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CONTRACT (RE-)NEGOTIATION WITH PRIVATE AND COMMON
VALUES

VITALI GRETSCHKO AND ACHIM WAMBACH

ZEW MANNHEIM AND UNIVERSITY OF MANNHEIM

Abstract. We analyze the contracting problem of a principal who faces an agent with

private information and cannot commit to not renegotiating a chosen contract. We model

this by allowing the principal to propose new contracts any number of times after observ-

ing the contract choice of the agent. We propose a characterization of renegotiation-proof

states of this (re-)negotiation and show that those states are supported by a perfect Bayesian

equilibrium of an infinite horizon game. The characterization of renegotiation-proof states

provides a tool, which is both powerful and simple to use, for finding such states in spe-

cific environments. We proceed by applying the results to adverse selection environments

with private and common values. We show that with private values and common values of

the ’Spence’ type only, fully efficient and separating states can be renegotiation-proof. With

common values of the "Rothschild-Stiglitz" type inefficient and (partial) pooling states may

be renegotiation-proof.

JEL classification: C73, C78, D82

Keywords: Principal-Agent models, renegotiation, Coase-conjecture

1. Introduction

The solution to the screening problem of a principal who is endowed with all the bargaining

power and wishes to contract with a privately informed agent is well known. The principal

proposes a menu of contracts that is designed such that the agent optimally chooses one

of the contracts according to his type. Typically, the chosen contract is inefficient and the

choice of the agent reveals information. In this case, both parties are able to benefit from

immediate renegotiation after information has been revealed. As such renegotiation will be

anticipated by the agent, it may distort his ex-ante incentives to accept any given contract

Previous versions of this article were circulated as “Renegotiation before Contract Execution” (CEPR Dis-
cussion Paper No.2189). We thank Geir Asheim, Patrick Bolton, Vitor Farinha-Luz, Georg Nöldecke, Ray
Rees, Ariel Rubinstein, Klaus Schmidt, Monika Schnitzer, Roland Strausz, Thomas Tröger and the seminar
participants at HU Berlin, Cologne University, Cologne Procurement Workshop (2015), EARIE (Munich
2015), Edinburgh University (2016), EEA conference (Mannheim 2015), JEI (Alicante 2015) and SED con-
ference (Istanbul 2015) for helpful comments and suggestions. Christoph Gross-Boelting provided excellent
research assistance. Financial support from the German Science Foundation (DFG) through the research
unit “Design and Behavior” and the Fulbright Commission is gratefully acknowledged.
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in the first place. Thus, the optimality of the solution to the screening problem crucially

depends on the assumption that the chosen contract will not be renegotiated.

We introduce an extension of the one-shot screening problem in which the principal has

limited commitment power. We model this by assuming that there are no physical costs

of renegotiation and that any signed contract can be renegotiated any number of times. In

each round of the (re-)negotation, the agent can decide to retain his current contract or to

choose one of the new offers made by the principal.

Our main contribution is to characterize the set of renegotiation-proof states of the ne-

gotiation. A state of the negotiation is a tuple consisting of the current signed contract of

the agent and the current belief of the principal that was formed by observing the previous

choices of the agent. We focus on states rather than contracts as whether the principal

would like to renegotiate the currently signed contract will crucially depend on her belief.

Renegotiation-proof states are not identified one-by-one but simultaneously as a set. The

key insight is that whether a state is renegotiation-proof or not will depend on if it can be

improved by other renegotiation-proof states. That is, renegotiation-proof states can’t be

improved by other renegotiation-proof states. States that are not renegotiation proof can

be improved by renegotiation-proof states. This implies that negotiation can stop even if

there is room for Pareto improvement. This is always the case if this improvement leads to

a state that is not renegotiation-proof as contracts in such states will be renegotiated and

thus should not block the original contract choice.

The characterization of the set of renegotiation-proof states is based on two simple prop-

erties. First, for every renegotiation-proof state there is no other renegotiation-proof state

that would make the principal strictly better off (internal consistency). Second, in any state

of the negotiation game it is feasible to reach a renegotiation-proof state in a single round of

further negotiations (external consistency).1 Both properties reflect the sequential rational-

ity of the principal. Suppose the negotiation game reaches a renegotiation-proof state and

the principal proposes new contracts that would make her and the agent better off. External

1That renegotiation-proof states can be reached in a single round of further negotiations is without loss of
generality. Without frictions, every history of the negotiation can be represented as a single-stage mechanism.
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consistency ensures that in a further round of negotiations she will renegotiate these con-

tracts. Internal consistency implies that the resulting outcomes do not make the principal

better off than the original outcome would have.2

The proposed solution concept based on renegotiation-proof states is not meant to provide

an alternative for the standard equilibrium techniques. Rather, it is consistent with them.

We demonstrate this by deriving a perfect Bayesian equilibrium of an infinite horizon negoti-

ation game that arises naturally from the principals lack of commitment.3 In equilibrium, the

strategy of the principal prescribes to end the negotiation and implement the current signed

contract whenever a renegotiation-proof state was reached. Whenever the game reaches (off

path) a state that is not renegotiation-proof the principal proposes a menu of contracts

that leads to renegotiation-proof states given the agent chooses the contract optimally. The

equilibrium strategy of the agent is then to choose the optimal contract given that choosing

optimally induces beliefs of the principal that lead to a renegotiation-proof state.4

One of the main advantages of a general characterization of renegotiation-proof states is

that it provides a powerful tool for the analysis of specific instances of the general problem.5

We apply the characterization of renegotiation-proof outcomes to screening problems with

private and common values. We show that while only fully separating and efficient states can

arise with private values and common values of ’Spence’ type, inefficient and pooling states

can be renegotiation-proof with common values of the "Rothschild-Stiglitz" type.6 To this

end, we use internal and external consistency to derive a simple but useful necessary condition

for a state to be renegotiation-proof. Given the information revealed in a renegotiation-proof

state there should not exist a single feasible (pooling) state that would make the principal

and the agent better off, irrespective of the type of agent. If such a state would exist, the

principal could just offer the corresponding contract and all types of the agent could accept

without revealing any additional information. Thus, this pooling state would make both

2Similar approaches to mechanism design without commitment were proposed by Asheim and Nilssen (1997)
and Vartiainen (2013). We will comment on the similarities and differences in the literature overview below.
3Note that the number of potential negotiation rounds is unlimited. We cannot therefore use backward
induction as in Bester and Strausz (2001) to apply a (modified) revelation principle.
4Even though the general reasoning is straightforward, many technical difficulties arise. For example, in our
set-up, neither the one-shot deviation nor the revelation principle do hold. Thus, the construction of an
equilibrium is one of the main contributions of this article.
5This is somewhat similar to Beaudry and Poitevin (1993) who first characterize the potential outcomes by
a set of constraints and construct perfect Bayesian equilibria that achieve those outcomes.
6The used nomenclature was first introduced by Beaudry and Poitevin (1993).
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parties better off without changing the strategic incentives in the negotiation game. This

simple insight enables us to prove that with private values only fully separating and efficient

states can be renegotiation-proof. This is a result of the fact that in any inefficient state,

the indifference curve of the principal is either steeper or flatter than the indifference curves

of the different types of agent. Thus, for every inefficient state there exists a single contract

that would make the principal and all of the types of the agent better off without revealing

additional information.

For common values we must distinguish two cases: common values of the “Spence” type

and common values of the “Rothschild-Stiglitz” type. Common values of the ’Spence’ type

represent a situation in which the ranking of the marginal trade-offs between types of the

agent is the same for the agent and the principal. This situation corresponds, for example, to

the education model in Spence (1973) where education is both marginally more productive

and less costly for the high type of the agent. In this case, for any inefficient state, the

indifference curves of the principal are either both steeper or both flatter than the indifference

curves of both types of the agent. Thus, the same logic as with private values applies and for

any inefficient state a single contract exists that would result in the principal and all types

of the agent being better off. It follows that only fully separating and efficient states can be

renegotiation-proof.

The situation changes if common values of the "Rothschild-Stiglitz" type are considered.

Common values of the "Rothschild-Stiglitz" type represent the situation that the marginal

trade-offs between the types of agent are ranked differently for the agent and the principal.

This situation corresponds, for example, to the insurance model developed by Rothschild and

Stiglitz (1976) where insurance is marginally less costly but also marginally less valuable for

the low risk type of agent. In this case, the logic described above is not applicable as there

are inefficient states such that no single pooling contract would see both parties better off.

Moreover, it may be the case that all pairs of efficient states would result in the principal

being strictly worse off than he would be in the initial situation. The set of all efficient

states therefore lacks the external consistency property. We proceed by constructing a set

of renegotiation-proof states that results in inefficient (partial) pooling states. Interestingly,

inefficient states can be sustained even if there are pairs of efficient states that would be

weakly more advantageous to the principal and the agent.

4



Relation to the Literature. The majority of previous analyzes of renegotiation have typ-

ically taken one of two approaches. Either renegotiation-proof states were characterized by

ad-hoc assumptions or renegotiation was limited to finite negotiation protocols. The first ap-

proach usually yields clear-cut results in complex settings and serves as a powerful tool for the

analysis of specific problems. However, the lack of foundation of renegotiation-proof states

as equilibrium outcomes of a non-cooperative game may raise doubts.7 The second approach

allows for equilibrium analysis but still leaves the principal with a considerable amount of

commitment power.8 In our frictionless setting for example, limiting the renegotiation to

n opportunities would allow the principal to implement the full commitment outcome. She

could simply pass on n � 1 opportunities and subsequently propose the optimal contracts.

Our approach combines the clarity and power of an axiomatic approach with the equilibrium

analysis of an infinite horizon negotiation protocol. Evans and Reiche (2015), for example,

assume that after an initial mechanism is played, the principal can offer a new mechanism

and the agent may choose whether to retain the outcome of the original mechanism or to

participate in the new mechanism. They assume that there is no friction in-between the

mechanism proposals, as do we. After the new mechanism is played, the renegotiation is

over and there is no scope for further offers from the principal. In this setting, the optimal

mechanism from the point of view of the principal is easy to implement if she proposes the

null mechanism in the first round and the optimal mechanism in the second round. What

makes the analysis of Evans and Reiche (2015) interesting is the fact that they allow a third

party whose goals are not aligned with the principal to propose the initial mechanism. This

third party must then take into account that the outcome of the mechanism may be subject

to renegotiation. Moreover, their analysis also encompasses situations in which the designer

is the principal and she might, as in the hold-up problem, want to propose a mechanism ex

ante to improve investment incentives. This will not, in general, be the same as the mech-

anism which is optimal for her once investment is undertaken and the state of the world is

realized. At this point the initial purpose of the mechanism is served and the parties will

have an incentive to renegotiate the existing contract.

7For examples of such an approach see Asheim and Nilssen (1997), Neeman and Pavlov (2013), and Vartiainen
(2013).
8For examples of such an approach see Evans and Reiche (2015), Fudenberg and Tirole (1990b), Hart and
Tirole (1988), Hörner and Samuelson (2011), Skreta (2006), or Skreta (2015).
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In Gretschko and Wambach (2016) we apply the characterization of renegotiation-proof

states to a model with private values and and infinite type space. We show that with an

infinite type space even in the private values case, inefficient states can be sustained as

renegotiation-proof. This is a consequence of the revenue equivalence theorem. In both

cases, with discrete and continuous types, efficient and separating states need to be in any

set of renegotiation-proof states. After any history the principal can use VCG mechanisms

where the agent’s payment is the cost of provision to implement the efficient solution. By

the revenue equivalence theorem, this payment schedule is unique up to an additive constant

for the continuous type space. Hence, the principal makes a zero profit along the efficient

path. Thus, the principal can commit to some inefficient outcomes, as renegotiating to

efficient outcomes would generate no additional profit for her. For discrete types, revenue

equivalence fails and the maximal profit is positive. Thus, renegotiating to efficient outcomes

makes the principal always better off.

