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Abstract 
The proximity framework has attracted considerable attention in a scholarly discourse on the 

driving forces of knowledge exchange tie formation. It has been discussed that too much 

proximity is negatively associated with the effectiveness of a knowledge exchange relation. 

However, little is known about the key factors that trigger the formation of the boundary-

spanning knowledge ties. Going beyond the “dyadic” perspective on proximity dimensions, 

this paper argues that the key factor in bridging distances may reside at the “triadic” level. We 

build on the notion of “the strength of weak ties” and its recent development by investigating 

the innovative performance and relations of more than 600,000 German firms. We explored 

and extracted information from the textual and relational content of firms’ websites by using 

machine learning techniques and hyperlink analysis. We thereby proxied the innovative 

performance of firms using a deep learning text analysis approach and showed that the triadic 

property of bridging dyadic relations is a reliable predictor of firms’ innovativeness. Relations 

embedded in cliques (i.e., strong ties) that connect cognitively distant firms are more strongly 

associated with firms’ innovation, whereas inter-regional relations connecting different parts 

of a network (i.e., weak ties) are positively associated with firms’ innovative performance. 

Also, the results suggest that a combination of strong inter-community and weak inter-regional 

relations are more positively related with firms’ innovativeness compared to the combination 

of other relation types.  

Keywords: weak and strong ties, proximity, knowledge exchange, innovation, web mining, 

natural language processing 
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 Introduction  

The ever-increasing complexity of knowledge has stimulated firms to tap into external 

knowledge pools by creating collaborative relationships to seek required knowledge to 

innovate, and overcome technical and organizational bottlenecks (Broekel 2019; van der 

Wouden 2020). Investigating the driving forces behind the creation of knowledge exchange 

ties (also known as knowledge sourcing) has been of particular interest in economic geography 

(Clark et al. 2018). Economic geographers took the pioneering work of Marshall (1920) as a 

point of departure to show that colocation of firms increases the likelihood of knowledge 

transfer (Duranton and Puga 2004). More recently, the proximity framework, backed by a 

plethora of empirical studies, has become the staple of a scholarly discourse on the driving 

forces of knowledge tie formation in economic geography (Boschma 2005; Torre and Rallet 

2005; Boschma and Frenken 2010; Balland, Boschma, and Frenken 2015; Balland, Boschma, 

and Frenken 2020). The proximity perspective proposes that geographical proximity should be 

regarded alongside other proximity dimensions (e.g., cognitive proximity) and that overlooking 

such dimensions may lead to overstating the effect of geographical proximity in triggering the 

creation of knowledge ties (Singh 2005; Breschi and Lissoni 2009; Balland, Boschma, and 

Frenken 2020). 

Being close in one or several proximity dimensions increases the likelihood of the formation 

of knowledge transfer relations. Yet, interactions with, among others, geographically and 

cognitively close collaborators are associated with minimum benefits for learning and 

innovative capability in the long run due to an increased degree of redundancy (Boschma and 

Frenken 2010; Balland, Boschma, and Frenken 2020). Thus, scholars argue that firms benefit 

most when they develop an “optimal mix of distances” in knowledge exchange by concurrently 

exploiting external knowledge through interactions with proximate firms, and exploring new 

knowledge and application possibilities through interactions with distant ones (Ter Wal et al. 

2016; Balland, Boschma, and Frenken 2020).  

Although numerous conceptual and empirical works have discussed the path-dependent nature 

of knowledge sourcing behavior, little is known about the driving forces of the formation of 

path-breaking knowledge ties that connect cognitively or geographically distant individuals 

and organizations. Only recently, scholars discuss that economic geographers may go beyond 

the “dyadic” nature of proximity dimensions to better understand the capability of individuals 

and organizations in creating collaborative ties (Balland, Boschma, and Frenken 2020). This 

implies that creating knowledge sourcing ties between two focal distant organizations depends 

meaningfully on their already established knowledge ties.  
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Building on the notion of “the strength of weak ties” and its development in the sociology 

literature (Granovetter 1973; Aral and van Alstyne 2011; Aral 2016) and the recently discussed 

portfolio perspective (Balland, Boschma, and Frenken 2020), we argue that the driving forces 

of boundary-spanning knowledge ties may reside at the “triadic” (and not at the dyadic) level. 

This is because knowledge exchange between two cognitively distant firms requires a high 

degree of flexibility to deal with the complexity of communicating varied pieces of knowledge. 

Such relations require a “greater channel bandwidth” that can be provided by a higher degree 

of clustering, that is, by creating knowledge exchange ties with partners of partners (also known 

as strong ties) (Aral 2016). Conversely, the creation of knowledge ties between geographically 

distant firms may more often be driven by cognitive proximity, compensating for the lack of 

geographic propinquity (Balland, Boschma, and Frenken 2015; Broekel 2015). Thus, as two 

focal firms have already established the required interpretation scheme to communicate 

complementary pieces of knowledge, relations with a “smaller channel bandwidth” are 

beneficial for an optimal knowledge transfer, that is, knowledge ties between firms with no 

common partners (also known as weak ties) (Aral 2016). Last, we argue that the innovative 

performance of firms benefits the most if their portfolios include both strong knowledge ties 

with cognitively distant firms and weak ties with geographically distant ones.  

To empirically examine the claims outlined above, we investigate the interaction of more than 

600,000 German firms by exploring and extracting information from hyperlinks in their 

websites. We showed that the triadic property of relations between firms is a reliable predictor 

of firms’ innovativeness. More precisely, strong relations bridging across different 

technological communities are more strongly associated with firms’ innovative performance, 

whereas weak inter-regional relations contribute to firms’ innovative capabilities. The results 

suggest that the joint effects of strong inter-community and weak inter-regional relations are 

more strongly related to firms’ innovativeness compared to the combination of other 

knowledge relation types. The findings remain robust across multiple specifications (e.g., using 

patent data as an alternative proxy for innovative performance). 

The structure of this paper is as follows. Section 2 reviews the notion of weak and strong ties 

and discusses them in the context of knowledge transfer. Section 3 highlights the relevance of 

relational web data reflecting inter-firm relations. Section 4 focuses on the empirical approach 

of the paper. Section 5 presents and discusses results. Section 6 concludes by highlighting the 

main results, discussing methodological contributions, and potential policy implications. 

 The strength of weak and strong knowledge ties   

Evolutionary and relational approaches in economic geography have motivated an upsurge of 

empirical studies investigating knowledge sourcing as an “evolutionary process”  (Bathelt and 
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Glückler 2003; Boschma and Martin 2010). This literature conceptually discusses that 

knowledge sourcing is path-dependent in nature (Boschma 2005; Glückler 2007) and provides 

empirical evidence that two firms are more likely to create a knowledge tie if they are 

geographically and cognitively proximate, and if they share a common collaboration partner 

(Giuliani 2007; Giuliani 2013; Molina-Morales et al. 2015; Lazzeretti and Capone 2016; Juhász 

and Lengyel 2017; Abbasiharofteh and Dyba 2018; Capone and Lazzeretti 2018; Giuliani, 

Balland, and Matta 2018; Abbasiharofteh and Broekel 2020). Whereas proximate firms tend to 

form a knowledge tie, the potential benefits drop if proximity exceeds a certain threshold 

(Boschma and Frenken 2010; Broekel and Boschma 2012). The notion of “proximity paradox” 

emphasizes that the ability to bridge geographic and cognitive distances contributes to the 

innovative capacity of firms by exposing them to non-redundant information (Nooteboom 

2000). Although the importance of bridging geographic and cognitive distances has attracted a 

lot of attention in economic geography, there has been no in-depth scrutiny of whether the 

structural properties of bridging knowledge ties are related to the effectiveness of knowledge 

sourcing across space and economic activities.   

The seminal work of Granovetter (1973) points toward the “strength of weak ties” in providing 

actors with non-redundant information. Weak ties are relations that connect parts of a given 

network that are not already connected. Burt (1992) builds on the strength-of-weak-ties theory 

and showed that actors who bridge “structural holes” are more likely to tap into diverse sources 

of knowledge. This is the case because occupying such network positions enables actors to 

monitor and control the flow of information, and consequently, gives them access to diverse 

information (Reagans and Zuckerman 2001; Burt 2004).  

Conversely, Nelson (1989) and Krackhardt (1992; 1999) underline the importance of the 

“strength of strong ties.” Strong ties1 are those ties that are embedded in a clique (also known 

as Simmelian ties). These scholars argued that strong ties are associated with surpassing 

individual interests and reducing bargaining power and conflicts within groups. Thus, strong 

knowledge ties may contribute to the innovative performance of firms by facilitating 

knowledge transfer through trust building, altruistic reciprocity, and lower transaction costs 

(Heider 1958; Coleman 1988). This theoretical argument resonates with multiple empirical 

studies showing the advantages of creating strong ties (Uzzi 1997; Hansen 1999; Uzzi and 

Spiro 2005; Lingo and O'Mahony 2010; Obstfeld 2016).  

