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Non-­‐technical	
  Summary	
  

In	
  this	
  paper,	
  we	
  develop	
  an	
  agent-­‐based	
  model	
  of	
  the	
  financial	
  market.	
  Agent-­‐based	
  modeling	
  is	
  a	
  
simulation-­‐based	
  technique	
  that	
  is	
  gaining	
  popularity	
  in	
  economics.	
  In	
  an	
  agent-­‐based	
  model	
  auton-­‐
omously	
  acting	
  and	
   interacting	
  units	
   (e.g.	
   representing	
   financial	
  market	
  participants)	
  endogenously	
  
generate	
  structures	
  and	
  system	
  properties.	
  	
  

In	
  our	
  model,	
   boundedly	
   rational	
   agents	
   trade	
  a	
   financial	
   asset.	
   Their	
   trading	
   strategy	
   thereby	
  de-­‐
pends	
  on	
  their	
  return	
  forecast	
  which	
  is	
  formed	
  by	
  either	
  considering	
  fundamentals	
  or	
  technical	
  anal-­‐
ysis.	
  Agents	
  are	
  endowed	
  with	
  a	
  balance	
  sheet	
  composed	
  of	
  a	
  risky	
  asset	
  and	
  cash	
  on	
  the	
  asset	
  side	
  
as	
  well	
  as	
  equity	
  capital	
  and	
  debt	
  on	
  the	
  liabilities	
  side.	
  The	
  risky	
  asset	
  is	
  traded	
  among	
  agents	
  at	
  an	
  
endogenously	
   set	
   price.	
  We	
   assume	
   that	
   agents	
   actively	
  manage	
   their	
   respective	
   balance	
   sheet	
   in	
  
two	
  regards.	
  Firstly,	
  they	
  choose	
  a	
  portfolio	
  which	
  optimizes	
  the	
  ratio	
  between	
  risky	
  assets	
  and	
  cash	
  
conditional	
  on	
  their	
  current	
  return	
  forecast,	
  and	
  secondly	
  they	
  aim	
  at	
  a	
  fixed	
  ratio	
  between	
  debt	
  and	
  
equity	
  (leverage	
  ratio).	
  Agents	
  are	
  constrained	
  in	
  their	
  ability	
  to	
  acquire	
  and	
  dispose	
  of	
  debt	
  by	
  the	
  
credit	
  supply	
  of	
  a	
  risk	
  managing	
  financier	
  and	
  credit	
  frictions,	
  which	
  hinder	
  agents	
  to	
  make	
  immedi-­‐
ate	
  changes	
  to	
  their	
  debt	
  levels.	
  	
  

We	
  simulate	
  our	
  model	
  and	
  show	
  that	
  it	
  can	
  reproduce	
  several	
  empirically	
  observable	
  facts	
  and	
  rela-­‐
tionships.	
  Although	
  we	
  initially	
  endow	
  all	
  agents	
  with	
  identical	
  balance	
  sheets,	
  the	
  size	
  distribution	
  of	
  
agents	
   quickly	
   converges	
   to	
   a	
   lognormal	
   distribution,	
   which	
   is	
   typically	
   observed	
   for	
   investment	
  
banks.	
  We	
   furthermore	
  observe	
  a	
  natural	
   tendency	
   for	
   inequality	
   to	
   increase	
  over	
   time.	
  When	
  we	
  
impose	
  low	
  credit	
  frictions	
  on	
  the	
  model	
  financial	
  market,	
  leverage	
  becomes	
  procyclical,	
  which	
  is	
  also	
  
typical	
  for	
  investment	
  banks.	
  
	
  
In	
  a	
  next	
  step,	
  we	
  vary	
  central	
  parameters	
  of	
  the	
  model	
  exogenously	
  in	
  order	
  to	
  identify	
  their	
  effect	
  
on	
  financial	
  stability.	
  By	
  varying	
  the	
  leverage	
  target	
  of	
  agents,	
  we	
  find	
  that	
  an	
  increased	
  target	
  goes	
  
along	
  with	
  increased	
  price	
  volatility,	
  more	
  bankruptcies	
  and	
  higher	
  systemic	
  risk.	
  It	
  is	
  hardly	
  surpris-­‐
ing	
  that	
  increased	
  indebtedness	
  of	
  its	
  participants	
  makes	
  a	
  financial	
  system	
  less	
  stable.	
  When,	
  on	
  the	
  
other	
  hand,	
  varying	
  the	
  degree	
  of	
  credit	
  frictions	
  agents	
  are	
  confronted	
  with,	
  we	
  find	
  that	
  lower	
  fric-­‐
tions,	
  which	
  can	
  be	
  interpreted	
  as	
  an	
  increased	
  fraction	
  of	
  short-­‐term	
  credit	
  on	
  balance	
  sheets,	
  pro-­‐
vokes	
  complex	
  repercussions.	
  Specifically,	
  lower	
  credit	
  frictions	
  decrease	
  the	
  number	
  of	
  bankruptcies	
  
that	
   typically	
  occur	
  within	
  a	
  specified	
   time	
   frame,	
  but	
  at	
   the	
  same	
  time	
   increase	
   the	
  probability	
  of	
  
extreme	
  events.	
  Severe	
  liquidity	
  crises	
  that	
  can	
  lead	
  to	
  a	
  collapse	
  of	
  the	
  entire	
  financial	
  system	
  arise	
  
more	
  frequently.	
  Low	
  credit	
  frictions	
  thus	
  lead	
  to	
  a	
  more	
  stable	
  model	
  financial	
  system	
  most	
  of	
  the	
  
time,	
  while	
  systemic	
  risk	
  clearly	
  increases.	
  However,	
  the	
  introduction	
  of	
  a	
  lender	
  of	
  last	
  resort	
  and	
  an	
  
entity	
  that	
  gradually	
  unwinds	
  bankrupt	
  agents	
  can	
  help	
  to	
  stabilize	
  the	
  model	
  financial	
  system.	
  
