude the

land cover dummy variables, since half of the them were above the frequently used threshold of 10

(Altman & Krzywinski, 2016). The OLS model with the highest number of variables had the lowest

Akaike information criterion (AIC) and showed strong positive spatial autocorrelation in its residuals

(Ir: 0.861, p=0.001). The results of the SLX models were very similar and not trustworthy due to a

likewise high Moran’s I of the residuals (Ir: 0.862, p=0.001).

Based on the significant results of the standard and robust Lagrange Multiplier tests (cf. Table 9),

a SLM seemed suitable (Ren & Matsumoto, 2020; Golgher & Voss, 2016). A SLM specification that

included climatic conditions in addition to the basic variables was assumed the best-fitting model,

as it was the specification with the lowest AIC in which the variable of interest (metal log) was

significant. The inclusion of a spatial lag of the dependent variable in the SLM clearly reduced

the spatial autocorrelation of the residuals. The value of -0.013 (p=0.001) for Ir indicated that

the residuals showed signs of a weak regular distribution. This negative autocorrelation presumably

resulted in conservative, slightly too large standard errors.

Table 4: Regression coefficients and goodness of fit measures for both OLS and SLM. The results of this model were used
to answer RQ 2. Statistical significance is expressed by asterisks according to the commonly used significance levels.

Model type OLS SLM

variable coefficient std.error coefficient std.error

constant

constant 0.09813*** 0.00060 0.01185*** 0.00046

variables of interest

sustainable log 0.00188** 0.00075 0.00016 0.00027

non sustainable log 0.00368*** 0.00041 0.00036* 0.00015

no website log 0.00259*** 0.00045 0.00047** 0.00016

control variables

manuf log 0.00627*** 0.00012 0.00072*** 0.00005

veh log 0.00072*** 0.00006 -0.00044*** 0.00002

power log 0.00125 0.00095 -0.00016 0.00034

temp 0.00152*** 0.00003 0.00017*** 0.00001

prec 0.04512*** 0.00033 0.00424*** 0.00023

spatially lagged dependent variable

W (SO2) - - 0.91569*** 0.00432

R² / Pseudo R² 0.16550 0.89476

Spatial pseudo R² - 0.13102

n 216,058 216,058

Dependent variable: SO2 19 20, significance levels: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001
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In a further step, we calculated both an OLS and a SLM, for which the variable metal log was split

into three variables (sustainable log, non sustainable log, no website log) based on our web classific-

ation. The Spearman correlation coefficients between these variables were well below the previously

established threshold of 0.7. This was also confirmed by the VIFs for all variables, which were < 2,

suggesting low multicollinearity.

In both models, the variable sustainable log had a smaller coefficient estimate than both the variables

non sustainable log and no website log) (cf. Table 4). However, it was only statistically significant in

the OLS model. While it was the largest coefficient for the metal industry in the SLM, the coefficient

for companies without a website fell between the coefficients for the web-based variables in the OLS

model. Overall, the results of the two models were relatively similar. Only for the variables veh log

and power log did the direction of the coefficients not match, the latter variable being non-significant

in both models. There were also a few differences regarding the p-values.

6 Discussion

6.1 Interpretation

The results of the SLM, which considered the undifferentiated metal industry (metal log), showed a

clear correlation between the size of the metal industry and local SO2 concentrations. The variable

of interest had a significant coefficient of 0.00041, indicating that a 1% growth in the local number

of employees in the metal industry would lead to an increase in SO2 concentration of approximately

0.0004 mol/km2.

For the specifications that differentiated the metal industry by sustainability, the results were not quite

as clear. Although the coefficients between OLS and SLM were mostly similar, there were differences

in terms of variable significance. This was especially true for one of the variables of interest, the size of

the sustainable metal industry. If the self-proclaimed sustainable companies were indeed less polluting,

we would expect the regression coefficient of sustainable log to be non-significant (i.e. no effect at all

on SO2) or significantly smaller (i.e. less severe effect) than for the variables non sustainable log

and no website log. In line with this expectation, sustainable log was statistically significant in the

OLS model and had a much smaller coefficient than non sustainable log. While this difference in

coefficient also applied to the SLM, the variable sustainable log was not significant in this model.

Even when the class sustainable was delimited more strictly and only the categories frontrunner and

enabler were considered, the results of the regression model hardly changed. Consequently, the size

of the local sustainable metal industry did not have a statistically detectable influence on local SO2

concentrations in this specification, while the non-sustainable metal industry had a measurable effect

(i.e. increased the concentration of SO2). The SLM also showed that companies without a website

had an even stronger effect than non-sustainable companies. In addition, high SO2 concentrations in

the direct vicinity of the respective observation appeared to be of great importance, as the indirect

effects in our model accounted for 91.6% of the total effects. This indicated that atmospheric SO2

concentrations were strongly influenced by spillover emissions from the neighbourhood of a location.

