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1 Introduction

Class size is one of the most important determinants of the costs of education as teachers’

salaries account for the bulk of educational expenditures in public education in most

countries (OECD, 2019). At the same time, the empirical literature on class size effects

is contentious and does not offer clear guidance as to what are the effects on student

outcomes that class size changes entail. To identify these effects, a large part of the

quasi-experimental literature exploits within-school variation in cohort size over time

(see, e.g. Hoxby, 2000; Leuven et al., 2008; Cho et al., 2012). These studies mostly find

small or no class size effects, which contrasts with the available experimental evidence

showing substantial class size effects (see, e.g. Krueger, 1999; Krueger and Whitmore,

2001).1

This paper offers a potential explanation for this apparent puzzle. In school systems

that allow students with insufficient academic skills to be held back a grade, we can show

that class size estimates based on within-school variation in cohort size are upward biased

because of a mechanical relationship between the initial size of a cohort and the student

composition in higher grades. This bias has been ignored to date and helps to explain

why studies using within-school variation in cohort size generally find less negative class

size effects than experimental studies.2

Part one of this paper clarifies what within-school estimates based on cohort size

variation identify in school systems that allow low-ability students to be held back a grade

either through grade retention or redshirting (i.e., late primary school enrollment). First,

we show theoretically that, within schools, birth cohort size is negatively related to the

grade-level share of students who have been held back in the past even in the absence of

causal class size effects. Intuitively, in larger cohorts retained students from the previous

(smaller) cohort mechanically make up a smaller share of students in the given (larger)

cohort. This negative association causes a positive relationship between birth cohort
1Of course, one explanation for these differences in findings is that class size effects are likely context-

specific. However, the sheer number of studies from vastly different countries based on the within-
school between-cohort design that fail to detect class size effects of similar magnitude as the available
experimental evidence points against this explanation (see Table E.1).

2Whenever we talk about negative class size effects we mean worse student outcomes in larger classes.
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size and average test scores at the grade-level because students held back in the past

are negatively selected. A spurious positive class size effect ensues since cohort size is

positively related to class size, which leads to an upward bias in class size estimates based

on within-school variation in cohort size. In instrumental variables terminology, this is a

violation of the exclusion restriction of birth cohort size as an instrument. This spurious

effect is similar to the bias identified by Ciccone and Garcia-Fontes (2014) for studies

that exploit within-school variation in the gender composition of cohorts to estimate

gender peer effects. Since grade retention and redshirting are common practices in most

countries,3 our theoretical results have important implications for the majority of studies

based on the within-school design.

We further propose a simple solution to this problem that is motivated by the following

observation. The source of the upward bias is the negative relationship between cohort

size and the share of negatively selected students in higher grades. Simply adjusting

the test scores of those negatively selected students eliminates this link and produces

estimates free of the resulting bias. Correcting can, therefore, be achieved by simply

controlling for whether or not a student has previously been held back a grade.

In part two, we test our theoretical predictions empirically using administrative school-

and student-level data from the German state of Saarland. Consistent with our predic-

tions, we show that birth cohort size is systematically related to the composition of

students at the grade-level. Students from larger cohorts are enrolled in classes with a

significantly smaller share of students who have been redshirted or retained in the past.

Importantly, we can show that these compositional effects do not exist at the birth co-

hort level. For example, students who are born into larger birth cohorts are not more

or less likely to be enrolled late. This is consistent with a purely mechanical effect driv-

ing the observed relationship between birth cohort size and student composition at the

grade-level.

Our empirical results allow us to quantify the expected bias in class size estimates

from within-school designs that rely on birth cohort variation. The results imply that
3For example, the United States and 88 percent of European Union countries permit grade retention

starting in primary school (European Commission, 2011).
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the bias can be expected to decrease estimates of a one-student-reduction in class size

between grades 1 to 3 on test scores in grade 3 by about 0.74 to 0.94 percent of a standard

deviation. The magnitude of this bias is considerable and can be shown to increase even

further in settings with higher rates of retention and redshirting or settings with larger test

score differences between non-retained and retained students as well as when test scores

in higher grades are used as outcome variables. Since the share of retained students

in German primary schools is at 7.7 percent similar to the OECD average of 7 percent

(OECD, 2011; Ikeda and Garcia, 2014), we expect our results to be generalizable to other

countries.4 This insight recommends caution in the application and interpretation of

within-school designs based on idiosyncratic variation in cohort size in school systems

that allow for redshirting or grade retention.

Based on these considerations, we estimate class size effects with data that cover four

full cohorts of students in Saarland who participated in state-wide centralized exams in

language and math at the end of grade 3 merged with administrative data on enrollment

in grade 1. As an instrument for class size in grade 3, we use within-school variation in

predicted class size based on changes in initial cohort size. In line with our theoretical

results, adding a proxy for whether or not a student has been redshirted or retained in

the past leads to a substantial increase in effect size. Overall, we find that a one-student

decrease in class size in grades 1 to 3 improves language and math test scores at the

end of grade 3 by around 1.9 and 1.4 percent of a standard deviation, respectively. We

interpret these estimates as lower bounds on the true effect sizes. Our study provides

the first causal evidence of significant class size effects on test scores in Germany.5 The

beneficial impact of smaller classes is also supported by our finding that retention rates

drop by 0.15 percentage points (7 percent) if the number of students in a class is reduced

by one.
4Unfortunately, official statistics on redshirting are not available for most countries.
5Previous quasi-experimental studies for Germany cannot conclude that smaller classes improve

student achievement. Wößmann (2005) is the only study for Germany that analyzes the effect of class
size on test scores but the standard errors are too large to be able to detect our average effects at the
95 percent level of statistical confidence. Argaw and Puhani (2018) study the relationship between class
size and recommendations for track choice in secondary school and actual track attendance as well as
grade repetitions in another German state (Hesse). They find no or small effects on tracking, but a
higher likelihood of repeating a grade in larger classes.
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However, these average effects mask a significant degree of heterogeneity. We find class

size effects to be non-linear, with large effects in larger and no effects in smaller classes.

A one-student-reduction in size in classes with more than 20.5 students (which is close to

the average class size in our data) is predicted to improve language and math test scores

by 4.8 and 3.8 percent of a standard deviation. At the same time, we uncover no evidence

that class size reductions improve student outcomes in classes smaller than 20.5 students.

Moreover, in line with Krueger (1999) our results suggest that disadvantaged students

benefit the most from attending smaller classes: For example, test scores of students

with insufficient German proficiency or a learning disorder are predicted to increase, on

average, by around 5.3 to 5.8 percent of a standard deviation in language and 3.7 to 5.7

percent of a standard deviation in math for a one-student-decrease in class size. Overall,

these effects are large and similar in magnitude to those from the randomized experiment

Project STAR.

These heterogeneous patterns have important policy implications. The larger benefits

of smaller classes for disadvantaged children warrant the use of progressive maximum class

size rules. These rules prescribe smaller maximum class sizes as the share of disadvantaged

children in a grade increases. Saarland is one of several German states that practices

these flexible rules. Furthermore, class size reductions to increase student achievement

only seem to be efficacious in larger classes. Hence, if anything, class size reductions

should be targeted at larger classes. Indeed, the finding of no beneficial effects of smaller

classes in small classes indicates that class size may be increased up to a certain size

without negative consequences for student achievement.

Going back to our theoretical results, we expect that our simple solution to correct for

the upward bias in within-school estimates provides an opportunity for researchers to re-

visit this empirical strategy to further investigate class size effects in other contexts. This

is important since within-school designs provide a number of advantages over commonly

applied “Maimonides”-style research designs that exploit variation in class size generated

by maximum class size rules as pioneered by Angrist and Lavy (1999) and subsequently
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used in numerous studies to investigate the effects of class size.6 First, the within-school

design is widely applicable and allows for studying class size effects even if no class size

rules exist or when the correct class size threshold cannot easily be identified, because

different thresholds are in place that depend on characteristics unobservable to the re-

searcher.7 Second, regression discontinuity designs (RDD) can yield biased estimates

in some contexts where carefully implemented within-school designs may not.8 Gilraine

(2020), for example, shows that crossing the class size threshold in New York City often

prompts the hiring of a teacher of below-average quality. The resulting discontinuity in

teacher quality substantially biases RDD class size estimates upwards. Moreover, our

finding that grade retention rates increase with class size could result in a discontinuous

change in the student composition at the class size threshold, which is also likely to bias

RDD estimates of class size effects. Third, within-school designs allow the estimation of

heterogeneous class size effects along the full range of the class size distribution. The

advantage of this flexibility is the ability to detect the type of non-linear class size effects

we find in our data, which is missed in RDDs.

The rest of the paper is organized as follows: Section 2 reviews the related literature.

Section 3 discusses the sources of bias and its implications for previously used research

designs. Section 4 sets out the institutional background for our empirical part. Section

5 presents our estimation strategy. Section 6 describes the data used in our analysis.

Estimates are presented and interpreted in section 7, with conclusions drawn in section

8.
6This regression discontinuity approach is used to study the effects of class size by Hoxby (2000)

in the United States, Dobbelsteen et al. (2002) in the Netherlands, Browning and Heinesen (2007),
Krassel and Heinesen (2014) and Nandrup (2016) in Denmark, Bressoux et al. (2009) and Piketty and
Valdenaire (2006) in France, Asadullah (2005) in Bangladesh, Wößmann (2005) in 10 European countries,
Jakubowski and Sakowski (2006) in Poland, Urquiola (2006) in Bolivia, Angrist et al. (2017) in Italy,
Falch et al. (2017) and Leuven and Oosterbeek (2018) in Norway, and Argaw and Puhani (2018) in
Germany.

7In our empirical application, for example, the class size threshold depends on the number of students
with insufficient German proficiency in first grade. Since we have no information on students’ German
proficiency in first grade, we cannot assign the correct class size thresholds.

8See e.g., Urquiola and Verhoogen (2009); Cohen-Zada et al. (2013); Gilraine (2020).
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2 Literature review

While the study of class size effects dates back at least to the early 1920s (Stevenson,

1922), we will focus here on more recent experimental and quasi-experimental attempts

to identify causal class size effects.9 The methods applied in these studies can be broadly

classified into three categories. The first is randomized experiments. Tennessee’s Student

Teacher Achievement Ratio Project—“Project STAR”, as it is known—is the largest and

most influential class size experiment ever conducted. Primary school students were

randomly assigned to classes of different sizes during kindergarten and the first three

years of schooling. Krueger (1999) provides a careful analysis of this project and finds a

significant negative effect of class size on achievement. Students assigned to small classes

performed five to seven percentile points (0.20-0.28 SD) better than students assigned to

regular classes, which had on average about seven more students. Project STAR seems to

have had long-run effects reaching well into adolescence and young adulthood as shown

by a higher likelihood of graduating from high school and enrolling in college as well as

higher labor market earnings (e.g. Krueger and Whitmore, 2001; Finn et al., 2005; Chetty

et al., 2011). Molnar et al. (1999) provide more experimental evidence of class size effects

by evaluating the Wisconsin SAGE program which was considerably smaller than Project

STAR. They find class size effects of similar magnitude to those from Project STAR.

A second common strategy to identify class size effects, hereinafter referred to as the

within-school design, was first introduced by Hoxby (2000). The underlying idea of this

approach is to leverage variation in class size arising from random fluctuations in cohort

size that occur within a particular school (or school district) over time. Hoxby (2000)

uses school-district-level data from Connecticut.10 As an instrument for the average class

size a cohort from a specific district has experienced up until the time of the test (which is

either in 4th or 6th grade), Hoxby uses the number of five-year-old children in each school
9Rockoff (2009) reviews the early pre-1940 literature. See Hanushek (1986, 1989, 1996, 1998) for

summaries of the literature from the 1950s to the 1990s and Krueger (2003) for a reassessment of that
literature.

10Using school-district-level instead of school-level data allows to rule out biases resulting from time-
variant selection of students into different schools within a school district, with the limitation that the
identifying variation is substantially reduced.
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district from the year that a particular cohort should have been enrolled in kindergarten

according to the school entry rule. To isolate natural randomness in birth cohort sizes

from any secular trends, she controls for flexible school-district trends using 24 years of

birth cohort data.11 Her results indicate no class size effects and rule out effect sizes as

small as 0.04 SD for a 10-percent-reduction in class size.12 The same approach has been

used to study class size effects in Norway and Minnesota by Leuven et al. (2008) and Cho

et al. (2012), respectively. While Cho et al. (2012) find small significant effects, Leuven

et al. (2008) find no effects.

The type of data required for this approach, namely a long panel of demographic

data merged with test score data, are often not available to researchers. Instead, many

studies use slight variants of Hoxby’s approach and regress student test scores directly

on the school’s average class size in the grade at the time of the test while controlling

for school fixed effects.13 We have listed all within-school studies that we could find and

broken them down along a number of dimensions in Table E.1. All studies use data

from school systems that allow either for grade retention or redshirting of students.14

While differences in grades covered, the aggregation level of data, and other factors cloud

comparisons of the magnitude of class size effects across these studies, none of the listed

within-school design studies find effect sizes as large as those from Project STAR.15 In

fact, of the 11 papers summarized, four find no significant class size effects and one

even finds significant beneficial effects of larger classes. The main identifying assumption

under which estimates of these studies have a causal interpretation is that the within-
11Hoxby is also careful to distinguish between cases where the population variation triggers the opening

or closing of a class (through a maximum class size rule), and where it only causes variation in class
size without opening or closing a class. This can be achieved by including fixed effects for each school-
expected-number-of-classes combination.

12Hoxby (2000) uses the natural log of class size as an explanatory variable. Hence, her estimates
measure the effect of a proportionate change in class size.

13Some studies instrument actual class size with the average class size in that grade and year if the
data do not include all classes from a school in a given grade.

14However, not all school systems in these analyses allow for both redshirting and grade retention.
Denny and Oppedisano (2013), for example, investigate class size effects with PISA data from the United
States and the United Kingdom. Whereas grade retention and redshirting is very rare in the United
Kingdom, it is relatively common in the United States.

15As is well known, effect sizes tend to be inflated with the level of aggregation. For example, effects
sizes with school-district-level data are measured in the standard deviation of test scores by school-
district-year, which is, of course, smaller than the standard deviation of individual student test scores.
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school variation in cohort size is not related to any determinants of student achievement

other than class size. However, even if this assumption holds true, class size estimates

may suffer from a bias if the school system allows for academically weak students to be

held back.

The third popular strategy to identify class size effects exploits maximum class size

rules in a regression discontinuity design. This approach was first used by Angrist and

Lavy (1999) and Hoxby (2000) and has since been applied in various studies spanning

many countries. Gilraine (2020) and Leuven and Oosterbeek (2018) provide summaries of

those papers. Gilraine (2020) reports that only three out of the 14 papers he summarizes

find effect sizes qualitatively similar to those from Project STAR. The majority of papers

cannot conclude that class size affects student achievement. As some studies have pointed

out, however, depending on the institutional context, RDD estimates of class size effects

may be prone to substantial biases. Bias may be introduced if school principals are able

to manipulate enrollment around the maximum class size cutoffs or if crossing a cutoff

leads to the hiring of a lower quality teacher (Urquiola and Verhoogen, 2009; Cohen-Zada

et al., 2013; Gilraine, 2020). Our paper points out yet another potential source of bias

that arises if class size affects retention rates and thereby the composition of classes with

enrollment just below and above the maximum class size cutoffs. These findings cast

doubt on the validity of the identifying assumptions in some of the RDD studies on class

size effects.

3 The spurious relationship between birth cohort size

and student composition at the grade level

3.1 Theoretical predictions and intuition

In this section, we discuss a previously overlooked spurious relationship between cohort

size and the grade-level composition of students within schools that arises if there is
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selective grade progression due, for example, to grade retention.16 In what follows, we

only discuss the main intuition underlying the spurious relationship and invite interested

readers to consult Appendix A for a technical discussion and derivations of the main

results in a more general set-up.

Consider a school with only one class per grade.17 Each year t a new birth cohort enters

grade 1. Students from each birth cohort with skills above a fixed retention threshold

proceed to the next grade after one year, while those with skills below the threshold are

retained in the current grade for another year. To fix ideas, we further assume that the

composition of birth cohorts in terms of students’ abilities is the same across years and

that there is no class size effect—that is, students from larger birth cohorts are not more

likely to be retained. This implies that the share of students retained in each birth cohort

is constant across years. This simple setting allows us to derive two general empirical

predictions:

Prediction 1: Within schools, there is a negative correlation between the size of a birth

cohort and the grade-level share of students who have previously been held back once the

birth cohort is scheduled to reach this grade.

Prediction 2: Within schools, there is a positive correlation between the size of a birth

cohort and students’ average skills at the grade-level once the birth cohort is scheduled

to reach this grade, if previously retained students have lower skills than non-retained

students.

The intuition for Prediction 1 is as follows. Assume a generally constant birth cohort

size across years but an increase in the size of the birth cohort which enters grade 1 in

year t. This has two effects: First, due to the increase in enrollment in grade 1 in year t,

more non-retained students reach grade 2 in year t+1. Hence, retained students from the

preceding cohort (the birth cohort that enters grade 1 in year t − 1) make up a smaller

share of the students in grade 2 in year t+ 1 relative to other years. Second, due to the
16We focus the discussion here on grade retention and discuss the implications of other forms of

selective grade progressions, such as redshirting or early school enrollment, in the appendix.
17By assuming that there is only one class, we abstract from maximum class size rules which make

class size a non-monotonic function of enrollment. We return to this issue in Section 7.1.
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increase in enrollment in grade 1 in year t, there are also more students who are retained

in grade 1 at the end of year t. These additionally retained students proceed to grade

2 a year later in year t + 2, thereby increasing the share of previously retained students

among all students in grade 2 in year t+ 2 relative to year t+ 1.