Juxtaposing the theoretical frameworks of weak and strong ties, the former discusses the 

benefits of creating bridges and enjoying non-redundant information, whereas the latter 

                                                           
1 This is important to note that some economic geography scholars argue that embeddedness in a clique represents 

social proximity. To be consistent with the main contributions in the literature, we use the original terminology. 

That is, ‘weak’ and ‘strong’ relations instead of ‘socially distant’ and ‘socially proximate’ relations. 
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emphasizes the normative power of groups (Krackhardt 1999). However, the main question of 

interest is whether this triadic property of a knowledge tie (i.e., weak and strong) facilitate 

knowledge sourcing behaviour that cross geographic and cognitive boundaries. To disentangle 

the effects of weak and strong ties in knowledge sourcing, Moody (2011) argued that besides 

the importance of the structural properties of a knowledge tie, one should consider the content 

of exchanged knowledge. He claimed that if the nature of knowledge makes it hard to transfer, 

actors may need to be linked by strong ties to benefit from in-group synergy effects. However, 

strong ties lead to knowledge redundancy and foster a lock-in situation if knowledge at hand 

can be easily transferred. Similarly, Aral (2016) and Aral and van Alstyne (2011) argued that 

the “diversity-bandwidth trade-off” may reconcile the empirical findings regarding the 

effectiveness of weak and strong ties in knowledge exchange. The trade-off implies that both 

weak ties and strong ties provide actors with access to novel information, depending on the 

“information environment.” They suggested that actors benefit from weak ties most if an 

information environment entails few topics and slowly changing information. Conversely, 

strong ties are beneficial in an information environment with multiple topics and rapidly 

changing information. Bruggeman (2016) and Wu et al. (2008) extended this research by 

empirically showing that “simple” knowledge is better transferred through weak ties, whereas 

strong ties perform more efficiently when transferring rather complex knowledge. Ter Wal et 

al. (2016) showed the benefits of both weak specialized ties and strong diversified ties because 

they provides access to a diverse array of inputs. They argued that the shared interpretive 

schema eases the interpretation of exchanged knowledge by weak specialized ties, whereas 

“shared third-party ties” facilitate the interpretation of cognitively distant knowledge in closed-

diverse networks. Building on these empirical findings, Aral (2016) suggested a modern 

strength-of-weak-ties theory that acknowledges the pioneering works (Granovetter 1973; 

Coleman 1988; Burt 1992) and also takes into consideration the specificity of transferred 

knowledge.  

The extant literature on proximity suggests that geographical proximity is not the only driving 

force of knowledge tie formation and that one proximity dimension might compensate for the 

lack of the other (Boschma 2005; Balland, Boschma, and Frenken 2015). Indeed, scholars have 

argued that knowledge production can be seen as an optimal combination of close and distant 

relations (Oinas 1999; Schilling and Phelps 2007; Breschi and Lenzi 2016, 2016; Whittle, 

Lengyel, and Kogler 2020). For instance, Owen-Smith and Powell (2004) showed in the case 

of the Boston biotechnology community that firms benefit from strategic regional and inter-

regional partnerships. However, it is not farfetched to assume that the threshold for optimal 

cognitive distance is lower for two distant firms (compared to two colocated ones) because 

distant firms cannot build on the synergy effects associated with geographical proximity (e.g., 

learning by observing and face-to-face contacts). Perhaps this explains recent empirical 
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findings of Boschma and Balland (2020) indicating that inter-regional relations are especially 

useful for firms located in regions with complementary capacities. This implies that distant 

knowledge ties are particularly useful when firms create non-local knowledge ties that focus 

on a limited number of topics related to their current fields of activity. In line with Aral’s (2016) 

argument, we expect weak knowledge ties, among cognitively proximate firms, perform more 

efficiently in non-local knowledge sourcing. Thus, we suggest the following hypothesis: 

Hypothesis 1: Cognitively proximate firms that bridge geographic distance with weak 

knowledge ties show better innovative performance than similar ones bridging 

geographic distance with strong knowledge ties. 

Cognitive distance has increasingly hampered the formation of knowledge exchange ties as the 

complexity of knowledge increases over time (Broekel 2019). This implies that knowledge 

does not spill over among firms if the cognitive distance between them exceeds a certain 

threshold (Nooteboom 2000). Thus, firms tend to collaborate with other firms that operate in 

the same or in related economic activities. As a result, one might expect to observe dense 

knowledge ties within economic activities (hereafter, communities) and relatively fewer inter-

community knowledge ties. Besides that, the path-dependent nature of knowledge sourcing 

increases the likelihood of intra-community tie formation (Boschma 2005; Glückler 2007; 

DiMaggio and Garip 2011; Tóth and Lengyel 2019). Thus, inter-community ties might need 

wider bridges (i.e., strong ties) to counterbalance the negative effect of cognitive distance. 

Explicitly, Tortoriello and Krackhardt (2010, 168) claimed that “mere bridging is not enough” 

and described that innovative activities need strong bridging ties to enable firms to efficiently 

exchange knowledge. Perhaps this is why complex economic activities and “atypical” 

combination of technologies increasingly concentrate in large cities (Mewes 2019; Balland et 

al. 2020), where creating strong ties and benefiting from the normative power of groups is more 

straightforward. Also, as this type of knowledge ties is more often used to exchange 

information on a wider range of topics across communities, one can expect that strong ties 

enhance the effectiveness of knowledge transfer (Aral and van Alstyne 2011; Aral 2016). 

Following these lines of argument, we hypothesize that: 

Hypothesis 2: Firms that bridge cognitive distance with strong knowledge ties show 

better innovative performance than similar ones bridging cognitive distance with weak 

knowledge ties. 

Firms can create multiple strong and weak knowledge ties and they probably benefit most from 

knowledge sourcing strategy, whereby they form weak non-local and strong inter-community 

knowledge ties.  Based on this rationale, we predict that: 
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Hypothesis 3: The combination of bridging geographic distance with weak and 

cognitive distance with strong knowledge ties provides the optimal configuration for 

the innovative performance of firms. 

 

 Digital footprint of inter-firm relations 

The Internet “can be thought of as a self-organizing social system: individuals, with little or no 

central oversight, perform simple tasks: posting web pages and linking to other Web pages” 

(Mitchell 2009, 10). Firms post web pages to present their products, services, and costumer 

testimonials, but also their strategic decisions, personnel pronouncements, and relationships 

with other firms (Gök, Waterworth, and Shapira 2015). This textual and relational content of 

firm websites can then be analyzed to assess firms’ innovation activity, their network relations 

and to map regional ecosystem (Katz and Cothey 2006; Kinne and Axenbeck 2020; Axenbeck 

and Breithaupt 2021; Kinne and Lenz 2021). In these analyses, hyperlinks serve as the basis to 

assess firms’ relationships with each other (see also Vaughan and Wu 2004; Krüger et al. 2020). 

Most generally, hyperlinks are considered the “basic structural element of the Internet” (Park 

2003, 49). They allow users to take different paths throughout the Web, thereby revealing 

different communication structures among people, organizations and institutions. De Maeyer 

(2013) reviews an extensive set of hyperlinks studies across the fields of information science, 

sociology, geography, political science and media studies. In her review, one array of studies 

deals with uncovering the structural properties of hyperlink networks, such as their scale-free 

nature (Barabási and Albert 1999). The other array analyzes hyperlinks as indicators of other 

social phenomena by exploiting their information side-effects: “Information side-effects are 

by-products of data intended for one use which can be mined in order to understand some 

tangential, and possibly larger scale, phenomena” (Adamic and Adar 2003, 211). 

One of these larger scale phenomena being explored through hyperlinks is the nature of 

knowledge sourcing among linked entities. Heimeriks and van den Besselaar (2006) found that 

“web data can be meaningful in mapping the aspects of knowledge production” on how the 

development of research fields is reflected in the linking patterns of scientific organizations. 

Vaughan et al. (2006) conducted a content analysis of 280 websites of North American IT 

companies and their hyperlink connections with respect to their motivation to create the 

hyperlinks. They found that most links indeed represent business relations, which is “strong 

contrast to motivations for linking to university Websites where many links are not 

academically related” (Vaughan, Gao, and Kipp 2006, 297). They thus concluded that 

hyperlinks are fertile objects for data mining in business contexts. This is in accordance with 

earlier studies by Vaughan and Wu (2004), who identified hyperlinks to commercial websites 
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as a source for generating business performance indicators. Krüger et al. (2020) analyzed the 

hyperlink network of roughly 680,000 German firms with regard to the network position of 

innovative versus non-innovative firms. They also found that the majority of hyperlinks 

represent business relations, and that the network position of innovative firms on the Web 

significantly differs from the network position of non-innovative ones, when accounting for 

their link count, geographic distance and operationalized cognitive and organizational 

distances. One can therefore assume that the business relations represented through hyperlinks 

are a reasonable proxy for knowledge sourcing ties among firms.  