This might also have affected the significance of the variable of interest and thus explain the deviation

between OLS and SLM.

15



While the results of the models differed somewhat, they did not contradict our expectations. In

addition to our manual validation of the web-based sustainability variable, these results also suggested

that the applied AI text analysis model was indeed able to correctly classify the web page content. If

the classification had been random, identical effects for sustainable log and non sustainable log would

have been expected in the regression. Accordingly, we interpreted the results as follows:

a. Our web-based classification approach correctly classified texts of corporate websites into sustainable

and non-sustainable.

b. We did not observe greenwashing. Companies presenting themselves as sustainable actually differed

in their contribution to local SO2 concentrations from companies that did not present themselves

as sustainable.

The positive coefficients of the variables metal log and manuf log were in line with Yang et al., 2017b,

who find positive coefficients for the secondary sector share in their regression models on SO2 levels

in China. Contrary to our results, however, they demonstrate negative coefficients for precipitation

and average temperatures. Other studies, such as Li et al., 2014, find a positive correlation between

air pollutants and population density. Our SLM, on the other hand, provided a negative coefficient

for vehicle emissions, which we considered an approximation of the population distribution. One

possible, general explanation is that these deviations from other studies might be attributed to the

variable structure (e.g. aggregation, resampling, average values). In the case of vehicle emissions, one

conceivable explanation could be that high traffic emissions in the US occur mainly along the major

highways and near downtown areas. Thus, they are not necessarily in spatial proximity to areas with

high population density or to important SO2 emitters such as power plants or industrial sites. For

the climatic variables, it is also conceivable that other factors (e.g. humidity, air stratification, wind

characteristics) have a higher importance than precipitation and temperature.

6.2 Limitations

Anthropogenic emissions often develop in a so-called Environmental Kuznets Curve, meaning that

they increase until a certain threshold in the socio-economic development of a country and then begin

to decline as a result of implemented environmental protection measures (Ru et al., 2018). As a

consequence, there has been a shift in SO2 emission centres from the industrial countries in North

America and Europe to Asia. Around the turn of the millennium, China became the largest emitter

of SO2, but since 2016, the country has been overtaken by India (Li et al., 2017). As some researchers

consider SO2 pollution to be ”well under control” in the US (Hidy & Blanchard, 2016), it would

therefore be more sensible to conduct this research in Asia. However, the necessary business data was

not available for this study, which consequently opens up the possibility of transferring the approach to

another study area. For such an analysis, however, it would probably be advisable to decrease the size

of the study area, which would allow taking more site-specific characteristics into account. However,

due to the high spatial autocorrelation of the dependent variable, a stronger aggregation could also

be sufficient for this. The results could perhaps also be improved by not relying on averaged data on

SO2 concentrations. Additionally, there was some temporal inconsistency between the different data

sets, which should be avoided.
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The validation of the web-based classification showed that some problems were caused by the fact

that the model was originally intended for a broader definition of sustainability. For further analyses,

a more specific model should be developed, trained on a more precise terminology concerning air

pollution. Accuracy could also be increased by only considering websites that have been classified

with high confidence by the model ensemble, expanding the category no website to unknown.

6.3 Future research

To extend the web-based methodology, the inclusion of social media data might also be interesting, as

networks such as Twitter or LinkedIn provide additional platforms for companies to report on their

sustainability agenda. There has already been research on sustainability using social media data, e.g.

by Chae and Park, 2018. For future research, it could also be sensible to consider natural SO2 emis-

sions, particularly if a study area with significant volcanic activity is investigated. Additional climatic

factors, such as relative humidity (Ren & Matsumoto, 2020), as well as socio-economic variables (Zhou

et al., 2018) could also be added. Other variables such as population density or the distance to the

nearest harbour were excluded from our models due to multicollinearity. As this paper only deals

with greenwashing in relation to SO2 emissions, data for other air pollutants could also be included

in subsequent studies.

Another aspect that was not considered in this study was the anisotropic influence of wind on the

distribution of pollutants. The current spatial weights matrix handles all neighbours independently

of their position in the neighbourhood. However, it might be beneficial to give a stronger weight to

upwind areas. The inclusion of wind direction into the spatial weights matrix was not viable for the

entire study area due to computational complexity. For such an analysis, it would probably be more

sensible to employ daily SO2 concentrations and wind data, which is possible due to the short revisit

time of Sentinel-5P. Merk and Otto, 2020 already developed a suitable method for this.