Together, these two effects imply that a positive shock to the size of the birth cohort

that enters grade 1 in year t is mechanically associated with a reduction in the share of

previously retained students in grade 2 in year t+ 1 relative to year t and year t+ 2. The

within-school covariance between the birth cohort size and the grade 2 share of previously

retained students sums up these two effects, leading to Prediction 1.

Prediction 2 follows directly from Prediction 1 as a lower share of previously retained

students increases average student skills at the grade-level if previously retained students

have lower skills than non-retained students, as is typically the case.18

Importantly, Prediction 2 implies a violation of the exclusion restriction for the in-

strumental variable estimator based on within-school variation in birth cohort size as a

source of exogenous variation. Since we have so far abstracted from any causal effects

of class size on student achievement, Prediction 2 amounts to a spurious relationship

between birth cohort size (the instrument) and test scores (the outcome) independent of

the treatment (class size).

Following analogous arguments to those above, it is easy to see that Prediction 1

also applies to other two forms of selective grade progression. For example, in school

systems with redshirting, there will be a negative correlation between the size of a birth

cohort and the grade-level share of students who should have been enrolled in grade 1

in the previous year. The sign of the resulting relationship between birth cohort size

and students’ average skills at the grade-level (Prediction 2) depends in that case on

whether redshirted students have, on average, lower or higher skills than students who

were enrolled on time.19

18Ciccone and Garcia-Fontes (2014) identify a similar bias in the analysis of gender peer effects where
shocks to the initial gender composition of cohorts translate into positive peer effects even in the absence
of true peer effects in within-school comparisons.

19See Appendix A.3 for more details.
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3.2 Implications for within-school designs

Based on the intuition for the relationship between birth cohort size and students’ skills

at the grade-level, we now turn to a discussion of what parameters within-school designs

identify if there are causal class size effects. To do this, we extend the set-up from the

previous section to a more general model, which we only sketch briefly here.20 We assume

that students spend the first L school years in lower grades (LG). At the end of the Lth

year in primary school, students move to higher grade (HG) if their academic skills are

higher than their school’s academic threshold for grade retention. Students with skills

below the threshold spend another year in LG and move to HG one year later. Let πLG

and πHG denote the causal effect of class size on students’ skills in lower and higher grade,

respectively. The sum πLG+πHG captures the combined effect of class size in LG and HG

on accumulated academic skills. This is our main parameter of interest, which we will

refer to as the “pure class size effect.” We also allow for random variation in birth cohort

size, ability levels of birth cohorts, and grade retention thresholds, and again assume

that there is only one class per grade so that class size is always equal to the number of

students in a grade.

3.2.1 Instrumental variable (IV) approach

The commonly used instrumental variable approach estimates class size effects by re-

gressing individual test performance in HG in year t on school fixed effects and class size

in HG in year t while instrumenting class size by the size of the birth cohort that entered

school in year t−L.21 In the appendix, we show that in this set-up, where shocks to the

birth cohort size are completely independent from shocks to academic skills and grade

retention thresholds (i.e., under random assignment of the instrument), the IV estimator
20Our model is similar to that by Ciccone and Garcia-Fontes (2014). See Appendix A for a more

detailed discussion of the model set-up.
21Most studies do not directly use cohort size as an instrument. Instead, they regress cohort size on

higher polynomials of time separately for each school catchment area (or school district). The residuals
from these regressions are then used as an instrument for class size. Thereby, differences in cohort size
stemming from smooth variations over time are removed. Our findings carry over to these approaches.
Additionally, the number of classes is held constant so that increases in cohort size are always associated
with larger classes. This ensures that the monotonicity assumption of the instrumental variable approach
is not violated.
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identifies

βIV = (E[test|non− retained]− E[test|retained]) ρIV︸ ︷︷ ︸
grade retention bias I

+ ξIV︸︷︷︸
attenuation factor

πLG + πHG (1)

where the first difference in brackets is the average test score difference in HG between

non-retained students and students retained in LG and the factor ρIV captures the posi-

tive association between the share of non-retained students and birth cohort size at the

grade level (see Prediction 1). The product of these two terms causes an upward bias

in IV estimates of class size effects, if previously retained students have lower average

academic skills than non-retained students (as in our data).

The factor ξIV can be shown to only take on values well below one, which implies

an attenuation bias for the class size effect in LG, πLG. This is similar to the standard

classical attenuation bias because our explanatory variable, class size in HG, is a noisy

measure of class size in LG for two reasons: First, class size in HG is not perfectly

correlated with class size in LG because retained students change the size of the same

class between grades. Second, the observed class size in HG for students who are retained

in LG should be at most weakly correlated with the class size these students experience in

LG.22 The importance of this attenuation bias has previously been pointed out by Jepsen

and Rivkin (2009).

These two sources of bias imply that even if initial cohort size is unrelated to academic

skills and grade retention thresholds, the net effect of the bias will likely be upwards, i.e.

reduce the estimated size of the negative class size effect. In the appendix, we further

show that this bias increases with the retention rate. A natural solution for the first bias

is to control for the effect of grade retention on academic achievement at the individual

level.23 In the appendix, we prove that by conditioning on whether a student has been
22Although we do not model this explicitly, it is easy to see that students switching schools will

exacerbate both sources of attenuation bias. Students switching schools will increase the differences in
the size of the same class between lower and higher grades, thereby reducing the correlation between
class size in LG and HG. At the same time, if students change schools and join a new class in HG, the
size of that class is an erroneous measure of class size in their previous class at a different school.

23Ciccone and Garcia-Fontes (2014) show a similar result for the case of peer effects contaminated by
grade retention.
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retained the IV estimator identifies

βREAIV = ξIV π
LG + πHG (2)

where REA stands for retention-effect adjusted. To get an intuition for this result, re-

call that the grade retention bias in (1) results from the positive correlation between

cohort size and the share of non-retained students in HG, and the fact that non-retained

students typically have higher average academic skills than retained students. However,

conditioning on grade retention removes any correlations in test scores that are solely

driven by differences in the share of retained students as long as the difference in skills

between retained and non-retained students is not correlated with shocks to the birth

cohort size. However, while conditioning on grade retention removes the positive grade

retention bias, it does not resolve the attenuation of the class size effect in lower grades.

The resulting estimator in (2) thus yields a lower bound on the true class size effect.

3.2.2 OLS approach

Instrumental variable estimates are generally less precise than OLS estimates, which

reduces their power to detect class size effects. In addition, oftentimes it is not possible

to match birth cohort size information to student test score data. Several studies in Table

E.1 thus regress test scores directly on observed class size in HG conditional on school

fixed effects since this places a substantially lower demand on the data relative to the IV

approach. In the appendix, we show that in our set-up this estimator identifes

βOLS = (E[test|non− retained]− E[test|retained]) ρOLS︸ ︷︷ ︸
grade retention bias I

+ ιOLS︸︷︷︸
grade retention bias II

+ ξOLS︸︷︷︸
attenuation factor

πLG + πHG

(3)

Here we have three sources of bias. The first bias results from the correlation between

birth cohort size and the share of grade repeaters in HG, similar to the grade retention

bias for the IV estimator in (1). This compositional effect also biases OLS estimates since

initial birth cohort size is strongly related to eventual enrollment in HG. However, ρOLS

13



can be expected to be smaller than ρIV because previously retained students increase en-

rollment in the year that they are observed in HG (but they do not increase initial cohort

size). This offsets part of the positive grade retention bias, ρIV , for the IV estimator.

The second bias, ιOLS, results from variation in ability levels and grade retention

thresholds across birth cohorts.24 These two sources of variation affect both class size

(through their effects on grade retention) and test scores in HG. To see why this bi-

ases within-school OLS estimates, consider a positive shock that shifts the entire ability

distribution of one birth cohort. Holding birth cohort size constant, this positive shock

raises class size in HG as fewer students from this cohort are retained. At the same time,

non-retained students from this cohort have higher skills in HG compared to non-retained

students in other years. As a result, variation in ability across cohorts causes a spurious

positive relationship between test scores and class size in HG. Similar arguments show

that variation in grade retention thresholds has the opposite effect. The sign of ιOLS

therefore depends on the relative magnitude of these two sources of variation. Since this

is unobserved, it is impossible to tell what the net effect of the bias on βOLS will be.

However, comparing IV and OLS estimates could give us a sense of the direction and

magnitude of this bias.

The third bias is again caused by measurement error as class size in HG is not perfectly

correlated with class size in LG. The attenuation factor ξOLS for the class size effect in

LG also differs slightly from its IV counterpart, but can still be shown to take on values

strictly below one.

Analogous to the IV case, controlling for grade retention at the individual level re-

moves the first bias

βREAOLS = ιOLS + ξOLSπ
LG + πHG (4)

However, the second bias, ιOLS, does not disappear. This is because it results from

shocks that also cause ability levels of retained and non-retained students to deviate
24IV estimates do not suffer from this second bias as long as initial ability levels and grade retention

thresholds are uncorrelated with birth cohort size.
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from their respective average values. Moreover, estimates will still be attenuated due to

ξOLS. Albeit more susceptible to bias, this OLS estimator should be more efficient than

the IV approach based on birth cohort size.

The above results are easily extended to school systems that allow for redshirting or

early school enrollment. We explore these extensions more fully in Appendix A.3.

4 Institutional context

To demonstrate the bias in within-school designs for the estimation of class size effects

and our solution, we focus our empirical analysis on one German federal state (Saarland),

for which we have detailed student test score data for multiple years of all third-graders.

Generally, all federal states in Germany run their own educational systems, but states

agree on some common standards so that many features are shared across states. This

is especially true for primary education. As a result, most characteristics of primary

schooling in Saarland are similar to all other German federal states. Primary school in

Saarland is obligatory, free of charge and spans grades 1-4. School entry is determined

by a cut-off date set at June 30th. Children turning six before this cut-off start school

at the beginning of the same school year. Children born after the cut-off are enrolled

in the next school year. However, children may be sent to school in the year before or

after they become eligible depending on their maturity.25 There is no explicit ability

tracking in primary school.26 Furthermore, it is not possible to fail one of the first two

grades in Saarland. However, children may be retained in these grades with their parents’

approval—an option that is routinely resorted to. In fact, the retention rates in primary

schools in Saarland are highest in grades 1 and 2 (German Federal Statistical Office,
25Early school entry is possible upon parental request subject to the school principal’s agreement.

Principals base their assessment on the results of a medical- and in some cases a psychological examination
of the child as well as a talk with the parents. Equally, principals may decide to defer school entry for
another year. For this to happen, a number of requirements must be fulfilled. First, the results of the
obligatory diagnostic language tests in the year before regular school entry have to be unsatisfactory.
As a result, parents would usually be advised to send their child to a special preparatory course in the
following year. Only if this course does not bring about the desired improvement or if parents fail to
follow the advice altogether, principals may reject applications for regular school entry (Lisker, 2010).

26While Germany is known for early ability tracking, this happens only when students leave primary
school after fourth grade and enroll at one of three different secondary schooling tracks (Gymnasium,
Realschule or Hauptschule).
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2010).

Allocation of children to primary schools is determined by place of residence with

little choice for parents since primary schools have well-defined catchment areas that

generally do not overlap. Only a handful of all-day schools have catchment areas that

overlap with those of other schools (Ministerium für Bildung und Kultur, 2018). However,

parents who are not satisfied with their assigned school have two options to change

schools. First, they may send their child to a private school. In practice, however,

very few parents resort to this option: Private primary schools are rare in Germany.

In 2006, there were only 624 of these schools which accounted for 3.7 percent of all

primary schools in Germany (Autorengruppe Bildungsberichterstattung, 2016). Almost

all of these schools were boarding schools, religious schools or schools offering specialized

pedagogic approaches, like Waldorf education (Cortina et al., 2008). The second option,

sending the child to a different public school, is only possible under certain conditions;

for example, if a different school offers full-day care while the local school does not.

Reasons pertaining to comfort or preference alone are generally not deemed sufficient to

switch schools. Ultimately, school principals have to decide whether or not a claim is

well-founded and, consequently, if the change of school should be granted. When making

this decision, they are obliged to apply strict standards (Schulordnungsgesetz, 2006).

Like most countries, school funding in Saarland is a function of the number of classes

in a grade. This number is determined by maximum class size rules. Prior to the 2002-03

school year, the maximum class size was set at 27 students (for ease of discussion we

subsequently refer to an academic year by the calendar year in which it begins). Hence,

whenever a class would exceed 27 students, a new class had to be formed. This threshold

increased to 29 in the summer of 2003. However, if the average number of students with

insufficient German proficiency per class was at least 4 in a grade, the threshold was set

at 25 (Ernst, 2017). Note that class size is a much more meaningful concept in German

primary schools than in secondary schools. Students are taught in the same classroom

with the same peers in all or almost all subjects and the teacher is also the same in

most subjects (Jonen and Eckhardt, 2006). The majority of students in a classroom stay

16



together for the entire duration of primary school. Classroom composition changes only if

children repeat grades, switch schools, or, in rare cases are moved to a different classroom

of the same grade.

Importantly, during the school periods for which we have test data, Saarland enacted

a major structural reform in the primary school sector. Due to decreases in the number

of school-aged children, which drove up the per-student costs especially in rural areas

with low population densities, policy-makers decided to merge schools to ensure that all

schools would have at least two classes per grade. This meant that primary schools with

an insufficient number of students to form at least two classes per grade were merged

with other primary schools. This applied to around one-third of all schools. Hence, the

number of primary schools decreased from 268 in 2004 to 159 in 2005. However, the

reform was not practically implemented at once in all schools. In most places, almost

all incumbent students continued to be taught in the same buildings and classrooms as

before. Only new incoming cohorts were sent to the main building of the newly merged

schools. Because even the most recent cohort for which we have test score data was

already enrolled in primary school when this policy was enacted, the consolidation of

schools had no discernible impact on third graders in our data.

5 Estimation strategy

In our empirical analysis we estimate class size effects based on the within-school designs

discussed in Section 3. However, we extend the estimators by allowing for year fixed

effects and other pre-determined student characteristics.27 First, we estimate equations

of the following form by OLS:

yits = α0 + α1CSts + α2Xi + Tt + Ss + εicts (5)

where yits represents the standardized grade 3 test score of student i in year t in school s;
27We abstract from these additional covariates in Section 3 to simplify the exposition of our main

results.
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CSts is the average class size in grade 3 in year t in school s ; Xi is a vector of student i’s

characteristics (e.g., gender); Tt and Ss are year and school fixed effects, respectively. Note

that the grade-level average class size is used instead of actual class size to circumvent

bias resulting from potential sorting of students and teachers within the same year and

school into classes of different sizes. Including school fixed effects allows to control for

between-school sorting that is time-invariant.

The OLS estimator exploits the entire within-school variation of class size in grade 3.

This variation stems from a variety of sources, some of which might be problematic. For

example, in deriving the estimators in Section 3, we allow class size in grade 3 to vary due

to two additional sources besides birth cohort size: Differences in ability levels and grade

retention thresholds across birth cohorts within schools. In settings with grade retention

or redshirting, both of these sources of variation affect class size but also average test

scores in grade 3, and thus potentially bias OLS estimates.28 The IV estimator in (1)

therefore exploits only arguably random variation in the timing and number of births

within school catchment areas.

Ideally, we would thus estimate equation (5) via two-stage least squares (2SLS) using

the predicted class size based on a school’s birth cohort size as an instrument for class

size in grade 3. Unfortunately, data on the number of births at the level of the school

catchment area are not available in Germany, but we can impute cohort size using ad-

ministrative school-level enrollment data. For a given school in grade 3 in year t, we do

this by summing up the number of regularly enrolled students in grade 1 in year t − 2,

the number of late enrolled students from year t − 1, and the number of early enrolled

students from year t− 3. Dividing this sum by the number of classes in grade 1 in year

t−2 gives the predicted class size for grade 3 in year t, which we then use as an instrument

for CSts in (5).

As discussed in Section 3, estimating class size effects this way still results in biased

estimates since birth cohort size is correlated with the grade-level composition of students.

To overcome this bias, we need to control for whether a student has been retained,
28Recall the discussion of ιOLS in equation (3) in Section 3.
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enrolled late, or enrolled early at the individual level (i.e., include dummies for each

group of students in the vector Xi). While our test score data does not include this kind

of information, it does contain age in years at the time of the test. We construct separate

dummies for each age and use them as proxies for each group of students.29 This amounts

to combining students who have been retained or enrolled late into one group because

both types of students are older than 9 years on the day of the test. Thereby, we also

incorrectly assign those students reaching third grade one year late but who were born

between May and June to the group of students who reach 3rd grade on time (recall

that the enrollment cut-off is the 30th of June and age is measured in May). Assigning

some retained or redshirted students to the group of non-retained students implies that

we underestimate the average test score difference of non-retained students and students

too old for their grade. Since the grade retention bias in (1) is a positive function of

this difference, we expect some remaining upward bias in estimates of the pure class size

effect.30

The fact that different maximum class size rules apply depending on the number

of students with insufficient German proficiency in grade 1 introduces a further bias in

class size estimates based on equation (5). Because even if cohorts size across years

is completely random within schools, random shocks to the number of students with

insufficient German proficiency in a cohort lead to a spurious positive class size effect

if these students score lower on standardized tests (as in our data).31 To reduce this

upward bias, we control in some specifications for whether the teacher reports that a
29Note that controlling for age linearly, as done in some previous studies (see, e.g., Wößmann and

West, 2006; Denny and Oppedisano, 2013), is not sufficient to correct for the upward bias. The reason
is that the negative relationship between age and test scores, caused by negatively selected students who
are too old for their grade, is offset by a positive effect of age on test scores for students who are on
schedule (Black et al., 2011). Hence, controlling linearly for age does not correctly adjust test scores for
retained and redshirted students.