However, more research needs to be done to uncover how long hyperlinks among firms 

generally persist and for what reasons they change. As Basole et al. (2015, 3-4) reviewed: “The 

social nature of the Internet has added a new data frontier in socially constructed data. […] 

These sources provide unprecedented access to data, updated in real time, and also include 

individuals’ activities and interactions.” For now, we do not have a clear picture, though, of 

how quickly these interactions change and are updated in hyperlinks. Moreover, one has to 

keep in mind that hyperlink system are usually comprised of organizations that are linked 

together around a common background, interest, or project and most likely do not reveal 

competitive firm relationships (Park 2003).  

Still, as hyperlinks are set intentionally by firms, and creating, maintaining, or removing a 

hyperlink “may be viewed as acts of association, non-association or disassociation, 

respectively” (Rogers 2010, 117), they can be a valuable data source for analyzing knowledge 

sourcing relationships of firms in a business context.  

 

 Empirical approach  

4.1. Data 

In economic geography, quantitative empirical studies investigating the processes of 

knowledge sourcing use mostly secondary data on patents, scientific publications, and R&D 

projects (Bettencourt, Lobo, and Strumsky 2007; Lobo and Strumsky 2008; Strumsky and 

Lobo 2015; Breschi and Lenzi 2016; Juhász and Lengyel 2017; Abbasiharofteh and Broekel 

2020; Balland et al. 2020). Although these studies have contributed a lot to the understanding 

of how firms create, maintain, and dissolve knowledge ties, more recently, scholars have called 

for the use of alternative firm-level databases to address unresolved research questions in 

economic geography (Duranton and Kerr 2018; Fritsch, Titze, and Piontek 2020). In this study, 

we build on the Mannheim Enterprise Panel (MUP) of 2019. The MUP is a firm panel database 

that covers the entire population of firms in Germany and is updated on a semi-annual basis. 
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In addition to firm-level characteristics, such as firm size, age, and location, the MUP includes 

the web addresses (URL) for 1,155,867 of 2,497,412 firms in the dataset (URL coverage of 

46%). Prior analyses of this dataset (Kinne and Axenbeck 2020) showed that comparatively 

low URL coverage was found, for example, in the subgroup of young and small companies, 

whereas companies with more than 25 employees were almost completely covered. We 

removed firms without postal address information from our dataset and geocoded the 

remaining firms based on their postal codes (5-digit level) and street names (e.g., see 

Zandbergen 2008).  

For each firm, we downloaded texts and hyperlinks contained on their respective websites. A 

maximum of 25 (sub-)webpages per firm website were thereby crawled and scraped. The 

selection of these webpages is not performed randomly but followed a simple heuristic. 

Preference was given to those (sub-)webpages written in German and have the shortest URL. 

The latter was intended to ensure that primarily more general (“top level”) content is 

downloaded. For example, “company.com/about-us” would be downloaded before 

“company.com/news/2019/august.” After excluding erroneous downloads and potentially 

misleading redirects (see Kinne and Axenbeck 2020) from the data, 633,523 firms remained in 

the dataset.  

We then constructed a directed network of firms based on the hyperlink references found on 

their websites (3,062,670 ties). As we used these hyperlink connections as a proxy for the 

presence of knowledge sourcing ties, we took a more conservative approach and included only 

reciprocated ties in the network (1,363,305 ties, whereas the number of firms remains constant: 

633,523). This means that a tie exists between firm A and firm B only if both firms include 

hyperlinks to each other’s website on their own website. This approach is very much in line 

with the rationale behind weak and strong ties. Two firms are strongly tied (Simmelian tied) to 

each other if they are reciprocally connected and reciprocally connected to at least one common 

firm (Krackhardt 1999). Accordingly, two firms are weakly tied (non-Simmelian tied) if they 

are reciprocally connected and are not reciprocally connected to one or several common firms. 

Figure 1 maps the locations of all firms in our dataset (high density areas shown in brighter 

colors) and a random sample of hyperlink connections between them. For the purpose of 

clarity, the hyperlinks in Figure 1 were aggregated using a graph bundling method based on 

kernel density estimation (Hurter, Ersoy, and Telea 2012). 
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Figure 1. Visualization of firm locations and the intensity of inter-firm hyperlink connections 

at the national level. 

 

4.2. Dependent variable  

As an alternative innovation indicator at the company level, we adopted the InnoProb approach 

described by Kinne and Lenz (2019) and shown schematically in Figure 2. It is a web-scraping 

based method in which the text content of the websites of the companies being investigated is 

downloaded and then assessed by an artificial neural network. The artificial neural network 

acts as a text classification model, which analyzes the input texts and then outputs a “predicted 

product innovator probability.” More precisely, it estimates the likelihood of the examined 

texts’ originating from a company that has launched new or significantly improved products to 

the market. This ability was previously “taught” to the model in a training phase in which the 

texts of companies that participated in a traditional innovation survey serve as training data. To 

this end, the German Community Innovation Survey (CIS), a questionnaire-based survey in the 

style of the Oslo Manual (OECD 2018), was used. In the survey, about 12,000 companies were 

asked about their innovation activities, including whether they are so-called product innovators 

as described above.  

For the InnoProb model, the websites of the surveyed companies are downloaded, the found 

texts are vectorized according to the tf-idf scheme (e.g., see Manning, Raghavan P, and Schutze 

2009) and used along with the information on whether the company is a product innovator as 

training data for a deep neural network (Kinne and Lenz 2019). During the training phase, the 

model “learns” which words and word combinations characterize a product innovator. After 



11 
 

training, the model can assess the website texts of any (out-of-sample) firm and predict its 

“product innovator probability.” These “InnoProb scores” range from 0.0 (unlikely product 

innovator) to 1.0 (likely product innovator) and have been tested for their robustness and 

validity against several traditional innovation indicators ranging from patent data to official 

statistics (see Kinne and Lenz 2019).  

 

Figure 2. Schematic representation of the InnoProb model for evaluating text from corporate 

websites. Adapted from Kinne and Lenz (2019). 

For this study, we calculated the firm-level InnoProb scores for all 633,523 companies in our 

dataset (Figure 3). Subsequently, we binarized these raw InnoProb scores using a classification 

threshold that corresponds to the 90th percentile (0.5) to obtain a binary (dummy) dependent 

variable (INNOVATIVE). Compared to the recommended classification threshold of 0.4 by 

Kinne and Lenz (2019), we opted for a rather strict classification approach to minimize the 

share of false positives in the group of firms that we classify as being innovative. As will be 

discussed, we selected multiple thresholds for the InnoProb classification and replicated the 

empirical analysis to ensure the robustness of our empirical results. 
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Figure 3. Distribution of product innovator probability (InnoProb) scores. 

 

4.3. Independent variables  

The main variables of interest approximate the extent to which each firm is connected to others 

through weak and strong bridges across geographic and cognitive distances. We defined 

geographic bridging ties as those inter-firm hyperlink relations that cross regional boundaries 

(NUTS-2 level). It is, however, less straightforward to identify ties that bridge cognitive 

distances. We argue that firms are more likely to create a knowledge exchange tie when they 

operate in the same or related economic activities. The importance of cognitive proximity as a 

driving force of collaborative ties formation has been theoretically discussed (Boschma 2005) 

and empirically shown by multiple studies (Ter Wal 2014; Balland, Belso-Martínez, and 

Morrison 2015; Lazzeretti and Capone 2016; Juhász and Lengyel 2017). This translates into a 

greater number of ties between cognitively proximate firms, and a smaller number of ties 

between cognitively distant ones.  

A community detection algorithm2 enabled us to identify densely connected communities. 

Building on this, we define ties that connect different communities as the ones that bridge 

cognitive distances. Following Krackhardt (Krackhardt 1999), Figure 4 provides a stylized 

representation of the four bridging ties: weak inter-regional (WIR), strong inter-regional (SIR), 

weak inter-community (WIC), and strong inter-community (SIC) bridging ties. To measure the 

                                                           
2 We used the multilevel community detection algorithm because it is efficient (time complexity: 𝒪(𝑁 𝑙𝑜𝑔𝑁)) 

and provides the most reliable results given the size of the investigated network (Yang, Algesheimer, and Tessone 

2016). 
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extent to which each firm weakly or strongly bridges geographic and cognitive distances, we 

use the E-I index suggested by Krackhardt and Stern (1988). 