7 Conclusion

Our analysis showed a positive and significant relationship between the size of the metal industry

and SO2 concentrations for the contiguous US. An essential and unique contribution of this study

was the inclusion of web data to investigate greenwashing (RQ 1). We found that only 8.1% of the

9,430 companies in the US metal industry were classified as sustainable based on their online self-

presentation. Sustainable firms had more employees on average and showed a tendency to be spatially

clustered.

We interpreted the results of our OLS and SLM, which considered the web-based variables, as an

indication of the absence of general greenwashing. Accordingly, we answered RQ 2 in the affirmative:

The self-reporting of the companies regarding sustainability generally did seem to match the SO2

concentrations obtained from remote sensing data. However, the high proportion of companies without

a website (40.6%) was a clear limitation to these conclusions.
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Appendix

Table 5: NAICS codes for the metal industry.

Primary NAICS code Description

2122 Metal Ore Mining
3311 Iron and Steel Mills and Ferroalloy Manufacturing
3312 Steel Product Manufacturing from Purchased Steel
3313 Alumina and Aluminum Production and Processing
3314 Nonferrous Metal Production and Processing
3315 Foundries
3321 Forging and Stamping
332811 Metal Heat Treating

Table 6: Reclassification of land cover data.

class reclassified as original classes

1 water
11 - open water
12 - perennial ice / snow

2 developed areas

21 - developed (open space)
22 - developed (low intensity)
23 - developed (medium intensity)
24 - developed (high intensity)

3 barren land 31 - barren land (rock / sand / clay)

4 forest
41 - deciduous forest
42 - evergreen forest
43 - mixed forest

5 scrub / grassland
52 - shrub / scrub
71 - grassland / herbaceous

6 agricultural
81 - pasture / hay
82 - cultivated crops

7 wetlands
90 - woody wetlands
95 - emergent herbaceous wetlands

Table 7: Keywords for text classification model. The same keywords were also translated to other Indo-European
languages (e.g. German, Italian), as the model was developed for cross-language use.

Keyword

Bio Corporate responsibility Good working conditions
Circular Eco Local Investments
Clean alternative Emissions Organic
Climate change Environment Sustainable
Closed-cycle Equal treatment Waste
CO2-free ESG reporting
Community engagement Ethically
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Table 8: Classes for text classification.

class definition

frontrunner
A company that sees sustainability as a central part of its business model, e.g. through
carbon-neutral production.

enabler
A company that helps other companies to be more sustainable, e.g. a solar panel
manufacturer.

engaged A company that offers sustainable products or services, e.g. with eco-labels.

information A company that only informs about sustainability, e.g. through blog posts.

not engaged A company that makes no or non-relevant statements on the topic of sustainability.

Table 9: Results of Lagrange Multiplier tests.

test value probability

Lagrange Multiplier (lag) 637,747.53 (0.00)***
Robust LM (lag) 4,387.59 (0.00)***
Lagrange Multiplier (error) 634,970.81 (0.00)***
Robust LM (error) 1,610.86 (0.00)***

Table 10: Regression analysis results using the aggregated employees of the metal industry as a predictor. Only the
results of the most suitable model specification are included. The upper part presents goodness of fit measures as well
as Moran’s I as a measure of the global spatial autocorrelation of the residuals. For the SLM, R² is a Pseudo R². The
lower part contains the estimates of the regression coefficients. W (metal log) represents the effect of the spatially lagged
predictor in the SLX model and W (SO2) the effect of the lagged response variable in the SLM.

model OLS SLX SLM

AIC -557,275 -558,931 -976,115

RMSE 0.06663 0.06637 0.02528

Adjusted R² 0.23920 0.24500 0.89480

Ir 0.861 0.862 -0.013

constant 0.18053*** 0.18187*** 0.01179***

metal log 0.00342*** -0.00037 0.00041***

manuf log 0.00481*** 0.00339*** 0.00072***

veh log 0.00019** -0.00010 -0.00043***

power log 0.00074 0.00004 -0.00015

temp 0.00055*** 0.00058*** 0.00017***

prec 0.01234*** 0.01244*** 0.00421***

water -0.00022*** -0.00022*** -

elev -0.00003*** -0.00003*** -

W (metal log) - 0.02266*** -

W (SO2) - - 0.91644***

Dependent variable: SO2 19 20, significance levels: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001
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