Our set-up is closely related to that considered by Beaudry and Poitevin (1993) who study

the effects of immediate and unlimited renegotiation in a general signaling model. In contrast

to our work, therefore, they consider the situation in which the informed agent is able to

make the contract offers. In this case, separating but inefficient contracts are sustained by

the threat that if the agent who signed an inefficient contract proposes a new contract, a

switch in beliefs takes place and the uniformed party will assume that the agent is of the

undesired type. However, this can only work if it is the informed party who makes the offers.

We complement Beaudry and Poitevin (1993) by extending the analysis to a screening model.

That is, we assume that the uninformed party makes all the offers.

Deneckere and Liang (2006) consider an uninformed buyer who bargains about the price

of an object with a seller who has perfect information about the common value of this object.

They consider an infinite horizon bargaining game in which the uninformed buyer makes all

the offers and show that when bargaining frictions disappear the solution does not necessarily

converge to be efficient. Gerardi et al. (2014) consider the same model but assume that the

informed party makes all the offers. They find that the buyer’s inability to commit before

observing the terms of trade is what precludes efficiency. Our analysis complements these

articles by generalizing their environment to different models of private and common values.
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Strulovici (2016) analyzes an infinite horizon negotiation protocol for a set-up with pri-

vate values. In contrast to our work, negotiations may exogenously break down. In other

words, renegotiation is not frictionless. Strulovici (2016) shows that if such friction disap-

pears, efficient and fully separating contracts arise in any perfect Bayesian equilibrium of the

negotiation game. Our approach complements his analysis by considering more general envi-

ronments with private and common values and showing that with common values frictionless

renegotiation can lead to an inefficient solution.

Using a similar set-up, Maestri (2012) uses a refinement that in any subgame the principal

induces the continuation equilibrium that maximizes her payoffs. As in Strulovici (2016),

when frictions disappear, only efficient contracts arise in equilibrium.

With respect to the characterization of the renegotiation-proof states, our study is related

to Asheim and Nilssen (1997) and Vartiainen (2013). Asheim and Nilssen (1997) consider

a monopolistic insurance market and Vartiainen (2013) an auction without commitment.

In both cases, the assumptions used for the characterization of renegotiation-proof states

resemble those used in our study. That is, both rely on properties similar to internal and

external consistency in order to characterize renegotiation-proof states. In both cases, this

approach proves to be very useful in deriving clear results for otherwise very complex prob-

lems. We extend their analysis by providing a foundation of renegotiation-proof states as a

perfect Bayesian equilibrium of a very general negotiation game and applying the results to

settings not considered by those authors.

Krasa (1999) applies a slightly different, but also axiomatic approach. Krasa (1999) defines

a state as unimprovable (renegotiation-proof) if agents would not want to deviate from it

either by changing the allocation or by revealing (additional) information. Application of

this characterization of renegotiation-proof states to an insurance monopoly with two types

of agent, reveals thats agents either reveal information fully or not at all. This results in

either full separation or full pooling of types. This is not the case in our model as in the

“Rothschild-Stiglitz” case, partial pooling can be supported.

Neeman and Pavlov (2013) argue that for outcomes of a mechanism to be renegotiation-

proof under any renegotiation procedure there must be no Pareto improvements to the

outcomes of the mechanism. That is, they take the view that if the mechanism designer

is agnostic about the specific renegotiation game that is played after the mechanism, the
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outcome of the mechanism has to be ex-post efficient to survive renegotiation under any

renegotiation procedure. This assumption places more restrictions on equilibrium outcomes

than our approach in which a specific renegotiation procedure is fixed. Thus, in contrast to

Neeman and Pavlov (2013), our approach allows for inefficient outcomes as can be seen in

the case of common values of the “Rothschild-Stiglitz” type.

2. The Setup

A principal (she) and an agent (he) negotiate over a contract. A contract is a tuple w 2 R2.

Let ✓ 2 {L,H} denote the type of the agent. The type is private knowledge to the agent and

the principal has a prior characterized by µ0 = Pr(✓ = H). When a contract w is signed by

an agent of type ✓, the utility of the principal amounts to v(w, ✓). The utility of the agent is

then u(w, ✓). If no contract is implemented, both parities receive the outside option contract

w0. Both, v(w, ✓) and u(w, ✓) are assumed to be quasiconcave in w. Let vi(w, ✓) and ui(w, ✓)

denote the partial derivative with respect to the i-th component of w. The principal prefers

smaller values of w1 and larger values of w2, whereas the opposite is true for the agent, that

is,

v1(w, ✓) < 0, v2(w, ✓) > 0, u1(w, ✓) > 0, and u2(w, ✓) < 0.

The functions u(w, ✓) satisfy the standard single-crossing condition, that is,

(1) �u2(w,L)

u1(w,L)
> �u2(w,H)

u1(w,H)

.

A contract is ✓-efficient if it is the cheapest contract providing an agent of type ✓ with a

given utility level. That is, the iso-utility curve of the principal is tangent to the iso-utility

curve of the agent in any such contract. For each ✓, denote by ⇠✓ the set of all ✓-efficient

contracts. Sometimes we will refer to ⇠✓ as the efficient contract curve.

Whenever v is independent of ✓, that is, v(w, ✓) ⌘ v(w), we will refer to private values. In

this case, due to the single-crossing property, the efficient contract curve ⇠L lies to the left

of ⇠H . Whenever the utility of the principal explicitly depends on the type of the agent, we

will refer to common values. For common values we will distinguish two cases: the ’Spence’

case and the “Rothschild-Stiglitz” case.
8



“Spence” case: common values of the ’Spence’ type represent the situation that the ranking

of the marginal trade-offs between types is the same for the agent and the principal, i.e.,

(2) �v2(w,L)

v1(w,L)
< �v2(w,H)

v1(w,H)

.

This situation corresponds, for example, to the education model in Spence (1973), where

education is both marginally more productive and less costly for the H type. It follows from

equation (1) and equation (2) that the efficient contract curves ⇠✓ do not cross and ⇠L lies

to the left of ⇠H .

“Rothschild-Stiglitz” case: common values of “Rothschild-Stiglitz” type represent situations

where the marginal trade-offs are ranked differently for the informed and the uninformed

player, i.e.,

(3) �v2(w,L)

v1(w,L)
> �v2(w,H)

v1(w,H)

.

This situation corresponds, for example, to the insurance model by Rothschild and Stiglitz

(1976), where insurance is marginally less costly but also marginally less valuable for the high

type of agent, i.e., the lower risk type of agent. Given this generality, in the “Rothschild-

Stiglitz” case it may be the case that the efficient contract curves cross and the efficient

contract curve of the L type lies to the right of the efficient contract curve of the H type. In

the majority of the applications of models with common values of the “Rothshild-Stiglitz”

type, the efficient contract curves do not cross. We therefore assume that in the “Rothschild-

Stiglitz” case, the efficient contract curve of the L type lies weakly to the left of the efficient

contract curve of the H type.9 We conjecture that most of the analysis can be extended to

the cases in which this assumption does not hold. However, this comes at the cost of severely

complicating the exposition of the main results.

We partition the contract space into three regions. We say that contracts that are left of

⇠L are in the ’H-Rent’ configuration, contracts that are to the right of ⇠H are in the ’L-Rent’

configuration, contracts that are in the inner region between ⇠L and ⇠H are in the ’No-Rent’

9This greatly simplifies the the exposition of the the strategies of the agent in the proof of Proposition 1
ensuring that only one of the types of the agent uses a mixed strategy. That the efficient contract curve
of the L type lies to the left of the efficient contract curve of the H type can be ensured by assuming, for
example, that the utility functions of the principal and the agent are additively separable, i.e., u(w, ✓) =
f(w2, ✓) + �✓w1 and v(w, ✓) = g(w2, ✓) � w1 with �✓ 2 R+ and that if �f1(w2, L)/�L = g1(w2, L) then
�f1(w2, H)/�H < g1(w2, ✓H).
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Figure 1. L-type and H-type efficient contracts that lie on the same indif-
ference curves as the outside option of the agent.

configuration. Essentially, the partition of the contract space reflects that once a contract

has been signed in the ’H-Rent’ configuration for example, further negotiation will leave the

H type with a positive rent whereas the L type gains nothing from further negotiation.10

Figure 1 depicts an illustration of this set-up.

Mechanisms. To elicit information from the agent and implement a contract the principal

uses a mechanism. A mechanism is a tuple M = (Z, w(·)) consisting of a set of messages Z
and a function w : Z ! R2. A mechanism works as follows. The agent chooses a message

z 2 Z. When the message is sent, w(z) generates a contract. We will consider direct

communication only.11 Thus, it is without loss of generality that every mechanism can be

written as a menu of contracts, M = {w(z)}z2Z ⇢ R2 from which the agent chooses directly.

The Problem. The problem for the principal is that she cannot commit to not renegotiating

w after the the agent choose a contract w. That is, after the agent chooses from M and the

principal observes w, she will update her belief about the type of the agent. After observing

w the principal may propose a new menu of contracts M0. The agent can then decide whether
10The designation ’H-Rent’, ’L-Rent’, and ’No-Rent’ configuration provides a very vivid definition and is
taken from Strulovici (2016).
11For an analysis of contracting with renegotiation an mediated communication, see for example Pollrich
(2016) or Strausz (2012).
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he wants to choose a new contract or whether he wants to hold on to the initial contract.

In other words, w is the new outside-option contract of the agent. If the agent decides to

choose from M0, the principal again observes the contract, updates her belief, and may again

renegotiate this contract by proposing a new menu of contracts. Overall, the principal is not

able to commit to not renegotiating any contract. Whenever the agent choses a contract,

the principal may propose a new menu of contracts and the agent may decide to either hold

on to his current contract or to choose a new one. Thus, we are concerned with the question

of what menus of contracts the principal will not renegotiate at the ex-post stage.

To be more precise, consider the following game. In t = 0 the agent observes his type ✓. In

each following round t 2 N+ the principal offers a menu Mt of contracts, with Mt a subset

of R2
+. The number of contracts |Mt| is bounded by an arbitrary constant K � 2 that is

fixed throughout the negotiation.12 The agent chooses a contract in Mt or decides keep the

contract he chose in round t�1. We denote by wt the contract that the agent chose in round

t and by w0 the initial contract, that is the normalized outside option contract of the agent.

The game ends if at time t the principal does not propose new contracts, that is, if Mt = ;.

In this case wt�1 is executed. Thus, the timing of the negotiation game is as follows.

(i) In t = 0 the agent learns his type ✓.

(ii) In t > 0

(a) the principal offers a menu of contracts Mt ⇢ R2
+ with |Mt|  K

(b) the agent chooses a contract wt 2 Mt or decides to keep the current contract

wt�1.

(iii) The game ends if Mt = ;, in this case the last chosen contract wt�1 is executed.

Denote a potential history realized before the principal moves in round t as

hp
(t) = {(M1, w1), (M2, w2), . . . , (Mt�1, wt�1)} .

A potential history realized before the agent moves is

ha
(t) = {(M1, w0), (M2, w1), . . . , (Mt, wt�1)} .

12As contracts can be infinitely renegotiated there is no guarantee that proposing only two contracts is
without loss of generality, that is, the results obtained by Bester and Strausz (2001) do not apply to the
setting at hand.
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In round 1 there is no relevant history for principal, so hp
(1) = ;. Denote by hk(t) the

restriction of h(t) to the first k rounds. Let Ht
a be the set of all histories in round t and Ha

be the set of all terminal histories for the agent and let Ht
p be the set of all histories in round

t and Hp be the set of all terminal histories for the principal.13 That is, h(t) 2 H if Mt = ;.