 

𝐸 − 𝐼 𝑖𝑛𝑑𝑒𝑥 =  
𝐸𝑖  −  𝐼𝑖

𝐸𝑖  +  𝐼𝑖
  (1) 

E denotes the number of ties that firm i has with firms that belong to groups other than firm i’s 

group (i.e., other regions or technological communities). Accordingly, I represents the number 

of ties that i has with other firms belonging to the same group (i.e., same region or technological 

community). The minimum value corresponds to minus one if a firm has only within-group 

ties, and the maximum estimated value corresponds to one if a firm has only between-group 

ties. We estimated the bridging index for each type of bridging ties separately. After estimating 

SIR, WIR, SIC, and WIC, we standardized the four variables by expressing them as z-scores3 

(mean:0 and standard deviation:1). This enabled us to better interpret and compare the 

coefficients of these four variables estimated by regression models.   

 

Figure 4. Schematic illustration of the four bridging types. 

 

4.4. Controls  

To ensure the robustness of our results, we constructed multiple control variables. Following 

similar empirical studies, the variables could be categorized into three groups: 1) network4, 2) 

individual, and 3) regional levels (Lobo and Strumsky 2008; Tortoriello and Krackhardt 2010; 

                                                           
3 z-score = (x-x̅)/sd(x) where x̅ and sd(x) are the mean and standard deviation of x, respectively.  
4 For estimating network level variables, we used the ‘igraph’ R package (Csardi and Nepusz 2006). 
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Breschi and Lenzi 2016; Balland et al. 2018; Bergé, Carayol, and Roux 2018; van der Wouden 

and Rigby 2019; Abbasiharofteh and Broekel 2020). Table 1 provides a description of these 

control variables (Appendix A provides descriptive statistics and the associated correlation 

matrix). 

Category Type 

(range) 

Method Variable name 

Network 

level 

Continuous 

(0.69- 11.85) 

The log-transformed count of relations 

(reciprocal hyperlinks) a firm has; also known 

as degree centrality. 

DEGREE 

Continuous 

(0.00-18.95) 

The log-transformed sum of DEGREE of a 

firm’s neighbors. 

ALTER 

Continuous 

(0.00-1.00) 

The probability that the neighbors of a firm 

are connected (Wasserman and Faust 1994). 

TRANSITIVITY 

Individual 

level 

Continuous 

(0.65-6.93) 

Age* of firm in years (log-transformed). AGE 

Regional 

level 

Dummy 

(0 or 1) 

This variable takes the value of 1 if a firm is 

located in a metropolitan region (defined by 

Eurostat) and takes the value of 0 otherwise. 

METROPOL 

Dummy 

(0 or 1) 

This variable takes the value of 1 if a firm is 

located in the former East Germany (GDR) 

and takes the value of 0 otherwise. 

EAST 

Continuous 

(0.00-8.28) 

Log-transformed count of other firms within a 

1 km radius around a given firm (all firms in 

the MUP dataset are considered, not only the 

ones in our network).  

FDENSITY 

Continuous 

(8.41-10.7) 

The log-transformed number of firms in the 

NUTS-2 region, in which a given firm is 

located. 

RFDENSITY 

Table 1. Control variables. 

* A small number of companies have very large AGE values, which represent old family businesses and breweries. 

 

 Results and discussion  

We ran multiple logit models to investigate whether the capability of firms to bridge geographic 

and cognitive distances and the characteristics of bridging ties statistically correlate with their 
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innovation performance. The results are shown in Table 2. The goodness of fit improves as 

more variables are introduced and the full model provides the best goodness of fit.  

Regarding the network level controls, it seems that the number of inter-firm relations is 

positively related to a firm’s probability of being a product innovator. This finding resonates 

with the scholarly debate about how firms occupying central positions are exposed to a wider 

range of sources of information that can be used in the innovation process (Bergé, Carayol, and 

Roux 2018). However, the sign and the significance of coefficients capturing the effects of 

clustering and the relations of a firm’s neighborhood (i.e., the sum of adjacent nodes’ relations) 

change across the model specifications in Table 2. Thus, we refrain from interpreting and 

discussing the coefficients of these two variables.  

The reported coefficients of the individual and regional control variables are mostly in line 

with our expectations and similar to those of other empirical studies. The age of firms is 

negatively related to the capability of firms to innovate. This finding is congruent with the 

empirical evidence from the scaling literature claiming that young firms grow and innovate at 

a higher pace, relative to the later stages of their development (Bettencourt et al. 2007; West 

2017).  

Moreover, we found that the two variables capturing firm density (METROPOL and 

FDENSITY) are positively associated with the product innovator probability of firms. The 

extensive body of literature on agglomeration economies provides evidence that colocated 

firms benefit from a wide range of externalities, such as knowledge spillovers, input and output 

linkages, and skilled labor pooling (Duranton and Puga 2004). Finally, our results suggest that 

firms in the Eastern part of Germany are less innovative, compared to their Western 

counterparts, which may reflect cultural, sectoral, and socio-economic differences, as well as 

the embeddedness of firms in various innovation systems, with that of East Germany being 

more centralized (van Hoorn and Maseland 2010; Fritsch and Slavtchev 2011; Wenau, 

Grigoriev, and Shkolnikov 2019; Abbasiharofteh and Broekel 2020). Taken together, the 

estimated coefficients of our control variables reflect our expectations derived from previous 

studies and theoretical considerations. We are therefore confident that our empirical setting can 

be used to confirm or reject the formulated hypotheses of this study. 

We introduced the variables of interest in our models in a stepwise manner. Since the results 

are consistent across all models and given that the full model (Model 6) provides the best 

goodness of fit, we interpret and discuss the results of the full model. The four variables that 

capture the effect of bridging with different attributes are positively correlated with the product 

innovator probability of firms, whereas the positive coefficient of weak inter-community ties 

is not statistically significant. We are particularly interested in investigating the magnitude of 

effects across different bridging types. Our results suggest that the share of weak inter-regional 
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bridging ties is more strongly correlated with the dependent variable than the one of strong 

inter-regional ties. This confirms Hypothesis 1. Since mutually tied firms located in different 

regions cannot rely on advantages associated with geographical proximity, they may 

compensate for this disadvantage by interacting with firms that have the same or similar 

portfolios (Balland, Boschma, and Frenken 2015; Boschma and Balland 2020). Thus, weak 

inter-regional ties may favor innovative behavior because inter-regional ties are channels for 

exchanging knowledge between cognitively proximate firms.  

Furthermore, the reported coefficient of SIC seems to be significantly related to INNOVATIVE 

whereas the one of WIC are not significantly related. This confirms Hypothesis 2. Whereas 

most economic geography studies focus on individual and regional factors to account for the 

innovative capability of firms and regions, the relevance of the meso-level (community level) 

has often been, to some extent, ignored. A recent economic geography study discussed the 

importance of this level of analysis and showed that collaborative ties among specialized and 

cognitively distant communities are a critical factor enabling regions to introduce 

unconventional innovations (Abbasiharofteh, Kogler, and Lengyel 2020). However, this study 

said nothing about which attributes of such inter-community bridging ties may improve the 

quality of knowledge sourcing. Our results suggest that firms benefit from inter-community 

relations only if such ties are strong bridging ones (i.e., shared with at least a common third). 

As discussed earlier, since ties that bridge communities might be associated with bridging 

cognitively distant firms, this may increase uncertainty, the complexity of interaction, and the 

number of included topics. This finding resonates with the ones of Aral and van Alstyne (2011) 

who argued that strong ties (“greater channel bandwidth”, in their language) facilitate 

knowledge sourcing in such settings. 
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 Dependent variable: INNOVATIVE 

 (1) (2) (3) (4) (5) (6) 

SIR  0.1839***    0.1606*** 
  (0.0061)    (0.0062) 

WIR   0.2045***   0.1901*** 
   (0.0069)   (0.0070) 

SIC    0.0876***  0.0813*** 
    (0.0058)  (0.0059) 

WIC     -0.0031 0.0039 
     (0.0060) (0.0061) 

DEGREE 0.3605*** 0.2742*** 0.4124*** 0.3702*** 0.3618*** 0.3395*** 
 (0.0073) (0.0079) (0.0075) (0.0074) (0.0077) (0.0086) 

ALTER 0.0057*** 0.0077*** -0.0115*** 0.0053*** 0.0057*** -0.0090*** 
 (0.0012) (0.0012) (0.0013) (0.0012) (0.0012) (0.0013) 

TRANSITIVITY 0.0739*** -0.1871*** 0.0965*** 0.2280*** 0.0776*** 0.0061 
 (0.0277) (0.0298) (0.0278) (0.0295) (0.0286) (0.0326) 

AGE -0.3621*** -0.3567*** -0.3566*** -0.3600*** -0.3621*** -0.3500*** 
 (0.0068) (0.0068) (0.0068) (0.0068) (0.0068) (0.0069) 