30Similarly, students born between May and June who were enrolled on time will be incorrectly
classified as having been enrolled too early. However, this should not have an effect on our estimates as
we discuss in Appendix C.

31To see this, consider two cohorts in the same school with 27 students. Suppose that all students are
identical in terms of their academic skills except that the second cohort includes 4 students with limited
German proficiency who have academic skills considerably lower than all other students. Due to these
4 students, the maximum class size threshold of 25 applies for the second cohort, while the threshold
27 applies for the first cohort. Hence, class size will be 27 and 18.6 for the first and second cohort,
respectively. Since the average skill is lower in the second cohort, a simple within-school regression of
test scores on class size would result in a spurious positive class size effect.
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student has insufficient German proficiency in third grade. This is only a proxy for

insufficient German proficiency in grade 1 as some students become proficient in German

until grade 3. Hence, we expect this to only partially correct for the positive bias.32

Around one-third of all primary schools in Saarland were merged in 2005. This consol-

idation of schools is a potential threat to our identification strategy since school-specific

factors such as material resources and the composition of students may have changed as

a result. These time-varying changes are not picked up by school fixed effects. For this

reason, we estimate separate fixed effects for schools that were eventually merged on the

individual school-level for the academic years 2003-2004 (when they had not yet been

merged) and on the consolidated school-level for the academic years 2005-2006.33

As discussed in Section 3, the key identifying assumption for the results (1)-(4) is

that the birth cohort size within a school’s catchment area is arguably random. That is,

the size of a birth cohort is not related to its student composition or the threshold that

determines grade retention or redshirting. The most obvious violation of this assumption

results from potential self-sorting of families into specific school catchment areas that is

not constant over time. To assess the credibility of our key assumption, we perform an

extensive set of balancing checks at the birth cohort level below.

6 Data

6.1 State-wide Orientation Exams (SOE)

We use a unique administrative dataset that contains information on the math and lan-

guage skills for the full universe of four consecutive cohorts of third-graders in the German
32German proficiency in grade 3 is, of course, potentially endogenous because it might be affected by

class size. However, since class size can be expected to negatively affect German proficiency, controlling
for it provides a lower bound on the true class size effect.

33For efficiency reasons, we would ideally estimate only one set of fixed effects on the individual school-
level for schools that were merged in 2005 in which 3rd grade classes continued to be taught in their old
schools. However, in our data we do not observe which school classes belonged to before consolidation.
Hence, the need to aggregate everything to the consolidated school-level for merged schools.
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state of Saarland.34 35 The data were obtained via state-wide centralized exams at the

end of third grade in the school years 2003 to 2006. Participation in these "State-wide

Orientation Exams" (SOE) was obligatory for all schools and classes.36 Testing was car-

ried out on three different days—two days for language and one day for math. If a student

was not present on the day of testing, she was not allowed to take the exam later and her

test score is, therefore, missing. We provide more information on these data in Appendix

B.

Standardized assessments may suffer from bias introduced by manipulation of test

scores by teachers (see, e.g., Angrist et al., 2017). In our case, there is an incentive

for teachers to manipulate test scores, since the results directly affect them. It was a

specific objective of the SOE to compare achievement between different schools and even

between classrooms within schools in order to detect successful approaches to teaching

and learning. To prevent the most common forms of teacher cheating and shirking,

particularly teaching to the test and biased grading, the designers of the exams established

a number of safeguards. First, teachers had to keep the test material sealed until the day

of testing. That way, specific preparation for the test was prevented. Second, and most

crucially, teachers did not correct the exams themselves. Answer sheet transcription and

grading was performed by an external team of scorers who followed the provided grading

rubrics. Therefore, score manipulation by the teacher can be ruled out.

We link the 2003-2006 test score data to administrative records obtained from the

Saarland statistical office. These administrative records include enrollment and number

of classes for grades 1-3 for all schools in Saarland. Furthermore, for the 2000-2005 school

years, these data contain information on the school-year-level on the number of students

in grade 1 who were retained, enrolled one year late, and enrolled one year early. This

information is used to impute initial cohort size. Table E.2 shows the structure of the

Saarland data by academic year.
34If not stated otherwise, all information provided in this section is based on Paulus and Leidinger

(2009).
35Students who were educated with "different aims" (zieldifferent) were exempt from the exams.

Education with different aims is often applied for students with disabilities.
36The only exception was a school where teaching was conducted exclusively in French.
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6.2 Sample selection, variables and descriptive statistics

The full SOE dataset comprises 39,014 student-year observations from 268 schools. We

impose a set of restrictions on these data. First, we drop all schools for which we observe

zero classes for some years. These are schools that formed multi-grade-classes because

enrollment was too low to form separate classes for each grade. This restriction means that

we exclude 10 schools (less than 4% of all schools). Next, in order to reduce measurement

error, we exclude individual students if the teacher indicated that the student arrived too

late to class that day to be able to complete the test. This restriction results in less than

0.2% of our initial data being dropped. Note that we keep observations from students

who participated in only one of the two days of testing in German. This applies to

2,209 students. These students are assigned the standardized score on the respective

test domain that they took as their overall score in language. Our final dataset includes

37,847 language and 36,845 math test scores from 38,415 students.

Table 1 reports descriptive statistics for our final sample. We standardize test scores

to have mean zero and a SD of one. In addition to test scores, the SOE data contain

a rich set of control variables. Teachers reported gender, nationality, language spoken

at home, age in years, German proficiency, and learning disabilities for each student.

Students also reported the number of books at home, which is a useful proxy for socio-

economic family background. Ammermueller and Pischke (2009) show that the reported

books at home indicator strongly correlates with a host of parental background measures

such as income, education, and origin. In fact, Wößmann (2005) and Ammermueller and

Pischke (2009) find it to be the single most important predictor of cognitive skills in the

Third International Math and Science Study (TIMSS) and the Progress in International

Reading Literacy Study (PIRLS) as well as the Programme for International Student

Assessment (PISA), respectively. Unfortunately, this question was not included in the

first round of testing in 2003.

[Table 1 about here]

The last column of Table 1 also reports the number of observations for each variable.
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For most variables the share of missing observations is less than five percent except for

the books at home question. In order to preserve as much information from the data as

possible we keep all observations with missing data on control variables and create an

additional missing category for each variable. The lower panel of Table 1 illustrates the

impact of the school mergers in 2005. The number of schools decreased from 258 in the

year 2004 to 156 in 2005 (a change of 40%) and as a result the average number of classes

increased substantially from 2.33 to 3.25 classes per school.

Our main independent variable is the average class size in grade 3 for a given year and

school. On average, class size is 20.8 for the academic years 2003 to 2006 in Saarland.

Figure 1 illustrates the range of variation in average class size in grade 3 across as well

as within schools. It is obvious that most of the variation is between schools, however,

there is also a large amount of variation in average class size within schools.

[Figure 1 about here]

Table 2 reports descriptive statistics on the fraction of students in Saarland that were

enrolled late and early in grade 1 in the academic years 2001-2006. It further contains

the fraction of students repeating each grade during those school years. On average, 9

percent of all students repeat a grade before fourth grade, 2.5 percent are enrolled late,

and 7 percent are enrolled early.

[Table 2 about here]

7 Results

7.1 Testing the theoretical predictions

We first test whether differences in birth cohort size lead to the predicted compositional

changes at the grade-level. Using administrative enrollment data for Saarland, we regress

the fraction of students in grade 1 who were retained in grade 1 the year before, the

fraction of students enrolled late, and the fraction enrolled early on the imputed cohort

size for that year and school fixed effects. Panel A of Table 3 reports the results of these
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regressions. Consistent with Prediction 1, all coefficients have the expected negative sign

and are statistically significant. For example, for the fraction of late enrolled students, we

obtain a point estimate of -0.21. This estimate implies that if a birth cohort is increased

by one student, students who have been enrolled one year too late will account for 0.21

percentage points fewer students in grade 1 in the year that this cohort is expected to

enroll.

[Table 3 about here]

The actual instrument we use is the predicted class size based on the imputed cohort

size. To assess to what extent this instrument is systematically related to the composition

of students at the grade level, Panel B presents estimates where we use class size in grade

1 as explanatory variable and instrument it with the predicted class size based on the

imputed cohort size. Again, all coefficients have the expected negative sign and are

statistically significant. However, the coefficients increase substantially in size compared

to Panel A. For instance, an increase of one student in the predicted class size in grade

1 is associated with a decrease in the share of students in grade 1 who were enrolled

too late by 0.80 percentage points. It is easy to see why this is the case. Since most

schools have more than one class, class size does not increase one for one with cohort

size. Hence, the compositional effects in Panel A are upward scaled by the inverse of

the average increase in class size associated with a one-student-increase in cohort size to

obtain the IV estimates in Panel B.

The key assumption in deriving (1)-(4) is the random assignment of birth cohort size

within schools—that is, variation in birth cohort size is not related to the composition

of these birth cohorts.37 Panel C of Table 3 checks the validity of this assumption by

testing whether birth cohort size is related to the fraction of students from the same birth

cohort who are redshirted or enrolled early. Reassuringly, the results do not indicate any

systematic relationship.38 In light of our discussion of the results in Panels A and B, any
37In our model set-up in Appendix A, random assignment also requires that yearly birth cohort size

changes are unrelated to variation in grade retention thresholds.
38We omit the result for the fraction of students who repeat a grade in column 3. The reason is that if

class size has a negative impact on student achievement, we expect a significant positive effect of cohort
size on retention rates even if cohort size is unrelated to the composition of cohorts.
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correlation between initial cohort size and the composition of students in higher grades

seems to be driven by mechanical relationships rather than correlations between the size

and the initial composition of birth cohorts.

In Appendix C, we perform several additional tests. To check that the compositional

effects in Table 3 are a purely mechanical result, we perform a simulation exercise with

a data-generating process based on a simple model that is tailored to the primary school

system in Saarland in terms of the size of cohorts and the fraction of retained students

(see Table E.12). This yields very similar results to those in Table 3. We also replicate the

results in Table 3 with administrative data for another federal state (Saxony), for which we

have data on retention rates until grade 3 (see Table C.1). The results for Saxony and the

simulation exercise both corroborate the existence of mechanically arising compositional

effects. They further indicate that these effects increase approximately multiplicatively

in higher grades. Finally, we also provide extensive balancing tests based on the SOE

student-level data to further check that birth cohort size variation within schools is quasi-

random (see Table E.4). These indicate that the composition of birth cohorts in terms

of observable student characteristics is balanced with respect to birth cohort size.

Given our theoretical results in Section 3 and the estimates in Panel B of Table 3, we

can quantify the expected bias in class size estimates based on the IV approach. Equation

(1) shows that the grade retention bias is additive and equals the product of two terms:

(i) the average test score difference between non-retained and retained students and (ii)

the IV estimate of the effect of class size on the share of non-retained students at the

grade level (i.e., the negative value of the estimate in Panel B of Column 3 in Table 3).39

The biases resulting from redshirting and early enrollment can be obtained in the same

way. To compute the overall bias we thus need the difference in average skills between

the group of regular students and those who have been retained, redshirted, and early

enrolled. As discussed above, our data do not allow to distinguish between students who

have been redshirted and those who have been retained in primary school, as they will
39We do not take into account the bias resulting from attenuation here because this would require us

to make assumptions about the true class size effects. Hence, we get a lower bound on the true size of
the bias.

25



both appear as older than 9 years in our data set. Hence, we rely on a different data

set—The German National Educational Panel Study—to estimate test score differences

for each group of students (see Appendix C for more details).

Given the estimates of these test score gaps and the fact that the compositional effect

in grade 3 can be approximated by multiplying the effect in grade 1 by 3 as suggested by

the Saxony data, this yields for retained students values of 0.00564 SD (= 3 × 0.717 ×

0.00262) and 0.00715 SD (= 3× 0.910× 0.00262) for language and math, respectively.40

For the full bias, we add the bias arising from late enrolled students: 0.00175 SD (=

0.219× 0.008) for language and 0.00227 SD (= 0.284× 0.008) for math. Since we do not

find early enrolled students’ skills to differ from those of regular students, early enrollment

can be neglected for the computation of the full bias. Combining these results, we expect

the bias from compositional effects to decrease estimates of a one-student-reduction in

class size between grades 1-3 on test scores in grade 3 by 0.0074 SD for language and

0.0094 SD for math.

7.2 Class size effects

In this section, we turn to reporting our class size effects. Table 4 reports first stage

coefficients for our instrument, predicted class size based on imputed cohort size, on

average class size in grade 3. As expected, the instrument is a strong predictor of class

size and the F-statistic is above 170 for all specifications. Our results indicate that a one-

student-increase in predicted class size based on imputed cohort size leads approximately

to a 0.45-student-increase in class size in grade 3.

[Table 4 about here]

Tables 5 contains our main results for the empirical model in (5). We run separate

regressions for language and math to be able to draw subject-specific conclusions. Col-

umn 5 reports results from IV regressions where we only control for school and year fixed
40The value 0.717 is from row 3 and column 1 in Table C.2, the second value, 0.00262, comes from

column 3 of Panel B in Table 3. The first value for math comes from the second row of column 2 in
Table C.2.

26



effects.41 The point estimates in both subjects are negative but not statistically signifi-

cant. Our discussion of equation (1) suggests, however, that these estimates might suffer

from a positive bias because of the correlation between initial cohort size and the com-

position of students in higher grades. Once we include age controls in column 6, the IV

estimates for language and math almost double in absolute size. This is consistent with

the comparison of equations (1) and (2). The implied upward bias in class size estimates

without age controls for a one-student-change is 0.0071 SD for language and 0.006 SD

for math, which is in the ballpark of the predicted bias based on our theoretical model.

The differences between estimates in columns 5 and 6 are not statistically significant and

only the language effect turns weakly significant when we control for age. Nevertheless,

these findings are suggestive of a potentially substantial bias in IV estimates of class size

effects in school systems where students can be retained or redshirted.

[Table 5 about here]

Because students with insufficient German proficiency are, on average, placed in

smaller classes in Saarland (see the discussion in Section 5 and Appendix C), the re-

sults in column 6 are likely still upward biased. Controlling for German proficiency in

column 7 confirms this. Class size coefficients for both subjects become considerably

more negative and the language effect turns significant at the five percent level. Includ-

ing further controls such as a gender dummy or the reported number of books at home

in column 8, however, makes little difference to the results. This suggests that any bias

in our within-school estimates seems to be driven either by compositional effects arising

from held back students or the lower class size threshold for students without sufficient

German proficiency. Once we control for these confounding effects, the class size coeffi-

cient for language implies a statistically significant test score increase of 0.0191 SD for a

one-student-decrease in class size from grade 1 until grade 3. For math, the corresponding

effect size is 0.014 SD, although the estimate is not statistically significant.

The OLS results in columns 1-4 follow the same pattern as the IV results. Estimated

class size effects become more negative as we control for age and insufficient German pro-
41The full regression results are reported in Tables E.5 -E.6 in the appendix.
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ficiency, but do not change with the inclusion of further controls. However, estimates for

language and math in column 1 without age controls are substantially larger in absolute

size than the corresponding IV estimates. For language the effect is significant at the

one percent level. The inclusion of age controls only modestly increases the estimates

in size in column 2. This could point to a lower compositional bias in within-school

designs that regress test scores directly on class size compared to the IV approach. One

possible explanation is that held back students increase the size of the class they join

after having been held back. A positive correlation between class size and the share

of retained students ensues, which offsets part of the negative correlation between class

size and the share of held back students discussed before.42 Notably, with the full set

of control variables the OLS results in column 4 are very similar to the IV results in

column 8. Durbin-Wu-Hausman tests fail to reject the null of no endogeneity in all IV

specifications in columns 5-8 for language and math. Therefore, the overall conclusion

is that the OLS results seem to be robust to the potential bias ιOLS in equation (4) in

our setting. The substantially smaller OLS standard errors render estimates of class size

effects for language and math in columns 3-4 statistically significant at the at the one

and five percent level, respectively. We view this as strong evidence for a negative impact

of class size on students’ test scores.

Importantly, the true magnitude of the class size effects is likely to be larger than the

estimates presented here. Imperfect proxies for retention status and German proficiency

leave some room for upward bias in our estimates. Further, equations (2) and (4) imply

that the estimates in Table 5 are attenuated because class size in grade 3 is not perfectly

correlated with the class size students experienced in grades 1 and 2.43

42Unfortunately, comparing ρIV and ρOLS in equations (1) and (3) does not allow us to conclude
whether the composition bias should be larger for IV or OLS. This is because ρOLS is a function of the
second moments of the shocks to ability levels and grade retention thresholds (see equation (D.19) in the
appendix), which cannot be identified.

43Table E.7 reports estimates for different specifications using either average class size in grade 1,
grade 2, or the average of grades 1-3 as explanatory variables. OLS and IV results for both subjects
exhibit a monotonic pattern. Estimated class size effects appear to decrease in absolute size if test
scores are regressed on class size from lower grades and results for the average class size in grades 1-3
fall somewhere between the results for grade 1 and grade 3. This is consistent with the notion that for
students who enter a class after grade 1 (e.g. because they have been retained or switched schools),
the class size for grade 1 of the class in which we observe them in grade 3 is an erroneous measure of
their previous class size. Note that we do not observe when a student has been held back or switched
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As a robustness check we also estimate models in which we include separate fixed

effects for each school and number of classes combination instead of school fixed effects.

This amounts to identifying the class size effect only by within-school variation in class

size that is caused by changes in cohort size while holding the number of classes constant.