Moreover, all infinite histories are terminal histories. That is, h(1) is an infinite history if

there exist a series of histories such that h(t) ! h(1) and Mt = ; is not in h(t) for all t. For

every h(t) 2 H, we define the payoff of the agent and the principal as u(h(t), ✓) = u(wt�1, ✓)

and v(h(t), ✓) = v(wt�1, ✓) if t < 1 and as u(h(1), ✓) = v(h(1), ✓) = �1.

By modeling renegotiation in this way we intend to capture the effects of unlimited,

immediate and frictionless renegotiation where the uninformed party makes all the offers.

We therefore complement the work of Beaudry and Poitevin (1993) who model a similar

renegotiation game for the case in which the informed party makes all the offers. The

negotiation consists of four elements. Firstly, the uninformed party makes both the initial

offer and all following propositions of renegotiation. Secondly, after the agent chooses one of

the offers there is at least one more round of offers and neither the principal nor the agent can

commit not to renegotiate. Thus, the renegotiation process can potentially last for an infinite

number of rounds. Thirdly, however, the negative pay-off at infinite histories prevents the

principal from stalling the negotiation indefinitely.14 Finally, only the final signed contract

is pay-off relevant and there is no discounting in-between negotiation rounds. Hence, the

focus is on the effects of renegotiation rather than long-term relationships.

Strategies and beliefs. Before we discuss the solution of the game it is useful to define

strategies and beliefs of the principal and the agent. Denote by A the set of all subsets of R2
+

with at most K elements. A behavior strategy �p of the principal prescribes in each round

t a distribution over contract menus Mt 2 A conditional on the history hp
(t).15 That is, �p

13We will drop the superscript from hp and ha whenever we refer to both or whenever it is unambiguous
whose history is used.
14The definition of the pay-off of infinite histories seems harsh at first glance. However, with an unrestricted
contracting space, off equilibrium path, the negotiation could reach contracts that yield an arbitrary low
pay-off to the principal. In this case, the principal is better off by stalling the negotiation ad infinitum if
the pay-off of such a strategy is bounded from below. Alternatively, we can assume that pay-offs of infinite
histories are bounded from below if we assume that the contracting space is bounded. However, this yields
technical difficulties close to the bounds of the contracting space that would greatly complicate the notation
in the proofs. Thus, for the sake of clarity of exposition we decided to opt for the current model specification.
15We endow A with the Borel sigma-algebra and denote by �(A) the set of all probability measures over A.

12



is a sequence of maps �p
t with

�p
t (h

p
(t)) : Ht

p ! �(A).

A behavior strategy �✓ of an agent of type ✓ prescribes in each round t a probability

distribution over contracts in Mt [ {wt�1} conditional of the history ha
(t). That is, �✓ is a

sequence of maps �✓
t with

�✓
t (h

a
(t)) : Ht

a ! � (Mt [ {wt�1}) .

In this case, �(Mt [ {wt�1}) denotes the set of all probability distributions over Mt [
{wt�1}. A continuation strategy �

{✓,p}
+ (t) is a truncated strategy. For example, �p

+ (t) =

�
�p
t , �

p
t+1, �

p
t+2, . . .

 
.

The belief system of the principal is a sequence {µ0, µ1, . . .} where µt�1 2 [0, 1] are the

beliefs held after a history hp
(t) that the agent is of type H.16

States and outcome functions. There are two additional concepts which it is useful

to define before we turn to the solution of the game. These are the state of the ne-

gotiation and the outcome function. A state of the negotiation in round t for a given

pair of strategies and belief system is Ct = (wt�1, µt�1). wt�1 denotes the current signed

contract and µt�1 the belief of the principal. The set of all states is denoted by � and

⇡(Ct) = (1�µt�1)v(wt�1, L)+µt�1v(wt�1, H) denotes the expected utility of the principal in

a given state if the negotiation where to end. For a given history and pair of strategies the

outcome function f(hp
(t), �p

+(t), �
✓
+(t)) ⇢ � gives the set of states after which the negotiation

ends. That is, C = (w, µ) is in f(hp
(t), �p

+(t), �
✓
+(t)), if there exists a t0 � t such that a state

Ct0 = C is reached with positive probability starting from hp
(t) and �p

(hp
(t0)) = ;.

3. Solution concept: Renegotiation-proof states

In this section we will identify renegotiation-proof states. That is, states Ct = (wt, µt), such

that the principal will not renegotiate the contract wt. It is crucial to focus on renegotiation-

proof states (wt, µt) rather then renegotiation-proof contracts wt as wether the principal will

16We slightly abuse notation as we suppress that different histories in period t might lead to a different
posterior.
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want to renegotiate will not only depend on the current contract but also crucially on the

current belief.

We start by observing that every subgame after some history h(t) can be represented by

a single stage mechanism that the principal will not renegotiate. In any subgame after h(t)

the strategy of the principal together with the strategy of the agent defines a distribution

over potential states
S

t0�t f(h
p
(t0), �p

+(t
0
), �✓

+(t
0
)). Instead of playing out the game according

to those histories, the principal can just offer a (countable) menu of contracts Mt+1 that

includes all the contracts that are part of the states in
S

t0�t f(h
p
(t0), �p

+(t
0
), �✓

+(t
0
)) and the

agent chooses between those contracts (possibly mixing) in a way that induces the same

probability distribution over states as playing out the game would. Thus, we will focus

on strategies of the principal that prescribe to offer a single-stage mechanism after each

history. The problem then boils down to identify states after a single-stage mechanism

that the principal would not like to renegotiate given that the agent chooses optimally in a

single-stage mechanism. We will call such states renegotiation-proof states, denote the set

of renegotiation-proof states by ⌦ and derive its properties in the following.

Agent’s incentives. Suppose at history h(t) that the current state of negotiation is Ct =

(wt, µt) and the principal offers a menu of contracts Mt+1 that all result in renegotiation-

proof states given the optimal choice of the agent. That is, the game will be over if the agent

chooses a contract. Then the agent should choose optimally in the single-stage mechanism.

We define which states can be induced by a menu of contracts in which the agent chooses

optimally. That is, we define conditions on a set of states such that there exists a menu of

contracts that, if the agent choose optimally, generates this set of states. Those conditions

then constitute necessary conditions for renegotiation-proof states.

Definition 1 (Feasibility). Let Z denote a countable index set. We call {Cz
= (wz, µz

) : z 2 Z} ⇢
�, feasible starting from Ct = (wt, µt) if the following conditions are satisfied:

(i) (Individual rationality of the agent) For all ✓ 2 {L,H} there exists a z 2 Z such that

u(wz, ✓) � u(w, ✓)

(ii) (Incentive compatibility) If there exists a z and a z0 in Z such that u(wz, H) >

u(wz0 , H), then µz0
= 0 or if there exists a z and a z0 in Z such that u(wz, L) >

u(wz0 , L) ) µz0
= 1

14



(iii) (Bayesian consistency) There exists {pz : z 2 Z} with pz 2 [0, 1] such that
P

z2Z pzµz
=

µ.

We define by IC(Ct) : � ! 2

� the mapping from some Ct to all feasible states starting from

this Ct. That is, {Cz
= (wz, µz

) : z 2 Z} is in IC(Ct) if it satisfies conditions (i) to (iii).

For {Cz = (wz, µz) : z 2 Z} to be states that can be generated a mechanism starting from

Ct it is necessary that the agent is weakly better off compared to the initial situation in

state Ct (requirement (i)). As the resulting states should be renegotiation-proof and the

principal will end the negotiation, the agent optimally chooses the contract that is most

desirable to him. The principal must therefore take this into account when updating her

belief (requirement (ii)). From the ex-ante point of view of the principal, the probability

of reaching state Cz is some pz 2 [0, 1] that should be consistent with bayesian updating

(requirement (iii)) and the strategy of the agent.

Principal’s strategy. We will take the view that bygones are bygones and consider only

strategies that are history independent other than with respect to the current outside option

contract of the agent and the current belief of the principal. That is, we will consider

strategies such that if h(t) and h0
(t) lead to the same state Ct then �p

(h(t) = �p
(h0

(t)). From

now on we will drop h(t) from the notation and simply denote the strategy of the principal

by �p
(Ct). As argued above, in our solution concept, we focus on strategies of the principal

that prescribe her to offer a single-stage mechanism that results only in renegotiation-proof

states and end the negotiation afterwards. Let ⌦ denote the set of renegotiation-proof

states, that we have yet to define. Thus, we focus on strategies such that if Ct /2 ⌦, then

�(Ct) = Mt = {wz
: z 2 Z} for some index set Z with {Cz

= (wz, µz
) : z 2 Z} 2 IC(C)

and {Cz
= (wz, µz

) : z 2 Z} ⇢ ⌦. If Ct 2 ⌦, then �(Ct) = ;. We now turn our attention

to the definition of ⌦, the set of renegotiation-proof states, such that the principal can

indeed commit to not renegotiating those states. To characterize renegotiation-proof states

it is convenient to introduce some notation on which feasible states make the the principal

weakly better off when proposing an new menu of contracts in state Ct.

Definition 2. Let Z denote a countable index set. A feasible set of states

{Cz
= (wz, µz

) : z 2 Z} 2 IC(Ct)

15



makes the principal weakly better off starting from Ct = (wt, µt) if

(4) ⇡(Ct) 
X

z2Z

pz⇡(Cz
).

We define by X(Ct) : � ! 2

� the mapping from some Ct to all feasible states that make

the principal better off starting from Ct. That is, {Cz
= (wz, µz

) : z 2 Z} is an element of

X(Ct) if {Cz
= (wz, µz

) : z 2 Z} is an element of IC(Ct) and satisfies inequality (4).

We are now in the position to define renegotiation-proof states. Renegotiation-proof states

are not identified one-by-one but simultaneously as a set. The key insight is that whether a

state is renegotiation-proof or not will depend on if it can be improved by other renegotiation-

proof states. That is, renegotiation-proof states can’t be improved by other renegotiation-

proof states. States that are not renegotiation proof can be improved by renegotiation-proof

states. This implies that negotiation can stop even if there is room for Pareto improvement.

This is always the case if this improvement leads to a state that is not renegotiation-proof as

contracts in such states will be renegotiated and thus should not block the original contract

choice. Thus, the set of renegotiation-proof states should have two properties. First, indepen-

dent of the current state of the negotiation it should be feasible to reach a renegotiation-proof

state. This is to ensure that our solution concept is well defined. Second, whenever the nego-

tiation has reached a renegotiation-proof state, that is a state after which negotiation should

end, the principal should not be better off by renegotiating to another renegotiation-proof

state after which the negotiation should end. This is to ensure that the principal will end

the negotiation after reaching a renegotiation proof state. The following definition formalizes

these conditions.

Definition 3 (Renegotiation-proofness). Let Z denote a countable index set. ⌦ ⇢ � is a set

of renegotiation-proof states if the following holds true.

(i) (External consistency) For all C2 � there exist

{Cz
= (wz, µz

) : z 2 Z} 2 X (C)

with Cz 2 ⌦. That is, there is {Cz
= (wz, µz

) : z 2 Z} 2 IC (C) that makes the

principal better off and leads only to renegotiation proof states.
16



(ii) (Internal consistency) From C 2 ⌦ follows ⇡ (C) � P
z2Z pz⇡(Cz

) for all

{Cz
= (wz, µz

) : z 2 Z} 2 IC(Ct)

with Cz 2 ⌦. That is, there is no {Cz
= (wz, µz

) : z 2 Z} in ⌦ that makes the

principal better off.

The restrictions we place on the set of renegotiation-proof states reflect sequential ratio-

nality of the principal. Thus, our solution concept is not meant to provide an alternative for

the standard equilibrium techniques. Rather, it is consistent with them. Indeed, in Section

4 below, we will show that for each set of renegotiation-proof states ⌦ there exists a perfect

Bayesian equilibrium of the negotiation game, such that the game ends if and only if the game

has reached a renegotiation-proof state in ⌦. To see how external and internal consistency

imply sequential rationality suppose that the negotiation has reached a renegotiation-proof

state and the principal deviates by proposing new feasible contract that make her better off.