FDENSITY 0.1586*** 0.1636*** 0.1611*** 0.1586*** 0.1586*** 0.1652*** 
 (0.0040) (0.0041) (0.0041) (0.0040) (0.0040) (0.0041) 

RFDENSITY 0.1888*** 0.2068*** 0.2110*** 0.1909*** 0.1888*** 0.2269*** 
 (0.0105) (0.0106) (0.0106) (0.0105) (0.0105) (0.0106) 

METROPOL 0.1913*** 0.1846*** 0.1844*** 0.1908*** 0.1913*** 0.1789*** 
 (0.0148) (0.0148) (0.0148) (0.0148) (0.0148) (0.0148) 

EAST -0.1695*** -0.1550*** -0.1675*** -0.1659*** -0.1695*** -0.1523*** 
 (0.0153) (0.0154) (0.0154) (0.0154) (0.0153) (0.0154) 

Constant -5.9594*** -6.0129*** -6.1531*** -6.0160*** -5.9612*** -6.2329*** 
 (0.1676) (0.1678) (0.1679) (0.1677) (0.1676) (0.1682) 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -114,082.6000 -113,609.9000 -113,630.4000 -113,970.5000 -114,082.5000 -113,150.9000 

Akaike Inf. Crit. 228,265.2000 227,321.7000 227,362.8000 228,043.0000 228,266.9000 226,409.8000 

 *p<0.1; **p<0.05; ***p<0.01 

Table 2. Logit regression estimation results. 

We also investigated the joint effects of different types of bridging ties on the product innovator 

probabilities of firms. Given that interpreting the joint effects of dummy variables is more 

straightforward, we followed a common practice (Cattani and Ferriani 2008; Juhász, Tóth, and 

Lengyel 2020) and binarized our four variables capturing bridging effects. More specifically, 

these transformed variables take the value of one if the value for the respective bridging type 

is greater than the 90th percentile of the original variable (otherwise the value is zero). 
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Table 3 provides the estimation results for six different logit regression specifications covering 

all possible dyadic interaction terms between bridging variables. The reported coefficients of 

our control variables are similar in sign and significance to the ones presented above. Thus, for 

the sake of brevity we only report the coefficients capturing the effects of bridging variables 

and their interactions.  

The results confirm Hypothesis 3, given that the joint effects of strong inter-community and 

weak inter-regional bridging ties are positively related to the innovativeness of firms. More 

interestingly, the joint effects of strong inter-regional and weak inter-community bridging ties 

are negatively correlated, meaning these two bridging types substitute the effect of each other, 

whereas strong inter-community and weak inter-regional ones complement the effects of each 

other5. Although the theoretical argument and the empirical findings of economic geography 

studies point toward the importance of both relations with firms in other regions and with 

colocated ones (Oinas 1999; Nooteboom 2000; Bathelt, Malmberg, and Maskell 2004; 

Boschma 2005; Bathelt and Turi 2011; Breschi and Lenzi 2013), our results contribute to this 

scholarly debate by suggesting that, while firms have to bridge regional and cognitive distances 

to be innovative, the structural properties of bridges may indeed determine the effectiveness of 

such knowledge sourcing efforts6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
5 It is important to note that we also included all possible triadic and quadratic interaction terms (see appendices), 

and this finding remained robust across all these specifications. 
6 The joint effects of strong inter-regional and weak inter-regional bridging ties are also positively correlated with 

the dependent variable. However, the coefficient of this variable loses significance in an extended interaction 

model (see Appendix E). 
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 Dependent variable: INNOVATIVE 

 (1) (2) (3) (4) (5) (6) 

SIR (dummy) 0.3130*** 0.2548*** 0.4127***    

 (0.0217) (0.0212) (0.0311)    

SIC (dummy) 0.1574***   0.0882*** 0.1702***  

 (0.0200)   (0.0195) (0.0269)  

WIR (dummy)  0.3251***  0.3105***  0.3518*** 
  (0.0145)  (0.0146)  (0.0169) 

WIC (dummy)   -0.0134  -0.0263** 0.0270 
   (0.0128)  (0.0132) (0.0166) 

SIR×SIC -0.0372      

 (0.0395)      

SIR×WIR  0.1955***     

  (0.0390)     

SIR×WIC   -0.1341***    

   (0.0373)    

SIC×WIR    0.4159***   

    (0.0378)   

SIC×WIC     0.0168  

     (0.0339)  

WIR×WIC      0.0040 
      (0.0253) 

Constant -6.0857*** -6.4398*** -6.0784*** -6.2920*** -5.9547*** -6.3630*** 
 (0.1679) (0.1688) (0.1679) (0.1686) (0.1677) (0.1688) 

Controls YES YES YES YES YES YES 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -113,894.5000 -113,624.2000 -113,923.1000 -113,656.4000 -114,025.8000 -113,773.2000 

Akaike Inf. Crit. 227,895.0000 227,354.5000 227,952.2000 227,418.7000 228,157.5000 227,652.4000 

 *p<0.1; **p<0.05; ***p<0.01 

Table 3. Logit regression estimation results with interaction terms. 

  

5.1. Robustness check 

In the original models (Table 2), we constructed the dependent variable based on the 90th 

percentile of the InnoProb web-based innovation indicator. To ensure the reliability of our 

results, we carried out a first robustness check by regressing a similar set of independent and 

control variables against dependent variables constructed using alternative thresholds (i.e., 50th 

and 75th percentiles). Interestingly, while the positive correlation of inter-regional bridging ties 

and INNOVATIVE seems robust against different thresholds, the positive effects of strong inter-
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community bridging diminish when we lower the threshold to the median value of InnoProb 

(see Appendix B). Moreover, the variable capturing the effect of weak inter-community 

bridging ties is even negatively correlated with the dependent variable when we lower the 

classification threshold of INNOVATIVE. When changing the threshold value to the 75th 

percentile of InnoProb, the effect of strong inter-community bridges becomes positive and 

statistically significant, whereas the findings regarding the effect of weak and strong inter-

regional ties are consistent with the original model. Thus, we conjecture that relations 

connecting firms from two different communities may be positively related with exceptionally 

innovative performances. This result resonates with a finding from of Abbasiharofteh et al. 

(2020) who showed that inter-community collaborations enable inventors to introduce more 

atypical inventions. The models with interaction terms show that the joint effects of weak inter-

regional and strong inter-communities bridging ties remain positive and statistically 

significant. 

As estimating firms’ innovation activities using machine-learning techniques is not a common 

practice in economic geography, we also used a more established indicator of innovative 

capabilities as a second robustness test for our findings. We retrieved patent data from the 

European Patent Office (EPO) and, due to the declining economic and technological value of 

aging patents, limited the dataset to patents with grant dates between 2006 and 2017 (a 10-year 

time period corresponding to the average lifetime of patents in our database). We then 

determined the “patent holder status” of each company and used it as an alternative dependent 

variable. That is, the dependent variable takes the value of 1 if a company holds at least one 

patent and 0 otherwise. The results of this robustness check (see Appendix C) are consistent 

with the results of our original models, while the difference between the magnitudes of effects 

decreases. We are therefore confident that our initial results were not driven by the method we 

used to approximate the innovativeness of firms.  

The innovative performance of firms may arguably be positively influenced by those bridging 

ties that simultaneously cross geographic and cognitive distances, because inter-community 

and inter-regional bridging ties are not mutually exclusive. In a third robustness test, we 

controlled for this overlap by excluding all ties that bridge both communities and regions and 

repeated logit regressions. The findings (see Appendix D) remain robust in this specification. 

Last, we added alternative variables at the network and regional levels. For instance, we 

constructed a variable based on Burt's constraint (2004) for each firm. Burt's constraint 

increases if a firm has more redundant relations. We created a variable corresponding to the 

size of the network component (the number of firms) in which a firm is located. In addition, to 

control for the specialization of firms’ regions, we estimated the average value of regional 

technologies’ related density (Boschma, Balland, and Kogler 2015). Technologies are proxied 
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by patent technological codes (the 4-digit level) filed in each region in the past 10 years (van 

der Wouden and Rigby 2019)7. Introducing these extra network and regional level variables 

did not challenge our main findings regarding the relation between bridging ties and their 

interactions, and the innovative performance of companies. 