These specifications more closely follow Hoxby (2000) who conditions on the expected

number of classes and should be less prone to bias caused by the addition of newly hired

teachers whenever a school changes the number of classes as discussed in Gilraine (2020).

Columns 3 and 6 of Table E.9 report the results of these regressions. Although we lose

considerable variation in class size that is driven by schools adding or removing a class,

the estimates are qualitatively very similar to the results in Table 5. However, while the

OLS estimates are still significant, the IV results lose statistical significance because of a

substantial increase in standard errors.

Our balancing tests in Table E.4 indicate that the within-school variation in cohort

size we use to identify class size effects is unrelated to observed determinants of student

achievement in our data. Nevertheless, one may still be concerned that our estimates are

picking up school-specific trends in cohort size. If, for example, there is an inflow of young

families moving into a school’s catchment area, this might bias the result if children from

these families differ on average from other children in the catchment area. Although we

expect that our balancing results should indicate compositional changes in the student

population that correlate with cohort size, we further check that school-specific trends

in unobserved determinants of student achievement do not drive our class size effects.

The drawback is that the within-school variation of class size is substantially reduced if

we take out linear trends in a panel with only four years.44 In fact, any school with less

than three years of data has to be dropped from the analysis. Hence we lose about 60

school. Therefore, we cannot assign these students to their previous classes. The fact that test scores are
measured at the end of grade 3 and retention and most school switches happen at the end of the school
year ensures that, except for some rare cases, all students should have experienced at least the class size
we observe in grade 3. Hence, we expect measurement error to be minimized by using class size in grade
3 as the explanatory variable.

44Hoxby (2000) estimates more flexible time trends with a quartic in time. However, our data have only
panels with at most four years. For this short of a period, any trend should be adequately summarized
by a linear trend.
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percent of observations.45 The results of these regressions are reported in columns 2 and

5 of Table E.9. The loss of observations and variation in class size roughly doubles the

standard errors in these regressions. Hence, most coefficients turn insignificant. However,

all coefficients increase in absolute size, which indicates that, if anything, school-specific

trends in cohort size seem to be positively correlated with student achievement. This is in

line with an explanation based on the inflow of young families with higher socio-economic

status into a school’s catchment area causing an increase in cohort size. As this would

bias our class size effects positively, we expect our estimates without school-specific linear

trends in Table 5 to provide lower bounds on the true class size effects.

7.2.1 Non-linear effects

So far, we have assumed linear class size effects, i.e. that a one-student-increase in

class size has the same effect in smaller and larger classes. This may not be a sensible

assumption. We may think of a situation in which class size effects increase in larger

classes; for instance, if the growing potential for disturbances in larger classes is partly

offset by more efficient instruction up until a certain threshold, because a “critical mass”

of good students is required for fruitful discussions. The same may happen if the potential

for classroom disturbances grows exponentially in larger classes, for example because a

“critical mass” of problematic students is reached and their disturbances reinforce each

other. Alternatively, we could think of a situation in which the potential for disturbances

becomes flatter as classes grow larger, because the addition of more problematic students

makes a smaller difference percentage-wise in larger classes. This line of argument is used

by Hoxby (2000) to motivate a level-log model specification. While this is by no means

an exhaustive list of potential explanations for non-linear class size effects, it serves to

illustrate that a variety of (potentially countervailing) forces may be at work in classrooms

that make studying non-linearities worthwhile.

In Table 6 we report estimates from several spline regressions with a single knot
45Recall that two-thirds of schools were merged prior to the 2005 school year resulting in only two

years of data for schools that were eventually merged before the consolidation and two years of data for
the combined schools after the consolidation.
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placed at different class size values, thereby allowing class size effects to differ between

small and large classes. Since our results above indicate that OLS and IV specifications

yield similar results once we condition on age and German proficiency, we only report

the more efficient OLS results.46 Throughout all specifications, there is clear evidence for

non-linear effects. Specifically, large negative class size effects are predominantly evident

in larger classes. For instance, the estimated effect for classes larger than 20.5 students

indicates a reduction in language test scores of 0.0483 SD for each additional student,

while the effect for classes smaller than 20.5 is statistically insignificant. Panel B shows

the same pattern of basically zero effects in small classes and large negative effects in

larger classes for mathematics.47

[Table 6 about here]

The finding of non-linear effects might have important implications for the empirical

class size literature, which generally uses class size measures aggregated at the grade level

or even school district level. Since class size effects operate at the individual class level,

using more aggregate measures of class size could not only result in larger standard errors,

but also inconsistent estimates when these effects are non-linear. Hence, we speculate

that using class size variation at the grade level might underestimate the class size effect

if the effect is actually non-linear and class size is very heterogeneous within grades. This

result may help to reconcile some of the zero findings in the literature by studies that

measure class size at the grade level (e.g. Angrist et al., 2019, 2017; Wößmann and West,

2006) and even more so for the study by Hoxby (2000) which uses variation in class

size at the school-district-level. The level of aggregation as one possible explanation for

different findings across studies is also consistent with those studies that measure the

effect of class size at the class level by Krueger (1999), Urquiola (2006) and Bressoux

et al. (2009): these studies find large and significant class size effects.48

46The IV results are reported Table E.8. They are very similar to the OLS results, albeit noisier.
47As before, we also carry out robustness checks, such as including school number of classes combi-

nation fixed effects and school-specific linear trends. Table E.10 in the Appendix reports results for the
spline specification with a knot placed at 20.5. The results are qualitatively very similar, but as before,
standard errors increase substantially.

48The results in Leuven et al. (2008) provide some evidence against this hypothesis as they find no
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7.2.2 Effect heterogeneity

In our specifications in Tables 5 and 6 we implicitly assume that all students are similarly

affected by class size. Krueger (1999), however, has shown more pronounced effects of

class size reductions for disadvantaged groups. We test for this source of heterogeneity

by interacting the class size variable with a set of indicator variables for being too old

for grade 3, reporting few books at home, migration background, insufficient German

proficiency, reading disorder (dyslexia), and learning disability in math (dyscalculia).

We also test for heterogeneous effects by student gender. Table 7 shows the coefficients

of these seven interactions.49 In line with the hypothesis that disadvantaged students

are harmed most by larger classes, all interaction terms, except for the female term,

are negative and most are statistically significant at the one percent level. Additional

evidence comes from the pattern of the interaction terms for dyslexia and dyscalculia. If

students react more strongly to class size in subjects where they are at a disadvantage,

we should expect larger effects for dyslexic students in language compared to math and

vice versa for students with dyscalculia. This is exactly what we find in columns 6 and 7

in Panels A and B. Moreover, the interaction term for dyslexia is larger than the one for

dyscalculia in language and vice versa in math, which we would also expect.

More importantly, the estimated class size effects for disadvantaged students are very

large in magnitude: for example, the coefficient for insufficient German proficiency sug-

gests that one more student in class decreases language and math test scores of students

not proficient in German by 0.053 and 0.037 SD, respectively. Overall, these results re-

veal that our specifications in Tables 5 and 6 mask some marked effect heterogeneity for

certain groups of students. Compared to non-disadvantaged student, class size effects

seem to be two to four times larger for students who can be expected to be at a disad-

vantage either because of their migration status, insufficient German proficiency, learning

disabilities, or lower academic skills as evident from having been held back a grade.

significant class size effects for Norwegian schools with only one class per grade where average class size
equals actual class size. However, their study investigates the effects of class size in lower secondary
school and class size effects are generally thought to be larger in primary school.

49Since the IV results are very similar we only report OLS results. For the IV results see Table E.11
in the appendix.
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[Table 7 about here]

7.2.3 Effects on grade retention

If class size has a negative effect on student achievement, it can also be expected to

increase the probability of being retained. To explore this, we use administrative school-

level data on the number of grade repeaters in first grade for the 2001-2004 academic

years.50 We follow the same methodological approach as above, but now regress the

share of students who repeat grade 1 in year t on class size in grade 1 in year t− 1 and

school fixed effects. Since we do not have grade repetition information at the student

level, we conduct the analysis at the school-year level. Column 1 in Table 8 reports the

OLS estimate of this regression and column 3 reports the IV estimate, where average

class size in grade 1 is instrumented with predicted class size based on imputed cohort

size. Both estimates indicate that larger classes in grade 1 increase the share of students

who are retained in first grade significantly.

Given the discussion in Section 3, however, the estimate in column 3 could be biased

because predicted class size based on imputed cohort size is mechanically related to the

composition of students in grade 1. Here the bias should go in the opposite direction

as above and cause us to overestimate the positive effect of class size on grade retention

rates. To see this, note that larger cohorts should have a smaller share of students in

grade 1 who have been retained in the past. Since students in Saarland are rarely retained

more than once in primary school, students who have not been retained before are more

likely to be retained.51 Since these students account for a larger share in larger cohorts

within a school, this should lead to a positive association between cohort size (and hence

class size) and the share of retained students even in the absence of any “pure class size

effect.” To alleviate this source of bias, we also estimate regressions where we use the
50Note that we have to discard data for the year 2004 for all schools that were merged in 2005. The

reason for this is that we do not observe the number of students who entered first grade in 2004 and
repeated the same grade in 2005 since we only have that information on the consolidated school-level for
2005. We also have to discard data for the year 2000 because we cannot impute cohort size for that year
as we do not observe the number of students who were enrolled too early in 1999.

51Students are rarely retained more than once in primary school because if they are, they are classified
as students with special needs and then are transferred to special schools.
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share of retained students only among the students who have not been retained before as

outcome variable, instead of the fraction of retained students in grade 1. The results of

these regressions are reported in columns 2 and 4. As expected, the IV estimate decreases

slightly but not substantially.52 A one-student-increase in class size is associated with

an increase in the fraction of repeaters in grade 1 of around 0.152 percentage points.

Given that only 2.3 percent of all students repeat grade 1, this is an increase of almost

7 percent.53 Against the background of the rather small intervention of a one-student-

change, this is a very large effect. These estimates confirm earlier results by Argaw and

Puhani (2018) both in substance and in size in a longer panel (four cohorts versus two)

and in a different German state (Saarland versus Hesse).

Importantly, this finding may have implications for RDDs based on maximum class

size rules. As retention rates increase with class size, marginal students with low academic

skills should have a higher likelihood of being retained in large classes just below the

class size threshold as compared to if they were in smaller classes just above. Class size

estimates based on a comparison of student test scores between these classes in higher

grades could therefore suffer from a form of survivorship bias. A back-of-the-envelope

calculation for schools with a class size cap of 29 and enrollment between 29 and 30

students yields that an RDD estimate for the effect of a ten-student-increase in class

size would be upward biased by 3.3 and 4.2 percent of a SD for language and math,

respectively.54

52The OLS estimate increases marginally. This is also to be expected since an increase in class size
caused by an inflow of retained students from the previous year also decreases the share of students
who have not been retained in the past (hence who are more likely to be retained). The OLS estimate
may pick up this negative spurious effect of class size on the retention rate. Using the share of retained
students among students who have not been retained before as the outcome, however, should alleviate
this source of bias and, therefore, increase the OLS estimate.

53The retention rate of 2.3 percent is the average retention rate in grade 1 for the estimation sample.
Hence, it differs slightly from the value reported in Table 1, which is the population average for the
2001-2006 academic years.

54To get those values, note that class size in schools with 29 students is 29 and 15 in schools with 30
students. If we abstract from the composition effects discussed in Section 3 and assume that the class
size effect on grade retention of 0.152 for grade 1 (from Table 8) can be linearly extrapolated to grade
3, we get a difference in retention rates by grade 3 between classes that were initially of size 29 and 15
equal to 6.384 percentage points (= 14 × 0.152 × 3). Multiplying this by the average difference in test
scores between non-retained and retained students in Table C.2 and dividing by the class size difference,
yields an RDD estimate of 0.0033 SD (= 3× 0.00152× 0.717) and 0.0042 SD (= 3× 0.00152× 0.91) for
language and math respectively. However, as most RDD designs have to use wider bandwidths, schools
with sizable enrollment differences are compared. This could make these estimates also susceptible to
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[Table 8 about here]

8 Conclusion

Class size is a central lever for educational policy-makers as teachers’ salaries make up the

largest share of education spending. However, the literature remains largely inconclusive

as to whether smaller classes are beneficial for student achievement. While the results

from the famous randomized experiment in Tennessee (STAR) suggest that smaller classes

are beneficial in terms of test scores (Krueger and Whitmore, 2001), studies using quasi-

experimental approaches to identify causal effects differ substantially in their conclusions.

The theoretical model developed in this paper points out a positive bias inherent

in class size estimates from standard within-school designs in school systems that allow

for redshirting or grade retention. We provide important insights into the cause and

consequences of this bias as well as remedies for it, all of which has, to the best of our

knowledge, been ignored to date. Our model predicts that even if within-school changes

in birth cohort size are unrelated to the initial composition of cohorts, this is not the case

for the actual grade-level composition once these cohorts progress through primary school.

The reason is that the practice of holding back poorly performing students mechanically

causes larger birth cohorts to be in grades with a smaller share of students who have

been held back in the past. The resulting bias may help to reconcile the empirical puzzle

that studies relying on idiosyncratic variation in cohort size in school systems that allow

for grade retention and redshirting (e.g., Hoxby, 2000; Cho et al., 2012) mostly find no

or considerably smaller effects than the experimental studies based on Project STAR.

Furthermore, we provide a simple solution to this problem—controlling for whether or

not a student has been held back a grade in the past—that produces a lower bound on

the class size effect.

In the empirical part of this paper, we show that the two main predictions of our

theoretical model find support in data on German primary schools. First, while balancing

the type of composition bias laid out in Section 3. An analysis of how this affects RDD estimates is
beyond the scope of this paper, but something we plan to investigate in future research.
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tests show the characteristics of students from the same birth cohort to be unrelated to

the size of a birth cohort, we do find significant associations between birth cohort size and

student characteristics at the grade-level. Second, when we estimate class size effects with

a within-school design and instrument class size in grade 3 by predicted class size based

on imputed cohort size, we find that introducing a proxy for whether or not a student has

been retained or redshirted leads to the expected movement in coefficients. On average,

we find that a one-student-decrease in class size in grades 1-3 improves language and math

test scores at the end of grade 3 by around 1.9 and 1.4 percent of a standard deviation,

respectively. However, these average effects mask a significant degree of heterogeneity.

Disadvantaged students seem to benefit two to four times as much from smaller classes

as other students. Further, class size effects appear to be non-linear, with larger effects

in large classes and no effects in small ones.

Our results have important policy implications. First, increasing class size to reduce

public spending comes at a cost in terms of lower student achievement. These costs are

particularly large in larger classes. However, since we find little evidence of class size

effects in smaller classes, this suggests that class size may be increased up to a certain

size without negative consequences for student achievement. Second, larger benefits of

smaller classes for disadvantaged children warrant the use of progressive maximum class

size rules.
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Tables

Table 1: Descriptive Statistics: Student Outcomes,
Student and School Characteristics

Mean SD N

Test scores

Language 0.00 1.00 37,847

Math 0.00 1.00 36,845

Male 0.51 0.50 38,154

Insufficient German proficiency 0.06 0.23 38,415

Migration background 0.12 0.33 37,679

Non-native German speaker 0.15 0.35 37,920

Reported books at home

None or few books 0.06 0.23 27,850

Enough to fill one shelf 0.17 0.37 27,850

Enough to fill one bookcase 0.26 0.44 27,850

Enough to fill two bookcases 0.26 0.44 27,850

≥ 200 books 0.25 0.44 27,850

Age at test date (in years)

Younger than 9 0.15 0.35 38,177

9 0.74 0.44 38,177

Older than 9 0.12 0.32 38,177

Learning disabilities

Dyscalculia 0.04 0.19 37,314

Dyslexia 0.07 0.26 37,549

Class size grade 3 20.84 3.53 38,415

Cohort size 58.48 23.84 38,415

School district

Rural community 0.54 0.50 38,415

Problematic 0.27 0.44 34,289

Classes per cohort 2.79 1.06 1,929

N Schools 258

N SchoolYearObs 828

N Cluster 156

Notes: The table reports means, standard deviations,

and the number of non-missing observations for the listed

variables. The sample only includes schools with at least

one class for each grade.
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Table 2: Descriptive Statistics: Tim-
ing of School Enrollment and Grade
Repetition

Mean (in %)

Early enrolled 7.0

Late enrolled 2.5

Grade repetition

1st grade 3.2

2nd grade 2.9

3rd grade 2.8

4th grade 1.9

Notes: The table reports means

of the listed variables. Source:

Fachserie. 11, Bildung und Kul-

tur. 1, Allgemeinbildende Schulen

2001/2002-2006/2007.
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Table 3: Effects of Cohort Size on Student Composition

% Late enrolled % Early enrolled % Repeater

(1) (2) (3)

Panel A: OLS grade composition

Imputed cohort size -0.213*** -0.164*** -0.045**

(0.026) (0.023) (0.020)

Panel B: IV grade composition

Class size -0.800*** -0.476*** -0.262***

(0.081) (0.073) (0.055)

Panel C: OLS birth cohort composition

Imputed cohort size 0.029 0.002

(0.025) (0.029)

N SchoolYearObs 871 871 871

Notes: Each cell contains results for separate, weighted regression with

weights equal to total enrollment. Panel A reports estimates of the effects

of imputed cohort size on the percentage of repeating, late, and early en-

rolled students in grade 1. Panel B reports instrumental variables estimates

of average class size in grade 1 on the percentage of repeating, late, and

early enrolled students in grade 1. The instrument for class size is imputed

cohort size divided by the number of classes. Panel C reports estimates of

the effects of imputed cohort size on the percentage of repeating, late, and

early enrolled students in a birth cohort. Regressions include school and

year fixed effects. Standard errors clustered at the school-level are given in

parentheses. Significance level: * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table 4: First Stage Estimates