External consistency ensures that if the principal would follow her equilibrium strategy after

the deviation, there are contracts that make her even better off. Internal consistency then

implies that the resulting contracts make her not better off than the original state would

have.17

The key idea is that states that are not renegotiation proof but can be improved by

renegotiation-proof states shall not obstruct the principal’s contract choice. That is, the

principal will not renegotiate a menu of contracts even if the choices of the agent lead to

states that could be improved by further renegotiation. This is the case if those states can be

further improved by offering a menu of contracts that will lead to renegotiation-proof states.

In particular, our solution concept allows for inefficient states to be renegotiation proof. In

fact, as we will show below, the optimal mechanism from the point of view of the principal

will be inefficient.

17The definition of the set of renegotiation-proof states is related to the concept of weakly renegotiation-
proof equilibrium as proposed by Farrell and Maskin (1989) An equilibrium of an infinitely repeated game
is called weakly renegotiation-proof if equilibrium payoffs of different subgames cannot be strictly Pareto
ranked. With a similar logic, internal consistency ensures that payoffs of different feasible states that are in
⌦ cannot make the principal strictly better off without making the agent strictly worse off.
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4. Renegotiation-proof states in a perfect Bayesian equilibrium

In this section we will show that renegotiation-proof states arise naturally in a perfect

Bayesian equilibrium of the negotiation game as defined in Section 2. For each set of

renegotiation-proof states we will construct a perfect Bayesian equilibrium of the negoti-

ation game in which the principal stops the negotiation whenever a renegotiation-proof state

was reached and the agent chooses optimally between the offered contracts. In order to con-

struct an equilibrium of the negotiation game we work our way backwards. For this we need

to define the strategy of the principal in a way such that the principal behaves sequentially

optimal. Thus, suppose an ⌦ that satisfies the conditions of Definition 3 exists and define

for each state C = (w, µ)

s(C) = arg max

(CL,CH)
p⇡

�
CL

�
+ (1 � p) ⇡

�
CH

�

s.t.
�
CL, CH

� 2 X (C)

C✓
=

�
w✓, µ✓

� 2 ⌦

as the optimal feasible states in ⌦ starting from state C for each type of the agent.18 In

what follows we will slightly abuse notation and for s(C) = ((wH , µH
), (wL, µL

)) define

s✓(C)

:

= w✓.

To ensure that the problem is well-behaved we make three assumptions. Imposing these

assumptions at this point is convenient as it greatly simplifies notation and allows us to make

the statement of the main theorem as general as possible. In Section 5 we show that all of

the assumptions are satisfied for all of the considered applications.

Assumption 1. For all C in �, s(C) exists.

Assumption 2. For every C = (w, µ) one of the following holds true

(i) If w is in the ’H-Rent’ configuration, u(sL(C), L) = u(w,L) and u(sH(C), H) �
u(w,H).

(ii) If w is in the ’L-Rent’ configuration, u(sH(C), H) = u(w,H) and u(sL(C), L) �
u(w,L).

18If C 2 ⌦, s(C) = (C, C).
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(iii) If w is in the ’No-Rent’ configuration, u(sL(C), L) = u(w,L) and u(sH(C), H) =

u(w,H).

Assumption 3. For ✓ 6= ✓
0 2 {L,H} and any two contracts (w✓, w✓

0
) and belief µ 2 (0, 1),

if

u(s✓(w✓, 1), ✓) < u(s✓(w✓0 , 0), ✓)

and

u(s✓(w✓, 1), ✓) > u(s✓(w✓0 , µ), ✓)

then there exists ⇢ 2 (0, 1) such that

u(s✓(w✓, 1), ✓) = u(s✓(w✓0 , ⇢µ), ✓).

Assumption 1 ensures that s(C) exists. As a result of external consistency, Assumption 1

is always satisfied whenever ⌦ is a closed set. Assumption 2 states that depending on the

current state, the optimal renegotiation-proof state leaves at least one of the types without

additional rent. Assumption 3 requires some more explanation. Suppose the principal offers

two (out of equilibrium) contracts w✓ and w✓0 and the agent chooses one of the contracts.

After observing the choice of the agent the principal updates her belief, offers the optimal

contracts that lead to renegotiation-proof states and the negotiation subsequently ends.

Suppose furthermore that in this case it is optimal for a forward-looking agent to choose w✓0

with probability one if he is of type ✓0. Assumption 3 then ensures that if it is not strictly

profitable for an agent of type ✓ to take either w✓ or w✓0 with probability one there must

exist a mixing probability such that if the principal believes that the agent mixes with such

a probability, the agent is indifferent between s✓((w✓, 1)) and s✓(w✓0 , ⇢µ).

Proposition 1. Suppose Assumptions 1 to 3 hold true and let (CL, CH
) = s(C0) with

C✓
= (s✓(w0, µ0), µ

✓
). For each ⌦ that satisfies Definition 3 there exists a Perfect Bayesian

Equilibrium with equilibrium strategies �p and �✓ such that ⌦ =

S
t�0 f(h

p
(t), �p

+(t), �
✓
+(t))

the equilibrium path is characterized by:

(i) The principal offers in the first round �p
(C0)=

�
sL(w0, µ0), s

H
(w0, µ0)

 
.

(ii) The agent of type L chooses contract sL(w0, µ0) with probability

pL =

(1 � µL
)(µH � µ0)

(1 � µ0)(µH � µL
)

,
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that is, �L
(

�
sL(w0, µ0), s

H
(w0, µ0), w0

 
, C0) = (pL, 1 � pL, 0).19

(iii) The agent of type H chooses contract sH(w0, µ0) with probability

pH =

µH
(µ0 � µL

)

µ0(µH � µL
)

,

that is, �H
(

�
sL(w0, µ0), s

H
(w0, µ0), w0

 
, C0) = (1 � pH , pH , 0).

(iv) The negotiation ends in the following round as the principal does not propose a new

contract.

Proof. The proof can be found in Appendix A. ⇤

The proof of Proposition 1 is a direct consequence of Definition 3. Firstly, the strategy of

the principal prescribes that in any current state of the negotiation that is not in ⌦ she offers

the optimal contracts that lead to feasible states in ⌦. Whenever the negotiation reaches

a state in ⌦ the principal ends the negotiation. If the agent observes an offer that on the

equilibrium path would lead to a state in ⌦, he chooses the contract that is optimal given

his type (possibly mixing when indifferent). If the agent observes an offer that would lead

to a state which is not in ⌦, he chooses the contract that will lead to the optimal offer for

him in the next period. The key at this point is to establish that for any deviating proposal

of the principal there is one type of agent who is best off choosing one of the contracts with

probability one. This is a direct consequence of single crossing and Assumption 2. For the

other type of agent it is then optimal to mix between this contract and at most one other

contract from the proposal (Lemma 5 in the appendix). Secondly, we show that to prove that

the proposed strategies form a perfect Bayesian equilibrium it is sufficient to consider only

one-stage deviations of the principal. This is the case despite the fact that the game is not

continuous at infinity (Lemma 6 in the appendix). Thirdly, from external consistency of ⌦ it

follows that once the principal has deviated and offered a contract that leads to a state that

is not in ⌦, there exists a feasible state in ⌦ that would make her better off. From internal

consistency of ⌦ it follows that once a state in ⌦ has been reached, there is no profitable

deviation that would lead to another state in ⌦. Overall, any deviation can be improved by

negotiating to a feasible state in ⌦. Thus, rather than reaching a state via a deviation, the

principal could have negotiated directly to this state. Hence, offering a menu of contracts

19Recall that �✓ is a mapping from (Mt, wt�1) to � (Mt [ {wt�1}).
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other than those prescribed by the equilibrium strategy does not make the principal better

off.

5. Applications

One of the main advantages of our approach is that in order to apply the results of

Theorem 1 to specific principal-agent problems we merely need to construct the set ⌦ of

renegotiation-proof states. That is, we need to construct a set ⌦ that is internally and

externally consistent. In the following we provide three helpful results which will facilitate

the construction of ⌦.

Definition 4. A state C of the negotiation is called efficient if X(C) = {C}.

That is, in an efficient state C there does not exist a set of states which both the prin-

cipal and the agent would weakly prefer. Thus, such a state must be part of any set of

renegotiation-proof states:

Lemma 1. For every set ⌦ that satisfies the conditions of Definition 3 and every efficient

state C it holds that C is an element of ⌦.

Proof. Follows directly from external consistency. If C is the only element of X(C), then C

must be in ⌦. ⇤

Note that Lemma 1 implies that if wH 2 ⇠H , (wH , 1) is a renegotiation-proof state. By

the same token, if wL 2 ⇠L , (wL, 0) is a renegotiation-proof state.

Lemma 2. A state of the negotiation C = (w, µ) with w in the ’No-Rent’ configuration is

not renegotiation-proof. That is, for every ⌦ that satisfies the conditions of Definition 3,

C /2 ⌦.

Proof. Suppose the state of the negotiation is C = (w, µ) with w in the ’No-Rent’ configura-

tion. Thus, wL 2 ⇠L and wH 2 ⇠H exist such that
��
wL, 0

�
,
�
wH , 1

��
is feasible starting from

C. Moreover, (1 � µ)⇡(
�
wL, 0

�
) + µ⇡(

�
wH , 1

�
) > ⇡(C). As by Lemma 1

��
wL, 0

�
,
�
wH , 1

��

are renegotiation-proof states, C cannot constitute a renegotiation-proof state. This would

violate internal consistency of Definition 3. ⇤

If the current state of the negotiation is in the ’No-Rent’ configuration, the optimal states

that leave both types of agent with the same payoff as the current state of the negotiation
21



are feasible. Moreover, those states are efficient and thus renegotiation-proof. It follows

from internal consistency of sets of renegotiation-proof states that the current state of the

negotiation cannot be renegotiation-proof.

Lemma 3. Let ⌦ satisfy the conditions of Definition 3. If a state of the negotiation C is in

⌦, there does not exist a single feasible state that yields larger profit for the principal, that

is,

8C 2 �, if C 0 2 X(C) exists such that ⇡(C 0
) > ⇡(C), then C /2 ⌦.

Proof. Suppose a C 2 ⌦ and a C 0 2 X(C) with ⇡(C 0
) > ⇡(C) exist. It follows from internal

consistency (Definition 3 (i)) that C 0 /2 ⌦. Following from external consistency (Definition 3

(ii)) therefore (CL, CH
) 2 X(C 0

) with C✓ 2 ⌦, ✓ 2 {L,H} exists. As, (CL, CH
) are feasible

starting from C 0 and (C 0, C 0
) is feasible starting from C, (CL, CH

) are also feasible starting

from C. Feasibility together with p⇡(CL
) + (1 � p)⇡(CH

) � ⇡(C 0
) > ⇡(C) implies that

internal consistency must be violated and thus C /2 ⌦. ⇤

Lemma 1 implies that if the type of agent is known (µ 2 {0, 1}) the negotiation will lead

to an efficient state. Lemma 3 incorporates this result and generalizes it for application to

a case where the type of the agent is unknown (µ 2 (0, 1)). In this case, for every state of

the negotiation a pooling state which would make the principal and both types of the agent

better off cannot exist. If such a state were to exist, the principal would be able to simply

negotiate towards this state and both types of agent could accept the offer without revealing

any additional information. The pooling state would therefore make both parties better off

without changing the strategic incentives.

5.1. Private values. In the private values case, the utility of the principal is independent of

the type of agent involved, that is, v(w, ✓) = v(w). The situation corresponds, for example, to

a monopolist selling different quantities (or qualities) of a good to a buyer with heterogeneous

valuations for the good.