 

 Conclusion  

The proximity framework has provided a conceptual engine to analyze and understand the 

driving forces of knowledge tie formation (Boschma 2005; Balland, Boschma, and Frenken 

2020). Whereas it has been discussed that boundary-spanning knowledge ties may maximize 

the likelihood of innovative performance, to the best of our knowledge, a necessary structural 

configuration for this type of knowledge sourcing has not been empirically addressed. To this 

end, this paper contributes to the ongoing scholarly discourse by arguing conceptually and 

showing empirically that the interplay between the nature of exchanged knowledge and the 

triadic property of dyadic knowledge relations may play a role in increasing the capability of 

firms to bridge cognitive and geographic distances. Our results resonate with Granovetter’s 

(1973) argument that “treating only the strength of ties ignores, for instance, all the important 

issues involving their content” (p. 1378). More precisely, our results show that knowledge 

exchange between cognitively distant firms may be more strongly associated with the diversity 

of topics and knowledge communication complexity. Therefore, strong knowledge ties seem 

to provide the most optimal configuration, perhaps by increasing the capacity of monitoring, 

communicating, and interpreting (Krackhardt 1999; Ter Wal et al. 2016). Conversely, weak 

knowledge ties seem to be more efficient at bridging geographic distance, perhaps because 

such relations are among firms operating in the same or related fields with common 

interpretation schemes. In addition, firms’ innovative performance is positively related to the 

joint effects of the two types of knowledge relations.  

Methodologically, this paper integrates techniques developed in the machine learning 

community to create a proxy for innovative performance. Whereas multiple disciplines such as 

computational social science, networks science, and applied economics have started to benefit 

from machine learning techniques (Muscoloni et al. 2017; Emmert-Streib et al. 2020; Storm, 

Baylis, and Heckelei 2020), it seems that economic geographers have, to some extent, 

overlooked the power of such techniques to mine and analyze much needed micro-level data 

(Duranton and Kerr 2018; Fritsch, Titze, and Piontek 2020). Economic geographers and 

                                                           
7 The results are available upon request.  
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regional studies scholars can take this study as a point of departure to enhance the diversity of 

available data and the methodological toolbox.  

Having reviewed the main contributions of the paper, this study is not free of limitations. We 

used a mutual inter-firm’s hyperlink network as a proxy for knowledge exchange. Although 

this assumption does not seem too farfetched, future research needs to study this issue by 

mapping various types of inter-firm relations (e.g., social, economic, knowledge relations) and 

by investigating their impact on the formation of inter-firm hyperlinks. Moreover, the 

developed Innovator Probability Index that proxies the innovative capabilities of firms is 

agnostic about process innovation which could be considered for the further development of 

Innovator Probability Index. Another limitation of this paper concerns the static nature of the 

network data. Networks are dynamic phenomena, and they may change over time. Although 

we do not expect to see a fundamental change in the inter-firm hyperlink networks in a short 

time, we do, however, suggest replicated testing of similar data retrieved in another time-

window. Having relational data in two consequent time-windows also provides an abundance 

of possibilities for longitudinal studies. Finally, we encourage economic geographers to use 

different datasets (e.g., patent and R&D data) to empirically test the external validity of our 

results. 

While the importance of collaboration among cognitively distant actors at the local level has 

been proven (Singh 2005), our study suggests that such knowledge sourcing behaviors are more 

likely to succeed if they are embedded in strong knowledge relations. The relevance of the 

property of the triadic-level of knowledge relations may be deployed in the context of place-

based and mission-oriented innovation policies. These policies encourage collaborations 

among diverse stakeholders to discover unexploited potentials and to find solutions for grant 

societal challenges (Foray 2018; Mazzucato 2018; Hekkert et al. 2020). An improved 

understanding of the interaction between strong and weak ties, as well as the nature of 

collaboration, may help policymakers overcome the inertia caused by cognitive and geographic 

distances that challenge the involvement of diverse stakeholders in joint projects. 
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Appendix A 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

INNOVATIVE 432,248 0.109 0.312 0 0 0 1 

SIR 432,248 0 1 -2.973 -0.352 -0.352 2.269 

SIC 432,248 0 1 -2.824 0.246 0.246 3.317 

WIR 432,248 0 1 -1.797 -0.402 0.994 0.994 

WIC 432,248 0 1 -1.011 -1.011 0.789 2.589 

DEGREE 432,248 1.422 0.704 0.693 0.693 1.792 11.852 

ALTER 432,248 6.152 5.186 0 0 11.066 18.955 

TRANSITIVITY 432,248 0.107 0.226 0 0 0.1 1 

AGE 405,514 2.891 0.859 0.651 2.307 3.400 6.928 

METROPOL 432,248 0.718 0.450 0 0 1 1 

EAST 432,248 0.181 0.385 0 0 0 1 

FDENSITY 432,248 3.951 1.585 0 2.944 4.934 8.277 

RFDENSITY 432,248 9.890 0.574 8.411 9.448 10.515 10.705 

Note: Isolated firms (201,275) were removed from the analysis. A small share of firms (26,734) 

does not include age information. 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

(1) INNOVATIVE 1             

(2) SIR 0.09 1            

(3) SIC 0.03 -0.06 1           

(4) WIR 0.04 -0.03 0.1 1          

(5) WIC 0.03 0.17 -0.16 -0.14 1         

(6) DEGREE 0.1 0.27 -0.14 -0.2 0.38 1        

(7) ALTER 0.03 -0.14 0.21 0.48 -0.1 0.07 1       

(8) TRANSITIVITY 0 0.3 -0.45 -0.2 0.31 0.08 -0.44 1      

(9) AGE -0.1 -0.01 -0.03 -0.07 0.04 0.12 -0.02 -0.01 1     

(10) METROPOL 0.07 0 0 -0.02 0.01 0.03 0 -0.01 -0.07 1    

(11) EAST -0.02 -0.02 -0.02 -0.01 0 0.01 -0.03 0.01 -0.05 -0.01 1   

(12) FDENSITY 0.12 0.01 -0.02 -0.05 0.04 0.11 -0.02 0.01 -0.07 0.35 0 1  

(13) RFDENSITY 0.08 -0.05 -0.01 -0.07 0 0.02 0.01 -0.01 -0.04 0.27 -0.18 0.28 1 
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Appendix B 

 Dependent variable: INNOVATIVE (binarized based on the median value of InnoProb) 

 (1) (2) (3) (4) (5) (6) 

SIR  0.2732***    0.2696*** 
  (0.0128)    (0.0130) 

WIR   0.3155***   0.3040*** 
   (0.0090)   (0.0091) 

SIC    0.0211*  -0.0025 
    (0.0121)  (0.0122) 

WIC     -0.0868*** -0.0475*** 
     (0.0078) (0.0080) 

DEGREE 0.2594*** 0.2432*** 0.3435*** 0.2565*** 0.2746*** 0.3332*** 
 (0.0053) (0.0053) (0.0058) (0.0055) (0.0055) (0.0062) 

ALTER 0.0002 0.0010 -0.0131*** 0.0003 -0.0006 -0.0122*** 
 (0.0007) (0.0007) (0.0008) (0.0007) (0.0007) (0.0008) 

TRANSITIVITY -0.0971*** -0.2311*** -0.0144 -0.0984*** -0.0300* -0.1126*** 
 (0.0169) (0.0181) (0.0171) (0.0169) (0.0179) (0.0191) 

AGE -0.3063*** -0.3038*** -0.3018*** -0.3062*** -0.3066*** -0.2996*** 
 (0.0042) (0.0042) (0.0042) (0.0042) (0.0042) (0.0042) 

FDENSITY 0.1117*** 0.1134*** 0.1133*** 0.1117*** 0.1116*** 0.1148*** 
 (0.0025) (0.0025) (0.0025) (0.0025) (0.0025) (0.0025) 

RFDENSITY 0.0493*** 0.0586*** 0.0694*** 0.0495*** 0.0491*** 0.0777*** 
 (0.0064) (0.0064) (0.0065) (0.0064) (0.0064) (0.0065) 

METROPOL 0.0466*** 0.0457*** 0.0444*** 0.0465*** 0.0460*** 0.0433*** 
 (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) (0.0083) 

EAST -0.1686*** -0.1648*** -0.1665*** -0.1684*** -0.1691*** -0.1631*** 
 (0.0091) (0.0091) (0.0091) (0.0091) (0.0091) (0.0091) 

Constant -0.8267*** -0.9176*** -1.2034*** -0.8266*** -0.8084*** -1.2695*** 
 (0.0718) (0.0719) (0.0727) (0.0718) (0.0718) (0.0729) 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -247,131.5000 -246,903.8000 -246,509.3000 -247,130.0000 -247,070.2000 -246,274.9000 

Akaike Inf. Crit. 494,363.0000 493,909.7000 493,120.6000 494,362.0000 494,242.5000 492,657.7000 

Note: *p<0.1; **p<0.05; ***p<0.01 
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 Dependent variable: INNOVATIVE (binarized based on the median value of InnoProb) 

 (1) (2) (3) (4) (5) (6) 

SIR (dummy) 0.3047*** 0.2388*** 0.3096***    

 (0.0150) (0.0141) (0.0249)    

SIC (dummy) 0.0219   -0.0328** 0.0396*  

 (0.0140)   (0.0132) (0.0204)  