Class size in grade 3

(1) (2) (3) (4)

Class size predicted by imputed cohort size 0.446*** 0.446*** 0.446*** 0.446***

(0.034) (0.034) (0.034) (0.034)

School FE Yes Yes Yes Yes

Age Controls Yes Yes Yes

Insufficient German Proficiency Yes Yes

Individual Controls Yes

N 38,415 38,415 38,415 38,415

R2 0.345 0.345 0.346 0.347

F-Test 172 172 172 172

Notes: The table shows estimates of the effects of class size predicted by imputed cohort size

on class size in grade 3. Standard errors clustered at the level of the combined schools in

2005 are given in parentheses. Individual controls include gender, number of books at home,

migration background, and native language. Significance level: * p < 0.10; ** p < 0.05; ***

p < 0.01.
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Table 5: Main Results: The Effect of Class Size on Test Scores

OLS IV

Avg. class size grade 3 IV: Imputed cohort size

(1) (2) (3) (4) (5) (6) (7) (8)

Language -0.0159*** -0.0178*** -0.0202*** -0.0199*** -0.0074 -0.0145* -0.0189** -0.0191**

[N = 37, 847] (0.0045) (0.0044) (0.0052) (0.0050) (0.0085) (0.0085) (0.0095) (0.0092)

Math -0.0112 -0.0127* -0.0143** -0.0140** -0.0061 -0.0121 -0.0150 -0.0140

[N = 36, 845] (0.0068) (0.0068) (0.0072) (0.0070) (0.0108) (0.0108) (0.0111) (0.0110)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Age controls Yes Yes Yes Yes Yes Yes

Insufficient German proficiency Yes Yes Yes Yes

Individual controls Yes Yes

N Cluster 156 156 156 156 156 156 156 156

N SchoolYearObs 828 828 828 828 828 828 826 826

Notes: Each cell contains results for a separate regression. Columns 1-4 report OLS estimates of class size in grade 3 on language

and math. Columns 5-8 report estimates of class size in grade 3 where class size is instrumented by predicted class size based on

imputed cohort size. Standard errors clustered at the level of the combined schools in 2005 are given in parentheses. Individual

controls include gender, number of books at home, migration background, and native language. Significance level: * p < 0.10;

** p < 0.05 ; *** p < 0.01.
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Table 6: Spline Regressions

17.5 18.5 19.5 20.5 21.5 22.5 23.5

(1) (2) (3) (4) (5) (6) (7)

Panel A: Language

Class size < knot 0.0139 0.0137 0.0143 0.0072 -0.0015 -0.0076 -0.0119*

(0.0215) (0.0161) (0.0129) (0.0105) (0.0085) (0.0071) (0.0065)

Class size ≥ knot -0.0250*** -0.0287*** -0.0354*** -0.0413*** -0.0455*** -0.0503*** -0.0550***

(0.0058) (0.0063) (0.0073) (0.0088) (0.0107) (0.0131) (0.0174)

N 37,847 37,847 37,847 37,847 37,847 37,847 37,847

R2 0.269 0.269 0.270 0.270 0.270 0.269 0.269

Panel B: Math

Class size < knot 0.0020 0.0075 0.0110 0.0077 0.0050 -0.0008 -0.0057

(0.0227) (0.0170) (0.0141) (0.0124) (0.0107) (0.0094) (0.0084)

Class size ≥ knot -0.0164* -0.0196** -0.0254** -0.0312** -0.0405** -0.0466** -0.0506*

(0.0088) (0.0093) (0.0105) (0.0128) (0.0160) (0.0207) (0.0276)

N 36,845 36,845 36,845 36,845 36,845 36,845 36,845

R2 0.161 0.162 0.162 0.162 0.162 0.162 0.162

Year FE Yes Yes Yes Yes Yes Yes Yes

School FE Yes Yes Yes Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes Yes Yes Yes

Notes: The table reports OLS results for different linear spline specifications with a single knot the position of

which is indicated in the column header. The coefficients measure class size effects for the specified interval in

the first column. Standard errors clustered at the level of the combined schools in 2005 are given in parentheses.

Individual controls include dummies for age in years, gender, number of books at home, migration background,

native language, and an indicator of insufficient German proficiency. Significance level: * p < 0.10; ** p < 0.05;

*** p < 0.01.
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Table 7: Heterogeneity OLS

(1) (2) (3) (4) (5) (6) (7)

Panel A: Language

Avg. class size grade 3 -0.021*** -0.018*** -0.019*** -0.018*** -0.018*** -0.017*** -0.019***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

× female 0.003

(0.003)

× older than 9 years -0.016***

(0.006)

× few books -0.007

(0.004)

× migration background -0.014***

(0.005)

× insufficient German proficiency -0.035***

(0.001)

× dyslexia -0.041***

(0.001)

× dyscalculia -0.032***

(0.001)

N 36,845 36,845 36,845 36,845 36,845 36,845 36,845

Panel B: Math

Avg. class size grade 3 -0.013* -0.012* -0.013* -0.012* -0.013* -0.013* -0.013*

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

× female -0.002

(0.004)

× older than 9 years -0.015***

(0.005)

× few books -0.005

(0.005)

× migration background -0.013**

(0.005)

× insufficient German proficiency -0.024***

(0.001)

× dyslexia -0.023***

(0.001)

× dyscalculia -0.044***

(0.001)

N 37,847 37,847 37,847 37,847 37,847 37,847 37,847

Year FE Yes Yes Yes Yes Yes Yes Yes

School FE Yes Yes Yes Yes Yes Yes Yes

Age controls Yes Yes Yes Yes Yes Yes Yes

Limited German proficiency Yes Yes Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports OLS results where each column panels A and B contains the results for a separate regression

with the same specification as that of column 3 in Table 5, except that the class size variable is interacted with an

indicator variable for the individual student characteristics. Few books is a dummy for reporting enough books to

fill one shelf or less. Standard errors clustered at the level of the combined schools in 2005 are given in parentheses.

Individual controls include age in years, gender, number of books at home, migration background, learnings disabilities,

and native language. Significance level: * p < 0.10; ** p < 0.05 ; *** p < 0.01.
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Table 8: The Effect of Class Size on Grade Repetition

OLS IV

(1) (2) (3) (4)

Repeater in % 0.106** 0.110** 0.157*** 0.152***

(0.044) (0.045) (0.053) (0.053)

% - change 4.80 4.95 7.09 6.87

Year FE Yes Yes Yes Yes

School FE Yes Yes Yes Yes

Adjusted Repeater No Yes No Yes

N School-years 872 872 871 871

F-Test 1,135 1,135

Notes: The table reports estimates of the effect of class size

in 1st grade on grade repetition rates in 1st grade. The out-

come variable in columns 2 and 4 is the grade repetition rate

for students who have not been retained before. The instru-

ment in Columns 3 to 4 is the predicted class size based on

imputed cohort size. The unit of observation is the school-

cohort-level. Regressions are weighted by total enrollment.

The sample includes all schools with at least one class per

grade for the academic years 2001/2002 - 2004/2005. F-Test

reports the F-test for the excluded instrument. Standard

errors clustered at the school-level are given in parentheses.

Significance level: * p < 0.10; ** p < 0.05; *** p < 0.01.

51



Figures

Figure 1: Class Size Variation
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Notes: The figure shows density plots for the total and the within-school variation in average class size

in grade 3, where average class size in grade 3 is normalized to have mean zero.
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Appendix

A Models of school systems with selective grade pro-

gression

A.1 School system with grade retention

To examine the validity of within-school designs to estimate class size effects, we extend

the model of a school system with grade retention proposed by Ciccone and Garcia-Fontes

(2014) below.55 Our model differs in that it accommodates classes of different sizes, thus

allowing to study how shocks that translate into differences in class size affect observed

test scores in higher grades.56 This helps to clarify what parameters are identified in

different empirical designs.

In each year t a new cohort that consists of a continuum of students with mass N t
s

starts primary school in school s. To simplify the model, we assume that schools have only

one class per grade, such that the number of students per grade and school corresponds

to actual class size.57 Our model consists of two phases. We assume that students spend

the first L school years in lower grades (LG). At the end of the Lth year in primary

school, students move to higher grade (HG) if their academic skills a are higher than

their school’s academic threshold for grade retention p, i.e.

atis > pts (A.6)

where atis is the academic ability of student i in school s from cohort t and pts is the

retention threshold for school s and cohort t. Students with skills below the academic
55Naturally, this section draws heavily on Ciccone and Garcia-Fontes (2014).
56Ciccone and Garcia-Fontes (2014) set up a model that allows to study the effects of the gender

composition of birth cohorts on the skills of students. Class size is kept constant in their model.
57Hence, we abstract from maximum class size rules that determine the number of classes per grade,

but our view is that accounting for these rules would add more tedious complications than real insight.
However, in simulations, which we do not report here, we can show that the implications of our model
for the estimation of class size effects also hold if there are more than two classes in a school-year cell.
We discuss the implications of class size thresholds in Section 7.1.
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threshold atis < pts spend another year in LG and move to HG after L+ 1 years in LG.58

We assume that the size and the grade retention threshold of cohorts are distributed with

school-specific means

N t
s = Ns + ηts (A.7)

pts = ps + νts (A.8)

where ηts and νts are i.i.d. shocks at the school-year level with mean zero and positive

variance (i.e. V ar(ηts) > 0 and V ar(νts) > 0).59 The distribution of individual students’

skills in cohort t in school s after L years in LG, atis, is taken to be uniform with density

1/2θ and a school-cohort specific mean αts. To capture class size effects in LG, the school-

cohort specific mean in accumulated skills depends on class size in LG as follows

αts = αs + πLGN t
s + εts (A.9)

where πLG is the effect of class size in LG on academic skills and εts are i.i.d. shocks

with mean zero and positive variance. In combination with the rule for grade retention

in (A.6), this implies that the share of students (λ) in cohort t who are not retained and

hence reach HG in year t+ L is60

λts =
αts + θ − pts

2θ
(A.10)

Class size in HG in school s in the school year starting in τ depends on the size of cohort

τ − L and the share of non-retained students in that cohort as well as the size of cohort
58We assume that students can be retained only once.
59If the assumption of i.i.d. shocks to the size of birth cohorts is relaxed to allow for serial autocor-

relation in ηts, it can be shown that under certain conditions, the positive bias to be derived below is
increased. We explore this extension in Appendix D.

60To ensure that the share of students who are not retained in LG in each school is between zero and
one, we impose the following parameter restriction:

−θ ≤ αt
s − pts ≤ θ
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τ − L− 1 and the share of retained students in that cohort

N obs
sτ = λτ−Ls N τ−L

s + (1− λτ−L−1s )N τ−L−1
s (A.11)

The share of non-retained students in HG in school s in the school year starting in τ is

therefore

φτs =
λτ−Ls N τ−L

s

N obs
sτ

=
λτ−Ls N τ−L

s

λτ−Ls N τ−L
s + (1− λτ−L−1s )N τ−L−1

s

(A.12)

In HG students acquire skills equal to wisτ , which are obtained as i.i.d. draws from

a distribution with constant variance and a school-cohort specific mean ωsτ that is a

function of class size in HG

ωsτ = ω̃sτ + πHGN obs
sτ (A.13)

where πHG captures the effect of class size in HG and ω̃sτ are exogenous shocks. Thus, the

sum πLG + πHG captures the combined effect of class size in LG and HG on accumulated

academic skills. This is our main parameter of interest, which we refer to as the “pure

class size effect.” At the end of HG, students take a standardized test. The average test

performance of non-retained students reflects their academic skills accumulated in LG

and HG, atis +ωis,t+L. The average test performance of these students from cohort t who

reach HG in year τ = t+ L can be written as

E
(
testtis|non− retained

)
= E

(
testtis|atis ≥ pts

)
=
αts + θ + pts

2
+ ωs,t+L (A.14)

where E (a|a ≥ p) denotes the average skills of non-retained students in HG and ωs,t+L

denotes the average skills these students accumulate in HG in year t + L. The test

performance of retained students who reach HG one year later is atis + wis,t+L+1 + δts,

where δts captures a school and birth cohort specific change in skills associated with grade

repetition. This change in skills may be positive or negative. The average performance
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of these retained students in HG is

E
(
testtis|retained

)
= E

(
testtis|atis < pts

)
=
αts − θ + pts

2
+ δts + ωs,t+L+1

(A.15)

where E (a|a < p) denotes the average skills after L years in LG of students who were

retained. The average test performance of all students in HG in year τ can be derived by

combining (A.12), (A.14) and (A.15)

testsτ = φτ−Ls E
(
testτ−Lis |non− retained

)
+ (1− φτ−Ls )E

(
testτ−L−1is |retained

)
(A.16)

So far, we only modeled grade retention between LG and HG in primary school. However,

it is straightforward to modify this framework to either capture redshirting (i.e. keeping

students another year in childcare before enrolling in primary school) or the early enroll-

ment of children with accelerated maturity. This is important as redshirting and early

enrollment have similar implications for the estimation of class size effects as grade reten-

tion. To model these differences in the timing of school enrollment, LG would refer to the

last year in childcare before primary school entry and HG would refer to the first grade

of primary school. Children are redshirted if their skills fall below a certain threshold.

Similarly, students with skills above a higher threshold enter HG one year earlier than

planned. These models are explored more fully in Appendix A.3.

A.2 Model implications

A useful starting point to understand what is identified through different within-school

empirical designs in school systems of the type modeled in the previous section is the

special case that resembles experimental conditions. In this setting, where everything is

assumed to be constant across schools and cohorts and only initial cohort size is randomly

assigned, it can be shown that commonly used within-school empirical designs are unable

to identify the pure class size effect.61 The main reason is that within-school differences
61In the experimental setting Ns = N,αt

s = α, pts = p, wt
s = w and δts = δ. This also implies that

λts = λ. The only shocks are shocks to initial class size ηts, as modeled in (A.7).
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in initial cohort size are positively correlated with within-school differences in test scores

in HG. The easiest way to see this is by assuming that there is no pure class size effect

(i.e., πLG = πHG = 0). The instrumental variable approach exploiting variation in cohort

sizes amounts to dividing the covariance of within-school changes of test scores in HG

and within-school changes in cohort size by the covariance of within-school changes of

cohort size in HG and initial cohort size. In Appendix D, we show that if there are no

class size effects this ratio is equal to

3(θ − δ)(1− λ)λ

3λ− 1
(A.17)

where (θ − δ) is the average test score difference of non-retained students and students

retained in the past, see (A.14) and (A.15), while λ is the average fraction of students

who are not retained in LG. If (θ − δ) is positive, i.e. non-retained students have higher

skills, on average, than students retained in the past, it is easy to see that using the initial

cohort size as an instrument will yield a spurious positive effect of class size if more than

one-third of students are not retained in LG (λ > 1/3).

A.3 Model extensions

A.3.1 School system with redshirting

Modifying our model to allow for reshirting corresponds to a simple relabeling of our

model in section A.1. LG now refers to the years in childcare before school entry and

HG to the first grade in primary school. Children spend L years in childcare. The grade

retention threshold p now refers to the academic skill level that children must attain

to be enrolled in first grade. Children with academic skills below this threshold spend

another year in childcare, thus entering grade 1 a year later. λts is equal to the share

of students from birth cohort t who enter grade 1 (HG) without being redshirted and

φτs is equal to the share of children in grade 1 in year τ who were enrolled on schedule.

πα and πHG capture the effects of class size on academic skills in childcare and grade 1,

respectively. The average test performance of students who were enrolled on time is then
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given in equation (A.14) and the average test performance of redshirted students is given

in equation (A.15), where δts captures school and birth cohort-specific changes in skills

associated with redshirting.

A.3.2 School system with early enrollment

To allow for early school enrollment in our model in section A, we apply the same relabel-

ing as in the model with redshirting. The only difference to the model with redshirting

is that if children attain the threshold p, they are enrolled in first grade one year earlier

than regular students (after L− 1 instead of L years). Following the line of reasoning in

section A, the share of students from birth cohort t who enter grade 1 (HG) regularly in

year t+ L is

λts =
−αts + θ + pts

2θ
(A.18)

Class size in HG in school s in the school year starting in τ depends on the size of cohorts

τ − L and τ − L + 1 as well as the share of regularly enrolled students in these birth

cohorts

N obs
sτ = λτ−Ls N τ−L

s + (1− λτ−L+1
s )N τ−L+1

s (A.19)

The share of regularly enrolled students in HG in school s in the school year starting in

τ is then

φτs =
λτ−Ls N τ−L

s

N obs
sτ

=
λτ−Ls N τ−L

s

λτ−Ls N τ−L
s + (1− λτ−L+1

s )N τ−L+1
s

(A.20)

Students take a standardized test at the end of HG. The test performance of regularly

enrolled students reflects their academic skills accumulated in LG and HG, atis + ωs,t+L.

The average test performance of these students from cohort t who reach HG in year

τ = t+ L can be written as

E
(
testtis|regular

)
= E

(
testtis|testtis < pts

)
=
αts − θ + pts

2
+ ωs,t+L (A.21)
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where ωs,t+L denotes the average skills these students accumulate in HG in year t +

L. The test performance of early enrolled students who reach HG one year earlier is

atis + ws,t+L+1 + δts, where δts captures a school and birth cohort-specific change in skills

associated with early enrollment. This change in skills may be positive or negative. The

average performance of these early enrolled students in HG is

E
(
testtis|early

)
= E

(
testtis|testtis ≥ pts

)
=
αts + θ + pts

2
+ δts + ωs,t+L−1

(A.22)

The average test performance of all students in HG in year τ is then

testsτ = φτ−Ls E
(
testτ−Lis |regular

)
+ (1− φτ−Ls )E

(
testτ−L+1

is |early
)

(A.23)

A.3.3 Implications

Analogous arguments to those in Section A.2 yield that, in a school system that allows for

redshirting or early school enrollment, there will be similar spurious class size effects, the

sign of which depends on whether redshirted or early enrolled students have, on average,

lower or higher skills than students who reach HG on schedule.