Examples.
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(i) Financial contracts. The principal is a lender who provides a loan of size L to a

borrower, the agent. The lender faces a capital cost of RL with R being the risk-

free interest rate. The lender receives a transfer t from the borrower. The objective

function of the lender can be written as t�RL. The profit of the borrower depends on

a productivity shock ✓ 2 {✓L, ✓H} that is private knowledge to him. The objective

function of the borrower can be written as ✓f(L) � t with a function f such that

f 0 > 0 and f 00 < 0. Contracts are then tuples (t,L).

(ii) Franchising. The principal is a manufacturer who produces a quantity q of a good

at cost C(q) and sells the good to a retailer, the agent, at price t. The costs C(q) of

the manufacturer are increasing and convex, his objective function is t � C(q). The

retailer faces a demand D(p, ✓) with p being the resale price and ✓ 2 {✓L, ✓H} being a

demand shock that is private knowledge to the retailer. The objective function of the

agent is p ·min(D(p, ✓), q)� t. Assuming D(p, ✓H) > D(p, ✓L) ensures that condition

(1) is satisfied. Contracts are then tuples (q, t).

Analysis. In the standard single-period model without the potential for renegotiation, the

principal offers two contracts. The contract for the H type of agent is efficient and he is

indifferent between his contract and the contract of the L type. The contract of the L type

is inefficient and provides him with the same utility as in his outside option contract. The

exact position of the described contracts depends on the prior µ0 of the principal. However,

such contracts will lead to renegotiation in the sense defined above. With private values,

only efficient states are renegotiation-proof:

Proposition 2. With private values, the unique set of renegotiation-proof states of the ne-

gotiation is

⌦ =

�
(wL, 0);wL 2 ⇠L

 [ �
(wH , 1);wH 2 ⇠H

 
.

Proof. It follows from Lemma 1 that the proposed ⌦ must be a subset of any set of renegotiation-

proof states, as every efficient state of the negotiation is renegotiation-proof. It must now

be shown that no other state can be renegotiation-proof.

Suppose the state of the negotiation is C1
= (w1, µ1

) with w1 in the ’H-Rent’ configura-

tion. As w1 is then to the left of both efficient contract curves and the principal’s utility is

independent of the type of the agent, the indifference curve of the principal is steeper than
23
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Figure 2. Efficient contracts arise in the equilibrium of the negotiation game
with private values.

the indifference curves of both of the agents. Thus, independent of µ1, there exists a single

contract w̄1 that makes the principal and both types of agent better off. It follows from

Lemma 3 that C1 cannot constitute a renegotiation-proof state.

Suppose the state of the negotiation is C2
= (w2, µ2

) with w2 in the ’L-Rent’ configuration.

As w2 is then to the right of both efficient contract curves and the principal’s utility is

independent of the type of the agent, the indifference curve of the principal is flatter than

the indifference curves of both of the agents. Thus, independent of µ2, there exists a single

contract w̄2 that makes the principal and both type of agent better off. It follows from

Lemma 3 that C2 cannot constitute a renegotiation-proof state. The case that in the state

of the negotiation the current signed contract is in the ’No-Rent’ configuration is covered by

Lemma 2. ⇤

Proposition 2 is the direct consequence of the fact that if the utility of the principal is

independent of the type of the agent and the contract in the current state is in the ’H-Rent’

(’L-Rent’) configuration, there exists a pooling state that would make the principal and the

agent strictly better off. Lemma 3 then implies that no such state can be renegotiation-proof.

Given the set of renegotiation-proof states it is easy to verify that Assumption 1 to 3 hold

and Proposition 1 applies.
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Corollary 1. With private values, there exists a perfect Bayesian equilibrium of the negotia-

tion game such that in the first round the principal offers the contracts wL 2 ⇠L and wH 2 ⇠H

with u(wL, L) = u(w0, L) and u(wH , H) = u(wL, H). The agent of type ✓ chooses w✓ with

probability 1 and the principal ends the negotiation in the following round.

The principal offers efficient contracts such that the L-type of agent receives the same

utility as with his outside option contract and the H-type of agent is indifferent between his

efficient contract and the contract of the L type. It is remarkable that in contrast to the

single-period model, the result is independent of the prior of the principal. The results are

illustrated in Figure 2.

This result can be considered a generalization of the Coase conjecture. Coase argued that

a monopolist cannot keep prices high after the high valuation types of agent have bought

the good. That is to say, if the monopolist knows that the non-buyers are the low valuation

types of agent, she is not able to refrain from reducing the price to attract these buyers.

From a conceptual perspective, this situation is identical to that in which the monopolist

offers two contracts: One with a high price at which she agrees to sell the good, and another

with a low price and no good exchanged.20 The second contract, however, is inefficient and

would be renegotiated in equilibrium.

5.2. Common Values: The “Spence” case. We turn our attention to the case that the

utility of the principal depends on the type of agent who signs the contract. We start by

considering the “Spence” case. The distinctive characteristic of the “Spence” case it that

the principal and the agent agree on the marginal trade-off’s between types. Thus, the

indifference curve of the principal for the H type of agent is steeper than that for the L type

of agent. For example, in the education model in Spence (1973), the L type of agent has

larger costs of providing more effort. At the same time, the additional productivity gained

through additional education of the L type of agent is smaller than that of the H type of

agent.

20The original Coase conjecture can also be mapped in the framework at hand. If we interpret w1 as the
probability of trade, then the efficient contract curves will overlap. Thus, in equilibrium the principal will
offer the good to both types of agent at the willingness to pay of the low type (w2 = ✓L). In related work
(Gretschko and Wambach, 2016) we discuss the Coase conjecture with a continuous type space and are able
to rederive the “gap - no gap” result, in which there is a sharp difference between the case where the costs
of the principal lie in or outside the range of valuations.
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Examples.

(i) Equity. The principal is an investor who provides an investment I to a firm, the agent.

The investor faces a capital cost of RI where R represents the risk-free interest rate.

The firm offers the investor a share of the firm as compensation for the investment.

The profit of the firm ⇡(I, ✓) depends on a privately known parameter ✓ 2 {✓L, ✓H}
and fulfills the following conditions ⇡I(I, ✓) > 0, ⇡II(I, ✓) < 0, ⇡(I, ✓L) > ⇡(I, ✓H).

The objective function of the investor is E⇡(I, ✓) � RI. The objective function of

the firm is (1 � E)⇡(I, ✓). Suppose that the objective functions fulfill conditions (1)

and (2).

(ii) Regulating a monopolist. The agent is a (natural) monopolist that produces a quan-

tity q of a good and faces costs C(q, ✓) that depend on an efficiency parameter

✓ 2 {✓L, ✓H} and are increasing and convex in q and increasing in ✓. The principal

is a regulator that decides on a subsidy t. The objective function of the monopolist

is t�C(q, ✓), the objective function of the regulator is (S(q)� t) + ↵(t�C(q, ✓)) in

which S(q) � t denotes the consumer surplus. Suppose that the objective functions

fulfill conditions (1) and (2). Contracts are tuples (q, t).

Analysis. As in the private values case, without the potential for renegotiation, the principal

offers two contracts. The contract for the H type of agent is efficient and he is indifferent

between his contract and the contract of the L type of agent. The contract of the L type

is inefficient and provides him with the same utility as in his outside option. The exact

position of the described contracts depends on the prior µ0 of the principal. However, as in

the private values case, only efficient contracts are renegotiation-proof.

Proposition 3. For common values of the ’Spence’ type, the unique set of renegotiation-

proof states of the negotiation is

⌦ =

�
(wL, 0);wL 2 ⇠L

 [ �
(wH , 1);wH 2 ⇠H

 
.

Proof. It follows from Lemma 1 that the proposed ⌦ has to be a subset of any set of

renegotiation-proof states, as every efficient state of the negotiation is renegotiation-proof.

It must now be shown that no other state can be renegotiation-proof.
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Suppose the state of the negotiation is C1
= (w1, µ1

) with w1 in the ’H-Rent’ configuration.

As w1 is then to the left of both efficient contract curves, the indifference curve of the principal

for the L type is steeper than the indifference curve of the L type. Moreover, the indifference

curve of the L type is steeper than the indifference curve of the H type. In the ’Spence’ case

the indifference curve of the principal for the H type is steeper than the indifference curve

for the L type. It follows that in w1 both indifference curves of the principal are steeper than

both indifference curves of the agent. Thus, independent of µ1, there exists a single contract

w̄1 that makes the principal and both types of agent better off. It follows from Lemma 3

that C1 cannot constitute a renegotiation-proof state.

Suppose the state of the negotiation is C2
= (w2, µ2

) with w2 in the ’L-Rent’ configuration.

As w2 is then to the right of both efficient contract curves, the indifference curve of the H

type is steeper than the indifference curve of the principal for the H type. Moreover, the

indifference curve of the L type is steeper than the indifference curve of the H type. As above,

the indifference curve of the principal for the H type is steeper than the indifference curve

for the L type. It follows that both indifference curves of the agents are steeper than both

indifference curves of the principal. Thus, independent of µ2, there exists a single contract

w̄2 that makes everyone better off. It follows from Lemma 3 that C2 cannot constitute a

renegotiation-proof state. The case that the state of the negotiation is in the ’No-Rent’

configuration is covered by Lemma 2. ⇤

Interestingly, changing from private values to common values ’Spence’ type does not change

the fact that only efficient contracts are renegotiation-proof. As with private values, whenever

the contract of the current state is in the ’H-Rent’ (’L-Rent’) configuration, there exists a

pooling contract that would make the principal and the agent strictly better off. This is a

direct consequence of the fact that both indifference curves of the principal are steeper (less

steep) than both indifference curves of the agent. Lemma 3 thus implies that no such state

can be renegotiation-proof. This is illustrated in Figure 3. Given the set of renegotiation-

proof states it is easy to verify that Assumption 1 to 3 hold and Proposition 1 applies.

Corollary 2. With common values of the “Spence” type, there exists a perfect Bayesian equi-

librium of the negotiation game such that in the first round the principal offers the contracts

wL 2 ⇠L and wH 2 ⇠H with u(wL, L) = u(w0, L) and u(wH , H) = u(wL, H). The agent of
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Figure 3. The equilibrium contracts of the negotiation game with common
values ’Spence’ type.

type ✓ chooses w✓ with probability 1 and the principal ends the negotiation in the following

round.

It could be argued that this result does not come as a surprise as efficient contracting is to

be expected given that frictionless renegotiation should lead to an exploitation of all gains

from trade. However, as we will show in the following section, this is not true if the agent

and the principal rank the marginal trade-offs between types differently.

5.3. Common Values: The “Rothschild-Stiglitz” case. The distinctive characteristic of

the “Rothschild-Stiglitz” case is that the agent and the principal do not agree on the marginal

trade-offs between types of agent. For example, in the insurance model in Rothschild and

Stiglitz (1976), the L type of agent has a lower risk probability. On one hand, for a marginal

increase in premium the agent must be compensated by a larger increase in indemnity than

the H type. Thus, the L type indifference curve is steeper than the indifference curve of the

H type. On the other hand, a marginal increase in indemnity is more costly for the principal

if the agent is of the H type than if the agent is of the L type.

Examples.

(i) Financing contracts. The agent is a firm that needs financing I to undertake a project

with return R(✓, I) with a risk-spread of ✓ 2 {✓L, ✓H}. That is, let R(✓, I) be normally
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distributed with E(R(✓H , I)) > E(R(✓L, I)) and Var(R(✓H , I)) > Var(R(✓L, I)) such

that E(R(✓H , I)) is increasing in I. The risk spread ✓ is private information to

the firm. The principal is an investor who provides an investment I and receives
˜t = min{t, R(✓H , I)}. The objective function of the firm is max

�
E(R(✓H , I)) � t, 0

 

and the objective function of the investor is E

�
min{t, R(✓H , I)

� � I. Suppose that

the objective functions fulfill conditions (1) and (3). Contracts are tuples (I, t).