WIR (dummy)  0.3050***  0.2968***  0.3043*** 
  (0.0091)  (0.0091)  (0.0105) 

WIC (dummy)   -0.0882***  -0.0846*** -0.0467*** 
   (0.0081)  (0.0083) (0.0102) 

SIR×SIC -0.1183***      

 (0.0289)      

SIR×WIR  0.1556***     

  (0.0322)     

SIR×WIC   -0.0436    

   (0.0285)    

SIC×WIR    0.3446***   

    (0.0318)   

SIC×WIC     -0.0237  

     (0.0248)  

WIR×WIC      0.0100 
      (0.0161) 

Constant -0.9161*** -1.2741*** -0.8981*** -1.1709*** -0.8073*** -1.1827*** 
 (0.0719) (0.0729) (0.0720) (0.0727) (0.0718) (0.0729) 

Controls YES YES YES YES YES YES 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -246,895.3000 -246,280.8000 -246,835.3000 -246,447.6000 -247,067.8000 -246,494.7000 

Akaike Inf. Crit. 493,896.6000 492,667.7000 493,776.6000 493,001.1000 494,241.7000 493,095.4000 

Note: *p<0.1; **p<0.05; ***p<0.01 
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 Dependent variable: INNOVATIVE (binarized based on the 75th percentile of InnoProb) 

 (1) (2) (3) (4) (5) (6) 

SIR  0.1473***    0.1268*** 
  (0.0044)    (0.0045) 

WIR   0.1864***   0.1750*** 
   (0.0049)   (0.0049) 

SIC    0.0641***  0.0596*** 
    (0.0043)  (0.0044) 

WIC     -0.0260*** -0.0213*** 
     (0.0044) (0.0045) 

DEGREE 0.3318*** 0.2675*** 0.3876*** 0.3405*** 0.3441*** 0.3465*** 
 (0.0057) (0.0060) (0.0059) (0.0057) (0.0060) (0.0067) 

ALTER 0.0012 0.0029*** -0.0157*** 0.0009 0.0011 -0.0136*** 
 (0.0008) (0.0008) (0.0010) (0.0008) (0.0008) (0.0010) 

TRANSITIVITY -0.0450** -0.2353*** -0.0473** 0.0721*** -0.0137 -0.0754*** 
 (0.0198) (0.0209) (0.0198) (0.0213) (0.0205) (0.0232) 

AGE -0.3372*** -0.3319*** -0.3315*** -0.3357*** -0.3373*** -0.3258*** 
 (0.0048) (0.0049) (0.0049) (0.0048) (0.0048) (0.0049) 

FDENSITY 0.1318*** 0.1350*** 0.1338*** 0.1319*** 0.1318*** 0.1366*** 
 (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029) 

RFDENSITY 0.1100*** 0.1248*** 0.1323*** 0.1113*** 0.1098*** 0.1447*** 
 (0.0074) (0.0075) (0.0075) (0.0074) (0.0074) (0.0075) 

METROPOL 0.1013*** 0.0977*** 0.0967*** 0.1012*** 0.1010*** 0.0936*** 
 (0.0099) (0.0100) (0.0100) (0.0099) (0.0099) (0.0100) 

EAST -0.2005*** -0.1884*** -0.1974*** -0.1982*** -0.2008*** -0.1854*** 
 (0.0108) (0.0109) (0.0109) (0.0108) (0.0108) (0.0109) 

Constant -3.2208*** -3.2764*** -3.4202*** -3.2620*** -3.2394*** -3.5082*** 
 (0.0930) (0.0932) (0.0933) (0.0931) (0.0931) (0.0936) 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -197,579.6000 -197,009.4000 -196,836.4000 -197,469.6000 -197,562.3000 -196,277.1000 

Akaike Inf. Crit. 395,259.2000 394,120.8000 393,774.8000 395,041.2000 395,226.6000 392,662.1000 

Note: *p<0.1; **p<0.05; ***p<0.01 
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 Dependent variable: INNOVATIVE (binarized based on the 75th percentile of InnoProb) 

 (1) (2) (3) (4) (5) (6) 

SIR (dummy) 0.2851*** 0.2395*** 0.3665***    

 (0.0162) (0.0156) (0.0251)    

SIC (dummy) 0.0853***   0.0416*** 0.1242***  

 (0.0154)   (0.0147) (0.0213)  

WIR (dummy)  0.3276***  0.3182***  0.3395*** 
  (0.0105)  (0.0105)  (0.0121) 

WIC (dummy)   -0.0532***  -0.0557*** -0.0107 
   (0.0092)  (0.0095) (0.0119) 

SIR×SIC -0.0291      

 (0.0307)      

SIR×WIR  0.1666***     

  (0.0317)     

SIR×WIC   -0.1086***    

   (0.0294)    

SIC×WIR    0.3584***   

    (0.0315)   

SIC×WIC     -0.0244  

     (0.0265)  

WIR×WIC      0.0054 
      (0.0184) 

Constant -3.3244*** -3.6961*** -3.3070*** -3.5775*** -3.2046*** -3.6126*** 
 (0.0932) (0.0942) (0.0933) (0.0940) (0.0931) (0.0942) 

Controls YES YES YES YES YES YES 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -197,350.6000 -196,805.7000 -197,337.5000 -196,915.9000 -197,525.0000 -197,016.5000 

Akaike Inf. Crit. 394,807.2000 393,717.3000 394,781.0000 393,937.7000 395,156.0000 394,138.9000 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Appendix C 
 Dependent variable: INNOVATIVE (based on the patent status) 

 (1) (2) (3) (4) (5) (6) 

SIR  0.0792***    0.0708*** 
  (0.0135)    (0.0137) 

WIR   0.0675***   0.0714*** 
   (0.0161)   (0.0164) 

SIC    0.0873***  0.0819*** 
    (0.0128)  (0.0129) 

WIC     0.0680*** 0.0712*** 
     (0.0134) (0.0135) 

DEGREE 0.6511*** 0.6126*** 0.6591*** 0.6642*** 0.6354*** 0.6204*** 
 (0.0148) (0.0163) (0.0149) (0.0150) (0.0152) (0.0172) 

ALTER 0.0046* 0.0045* -0.0009 0.0042 0.0051* -0.0009 
 (0.0027) (0.0027) (0.0030) (0.0027) (0.0027) (0.0030) 

TRANSITIVITY 0.1354** 0.0251 0.1469** 0.2840*** 0.0585 0.1080 
 (0.0666) (0.0702) (0.0666) (0.0699) (0.0687) (0.0763) 

AGE 0.4426*** 0.4453*** 0.4456*** 0.4439*** 0.4421*** 0.4489*** 
 (0.0165) (0.0165) (0.0165) (0.0165) (0.0165) (0.0165) 

FDENSITY -0.0314*** -0.0294*** -0.0304*** -0.0318*** -0.0321*** -0.0296*** 
 (0.0101) (0.0101) (0.0101) (0.0101) (0.0101) (0.0101) 

RFDENSITY -0.0290 -0.0201 -0.0209 -0.0270 -0.0278 -0.0096 
 (0.0247) (0.0247) (0.0248) (0.0247) (0.0247) (0.0249) 

METROPOL -0.0569* -0.0608** -0.0593** -0.0568* -0.0566* -0.0622** 
 (0.0301) (0.0301) (0.0301) (0.0301) (0.0301) (0.0301) 

EAST 0.0522 0.0599* 0.0558 0.0528 0.0503 0.0610* 
 (0.0349) (0.0349) (0.0349) (0.0349) (0.0349) (0.0349) 

Constant -8.1773*** -8.1960*** -8.2364*** -8.2325*** -8.1615*** -8.2922*** 
 (0.4004) (0.4005) (0.4008) (0.4006) (0.4005) (0.4012) 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -26,298.8100 -26,281.5000 -26,289.8800 -26,275.6800 -26,286.0700 -26,239.1500 

Akaike Inf. Crit. 52,697.6300 52,665.0000 52,681.7500 52,653.3500 52,674.1500 52,586.3000 

Note: *p<0.1; **p<0.05; ***p<0.01 
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 Dependent variable: INNOVATIVE (based on the patent status) 

 (1) (2) (3) (4) (5) (6) 

SIR (dummy) -0.0096 -0.0623 0.2551***    

 (0.0506) (0.0500) (0.0624)    

SIC (dummy) 0.1707***   0.0427 0.3407***  

 (0.0420)   (0.0431) (0.0542)  

WIR (dummy)  -0.0229  -0.0556  -0.0194 
  (0.0336)  (0.0341)  (0.0394) 

WIC (dummy)   0.1206***  0.1188*** 0.0320 
   (0.0294)  (0.0306) (0.0374) 

SIR×SIC 0.1333      

 (0.0867)      

SIR×WIR  0.3765***     

  (0.0831)     