B Data

State-wide orientation exams Saarland

For 2003 and 2004, the development of test items for the centralized exams was carried

out by the Bavarian State Institute of School Quality and Education Research, an orga-

nization with more than 50 years of experience in the field of educational consulting. In

2005 and 2006, this responsibility was transferred to Saarland’s standing conferences on

language and mathematics (Landesfachkonferenzen). Since the aim of the SOE was to

safeguard quality assurance, test items were created such that they could assess students’
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competences in relation to education standards set by the Standing Conference of the

Ministers of Education and Cultural Affairs of the Länder (Kultusministerkonferenz).

The subject matter of the tests was the material from grades 2 and 3. In German, this

related to the two domains of “Reading” and “Writing / Language and Use of Language.”

In reading, reference was made to the cognitive model of van Dijk and Kintsch (1983)

that is also used in the international PIRLS studies. Questions were multiple choice and

required extracting pieces of information from short texts. The most difficult questions

further entailed meta-cognitive abilities, for example in the sense of relating texts to the

author’s likely intentions of writing them. In the domain of writing and use of language,

spelling and grammar competences were specifically tested. Therefore, students had to

complete words and reformulate sentences. The mathematics test was not further sub-

divided into different domains. However, all questions pertained to one or more of the

following general mathematical competences: modelling, problem solving, argumenta-

tion, illustration, and communication. These competences had to be applied to specific

mathematical content that students were supposed to be familiar with.

NEPS

The German National Education Panel Study (NEPS) was initially developed in 2009 to

provide information on the determinants of education, the consequences of education, and

to describe educational trajectories over the life course (Blossfeld et al., 2011). We use

data from Starting Cohort 2, which is a nationwide, representative sample of children who

were first surveyed as 4-year-olds in kindergarten in 2010/2011 and who were expected

to begin schooling in the school year of 2012/2013.62 We use data from waves 3-6 during

the academic years 2013/14-2015/2016, when these children should have been enrolled

in grades 1-4. The NEPS interviews the children and parents separately. From the

parents we know the year and month when a child first entered primary school and if

a child repeated or skipped a grade. The NEPS provides standardized test scores to

assess children’s competencies in different dimensions. We compute language, math and
62For more information on the target population see Aßmann et al. (2011).
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cognition test scores by averaging the respective standardized test scores for each domain.

For each respective score Table E.3 shows when each test was conducted that goes into

each respective score. The cognition score is the average of standardized test scores of

perceptual speed assessed by the Picture Symbol Test and reasoning assessed by matrices

tests.63

C Additional results

Simulation

We test our theoretical predictions by running simulations of a school systems that

matches the school system in Saarland in terms of the average cohort size and the fraction

of retained students in each grade. However, we abstract from the effect that class size

has on retention rates and assume that the probability to be retained is constant across

schools and cohorts. The data generating process is as follows:

• We create 268 primary schools. Each school s has an average cohort size in first

grade equal to µs which is taken from a discrete uniform distribution with support

[20, 70].

• We then create 5 consecutive first-grade cohorts for each school, whose size is given

by N c
s , where c denotes the cohort. The N c

s are random draws from a discrete

uniform distribution with support [0.8µs, 1.2µs]. Thereby, we allow cohort size to

fluctuate around the school’s mean by 20%.

• Each student is retained at most once. The probabilities that a student is retained

in first, second, or third grade are 3.2%, 2.9%, and 2.8%, respectively. These are

taken from from Table 2.
63The Picture Symbol Test is based on an improved version of the Digit-Symbol Test (DST) from the

tests of the Wechsler family by Lang et al. (2007). Each item of the matrices test for reasoning consists
of several horizontally and vertically arranged fields in which different geometrical elements are shown
with only one field remaining free. The logical rules on which the pattern of the geometrical elements is
based must to be deduced in order to be able to select the right complement for the free field from the
offered solutions.
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• We then create three grades for each cohort-school combination and assign students

to each grade and cohort according to their retention status. For example, a student

originally from cohort c, who is retained in first grade, is assigned to grade 1 of his

initial cohort and to grades 1-3 of the next cohort (c+ 1). The observed number of

students in each school-grade-cohort is N obs
scg , where g denotes the grade.

• In each grade, the number of classes is determined according to the class size rule:

Cscg =
N obs
scg

int[(N obs
scg − 1)/25] + 1

• Class size is equal to

CSscg =
N obs
scg

Cscg

• We drop the first cohort because it has no preceding cohort in which students can

be retained.

We simulate the data 1,000 times and each time estimate three school-fixed-effects

regressions separately for each grade: (1) we regress the fraction of students initially

belonging to cohort c in grade 1 who are retained up to grade g on initial cohort size N c
s ;

(2) we regress the fraction of students in grade g of cohort c who have previously been

retained on the initial size of that cohort (N c
s ); (3) we regress the fraction of students

in grade g of cohort c who have previously been retained on class size CSscg, where

we instrument class size by the predicted class size based on the initial cohort size (i.e.

N c
s/Cscg).

Descriptive statistics for the coefficients on cohort and class size from these estimations

can be found in Table E.12. By construction, belonging to an initially larger cohort (i.e.

before cohort reassignment due to grade retention) is unrelated to whether or not a

student will be retained. Hence, the coefficients for the initial cohort size in column 1

are close to zero. However, in column 2 we find a negative relationship between cohort

size and the grade-level share of previously retained student in a cohort, which becomes

stronger in higher grades. For the IV specification in column 2, we find a similar pattern

62



with more than three times as large effects. Overall, the results for grade 1 are remarkably

similar to those in column 3 of Table 3 based on actual data.

Composition effect in Saxony

Here we replicate the results from Table 3 for another German federal state, Saxony.

We have administrative, school-level enrollment and grade retention data for all public

primary schools for the 2004-2015 school years for the state of Saxony. Columns 1-3 of

Table C.1 show estimates for Saxony analogous to those reported in Table 3 with similar

findings. In addition, the data for Saxony contain information on the number of students

who have been retained in grades 2 and 3. This allows us to explore how initial birth

cohort size affects the grade-level composition of students in higher grades. In columns 4

and 5 of Panel A, we, therefore, regressed the fraction of students who have been retained

until grade 2 and 3 on the imputed cohort size. Columns 4 and 5 of Panel B show results

where the same outcomes are regressed on class size in grade 2 and 3, instrumented by the

predicted class size based on the imputed cohort size. The fact that the IV estimate for

class size in grade 3 in column 5 of Panel B is about three times the size of the coefficient

for grade 1, suggests that we can approximate the corresponding effect in grade 3 for

Saarland by simply multiplying the effect in column 3, Panel B of Table 3 by three.

[Table C.1 about here]

Skill differences between different groups of students

The theoretical results in Section 3 imply that instrumental variable estimates will be

biased if non-retained students have skills that differ, on average, from retained, redshirted

and early enrolled students. Here we test for average skill differences between these

groups. As mentioned before, our data for Saxony only contain students’ age in years.

This precludes to distinguish between students who were enrolled one year too late and

those who were retained in primary school, as they will both appear as older than 9 years

in our data. Further, we cannot distinguish between students who were enrolled one year
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early and those who were born between May and June but enrolled on time. Instead, we

use data from the NEPS starting cohort 2, which is a representative sample of primary

school children from Germany. The NEPS contains several skill measures, information

on whether a child has been retained and the timing of school enrollment.64 Thus, it

allows identifying each group of students. Table C.2 reports results from regressions of

measures of language, math and cognitive skills on dummy variables for each separate

group of students. As expected, retained and late enrolling children score lower on all

three skill tests. The point estimate for grade repeaters for math implies that students

who have been retained in the past have 0.9 SD lower math skills than regular students.

Surprisingly, students who were enrolled early do not differ significantly from regular

students in terms of their skills. Therefore, we expect the potential bias introduced by

early enrollment to be of little concern.65

[Table C.2 about here]

Testing for random assignment of cohort size

In a second approach, we test student characteristics’ balance with respect to birth cohort

size drawing on the SOE student-level data. In Table E.4, each cell contains the result

from a separate regression of the student characteristic listed in the leftmost column on

the respective variable in the column head. The first two columns show that all variables

we consider are highly relevant predictors of student skills in terms of language and math

test scores and have the expected signs. Columns 3-5 report the results of regressing the

student characteristics on imputed cohort size. Almost half of the coefficients in column

3 are significant which is evidence for considerable across-school-sorting of students with

respect to cohort size. Once we condition on school fixed effects in column 4, most coef-

ficients turn insignificant. However, consistent with our model’s prediction of a negative
64More information on this dataset and how we constructed the skill measures is provided in Appendix

B.
65Another potential concern are students who skip a grade. Table C.2 shows that these students have

up to 0.96 SD better skills than regular students. However, the share of students who skip a grade before
grade 3 is very low. There are no official data on grade skipping for Saarland, but NEPS data show that
less than 0.6 percent of students skip a grade before grade 3 in Germany.
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relationship between initial cohort size and the share of students held back or enrolled

early on the grade-level, the coefficients for being older and younger than typical third

graders are significant and negative.66 More generally, any significant effects in column

4 could be the result of compositional changes caused by initial cohort size. This can

explain the significant negative coefficients for limited Germany proficiency and reporting

none or few books at home as these are characteristics that correlate strongly with having

been enrolled late or retained.

[Table C.1 about here]

To actually test whether the initial birth cohort composition is balanced with respect

to cohort size, we need to assign students to their respective birth cohorts. To this end,

we reassign students who report being older than 9 years to the cohort of the previous

year. The results of these regressions are reported in column 5.67 In contrast to column

4, the significant associations of cohort size with limited German proficiency, being older

than 9 years, and reporting none or few books at home disappear. These results indicate

that within schools student characteristics of birth cohorts are balanced with respect to

birth cohort size.68

Testing for bias due to different class size thresholds

We next examine whether the lower class size thresholds for grades with more students

with insufficient German proficiency could lead to a positive bias in within-school es-

timates of class size effects. Table C.3, column 1 reports results where we regress the
66We suspect that these patterns were not discovered in previous within-school studies which per-

formed similar balancing tests such as Wößmann and West (2006) because they only checked for a linear
relationship between age and class size. Note that in column 4 there is no significant effect for cohort
size on age in years despite the significant negative effects for being older and younger than 9.

67Since we lack data for 2002, we cannot assign grade repeaters and late enrolled students to the birth
cohort that reaches 3rd grade regularly in 2003. Hence, we drop this cohort for the regressions in column
5. However, the results are very similar when this cohort is included. Further, we refrain from assigning
students who report being younger than 9 to next year’s birth cohort because most of these students
were born between May and June and, hence, reached grade 3 on schedule rather than being enrolled
early. This explains why we still find significant effects for being younger than 9 in column 5.

68As expected when running a number of regression testing multiple hypotheses, some coefficients are
weakly statistically significant. In the absence of any correlation between birth cohort size and student
characteristics we would expect 10 percent of coefficients to be statistically significant at the 10 percent
significance level. The share of significant coefficients (not counting the coefficient for being younger
than 9) in column 5 is, at 14 percent, only slightly above this expected value.
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number of classes in grade 3 on an indicator for insufficient German proficiency measured

in grade 3, total enrollment in grade 1, and school fixed effects. The positive coefficient

for German proficiency indicates that grades with more students not proficient in Ger-

man have significantly more classes holding enrollment constant. This, in turn, implies

that class size for these students is about 0.169 students smaller than it is for students

proficient in German from the same school with the same number of students in a grade;

see column 2. Because of this feature of the data, we will control for German proficiency

in some of the analyses below.

[Table C.3 about here]
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Table C.1: Effects of Cohort Size on the Grade-Level Student Composition for Saxony

% Late enrolled % Early enrolled % Repeater

Grade 1 Grade 2 Grade 3

(1) (2) (3) (4) (5)

Panel A: OLS grade composition

Imputed cohort size -0.048** -0.011*** -0.048*** -0.058** -0.074**

(0.024) (0.004) (0.016) (0.024) (0.031)

Panel B: IV grade composition

Class size -0.495*** -0.070*** -0.362*** -0.602*** -1.036***

(0.044) (0.015) (0.026) (0.044) (0.082)

N SchoolYearObs 3,921 3,921 3,921 3,921 3,921

Notes: Each cell contains results for separate, weighted regression with weights equal to total

enrollment. Columns 1-3 in Panel A report estimates of the effects of imputed cohort size on the

percentage of repeating-, late- and early enrolled students in grade 1. Columns 4-5 report estimates

of the effects of imputed cohort size on the percentage of repeating students in grade 2 and grade 3,

respectively. Columns 1-3 in Panel B report instrumental variables estimates of average class size in

grade 1 on the percentage of repeating-, late- and early enrolled students in grade 1. The instrument

for class size is imputed cohort size divided by number of classes. Columns 4-5 report instrumental

variables estimates of average class size in grade 2 and 3 on the percentage of repeating-, late-

and early enrolled students in grade 2 and 3. The instrument for class size the respective grade is

imputed cohort size divided by number of classes. Regressions include school and year fixed effects.

Standard errors clustered at the school-level are given in parentheses. Significance level: * p < 0.10;

** p < 0.05; *** p < 0.01.
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Table C.2: Differences in Skills of Late-, Early En-
rolled, and Grade Repeating Students

Language Math Cognition

(1) (2) (3)

Late enrolled -0.219*** -0.284*** -0.160***

(0.048) (0.044) (0.050)

Grade repeater -0.717*** -0.910*** -0.525***

(0.059) (0.056) (0.079)

Early enrolled -0.031 0.047 0.022

(0.046) (0.048) (0.045)

Grade skipper 0.940*** 0.963*** 0.507***

(0.165) (0.115) (0.115)

N 5,727 6,373 5,153

Notes: Each column contains the coefficients for a

regression of the respective skill on the variables

listed in the rows. Source: NEPS Data, Data Ver-

sion SC2: 6.0.1. Robust standard errors are given

in parentheses. Significance level: * p < 0.10; **

p < 0.05; *** p < 0.01.
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Table C.3: The Effects of Insufficient German Proficiency
on Number of Classes and Class Size

# classes Class size

(1) (2)

Insufficient German proficiency 0.017** -0.169**

(0.007) (0.074)

Enrollment grade 1 0.040*** 0.035**

(0.002) (0.016)

School FE Yes Yes

N Students 38,415 38,415

Notes: Each column contains results for a separate regressions.

Standard errors clustered at the combined school-level are given

in parentheses. Significance level: * p < 0.10; ** p < 0.05 ; ***

p < 0.01.
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D Proofs

To prove the results in Section 3 and Appendix A.2, note that in the case of two periods,

the within-school estimator is equivalent to the first difference estimator. We first linearize

the within-school change in observed class size in high grade (HG), ∆N obs
sτ = N obs

sτ −N obs
s,τ−1,

around N t
s = N , αts = α, and pts = p and we assume w.l.o.g. that N = 1. Making use of

(A.10) and (A.11), this yields

∆N obs
sτ =

(
πLG

2θ
+ λ

)
∆N τ−L

s +

(
1− λ− πLG

2θ

)
∆N τ−L−1

s

+
1

2θ

(
∆ατ−Ls −∆ατ−L−1s −∆pτ−Ls + ∆pτ−L−1s

) (D.1)

where λ = α+θ+p
2θ

, ∆N t
s = N t

s −N t−1
s , ∆αts = αts − αt−1s and ∆pts = pts − pt−1s . Linearizing

the within-school change in the average test score in HG, ∆testsτ = testsτ − tests,τ−1,

using (A.7)-(A.16) yields

∆testsτ =

[(
λ+

πLG

2θ

)
(1− λ)(θ − δ) + λ

πLG

2
+ πHG(λ+

πLG

2θ
)

]
∆N τ−L

s

+

[
λ

(
πLG

2θ
− 1 + λ)

)
(θ − δ) +

πLG

2
(1− λ) + πHG(1− λ− πLG

2θ
)

]
∆N τ−L−1

s

+

(
(θ − δ)1− λ

2θ
+
λ

2

)(
∆ατ−Ls −∆pτ−Ls

)
+

(
(θ − δ) λ

2θ
+

1− λ
2

)(
∆ατ−L−1s −∆pτ−L−1s

)
(D.2)

D.1 Retention bias without “true class size effects”

To prove the result in (A.17), we assume that there are no class size effects, πLG = πHG =

0, and that academic skills and the thresholds for grade retention are the same across

schools and cohort, αts = α and pts = p. There are only shocks to cohort size as modeled
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in (A.7). In this case (D.1) and (D.2) simplify to

∆N obs
sτ = λ∆N τ−L

s + (1− λ) ∆N τ−L−1
s (D.3)

∆testsτ = λ(1− λ)(θ − δ)
(
∆N τ−L

s −∆N τ−L−1
s

)
(D.4)

and the assumption of i.i.d. shocks to cohort size implies

Cov(∆testsτ ,∆N
τ−L
s ) = 3V ar(η)(θ − δ)(1− λ)λ

Cov(∆N obs
sτ ,∆N

τ−L
s ) = V ar(η)(3λ− 1)

(D.5)

The IV estimator is equal to the ratio of these two covariances

βIV =
Cov(∆testsτ ,∆N

τ−L
s )

Cov(∆N obs
sτ ,∆N

τ−L
s )

=
3(θ − δ)(1− λ)λ

3λ− 1

(D.6)

which is positive if students retained in the past perform on average worse than non-

retained students, θ − δ > 0, and less than 2/3 of all students are retained (λ > 1/3).