(ii) Green procurement. The principal is a public authority that wants to procure a

quantity q of a good for the exchange of a transfer t. The production of a quantity q

of the good generates a utility of S(q) and creates harmful pollution of P(q,✓) with

✓ 2 �
✓L, ✓H

 
being the degree of pollution. That is, P (q, ✓H) > P (q, ✓L). The agent

is a firm that produces the good with an exogenously given technology ✓ 2 �
✓L, ✓H

 

at costs C(q, ✓) such that technology ✓L creates less pollution but is associated with

higher production costs than technology ✓H . That is, C(q, ✓L) > C(q, ✓H). The used

technology is private knowledge to the agent. The objective function of the principal

is S(q)�P (q, ✓)� t. The objective function of the agent is t�C(q, ✓). Suppose that

the objective functions fulfill conditions (1) and (3). Contracts are tuples (t, q).

Analysis. Under the assumption that the efficient contract curve of the L type of agent lies

weakly to the left of the efficient contract curve of the high type, the solution of the one-shot

negotiation is similar to the solution of the one-shot negotiation in the private values and

the ’Spence’ case: the principal offers two contracts. The contract for the H type of agent

is efficient and the agent is indifferent between his contract and the contract of the L type

of agent. The contract of the L type of agent is inefficient and provides the agent with the

same utility as his outside option contract. The exact position of the described contracts

depends on the prior µ0 of the principal.

If renegotiation is taken into account, the renegotiation-proof states in the “Rothschild-

Stiglitz” case can be remarkably different from those in the “Spence” and private values case

as a set containing only efficient states may not be renegotiation-proof.

Lemma 4. Let wL 2 ⇠L and wH 2 ⇠H . In the “Rothschild-Stiglitz” case, if w 2 R2
+ exists

such that u(wL, L) = u(w,L) and u(wH , H) = u(wL, H) and v(w,H) > v(wH , H), then
�
(wL, 0);wL 2 ⇠L

 [ �
(wH , 1);wH 2 ⇠H

 
is not a set of renegotiation-proof states.
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Proof. As v(w,H) > v(wH , H) there exist an µ < 1 such that (1 � µ)v(w,L) + µv(w,H) >

(1 � µ)v(wL, L) + µv(wH , H). Thus, starting from state (w, µ), (wL, 0) and (wH , 1) are

not feasible. Moreover, as (wL, 0) and (wH , 1) are the optimal efficient states there do not

exist other efficient states that are feasible. Thus,
�
(wL, 0);wL 2 ⇠L

 [ �
(wH , 1);wH 2 ⇠H

 

violates external consistency of Definition 3. ⇤

The main difference between the “Rothschild-Stiglitz” case and other cases is that in the

latter cases it is always feasible to reach efficient allocations from any state of the negotiation

game. This is not true for the “Rothschild-Stiglitz” case. To clarify this we can consider some

state with a contract in the ’H-Rent’ configuration. As, for example, in the Spence case the

H type indifference curve of the principal lies above the L type indifference curve, the optimal

efficient contracts for the principal lie both on higher indifference curves than the contract

of the original state. This not need be the case in the “Rothschild-Stiglitz” case as the H

type indifference curve of the principal is below the L type indifference curve. In this case

it could be that the optimal efficient contracts are such that the principal receives a strictly

lower utility from contracting with the H type of agent than in the contract of the original

state. Thus, if the probability of facing the H type of agent in the original state is high,

the principal is strictly worse off with the efficient contracts. It follows that a set containing

only efficient states may not be renegotiation-proof.

Lemma 4 could be seen as an impossibility result. However, to show that inefficient

equilibria of the negotiation game exist, we must show that a set of renegotiation-proof

states ⌦ does indeed exist. To do so we use internal and external consistency to construct

such a set. For the construction we impose some more structure on our very general set-up

by making the following assumption:

Assumption 4. The utility functions of the principal and the agent are additively separable.

That is,

(i) u(w, ✓) = f(w2, ✓) + �✓w1 and v(w, ✓) = g(w2, ✓) � w1 with �✓ 2 R+ and

(ii) if �f1(w2, L)/�L = g1(w2, L) then �f1(w2, H)/�H < g1(w2, ✓H).

Assumption 4 guarantees that the utility of the principal and the agent are additively

separable and thus indifference curves are parallel. If Assumption 4 holds true, we can use

internal and external consistency to construct a set of renegotiation-proof states:
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Figure 4. Construction of renegotiation-proof ⌦ in the Rothschild-Stiglitz case.

Proposition 4. Suppose Assumption 4 holds true. A set ⌦ of renegotiation-proof states

exists in the "Rothschild-Stiglitz" case.

Proof. The proof is relegated to Appendix A. ⇤

The construction proceeds inductively. We work our way along all states with contracts

on a particular indifference curve of the agent. We start by including the states that make

the principal indifferent between ending the negotiation or negotiating towards fully efficient

states. In particular, the belief that makes the principal indifferent is decreasing as we move

down the indifference curve. See the left-hand side of Figure 4 for an illustration. At some

point, the construction may hit the pooling indifference curve of the principal. At this point,

we start including those states in ⌦ which mean that the principal is indifferent to either

negotiating in a way that leads to this state or opting for the corresponding efficient contract

for the H type of agent. Again, moving down the indifference curve, the belief of the principal

will be decreasing for states in ⌦. See the right-hand side of Figure 4 for an illustration. We

then use the additive separability of the utility functions to extend the construction to all

indifference curves.

As suggested by Lemma 4, the constructed ⌦ will contain inefficient states. However,

whether the optimal state will be inefficient depends on the model parameters:21

Corollary 3. Let wL 2 ⇠L and wH 2 ⇠H such that u(wL, L) = u(w0, L) and u(wH , H) =

u(wL, H). With common values "Rothschild-Stiglitz" type:
21Given the set of renegotiation-proof states constructed in the proof of Proposition 4 it is straightforward
to verify that Assumption 1 to 3 hold and Proposition 1 applies.
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Figure 5. Equilibrium contracts of the negotiation game with common values
"Rothschild-Stiglitz" type.

(i) If v(w0, H) < v(wH , H), there exists a perfect Bayesian equilibrium of the negotiation

game such that in the first round the principal offers the contracts wL and wH . The

agent of type ✓ chooses w✓ with probability 1 and the principal ends the negotiation

in the following round.

(ii) Otherwise, there exist a perfect Bayesian equilibrium of the negotiation game in which

the principal offers contracts wLp /2 ⇠L and wHp 2 ⇠H with u(wLp , L) = u(w0, L) and

u(wHp , H) = u(wLp , H). The L-type agent chooses wLp with probability 1 and the

H-type agent chooses wHp with a probability strictly below 1. The principal ends the

game in the following round.

Proof. Follows immediately from the construction of ⌦ in the proof of Proposition 4. ⇤

The results are illustrated in Figure 5. The exact position of (wLp , wHp
) will depend on

the initial parameters of the problem. For example, all states C = (w,µ) with contracts on

the indifference curve of the L-type agent that goes through w0 are renegotiation-proof if the

principal is indifferent between to either maintaining w or negotiating toward the efficient

contracts (wL, wH
), that is, if ⇡(C) = (1� µ)⇡(CL

) + µ⇡(CH
). Thus, the principal will pick

the optimal renegotiation-proof state that is feasible starting from (w0, µ0). Feasibility in

this cases amounts to µ  µ0. More generally, if the initial contract w0 is in the ’H-Rent’
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configuration, the principal solves the following problem:

max

CLp
⌫⇡(CLp

) + (1 � ⌫)v(wHp , H)

s.t. ⌫µLp
+ (1 � ⌫) = µ0

CLp 2 ⌦

u(wHp , H) = u(wLp , H)

with the ⌦ constructed in Proposition 4.

v(w0, H) > v(wH , H) does not imply that efficient states are not feasible ex-ante. Hence,

the optimal renegotiation-proof states can be inefficient, even if efficient contracts were fea-

sible ex-ante. Even more interesting perhaps is the fact that there may exist states which

would make the principal strictly better off then in the renegotiation-proof states, if she were

to negotiate towards these states. These states, however, are not renegotiation-proof.

Note that in contrast to the one-shot negotiation which also yields inefficient contracts, a

full separation of types of agent does not occur if renegotiation is taken into account. On

the equilibrium path, the H type of agent always chooses the contract of the L type of agent

with a positive probability.

6. Conclusion

One of the main contributions of this article has been the characterization of a set of

renegotiation-proof states. By using internal and external consistency, effective yet simple

results are achieved. The main advantage of this approach is that in contrast to other

definitions of renegotiation-proofness, we do not assume that the state has to be efficient

and thus allow for inefficient states as in the "Rothschild-Stiglitz" case.

In the case at hand we are able to prove that the renegotiation-proof states can indeed

be supported by perfect Bayesian equilibrium of a general negotiation game. Provided that

the type space remains finite the presented analysis can be extended. One must however, be

careful with the definition of the (mixed) strategies of the agent.22 However, if type spaces be-

come more complicated, the explicit derivation of strategies in the negotiation game becomes

22One way to overcome the problems associated with mixed strategies of the agent is to introduce a mediator
that translates (pure-strategy) messages of the agent into a noisy signal to the principal. Examples for this
approach include (but are not limited to) Pollrich (2016), Strausz (2012), and Vartiainen (2013).
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intractable. Nevertheless, we believe that the presented analysis based on the properties of

renegotiation-proof sets remains valid as it captures the sequential rationality of the principal

in a dynamic game. Thus, extending the ’axiomatic’ analysis of renegotiation-proof states to

more complicated settings provides significant insights and should be implemented as part

of future research. Examples of this approach include Asheim and Nilssen (1997), Gretschko

and Wambach (2016), Vartiainen (2013), and Vartiainen (2014).

Appendix A. Proofs

Proof of Proposition 1.

Proof. The proof proceeds in six steps:

Step 1: We specify the equilibrium strategies of the principal.

Step 2: We prove a Lemma that facilitates the exposition of the strategies of the agent.

Step 3: We specify the equilibrium strategies of the agent.

Step 4: We specify how the beliefs of the principal and the agent are updated

Step 5: We show that to prove that the proposed strategies form a PBE it is sufficient to

consider only one-shot deviations.

Step 6: We prove that the proposed strategies form a PBE.

Step 1: Definition of the equilibrium strategy of the principal

The proposed equilibrium strategy of the principal in stage t depends only on the current

state Ct�1 = (wt�1, µt�1) of the negotiation. If Ct�1 is in ⌦, the principal offers Mt = ;. If

Ct�1 is not in ⌦, the principal offers Mt =
�
sL(Ct�1), s

H
(Ct�1)

 
. That is, the principal ends

the game if the current state Ct�1 is in ⌦. Otherwise, she proposes the optimal contracts in

⌦ starting from state Ct�1:

�p
t (h

p
(t)) = �p

(Ct�1) =

8
><

>:

�
sL(Ct�1), s

H
(Ct�1)

 
if Ct�1 /2 ⌦

; if Ct�1 2 ⌦

.

Step 2: A useful result

We establish that for any deviating proposal of the principal there is one type of agent

who is best off choosing one of the contracts with probability one given that the principal

will play her equilibrium strategy in the continuation game. For the other type of agent it is

then optimal to mix between this contract and at most one other contract from the proposal.
34



Lemma 5. For any proposal Mt of the principal at least one of the following holds true:

(i) there exists a contract wL 2 Mt [{wt�1} such that u(sL(wL, ⌫), L) � u(sL(w, µ), L),

for all w 2 Mt\
�
wL

 [ {wt�1} and all ⌫, µ 2 [0, 1].