SIR×WIC   -0.3245***    

   (0.0805)    

SIC×WIR    0.5794***   

    (0.0757)   

SIC×WIC     -0.2434***  

     (0.0714)  

WIR×WIC      0.1489** 
      (0.0586) 

Constant -8.1992*** -8.1668*** -8.2445*** -8.1068*** -8.2145*** -8.2219*** 
 (0.4009) (0.4026) (0.4012) (0.4023) (0.4008) (0.4029) 

Controls YES YES YES YES YES YES 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -26,281.4600 -26,287.5500 -26,284.9400 -26,254.3200 -26,273.3600 -26,290.1600 

Akaike Inf. Crit. 52,668.9100 52,681.1000 52,675.8700 52,614.6500 52,652.7200 52,686.3300 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Appendix D 
 Dependent variable: INNOVATIVE 

 (1) (2) (3) (4) (5) (6) 

SIR  0.1839***    0.1606*** 
  (0.0061)    (0.0062) 

WIR   0.2045***   0.1901*** 
   (0.0069)   (0.0070) 

SIC    0.0876***  0.0813*** 
    (0.0058)  (0.0059) 

WIC     -0.0031 0.0039 
     (0.0060) (0.0061) 

DEGREE 0.3605*** 0.2742*** 0.4124*** 0.3702*** 0.3618*** 0.3395*** 
 (0.0073) (0.0079) (0.0075) (0.0074) (0.0077) (0.0086) 

ALTER 0.0057*** 0.0077*** -0.0115*** 0.0053*** 0.0057*** -0.0090*** 
 (0.0012) (0.0012) (0.0013) (0.0012) (0.0012) (0.0013) 

TRANSITIVITY 0.0739*** -0.1871*** 0.0965*** 0.2280*** 0.0776*** 0.0061 
 (0.0277) (0.0298) (0.0278) (0.0295) (0.0286) (0.0326) 

AGE -0.3621*** -0.3567*** -0.3566*** -0.3600*** -0.3621*** -0.3500*** 
 (0.0068) (0.0068) (0.0068) (0.0068) (0.0068) (0.0069) 

FDENSITY 0.1586*** 0.1636*** 0.1611*** 0.1586*** 0.1586*** 0.1652*** 
 (0.0040) (0.0041) (0.0041) (0.0040) (0.0040) (0.0041) 

RFDENSITY 0.1888*** 0.2068*** 0.2110*** 0.1909*** 0.1888*** 0.2269*** 
 (0.0105) (0.0106) (0.0106) (0.0105) (0.0105) (0.0106) 

METROPOL 0.1913*** 0.1846*** 0.1844*** 0.1908*** 0.1913*** 0.1789*** 
 (0.0148) (0.0148) (0.0148) (0.0148) (0.0148) (0.0148) 

EAST -0.1695*** -0.1550*** -0.1675*** -0.1659*** -0.1695*** -0.1523*** 
 (0.0153) (0.0154) (0.0154) (0.0154) (0.0153) (0.0154) 

Constant -5.9594*** -6.0129*** -6.1531*** -6.0160*** -5.9612*** -6.2329*** 
 (0.1676) (0.1678) (0.1679) (0.1677) (0.1676) (0.1682) 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -114,082.6000 -113,609.9000 -113,630.4000 -113,970.5000 -114,082.5000 -113,150.9000 

Akaike Inf. Crit. 228,265.2000 227,321.7000 227,362.8000 228,043.0000 228,266.9000 226,409.8000 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

 

 

 

 

 
 



40 
 

 

 Dependent variable: INNOVATIVE 

 (1) (2) (3) (4) (5) (6) 

SIR (dummy) 0.3130*** 0.2548*** 0.4127***    

 (0.0217) (0.0212) (0.0311)    

SIC (dummy) 0.1574***   0.0882*** 0.1702***  

 (0.0200)   (0.0195) (0.0269)  

WIR (dummy)  0.3251***  0.3105***  0.3518*** 
  (0.0145)  (0.0146)  (0.0169) 

WIC (dummy)   -0.0134  -0.0263** 0.0270 
   (0.0128)  (0.0132) (0.0166) 

SIR×SIC -0.0372      

 (0.0395)      

SIR×WIR  0.1955***     

  (0.0390)     

SIR×WIC   -0.1341***    

   (0.0373)    

SIC×WIR    0.4159***   

    (0.0378)   

SIC×WIC     0.0168  

     (0.0339)  

WIR×WIC      0.0040 
      (0.0253) 

Constant -6.0857*** -6.4398*** -6.0784*** -6.2920*** -5.9547*** -6.3630*** 
 (0.1679) (0.1688) (0.1679) (0.1686) (0.1677) (0.1688) 

Controls YES YES YES YES YES YES 

Sector FE YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood -113,894.5000 -113,624.2000 -113,923.1000 -113,656.4000 -114,025.8000 -113,773.2000 

Akaike Inf. Crit. 227,895.0000 227,354.5000 227,952.2000 227,418.7000 228,157.5000 227,652.4000 

Note: *p<0.1; **p<0.05; ***p<0.01 
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 Appendix E 
 Dependent variable: INNOVATIVE 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

SIR 0.3130*** 0.2548*** 0.4127***    0.2486*** 0.3768*** 0.3567***  0.3381*** 
 (0.0217) (0.0212) (0.0311)    (0.0248) (0.0387) (0.0496)  (0.0627) 

SIC 0.1574***   0.0882*** 0.1702***  0.0683*** 0.1132***  -0.0035 -0.0417 
 (0.0200)   (0.0195) (0.0269)  (0.0226) (0.0309)  (0.0358) (0.0392) 

WIR  0.3251***  0.3105***  0.3518*** 0.2953***  0.3319*** 0.3022*** 0.2899*** 
  (0.0145)  (0.0146)  (0.0169) (0.0150)  (0.0174) (0.0176) (0.0180) 

WIC   -0.0134  -0.0263** 0.0270  -0.0260* 0.0271 0.0055 0.0034 
   (0.0128)  (0.0132) (0.0166)  (0.0136) (0.0172) (0.0181) (0.0186) 

SIR×SIC -0.0372      0.0114 0.0422   0.1170 
 (0.0395)      (0.0460) (0.0678)   (0.1054) 

SIR×WIR  0.1955***     0.1747***  0.0368  0.0173 
  (0.0390)     (0.0469)  (0.0624)  (0.0781) 

SIR×WIC   -0.1341***     -0.0883* -0.1256**  -0.1010 
   (0.0373)     (0.0453) (0.0543)  (0.0676) 

SIC×WIR    0.4159***   0.4285***   0.4737*** 0.5104*** 
    (0.0378)   (0.0447)   (0.0517) (0.0604) 

SIC×WIC     0.0168   0.0741*  0.1287*** 0.1626*** 
     (0.0339)   (0.0390)  (0.0426) (0.0476) 

WIR×WIC      0.0040   -0.0024 0.0234 0.0186 
      (0.0253)   (0.0263) (0.0268) (0.0276) 

SIR×SIC×WIR       -0.2530***    -0.3227** 
       (0.0884)    (0.1381) 

SIR×SIC×WIC        -0.1357   -0.1663 
        (0.0825)   (0.1170) 
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SIR×WIR×WIC         0.3498***  0.3399*** 
         (0.0902)  (0.1105) 

SIC×WIR×WIC          -0.0276 -0.0842 
          (0.0804) (0.0937) 

SIR×SIC×WIR×WIC           0.0823 
           (0.2047) 

Constant -6.0857*** -6.4398*** -6.0784*** -6.2920*** -5.9547*** -6.3630*** -6.3826*** -6.0739*** -6.4516*** -6.2985*** -6.3857*** 
 (0.1679) (0.1688) (0.1679) (0.1686) (0.1677) (0.1688) (0.1690) (0.1679) (0.1691) (0.1689) (0.1692) 

Controls YES YES YES YES YES YES YES YES YES YES YES 

Sector FE YES YES YES YES YES YES YES YES YES YES YES 

Observations 404,857 404,857 404,857 404,857 404,857 404,857 404,857 404,857 404,857 404,857 404,857 

Log Likelihood 

-

113,894.50

00 

-

113,624.20

00 

-

113,923.100

0 

-

113,656.400

0 

-

114,025.800

0 

-

113,773.200

0 

-

113,536.100

0 

-

113,884.400

0 

-

113,614.000

0 

-

113,647.300

0 

-

113,518.600

0 

Akaike Inf. Crit. 
227,895.00

00 

227,354.50

00 

227,952.200

0 

227,418.700

0 

228,157.500

0 

227,652.400

0 

227,186.200

0 

227,882.900

0 

227,342.000

0 

227,408.700

0 

227,167.300

0 

Note: *p<0.1; **p<0.05; ***p<0.01 
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