D.2 IV results

To derive βIV in (1), we need to calculate the covariances Cov(∆tests,τ ,∆N
obs
sτ ) and

Cov(∆N obs
sτ ,∆N

τ−1
s ). Under our assumption of i.i.d. shocks to the cohort size N t

s, ηts, it

is straightforward to show

Cov(∆N obs
sτ ,∆N

τ−L
s ) = V ar(η)

(
3
πLG

2θ
+ 3λ− 1

)
(D.7)

and

Cov(∆testobssτ ,∆N
τ−L
s ) = V ar(η)(θ − δ)

[
3λ(1− λ) +

πLG

2θ
(2− 3λ)

]

+ V ar(η)

[
πLG

2
(3λ− 1) + πHG

(
3
πLG

2θ
+ 3λ− 1

)] (D.8)
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Taking the ratio of (D.8) and (D.7) gives the IV estimator

βIV =
Cov(∆tests,τ ,∆N

τ−L
s )

Cov(∆N obs
sτ ,∆N

τ−L
s )

= ρIV (θ − δ) + ξIV π
LG + πHG

(D.9)

where

ρIV =
3λ(1− λ) + πLG

2θ
(2− 3λ)

3π
LG

2θ
+ 3λ− 1

(D.10)

and

ξIV =
1

2

3λ− 1

3π
LG

2θ
+ 3λ− 1

(D.11)

ξIV will be approximately equal to 1/2. To see this note that −πLG/2θ is the marginal

effect of class size in LG on the share of grade repeaters in LG.69 This effect is likely to

be very small relative to 3λ− 1 and therefore can be neglected.70 Analogous arguments

yield that the terms in (D.10), which include πLG/2θ, have only a negligible impact on

the size of ρIV . It then follows that ρIV ≥ 0 if class size has a negative effect on skills in

LG, πLG < 0 and the share of retained students is smaller than 1/3.

D.2.1 IV result controlling for the effect of grade retention at the individual

level

To derive β̂REAIV in (2) for the instrumental-variables approach, notice that controlling for

the effect of grade retention on academic achievement at the individual level is equivalent

to adjusting the academic achievement of retained students by the average gap in aca-

demic achievement between retained and non-retained students in the same grade and

school. This gap is θ − δ (see, (A.14) and (A.15)). Therefore, the average test score in
69To see this, simply take the derivative of 1− λts with respect to N t

s using (A.10).
70Our estimate for the marginal effect of class size on the share of grade repeaters in grade 1 is 0.0015

(see column 4 of Table 8). If we assume this effect is constant for grades 1 through 3, this estimate
implies a value of πLG/2θ equal to 0.0045. Multiplying this by 3 still gives a value that is two orders of
magnitude smaller than our estimate for 3λ−1, which is equal to 1.67 given that the average accumulated
retention rate in grade 3 (= 1− λ in our setting) is equal to 0.11 (see Table 2).
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HG adjusted for the effect of grade retention at the individual level becomes

testREAsτ = φτsE (testτis|non− retained) + (1− φτs)
(
E (testτis|retained) + (θ − δ)

)
(D.12)

which differs from testsτ in (A.16) only in the θ − δ term. Linearizing ∆testREAsτ =

testREAsτ − testREAsτ−1 by following the same steps we used to obtain (D.2) then yields

∆testREAsτ =

[
λ
πLG

2
+ πHG(λ+

πLG

2θ
)

]
∆N τ−L

s

+

[
πLG

2
(1− λ) + πHG(1− λ− πLG

2θ
)

]
∆N τ−L−1

s

+
λ

2

(
∆ατ−Ls −∆pτ−Ls

)
+

1− λ
2

(
∆ατ−L−1s −∆pτ−L−1s

)
(D.13)

The covariance of ∆testREAsτ and ∆N τ−L
s can be shown to be

Cov(∆testREAsτ ,∆N τ−L
s ) = V ar(η)

[
πLG

2
(3λ− 1) + πHG

(
3
πLG

2θ
+ 3λ− 1

)]
(D.14)

Taking the ratio of (D.14) and (D.7) gives the IV estimator when controlling for grade

retention on the individual level

βREAIV =
Cov(∆testREAs,τ ,∆N τ−L

s )

Cov(∆N obs
sτ ,∆N

τ−L
s )

= ξIV π
LG + πHG

(D.15)

where ξIV is defined in (D.11).

D.3 OLS results

To derive β̂OLS in (3), we need to calculate the variance of ∆N obs
sτ , and the covariance

of ∆tests,τ and ∆N obs
sτ . Under our assumption of i.i.d. shocks to N t

s, αts, and pts it is
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straightforward to show that

V ar(∆N obs
sτ ) = 2V ar(η)

(
(λ+

πLG

2θ
)2 + (1− λ− πLG

2θ
)2 − (λ+

πLG

2θ
)(1− λ− πLG

2θ
)

)

+
6

4θ2
(V ar(ε) + V ar(ν))

(D.16)

and

Cov(∆testsτ ,∆N
obs
sτ ) = (θ − δ)

[
V ar(η)

(
(λ+

πLG

2θ
)(1− λ)

(
λ+ λ2 +

πLG

2θ
(2 + λ)

)

+ λ(1− λ− πLG

2θ
)

(
3λ+ 3

πLG

2θ
− 2

))

+ (V ar(ε)− V ar(ν))
1− 2λ

4θ2

]

+ (V ar(ε)− V ar(ν))
6λ− 3

4θ

+
πLG

2
V ar(η)(2λ− 1)

(
(3λ− 1)(λ+

πLG

2θ
)− (3λ− 2)(1− λ− πLG

2θ
)

)

+ 2πHGV ar(η)

(
(λ+

πLG

2θ
)2 + (1− λ− πLG

2θ
)2 − (λ+

πLG

2θ
)(1− λ− πLG

2θ
)

)
(D.17)

Taking the ratio of (D.17) and (D.16) and collecting terms gives the OLS estimator

βOLS =
Cov(∆tests,τ ,∆N

obs
sτ )

V ar(∆N obs
sτ )

= ρOLS (θ − δ) + ιOLS + ξOLSπ
LG + πHG

(D.18)

where

ρOLS =
V ar(η)

[
(λ+ πLG

2θ
)(1− λ)

(
λ+ λ2 + πLG

2θ
(2 + λ)

)
+ λ(1− λ− πLG

2θ
)
(

3λ+ 3π
LG

2θ
− 2
) ]

V ar(N obs
sτ )

+

(
V ar(ε)− V ar(ν)

)
2λ−1
4θ2

V ar(N obs
sτ )

(D.19)
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and

ιOLS =
(V ar(ε)− V ar(ν)) 6λ−3

4θ
− πHG 6

4θ2
(V ar(ε) + V ar(ν))

V ar(N obs
sτ )

(D.20)

and

ξOLS =
1

2

V ar(η)(2λ− 1)
[
(3λ− 1)(λ+ πLG

2θ
)− (3λ− 2)(1− λ− πLG

2θ
)
]

V ar(N obs
sτ )

(D.21)

Using similar arguments about the relative magnitude of πLG/2θ and λ as above, suggests

that the terms involving πLG/2θ in (D.19) and (D.21) can be neglected. In that case,

it is easy to show that ξOLS < 1. The signs of (D.19) and (D.20), however, depend

on the difference in the variance of the shocks to ability levels and retention thresholds

(V ar(ε)− V ar(ν)). Unless we make assumptions about the relative magnitudes of these

shocks, the signs of ρOLS and ιOLS are indeterminate.

D.3.1 OLS result controlling for the effect of grade retention at the individual

level

Next, we derive βREAOLS in (4) following the same logic as in the previous two sections. The

covariance of ∆testREAsτ and ∆N obs
sτ can be shown to be

Cov(∆testREAsτ ,∆N obs
sτ ) = (V ar(ε)− V ar(ν))

[
3

2λ− 1

4θ2
δ + 6

πHG

4θ2

]
+ V ar(η)

{
πLG

2

[
4λ
πLG

2θ
− πLG

2θ
+ 4λ2 − 2λ

]

+ πHG
[
6

(
πLG

2θ

)2

− 6
πLG

2θ
− 12λ

πLG

2θ
+ 6λ2 − 6λ+ 2

]} (D.22)

Taking the ratio of (D.22) and (D.16) gives the OLS estimator with grade retention

controls

βREAOLS =
Cov(∆testREAs,τ ,∆N obs

sτ )

V ar(∆N obs
sτ

= ιOLS + ξOLSπ
LG + πHG

(D.23)
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where ιOLS and ξOLS are defined in (D.20) and (D.21), respectively.

D.4 Proofs for the non-i.i.d. case of birth cohort size shocks

In results, which we do not report here, we calculated autocorrelations for residuals from

a regression of imputed cohort size on school-fixed effects. We find that these residuals

have negative first- and second-order autocorrelations. This is consistent with the notion

that women who give birth in year t are less likely to give birth in year t + 1 and t + 2.

Thus, we investigate the implications of negatively autocorrelated shocks to the size of

birth cohorts for the simple spurious class size effect without any “true class size effects.”

For that case the spurious positive class size effect for the IV approach can be shown to

be even larger than in the i.i.d. case in (A.17) under fairly general conditions. Theorem

1 summarizes this result:

Theorem 1 Let ηts be non-i.d.d. shocks that follow a stationary process. If

(i) less than one-third of all students are retained in LG (λ ∈ (2/3, 1)),

(ii) non-retained students have higher skills, on average, than students retained in the

past (θ − δ > 0),

(iii) the first- and second order autocorrelations of ηts (ρ1 and ρ2) are negative but larger

than -1 (−1 < ρ1, ρ2 < 0), and

(iv) the absolute value of the second-order autocorrelation of ηts is less than 3 times as

large as the absolute value of its first-order autocorrelation (3ρ1 < ρ2),

then the IV approach in the absence of “true class size effects” yields a larger spurious

positive class effect than in the i.d.d. case.

To prove Theorem 1, let φh denote the autocovariance of ηts between year t and t + h.

Using (D.3)-(D.4) and stationarity of ηts yields

Cov
(
∆testsτ ,∆N

τ−L
s

)
= λ(1− λ)(θ − δ)

[
3(φ0 − φ1) + φ2

]
(D.24)

Cov
(
∆N obs

sτ ,∆N
τ−L
s

)
= (3λ− 1)φ0 − (3λ− 2)φ1 + λφ2 (D.25)
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Taking the ratio of (D.24) and (D.25) yields the spurious class size effect for the case

of non-i.i.d. shocks to birth cohort size

Cov
(
∆testsτ ,∆N

τ−L
s

)
Cov (∆N obs

sτ ,∆N
τ−L
s )

= λ(1− λ)(θ − δ) 3(φ0 − φ1) + φ2

(3λ− 1)φ0 − (3λ− 2)φ1 + λφ2

(D.26)

Let ρh denote the autocorrelation of ηt between time period t and t+ h. In that case,

expressing (D.26) in terms of autocorrelations yields

λ(1− λ)(θ − δ) 3− 3ρ1 + ρ2
(3λ− 1)− (3λ− 2)ρ1 + λρ2

(D.27)

To complete the proof, it remains to be shown that (D.27) is greater than (A.17) using

conditions (i)− (iv)

λ(1− λ)(θ − δ) 3− 3ρ1 + ρ2
(3λ− 1)− (3λ− 2)ρ1 + λρ2

> λ(1− λ)(θ − δ) 3− 3ρ1 + ρ2
(3λ− 2) + (3λ− 2)ρ1

> λ(1− λ)(θ − δ)3− 3ρ1 + ρ2
2(3λ− 2)

>
3λ(1− λ)(θ − δ)

2(3λ− 2)

>
3λ(1− λ)(θ − δ)

(3λ− 1)
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E Additional figures and tables

Table E.1: Summary of Within-School and Between-Cohort Studies

School system allows

Study Country Grade at test Outcome Significant effect Level of data aggregation Grade retention Late school enrollment

Hoxby (2000) US 4/6 test scores no school-district yes yes

Rivkin et al (2005) US 3-7 test scores yes student yes yes

Wößmann (2005) EUR* 7-8 test scores mostly no student mostly yes mostly yes

Jakubowski & Sakowski (2006) POL 6 test scores yes class yes yes

Wößmann & West (2006) EUR† 7-8 test scores mostly no student mostly yes mostly yes

Leuven et al (2008) NOR 7-9 test scores no student no yes

Jepsen & Rivkin (2009) US 2-4 test scores yes school yes yes

Heinesen (2010) DNK 10 GPA yes student yes yes

Cho et al (2012) US 3/5 test scores yes school-district yes Yes

Gary-Bobo & Mahjoub (2013) FRA 6-9 grade retention yes student yes yes

Denny & Oppedisano (2013) US/UK 9-11 test scores yes (opposite sign) student yes/no yes/no

Notes: US=United States; EUR=European countries; POL=Poland; NOR=Norway; DNK=Denmark; FRA=France; UK=United Kingdom; *=15 European

countries;†=10 European countries + Singapore. Significant effect refers to negative class size coefficients that are significant at the 5 percent level. Level of

data aggregation refers to the level at which the outcome variables are measured.
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Table E.2: Structure of Saarland Data

Academic year Enrollment in grade 1 Test data in grade 3

(School-level) (Student-level)

2000/01 �

2001/02 �

2002/03 �

2003/04 � �

2004/05 � �

2005/06 � �

2006/07 �

Notes: Enrollment refers to data on the number of students

in grade 1 in the respective academic year who were enrolled

one year late, enrolled one year early, and retained in the

previous year.
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Table E.3: Structure of NEPS Data

2011 2012 2013 2013/2014 2014/2015 2015/2016

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Expected Grade:

1 2 3 4

Language

Reading Competence � �

Reading Speed �

Vocabulary � �

Grammar �

Math � � �

Cognition �

Notes: The expected grade refers to the grade that a student should be in if (s)he was

enrolled on time and did not skip or repeat a grade.
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Table E.4: Balancing Tests

Explanatory variables

Test Score Equations Balancing Test

Language Math Imputed Cohort Size

Dependent variables (1) (2) (3) (4) (5)

Insufficient German Proficiency -0.0732*** -0.0511*** 0.0001 -0.0008** -0.0004

(0.0028) (0.0026) (0.0001) (0.0003) (0.0003)

Older than 9 at test date -0.0877*** -0.0688*** 0.0001 -0.0009*** -0.0004

(0.0026) (0.0025) (0.0002) (0.0003) (0.0003)

Younger than 9 at test date 0.0308*** 0.0215*** -0.0002* -0.0010*** -0.0009**

(0.0019) (0.0020) (0.0001) (0.0004) (0.0004)

Age in years -0.1340*** -0.1013*** 0.0003 0.0001 0.0004

(0.0042) (0.0040) (0.0003) (0.0006) (0.0006)

Male -0.0521*** 0.0369*** -0.0002 0.0007* 0.0008*

(0.0029) (0.0028) (0.0001) (0.0004) (0.0005)

Migration Background -0.0827*** -0.0564*** 0.0012*** -0.0004 -0.0001

(0.0052) (0.0041) (0.0004) (0.0004) (0.0004)

Non-native German Speaker -0.0851*** -0.0581*** 0.0011*** -0.0006 -0.0003

(0.0054) (0.0043) (0.0004) (0.0005) (0.0005)

Reported books at home

Index 0.3129*** 0.2569*** -0.0024** -0.0001 -0.0004

(0.0104) (0.0103) (0.0011) (0.0018) (0.0015)

None or few books -0.0474*** -0.0372*** 0.0003 -0.0006** -0.0003

(0.0030) (0.0026) (0.0002) (0.0003) (0.0002)

Enough to fill one shelf -0.0515*** -0.0438*** 0.0005*** 0.0007 0.0006

(0.0024) (0.0022) (0.0002) (0.0005) (0.0005)

Enough to fill one bookcase 0.0341*** 0.0243*** -0.0001 0.0000 0.0001

(0.0028) (0.0028) (0.0002) (0.0005) (0.0005)

Enough to fill two bookcases 0.0662*** 0.0572*** -0.0006** -0.0003 -0.0003

(0.0034) (0.0036) (0.0003) (0.0006) (0.0006)

Dyscalculia -0.0401*** -0.0461*** 0.0001 -0.0007 -0.0000

(0.0024) (0.0027) (0.0001) (0.0006) (0.0006)

Dyslexia -0.0781*** -0.0467*** -0.0001 0.0002 0.0005*

(0.0032) (0.0024) (0.0001) (0.0003) (0.0003)

Rural community 0.1097*** 0.1026*** -0.0108***

(0.0198) (0.0191) (0.0032)

Problematic school district -0.0771*** -0.0675*** 0.0046***

(0.0109) (0.0100) (0.0015)

N Cluster 156 156 156 156 156

Year FE Yes Yes Yes Yes Yes

School FE Yes Yes

Cohort adjusted Yes

Notes: Each cell contains results for a separate regression. Columns 1-3 report results of OLS

regressions of the variables listed in the rows on the listed characteristics in the column header. All

regressions include cohort fixed effects. Column 4 reports results of OLS regressions of the same

variables but also controlling for school fixed effects. Column 5 reports results where students

who are older than 9 years are assigned to the cohort of the previous year. Robust standard

errors clustered at the school-level are given in parentheses. Index refers to a linear index of the

reported books at home. Significance level: * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table E.5: Full Results: The Effect of Class Size on Language Test Scores

OLS IV

Avg. class size grade 3 IV: Imputed cohort size

(1) (2) (3) (4) (5) (6) (7) (8)

AvgclassSizeGrade3 -0.016*** -0.018*** -0.020*** -0.020*** -0.007 -0.015* -0.019** -0.019**