(ii) there exists a contract wH 2 Mt[{wt�1} such that u(sH(wH , ⌫), H) � u(sH(w, µ), H),

for all w 2 Mt\
�
wH

 [ {wt�1} and all ⌫, µ 2 [0, 1].

Proof. Suppose first that all w 2 Mt[{wt�1} are in the ’H-Rent’ configuration. In this case,

Assumption 2 (i), ensures that the contract wL that maximizes u(·, L) over Mt [{wt�1} has

property (i) as u(sL(w, µ), L) = u(w,L) and u(sL(wL, ⌫) = u(wL, L). If all w 2 Mt [{wt�1}
are in the ’L-Rent’ configuration, Assumption 2 (ii) ensures that the contract wH that

maximizes u(·, H) over Mt [ {wt�1} has property (ii). If all w 2 Mt [ {wt�1} are in the

’No-Rent’ configuration, Assumption 2 (iii) ensures that the contract wL that maximizes

u(·, L) over Mt [ {wt�1} has property (i) and that the contract wH that maximizes u(·, H)

over Mt [ {wt�1} has property (ii).

Finally, let Mt [ {wt�1} be arbitrary. For a contradiction, suppose that (i) and (ii) do

not hold true. As (i) does not hold, there must exist a contract w0 2 Mt [ {wt�1} and

µ0 > 0 such that u(sL(w0, µ0
), L) > u(sL(w, 0), L) for all w 2 Mt [ {wt�1}.23 In view of

Assumption 2, w0 must lie in the ’L-Rent’ configuration. This same argument also means

that there exists w00 2 Mt [ {wt�1} in the ’H-Rent’ configuration and µ00 > 0 such that

u(sH(w00, µ00
), H) > u(sH(w, 1), H) for all w 2 Mt [ {wt�1}. Observe that u(sL(w0, µ0

), L) is

bounded above by u(w̄H , L) where w̄H is the H-efficient contract that gives the H-type the

same utility as w0, i.e. u(w0, H) = u(w̄H , H) and w̄H 2 ⇠H . This is a result of Assumption 2

and the fact that efficient allocations are in ⌦ (Lemma 1). As (i) does not hold true it must

follow that u(w00, L) < u(w̄H , L). By the same token, u(sH(w00, µ00
), H) is bounded above by

u(w̄L, H) where w̄L is the L-efficient contract that gives the L-type the same utility as w00,

i.e. u(w00, L) = u(w̄L, L) and w̄L 2 ⇠L. However, single crossing together with the fact that

⇠H lies to the right of ⇠L implies that u(w̄L, H) < u(w0, H). As u(w̄L, H) � u(sH(w00, µ00
), H)

this constitutes a contradiction to the assumption that (ii) does not hold true. The proof is

illustrated in Figure 6.

⇤
23u(sL(w, ⌫), L) is weakly increasing in ⌫. Thus, if u(sL(w0, µ0), L) > u(sL(w, ⌫), L) for some ⌫ 2 [0, 1], it
follows that u(sL(w0, µ0), L) > u(sL(w, 0), L).
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Figure 6. Sketch of proof of Lemma 5.

Step 3: Definition of the equilibrium strategy of the agent

The strategy of the agent at stage t is more elaborate and depends on the current

contract wt�1, the set of proposed contracts of the principal Mt and the belief of the

principal µt. We start by defining the strategy of the agent if µt�1 is the current be-

lief of the principal, the current signed contract is wt�1 and the principal proposes Mt =

�
sL((wt�1, µt�1)), s

H
((wt�1, µt�1))

 
. In this case, let (CL, CH

) = s(C0) with C✓ = (s✓(wo, µ0), µ
✓
).

The agent of type L chooses contract sL(wt�1, µt�1) with probability

pL =

(1 � µL
)(µH � µt�1)

(1 � µt�1)(µH � µL
)

,

that is, �L
t (h

a
(t)) = �L

(

�
sL(wt�1, µt�1), s

H
(wt�1, µt�1), wt�1

 
, µt�1) = (pL, 1 � pL, 0).24 The

agent of type H chooses contract sH(wt�1, µt�1) with probability

pH =

µH
(µt�1 � µL

)

µ(µH � µL
)

,

that is, �H
t (ha

(t)) = �H
(

�
sL(wt�1, µt�1), s

H
(wt�1, µt�1), wt�1

 
, µt�1) = (1 � pH , pH , 0).

Now suppose again that the current signed contract is wt�1, the current belief of the

principal is µt�1 but Mt 6= �
sL(Ct�1), s

H
(Ct�1)

 
. In this case, Lemma 5 ensures that

24Recall that �✓ is a mapping from (Mt, wt�1) to � (Mt [ {wt�1}).
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there exists a type ✓ and a contract w✓ such that choosing w✓ with probability 1 maximizes

continuation pay-off given the equilibrium strategy of the principal. To save on notation we

will describe only the case ✓ = L.25 In this case, the equilibrium strategy prescribes that the

L type chooses wL with probability 1. To define the equilibrium strategy of the H type we

distinguish 3 cases:

(i) If there exists wH such that u(sH(wH , 1), H) > u(sH(wL, 0), H), choose wH 2 Mt [
{wt�1} with probability 1 that maximizes u(sH(·, 1), H)

(ii) If (sH(w, 1), H)  u(sH(wL, µt�1), H) for all w 2 Mt [ {wt�1}, choose wL with

probability 1.

(iii) If neither of the two hold, choose with probability (1 � ⇢)/(1 � ⇢µt�1) w
H 2 Mt [

{wt�1} that maximizes u(sH(·, 1), H) where ⇢ is such that u(sH(wH , 1), H) = u(sH(wL, ⇢µt�1), H),

choose wL with the complementary probability.26

Step 4: Belief updating

Suppose the principal offered Mt =
�
sL(Ct�1), s

H
(Ct�1)

 
. If the agent chooses, s✓(Ct�1),

the principal updates her belief to µt = µ✓.

As above, we define belief updating for the case (i) of Lemma 5 only, that is, the case

in which the L-type agent chooses wL with probability one. The other case is defined in

an analogous manner. If the principal observes that the agent chooses wH , she updates her

belief to µt = 1, i.e., she believes that the agent is definitely of the H type . If the principal

observes that contract wL is chosen, she updates her belief to µt = ⇢̃µt�1 with ⇢̃ = 0 in case

(i), ⇢̃ = 1 in case (ii), and ⇢̃ = ⇢ in case (iii). If the principal observes a choice w /2 �
wL, wH

 
,

she updates her belief to µt = 1, i.e., she believes that the agent is certainly of the H-type.

This construction defines the strategies and beliefs for every possible history of the game.

Step 5: One-shot deviations

As the negotiation game is played without discounting, it is not continuous at infinity and

the standard one-shot deviation principle does not apply directly.27 However, we will show

that irrespective of the strategy of the agent for every profitable deviation of the principal

that may result in an infinite history there is another profitable deviation strategy that only

results in finite histories. In this case, the standard finite-deviations argument applies and
25The case ✓ = H proceeds in exactly the same manner.
26Assumption 3 guarantees the existence of such a ⇢.
27For a statement of the one-shot deviation principle see e.g. Fudenberg and Tirole (1990a) p. 108ff.
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to establish equilibrium it is sufficient to consider only one-shot deviations of the principal.

For the agent, we will show that given the equilibrium strategy of the principal there is no

deviation that results in an infinite history and makes the agent better off.

Lemma 6. For every deviation strategy of the principal or the agent that results in an infinite

history, there exist another profitable deviation strategy that only results in finite histories.

Proof. Principal: Let �p denote the strategy of the principal. Suppose there exists another

strategy �̄p that may result in an infinite history and improves on the expected pay-off of �p

by at least some ✏ > 0. Two cases are relevant.

Case 1: There exists a history h0
(t0) of the game such that given �̄p an infinite history h(1)

with ht0(1) = h0
(t0) will be reached with probability higher than some fixed � > 0. In this

case, with probability higher than �, the final payoff of the principal will be v(h(1)) = �1.

The expected continuation pay-off starting from h0
(t0) is therefore �1. It follows that

replacing �̄p
(h0

(t0)) by Mt+1 = ; yields a strictly higher payoff. There exists therefore a

strategy �̃p that results only in finite histories and improves the payoff of the principal as

compared to �p by at least ✏.

Case 2: There exists no history h0
(t0) of the game such that given � an infinite history

h(1) with ht0(1) = h0
(t0) will be reached with probability higher then some fixed � > 0.28

In this case, for a given history h0
(t0) denote by Hh0(t̄) = {h(t) 2 H |ht0(t) = h0

(t0), t > t0} the

set of all terminal histories that contain h0
(t0) and denote by P�̄p the probability distribution

on Hh0(t0) induced by �̄p. It follows that for every � > 0 there exist a t� > t0 such that for every

history ¯h(t�) that coincides with h0
(t0) up to stage t0, P�̄p

��
h(t) 2 Hh0(t0) and ht�(t) =

¯h(t�)
 �

<

�. That is, the ex-ante probability at h0
(t0) that the game has not ended by stage t� is smaller

than �. It is therefore possible to choose a sufficiently small � such that the change in ex-

pected payoff starting from h0
(t0) of the principal from replacing �̄p

(

¯h(t�)) by Mt�+1 = ; is at

most ✏/2. Hence, there exists a strategy �̃p that results only in finite histories and improves

the payoff of the principal as compared to �p by at least ✏/2. Using the one-stage deviation

principle for finite games yields the result.

28In particular, this case covers all histories of arbitrary length which are finite with probability one.
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Agent: Given the equilibrium strategy of the principal, the only deviation of the agent

that would result in an infinite history is to choose wt = w0 in every stage t. This is clearly

not a profitable deviation for the agent. ⇤

Step 6: Verification of equilibrium

As above, we will verify the equilibrium for case (i) of Lemma 5.

Agent: Suppose the negotiation reached round t, the current signed contract is wt�1, the

belief of the principal is µt�1, and the offer of the principal is Mt =
�
sL(Ct�1), s

H
(Ct�1)

 
with

Ct�1 = (wt�1, µt�1). Given the strategy of the principal, if the agent chooses either sL(Ct�1)

or sH(Ct�1), the negotiation will be over in round t+ 1. Thus, it is optimal for the agent to

choose the best contract available. Whenever the agent is indifferent between sL(Ct�1) and

sH(Ct�1) any mixing between the contracts is optimal. Thus, choosing contract s✓(Ct�1)

with probability p✓ is optimal as by Definition 1, p✓ < 1 if and only if u(s✓(Ct�1), ✓) =

u(s✓
0
(Ct�1), ✓). If the agent chooses wt�1, the principal updates his belief to µt = 1 and

proposes Mt+1 =
�
sL(wt�1, 1), s

H
(wt�1, 1)

 
. Neither type of agent is strictly better off with

choosing one of those contracts as compared to sL(Ct�1) or sH(Ct�1). Thus, choosing wt�1

in round t cannot constitute a profitable deviation.

Now suppose the offer of the principal is Mt 6= �
sL(Ct�1), s

H
(Ct�1)

 
. In this case, for

whatever contract the agent chooses the principal will update her belief, the new state will

be Ct and the principal will propose Mt+1 =

�
sL(Ct), s

H
(Ct)

 
and end the negotiation

afterward. Thus, it is optimal of the agent of type ✓ to choose a contract in Mt [ {wt�1}
such that s✓(Ct) is maximized. Precisely this logic is reflected in the definition of the strategy

of the agent. Thus, the agent behaves optimally given the strategy of the principal.

Principal: As established above in Lemma 6, it is sufficient to consider only one-shot

deviations of the principal. We will consider two cases: the current state of the negotiation

is not in ⌦ and the current state is in ⌦. The main idea of the proof is that any deviation

of the principal can be improved further by negotiating to a feasible state that is in ⌦.