(0.004) (0.004) (0.005) (0.005) (0.009) (0.009) (0.009) (0.009)

2004.year -0.003 0.002 0.001 -0.458*** -0.001 0.003 0.001 -0.457***

(0.025) (0.024) (0.026) (0.054) (0.025) (0.024) (0.026) (0.054)

2005.year 0.016 -0.020 -0.155*** -0.607*** 0.004 -0.024 -0.157*** -0.608***

(0.035) (0.035) (0.045) (0.061) (0.036) (0.036) (0.047) (0.063)

2006.year 0.004 -0.025 -0.157*** -0.574*** -0.005 -0.028 -0.158*** -0.575***

(0.033) (0.033) (0.040) (0.057) (0.033) (0.034) (0.041) (0.058)

9.ageIM — -0.126*** -0.088*** -0.065*** — -0.126*** -0.088*** -0.065***

(0.014) (0.013) (0.013) (0.014) (0.013) (0.013)

10.ageIM — -0.881*** -0.584*** -0.517*** — -0.881*** -0.584*** -0.517***

(0.025) (0.023) (0.022) (0.025) (0.023) (0.022)

11.ageIM — -1.156*** -0.757*** -0.642*** — -1.156*** -0.757*** -0.642***

(0.051) (0.047) (0.046) (0.051) (0.047) (0.046)

99.ageIM — -0.431*** -0.367*** -0.149 — -0.432*** -0.367*** -0.149

(0.102) (0.112) (0.209) (0.103) (0.112) (0.209)

5.germanIM — — -0.909*** -0.833*** — — -0.909*** -0.833***

(0.016) (0.015) (0.016) (0.015)

99.germanIM — — -0.389*** -0.373*** — — -0.389*** -0.373***

(0.047) (0.046) (0.047) (0.046)

1.maleIM — — — -0.136*** — — — -0.136***

(0.009) (0.009)

3.maleIM — — — -0.194 — — — -0.194

(0.179) (0.179)

1.booksIM — — — 0.206*** — — — 0.206***

(0.028) (0.028)

2.booksIM — — — 0.341*** — — — 0.341***

(0.026) (0.026)

3.booksIM — — — 0.406*** — — — 0.406***

(0.026) (0.026)

4.booksIM — — — 0.476*** — — — 0.476***

(0.028) (0.028)

5.booksIM — — — -0.110** — — — -0.110**

(0.054) (0.054)

1.migIM — — — -0.059 — — — -0.059

(0.037) (0.037)

2.migIM — — — -0.194** — — — -0.195**

(0.076) (0.077)

1.foreign — — — -0.076** — — — -0.076**

(0.032) (0.032)

2.foreign — — — 0.107 — — — 0.108

(0.093) (0.094)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Durbin-Wu-Hausman test statistic 1.485 0.227 0.028 0.011

P-Value Durbin-Wu-Hausman test 0.223 0.633 0.868 0.918

N 37,847 37,847 37,847 37,847 37,847 37,847 37,847 37,847

Notes: Each column contains results for a separate regression. Columns 1-4 report estimates of class size in grade 3 on language.

Columns 5-8 report estimates of class size in grade 3 where class size is instrumented by predicted class size based on imputed

cohort size. Standard errors clustered at the level of the combined schools in 2005 are given in parentheses. Individual controls

include gender, number of books at home, migration background and native language. Significance level: * p < 0.10; ** p < 0.05

; *** p < 0.01.
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Table E.6: Full Results: The Effect of Class Size on Math Test Scores

OLS IV

Avg. class size grade 3 IV: Imputed cohort size

(1) (2) (3) (4) (5) (6) (7) (8)

AvgclassSizeGrade3 -0.011 -0.013* -0.014** -0.014** -0.006 -0.012 -0.015 -0.014

(0.007) (0.007) (0.007) (0.007) (0.011) (0.011) (0.011) (0.011)

2004.year -0.003 0.000 -0.000 -0.321*** -0.002 0.000 -0.000 -0.321***

(0.032) (0.032) (0.034) (0.047) (0.032) (0.032) (0.034) (0.047)

2005.year -0.027 -0.056 -0.153*** -0.468*** -0.034 -0.056 -0.152*** -0.468***

(0.045) (0.045) (0.049) (0.060) (0.047) (0.047) (0.051) (0.062)

2006.year -0.037 -0.059 -0.154*** -0.442*** -0.042 -0.059 -0.154*** -0.442***

(0.046) (0.046) (0.049) (0.061) (0.047) (0.047) (0.050) (0.062)

9.ageIM — -0.079*** -0.051*** -0.052*** — -0.079*** -0.051*** -0.052***

(0.016) (0.015) (0.015) (0.016) (0.015) (0.015)

10.ageIM — -0.691*** -0.472*** -0.455*** — -0.691*** -0.472*** -0.455***

(0.025) (0.024) (0.023) (0.025) (0.024) (0.023)

11.ageIM — -0.842*** -0.551*** -0.515*** — -0.842*** -0.551*** -0.515***

(0.049) (0.047) (0.046) (0.049) (0.047) (0.046)

99.ageIM — -0.328** -0.309** -0.004 — -0.328*** -0.309** -0.004

(0.127) (0.131) (0.192) (0.127) (0.131) (0.192)

5.germanIM — — -0.668*** -0.654*** — — -0.668*** -0.654***

(0.017) (0.017) (0.017) (0.017)

99.germanIM — — -0.254*** -0.237*** — — -0.254*** -0.237***

(0.053) (0.054) (0.053) (0.054)

1.maleIM — — — 0.204*** — — — 0.204***

(0.009) (0.009)

3.maleIM — — — -0.140 — — — -0.140

(0.144) (0.144)

1.booksIM — — — 0.183*** — — — 0.183***

(0.030) (0.030)

2.booksIM — — — 0.323*** — — — 0.323***

(0.031) (0.031)

3.booksIM — — — 0.375*** — — — 0.375***

(0.033) (0.033)

4.booksIM — — — 0.442*** — — — 0.442***

(0.034) (0.034)

5.booksIM — — — 0.010 — — — 0.010

(0.049) (0.049)

1.migIM — — — 0.024 — — — 0.024

(0.044) (0.043)

2.migIM — — — -0.116 — — — -0.116

(0.071) (0.072)

1.foreign — — — 0.005 — — — 0.005

(0.038) (0.037)

2.foreign — — — 0.029 — — — 0.029

(0.104) (0.104)

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Durbin-Wu-Hausman test statistic 0.309 0.005 0.006 0.000

P-Value Durbin-Wu-Hausman test 0.578 0.944 0.939 1.000

N 36,845 36,845 36,845 36,845 36,845 36,845 36,845 36,845

Notes: Each column contains results for a separate regression. Columns 1-4 report estimates of class size in grade 3 on math.

Columns 5-8 report estimates of class size in grade 3 where class size is instrumented by predicted class size based on imputed

cohort size. Standard errors clustered at the level of the combined schools in 2005 are given in parentheses. Individual controls

include gender, number of books at home, migration background and native language. Significance level: * p < 0.10; ** p < 0.05

; *** p < 0.01.
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Table E.7: The Effect of Class Size in Different Grades on Test Scores

OLS IV

Avg. class size in

Grade 1 Grade 2 Grade 3 Grade 1-3 Grade 1 Grade 2 Grade 3 Grade 1-3

(1) (2) (3) (4) (5) (6) (7) (8)

Language -0.0109** -0.0105** -0.0199*** -0.0153*** -0.0140** -0.0171** -0.0191** -0.0160**

(0.0055) (0.0050) (0.0050) (0.0054) (0.0068) (0.0080) (0.0092) (0.0077)

Math -0.0095 -0.0061 -0.0140** -0.0109 -0.0102 -0.0123 -0.0140 -0.0117

(0.0068) (0.0067) (0.0070) (0.0074) (0.0080) (0.0095) (0.0110) (0.0092)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

School FE Yes Yes Yes Yes Yes Yes Yes Yes

Age controls Yes Yes Yes Yes Yes Yes Yes Yes

Limited German proficiency Yes Yes Yes Yes Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes Yes Yes Yes Yes

N Cluster 156 156 156 156 156 156 156 156

N SchoolYearObs 828 828 828 828 828 828 828 828

Notes: Each cell contains results for a separate regression. Columns 1-4 report estimates of class size in different grades on

language and math. Columns 5-8 report estimates of class size in different grades where class size is instrumented by predicted

class size based on imputed cohort size. Standard errors clustered at the level of the combined schools in 2005 are given

in parentheses. Individual controls include gender, number of books at home, migration background and native language.

Significance level: * p < 0.10; ** p < 0.05 ; *** p < 0.01.

84



Table E.8: Spline IV Regressions

17.5 18.5 19.5 20.5 21.5 22.5 23.5

(1) (2) (3) (4) (5) (6) (7)

Panel A: Language

Class size < knot 0.0798** 0.0373 0.0148 0.0006 -0.0146 -0.0214 -0.0230*

(0.0397) (0.0294) (0.0242) (0.0202) (0.0168) (0.0147) (0.0134)

Class size ≥ knot -0.0428*** -0.0424*** -0.0436*** -0.0458*** -0.0379 -0.0284 -0.0235

(0.0119) (0.0126) (0.0141) (0.0171) (0.0232) (0.0343) (0.0549)

N 37,847 37,847 37,847 37,847 37,847 37,847 37,847

Cragg-Donald Wald F statistic 5,355 5,446 5,236 4,600 3,355 2,087 1,365

Kleibergen-Paap rk Wald F statistic 58.75 66.24 53.35 34.27 17.38 8.00 3.86

Panel B: Math

Class size < knot 0.0943** 0.0484 0.0246 0.0150 -0.0054 -0.0185 -0.0249

(0.0458) (0.0332) (0.0278) (0.0238) (0.0206) (0.0183) (0.0167)

Class size ≥ knot -0.0390** -0.0387** -0.0405** -0.0489** -0.0390 -0.0148 0.0267

(0.0153) (0.0163) (0.0189) (0.0237) (0.0323) (0.0484) (0.0765)

N 36,845 36,845 36,845 36,845 36,845 36,845 36,845

Cragg-Donald Wald F statistic 5,203 5,293 5,084 4,465 3,254 2,009 1,310

Kleibergen-Paap rk Wald F statistic 58.74 66.57 53.32 34.09 17.15 7.80 3.76

Year FE Yes Yes Yes Yes Yes Yes Yes

School FE Yes Yes Yes Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes Yes Yes Yes

Age controls Yes Yes Yes Yes Yes Yes Yes

Limited German Proficiency Yes Yes Yes Yes Yes Yes Yes

Notes: This table report IV results for different linear spline specifications where we instrument the linear spline in average

class size in grade 3 by the linear spline in predicted class size based on imputed cohort size. All splines are estimated

with one knot whose position is indicated in the column header. The coefficients measure class size effects for the specified

interval. Standard errors clustered at the level of the combined schools in 2005 are given in parentheses. Individual controls

include gender, number of books at home, migration background, and native language. Significance level: * p < 0.10; **

p < 0.05; *** p < 0.01.
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Table E.9: Robustness Checks: Different Specifications

OLS IV

(1) (2) (3) (4) (5) (6)

Language -0.020*** -0.027*** -0.020*** -0.019** -0.031 -0.016

(0.005) (0.010) (0.007) (0.009) (0.020) (0.015)

N 37,847 15,386 37,847 37,847 15,386 37,847

Cragg-Donald Wald F statistic 17,017 4,484 11,648

Kleibergen-Paap rk Wald F statistic 176.48 38.42 86.29

Math -0.014** -0.019 -0.021** -0.014 -0.041 -0.021

(0.007) (0.012) (0.009) (0.011) (0.026) (0.018)

N 36,845 14,944 36,845 36,845 14,944 36,845

Cragg-Donald Wald F statistic 16,614 4,366 11,304

Kleibergen-Paap rk Wald F statistic 175.77 38.05 84.89

Year FE Yes Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes Yes

Age controls Yes Yes Yes Yes Yes Yes

Limited German proficiency Yes Yes Yes Yes Yes Yes

School FE Yes Yes Yes Yes

School-specific linear trends Yes Yes

School-number of classes combination FE Yes Yes

Notes: Each cell contains results for a separate regression. Columns 1-4 report estimates of class size in

grade 3 on language and math. Columns 5-8 report estimates of class size in grade 3 where class size is

instrumented by predicted class size based on imputed cohort size. Standard errors clustered at the level

of the combined schools in 2005 are given in parentheses. Individual controls include gender, number of

books at home, migration background, and native language. Significance level: * p < 0.10; ** p < 0.05 ; ***

p < 0.01.
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Table E.10: Robustness Checks: Different Linear Spline Regressions With Knot at Class Size
20.5

OLS IV

(1) (2) (3) (4) (5) (6)

Panel A: Language

Class size < knot 0.007 0.005 -0.003 0.001 -0.007 0.017

(0.010) (0.019) (0.013) (0.021) (0.061) (0.029)

Class size ≥ knot -0.041*** -0.045*** -0.034*** -0.039** -0.048 -0.057*

(0.009) (0.017) (0.011) (0.017) (0.045) (0.032)

N 37,847 15,386 37,847 11,425 37,847 15,386

37,847 11,425

Panel A: Math

Class size < knot 0.008 0.020 -0.001 0.014 0.062 0.042

(0.012) (0.027) (0.016) (0.024) (0.069) (0.036)

Class size ≥ knot -0.031** -0.041* -0.038** -0.042* -0.111* -0.101**

(0.013) (0.021) (0.016) (0.024) (0.060) (0.042)

N 36,845 14,944 36,845 11,113 36,845 14,944

36,845 11,113

Year FE Yes Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes Yes

Age controls Yes Yes Yes Yes Yes Yes

Limited German proficiency Yes Yes Yes Yes Yes Yes

School FE Yes Yes Yes Yes

School specific linear trends Yes Yes

School-number of classes combination FE Yes Yes

Notes: This table reports IV results for different linear spline specifications for class size in grade 3 with a

single knot at 20.5 . The coefficients measure class size effects for the specified interval. Columns 1-4 report

OLS results. Columns 5-8 report estimates where we instrument the linear spline in class size in grade 3 by

a linear spline in predicted class size in based on imputed cohort size. Standard errors clustered at the level

of the combined schools in 2005 are given in parentheses. Individual controls include age in years, gender,

number of books at home, migration background and native language for regressions on language and math

test scores. The regressions on the migrant share do not include individual control variables. Significance

level: * p < 0.10; ** p < 0.05 ; *** p < 0.01.
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Table E.11: Heterogeneity IV

(1) (2) (3) (4) (5) (6) (7)

Panel A: Language

Avg. class size grade 3 -0.019** -0.018* -0.018* -0.017* -0.018* -0.017* -0.017*

(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

× female 0.000

(0.004)

× older than 9 years -0.011

(0.009)

× few books -0.011

(0.007)

× migration background -0.019**

(0.008)

× insufficient German proficiency -0.035***

(0.001)

× dyslexia -0.041***

(0.001)

× dyscalculia -0.032***

(0.001)

N 37,847 37,847 37,847 37,847 37,847 37,847 37,847

Cragg-Donald Wald F statistic 8,502 8,481 8,422 8,338 8,509 8,508 8,510

Kleibergen-Paap rk Wald F statistic 88.43 88.25 89.39 87.55 88.24 88.24 88.30

Panel B: Math

Avg. class size grade 3 -0.011 -0.012 -0.013 -0.013 -0.013 -0.013 -0.012

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

× female -0.006

(0.005)

× older than 9 years -0.018*

(0.010)

× few books -0.011

(0.007)

× migration background -0.010

(0.008)

× insufficient German proficiency -0.024***

(0.001)

× dyslexia -0.023***

(0.001)

× dyscalculia -0.044***

(0.001)

N 36,845 36,845 36,845 36,845 36,845 36,845 36,845

Cragg-Donald Wald F statistic 8,300 8,285 8,217 8,114 8,308 8,307 8,308

Kleibergen-Paap rk Wald F statistic 88.12 87.78 89.03 87.09 87.89 87.88 87.95

Year FE Yes Yes Yes Yes Yes Yes Yes

School FE Yes Yes Yes Yes Yes Yes Yes

Age controls Yes Yes Yes Yes Yes Yes Yes

Limited German proficiency Yes Yes Yes Yes Yes Yes Yes

Individual Controls Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports IV results where each column in panels A and B contains the results for a separate

regression with the same specification as that of column 6 in Table 5, except that the class size variable is interacted

with an indicator variable for the individual student characteristics. Standard errors clustered at the level of the

combined schools in 2005 are given in parentheses. Individual controls include age in years, gender, number of

books at home, migration background, and native language. Significance level: * p < 0.10; ** p < 0.05 ; ***

p < 0.01.
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Table E.12: Monte Carlo Simulation

Balancing Reduced form IV

(1) (2) (3)

Panel A: Grade 1

Mean β̂ 0.001 -0.057 -0.267

Mean SE of β̂ 0.043 0.010 0.010

95% Lower Bound -0.019 -0.077 -0.352

95% Upper Bound 0.019 -0.038 -0.187

Panel B: Grade 2

Mean β̂ -0.000 -0.105 -0.404

Mean SE of β̂ 0.084 0.009 0.013

95% Lower Bound -0.018 -0.129 -0.592

95% Upper Bound 0.018 -0.082 -0.253

Panel C: Grade 3

Mean β̂ 0.000 -0.149 -0.507

Mean SE of β̂ 0.121 0.009 0.015

95% Lower Bound -0.018 -0.177 -0.766

95% Upper Bound 0.019 -0.122 -0.277

Notes: 1000 iterations, 95% confidence bounds are ob-

tained from 25th and 975th estimate of ordered β̂.
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