Thus, rather than reaching a final state via a deviation, the principal could have negotiated

directly to this state. Hence, offering a menu of contracts other than those prescribed by the

equilibrium strategy does not make the principal better off due to internal consistency.

Case 1: The negotiation reached round t and the state is Ct�1 /2 ⌦. Ending the ne-

gotiation by proposing Mt = ; is dominated by the equilibrium strategy of proposing
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Mt =

�
sL(Ct�1), s

H
(Ct�1)

 
. This follows directly from the definition of s(Ct�1). Thus,

suppose the principal offers a nonempty Mt 6= �
sL(Ct�1), s

H
(Ct�1)

 
in round t and subse-

quently follows her equilibrium strategy. In this case, the agent will choose either contract

wL 2 Mt [ {wt�1} or contract wH 2 Mt [ {wt�1} as defined in the strategy of the agent

above. In round t + 1 the principal will update her belief and the state of the negotiation

is either (wH , 1) or (wL, ⇢̃µt�1). Observe in that case replacing wH with w̄H 2 ⇠H such that

u(w̄H , H) = u(wH , H) makes the principal strictly better off. There is therefore no costs

associated with assuming that (wH , 1) 2 ⌦. Two cases are relevant. Firstly, (wL, ⇢̃µt�1) 2 ⌦,

in this case following her equilibrium strategy, the principal ends the negotiation. From

the definition of s(C) it follows that this cannot make the principal strictly better of than

following the proposed equilibrium strategy in round t. Secondly, (wL, ⇢̃µt�1) 6= ⌦. In this

case, after wL was chosen by the agent, the principal, according to her equilibrium strategy,

proposes Mt+1 =

�
sL(Ct), s

H
(Ct)

 
, the agent chooses one of the contracts according to

his equilibrium strategy and the principal updates her belief such that Ct+1 2 ⌦ and the

negotiation ends. If s(wL, ⇢̃µt�1) = (CL, CH
) is feasible starting from Ct�1, by definition

of s(·) the principal cannot be better off than by having followed the proposed equilib-

rium strategy and proposed Mt =
�
sL(Ct�1), s

H
(Ct�1)

 
. Thus, it remains to establish that

s(wL, ⇢̃µt�1) = (CL, CH
) is feasible starting from Ct�1. To do so suppose that wt is in the ’H-

Rent’ configuration.29 Let C✓
= (w̃✓, µ̃✓

). Due to single crossing and Assumption 2 it follows

that u(sH(wL, ⇢̃µt�1), H) > u(sL(wL, ⇢̃µt�1), H). Thus, it follows from the definition of feasi-

bility that µ̃H
= 1. To establish feasibility of (CL, CH

) starting from Ct�1 we check condition

(iii) of Definition 1.30 That is, we must show a p exists such that pµ̃L
+ (1 � p)µ̃H

= µt�1.

As µ̃H
= 1 it suffices to show that µ̃L  µt�1. As µt = ⇢̃µt�1, it follows that µt�t � µt.

However, as (CL, CH
) is feasible starting from Ct it follows that µt�1 � µt � µL.

Case 2: The negotiation reached round t and the state is Ct�1 2 ⌦. Suppose the principal

deviates from the proposed equilibrium strategy and instead of ending the negotiation pro-

poses a nonempty set of contracts Mt and follows his equilibrium strategy afterward. The

agent will choose either contract wL 2 Mt[{wt�1} or contract wH 2 Mt[{wt�1} as defined

in the strategy of the agent above. In round t+1 the principal will update his belief and the

29This is consistent with case (i) of Lemma 5. The case that wt is in the ’No-Rent’ or ’L-Rent’ configurations
would proceed in an anologous manner.
30Conditions (i), (ii), and (iv) in Definition 1 are satisfied trivially.
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state of the negotiation is either (wH , 1) or (wL, ⇢̃µt�1). Again there are no costs associated

with assuming that (wH , 1) 2 ⌦. Two cases are relevant. First, (wL, ⇢̃µt�1) 2 ⌦, in this case,

according to her equilibrium strategy, the principal ends the negotiation. As (wL, ⇢̃µt�1) 2 ⌦

and (wL, ⇢̃µt�1) is feasible starting from Ct�1, it follows from internal consistency (Definition

3 (i)) that executing (wL, ⇢̃µt�1) cannot make the principal strictly better off compared to

following his equilibrium strategy and executing Ct�1. Second, (wL, ⇢̃µt�1) /2 ⌦. In this

case, following her equilibrium strategy, the principal proposes Mt+1 =

�
sL(Ct), s

H
(Ct)

 
,

the agent chooses one of the contracts according to his equilibrium strategy, the princi-

pal updates her belief such that Ct+1 2 ⌦ and the negotiation ends. As in Case 1 above,

s((wL, ⇢̃µt�1)) = (CL, CH
) is feasible starting from Ct�1. It therefore follows from internal

consistency (Definition 3 (i)) that proposing (CL, CH
) cannot make the principal better off

compared to following her equilibrium strategy and executing Ct�1. ⇤

Proof of Proposition 4.

Proof. The construction of the the set of renegotiation-proof states draws on ideas introduced

in Asheim and Nilssen (1997). The following proof indicates, however, that is differs in two

respects. Firstly, Asheim and Nilssen (1997) consider an insurance market. Thus, the

efficient contract curves for the L type and the H type are the same. We extend the analysis

to problems with potentially distinct efficient contract curves. Secondly, they assume that

no overinsurance takes place. Thus, their construction does not extend to the ’L-Rent’

configuration which is the case for our construction.

To show that a set of renegotiation-proof states exists, we will construct such a set. The

main idea of the construction is to make use of internal consistency of renegotiation-proof

states in Definition 3. We start by working our way along all states with contracts on a

particular indifference curve. Inductively, we will include those states in ⌦ that cannot be

strictly improved upon by feasible states that are already included in ⌦.

We start the construction for states with contracts that are in the ’H-Rent’ configuration.

Take some wL0 2 ⇠L. Denote by wH0 2 ⇠H the H-efficient contract that gives the H type the

same utility as wL0 . That is, u(wH0 , H) = u(wL0 , H). From Lemma 1 it follows that CL0
=

(wL0 , 0) and CH0
= (wH0 , 1) are in ⌦. Observe that (w, µ) such that u(w,L) = u(wL0 , L),

u(w,H)  u(wH0 , H) and v(w,H) < v(wH0 , H) cannot constitute a renegotiation-proof state
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Figure 7. Construction of ⌦ in the case of common values "Rothschild-
Stiglitz" type.

as (CL0 , CH0
) is feasible and makes the principal and both types of agent strictly better off.

This would violate internal consistency. Thus, for the construction of ⌦, we will consider

only states such that given her belief, the principal is indifferent as whether she retains w or

negotiates towards (CL0 , CH0
). That is, we consider:

�

�
(CL0

)

:

=

�
C = (w, µ); u(w,L) = u(wL0 , L), µ < 1, (1 � µ)⇡(CL0

) + µ⇡(CH0
) = ⇡(C)

 
.

For all C = (w, µ) and ¯C = (w̄, µ̄) in �

�
(CL0

) it holds that whenever u(w,H) < u(w̄,H) it

follows µ < µ̄. That is, moving along the indifference curve of the L type, µ decreases for

all C that are in �

�
(CL0

). It follows from Lemma 3 that only states for which no pooling

state exists which would make all parties better off can be renegotiation-proof. Hence,

whenever there exist a state (wL1 , µL1
) 2 �

�
(CL0

) such that the pooling indifference curve

of the principal for µL1 is tangent to the L type indifference curve in wL1 , all states with

C = (w, µ) 2 �

�
(CL0

) and u(w,H)  u(wL1 , H) cannot constitute a renegotiation-proof

state. Thus, we include all states C = (w, µ) 2 �

�
(CLo

) in ⌦ with u(w,H) > u(wL1 , H).

Define CL1
= (wL1 , µL1

) and CL1
= (wH1 , 1) with wH1 2 ⇠H and u(wH1 , H) = u(wL1 , H).

Continue the construction by considering
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�

�
(CL1

)

:

=

�
C = (w, µ); u(w,L) = u(wL1 , L),

µ < 1, (1 � ⌘)⇡(CL1
) + ⌘⇡(CH1

) = ⇡(C), (1 � ⌘)µL1
+ ⌘ = µ

 
.

As above, there may exist a state CL2
= (wL2 , µL2

) 2 �

�
(CL1

) such that the pooling in-

difference curve of the principal for µL2 is tangent to the L type indifference curve. In this

case, include all states C = (w, µ) 2 �

�
(CLo

) in ⌦ with u(w,H) > u(wL1 , H). Proceed by

constructing �

�
(CL2

). The construction stops at �

�
(CLn

) if in �

�
(CLn

) there is no state

such that the pooling indifference curve of the principal is tangent to indifference curve. In

this case, include all states in �

�
(CLn

) in ⌦. The construction is sketched in Figure 7.

So far we have used internal consistency to construct a set of renegotiation-proof states

along one particular indifference curve of the L type agent. In the next step, we extend the

construction to all potential states in the ’H-Rent’ configuration. Again, the main idea is on

one hand to include those states in ⌦ that cannot be strictly improved upon by feasible states

that are already in ⌦, and on the other hand, to only include states that would not strictly

improve on states that are already in ⌦. Recall that we assumed that the utility functions

of the agent and the principal are additively separable of the form u(w, ✓) = f(w2, ✓)+�✓w1

and v(w, ✓) = g(w2, ✓) � w1. Thus, for all ((w1, w2), µ) that are in ⌦ so far we also include

((�w1, w2), µ) in ⌦ for all � > 0. From additive separability of the utility functions which

implies that indifference curves shift in parallel and the construction above, for all w internal

consistency of Definition 3 is not violated for all states C = (w, µ) in ⌦ along the indifference

curve of the L-type agent that contains w. Moreover, in the ’H-Rent’ configuration, for each

state C = (w, µ) whenever there is no feasible state C 0
= (w0, µ0

) with w0 on the same L type

indifference curve as w that strictly improves on C, there is also no feasible state which gives

the L type a larger utility. Thus, the constructed ⌦ does not violate internal consistency of

Definition 3.

Before we proceed with the construction in the ’L-Rent’ configuration, we verify that the

constructed ⌦ does not violate external consistency of Definition 3 for states with contracts

in the ’H-Rent’ configuration. That ⌦ does not violate internal consistency is a direct

consequence of the construction. Take some state C = (w, µ) . Two cases are relevant. First,
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there exist a µ0 such that (w, µ0
) 2 �

�
(CLk

) \ ⌦ for some k. In this case, whenever µ < µ0,

CLk and CHk are feasible. Whenever, µ > µ0, (w, µ0
) and (w̄, 1) with u(w̄,H) = u(w, H) and

w̄ 2 ⇠H are feasible. Second, no such µ0 exist. In this case CL0 and CH0 are feasible.

The construction of ⌦ for states with contracts in the ’L-Rent’ configuration mirrors

the construction above for the ’H-Rent’ configuration. Take some wH0 2 ⇠H . Denote by

wL0 2 ⇠L the L-efficient contract that gives the L type the same utility as wH0 . That is,

u(wL0 , H) = u(wH0 , H). As above inductively define, CHk and CLk as well as

�

�
(CHk

)

:

=

�
C = (w, µ); u(w,H) = u(wHk , H),

µ > 0, (1 � ⌘)⇡(CLk
) + ⌘⇡(CHk

) = ⇡(C), (1 � ⌘)µHk
= µ

 
.

The rest of the construction proceeds in exactly the same manner as the construction of

renegotiation-proof states with contracts in the ’H-Rent’ configuration and is therefore omit-

ted. From Lemma 2 it follows that states with contracts in the ’No-Rent’ configurations

cannot be part of a set of renegotiation-proof states. This completes the construction. ⇤
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