	
   	
  



Nicht-­‐technische	
  Zusammenfassung	
  
	
  
In	
   dem	
   vorliegenden	
   Papier	
   entwickeln	
  wir	
   ein	
   agentenbasiertes	
  Modell	
   für	
   den	
   Finanzmarkt.	
   Die	
  
agentenbasierte	
  Modellierung	
  stellt	
  eine	
  in	
  den	
  Wirtschaftswissenschaften	
  an	
  Bedeutung	
  gewinnen-­‐
de	
  Methodik	
  dar,	
  in	
  der	
  eine	
  Vielzahl	
  von	
  dezentral	
  handelnden	
  Einheiten	
  (bspw.	
  Finanzmarktakteu-­‐
re)	
  mit	
  Hilfe	
  von	
  Computersimulationen	
  abgebildet	
  und	
  analysiert	
  werden.	
  Die	
  sich	
  aus	
  der	
  Interakti-­‐
on	
  heterogener	
  Agenten	
  herausbildenden	
  Systemeigenschaften	
  und	
  Strukturen	
  sind	
  Untersuchungs-­‐
genstände	
  agentenbasierter	
  Modelle.	
  
	
  
Die	
  beschränkt	
  rationalen	
  Agenten	
  handeln	
  in	
  diesem	
  Modell	
  ein	
  Wertpapier	
  aufgrund	
  unterschiedli-­‐
cher	
   Renditeerwartungen,	
   welche	
   auf	
   Basis	
   einer	
   Fundamentalwert-­‐	
   und	
   einer	
   Chartistenstrategie	
  
geformt	
  werden.	
  Die	
  Agenten	
  weisen	
  eine	
  Bilanz	
  auf,	
  welche	
  aus	
  dem	
  riskanten	
  Vermögensgegen-­‐
stand	
  und	
  risikofreien	
  liquiden	
  Mitteln	
  auf	
  der	
  Aktivseite,	
  sowie	
  aus	
  Fremd-­‐	
  und	
  Eigenkapital	
  auf	
  der	
  
Passivseite	
  besteht.	
  Aus	
  dem	
  Handelsprozess	
   zwischen	
  den	
  Agenten	
  entsteht	
   ein	
   endogener	
  Preis.	
  
Agenten	
   verwalten	
   ihre	
   Bilanz	
   aktiv	
   unter	
   zwei	
   Gesichtspunkten:	
   Erstens	
   wählen	
   sie	
   ein	
   Portfolio,	
  
welches	
   das	
   Verhältnis	
   zwischen	
   riskantem	
   Vermögensgegenstand	
   und	
   liquiden	
   Mitteln	
   abhängig	
  
von	
  ihrer	
  aktuellen	
  Renditeerwartungen	
  optimiert;	
  zweitens	
  visieren	
  sie	
  ein	
  fixes	
  Verhältnis	
  zwischen	
  
Fremd-­‐	
   und	
   Eigenkapital	
   (Leverage)	
   an.	
   Die	
   Fähigkeit	
   der	
   Agenten	
   Fremdkapital	
   zu	
   beziehen	
   oder	
  
abzustoßen	
   ist	
  durch	
  das	
  Kreditangebot	
  eines	
  Finanziers	
  auf	
  Basis	
  eines	
  Risikomanagementsystems	
  
sowie	
  durch	
  Kreditfriktionen	
  beschränkt,	
  welche	
  die	
  Agenten	
  in	
  der	
  unmittelbaren	
  Anpassung	
   ihres	
  
Fremdkapitalniveaus	
  behindert.	
  	
  
	
  
Auf	
  Basis	
  von	
  Simulationen	
  können	
  in	
  dem	
  Modell	
  verschiedene	
  empirisch	
  beobachtbare	
  Fakten	
  und	
  
Beziehungen	
  reproduziert	
  werden.	
  Obwohl	
  die	
  Agenten	
  zunächst	
  mit	
  identischen	
  Bilanzen	
  ausgestat-­‐
tet	
   sind,	
  konvergiert	
  die	
  Größenverteilung	
  schnell	
   zu	
  einer	
   lognormal-­‐Verteilung,	
  wie	
  sie	
  auch	
   typi-­‐
scher	
  Weise	
  bei	
  Investmentbanken	
  beobachtet	
  wird.	
  Darüber	
  hinaus	
  können	
  wir	
  auch	
  eine	
  natürliche	
  
Tendenz	
  zum	
  Anstieg	
  der	
  Ungleichheit	
   im	
  Zeitverlauf	
  feststellen.	
  Bei	
  Simulationsläufen	
  des	
  Modells	
  
mit	
  geringen	
  Kreditfriktionen,	
  wird	
  der	
  Leverage	
  prozyklisch,	
  wie	
  es	
  auch	
  bei	
  Investmentbanken	
  be-­‐
obachtbar	
  ist.	
  	
  
	
  
In	
  einem	
  weiteren	
  Schritt	
  variieren	
  wir	
  zentrale	
  Modellparameter	
  exogen	
  um	
  deren	
  Wirkung	
  auf	
  die	
  
Finanzmarktstabilität	
  zu	
  untersuchen.	
  Die	
  Variation	
  des	
  Ziel-­‐Leverages	
  führt	
  bei	
  erhöhtem	
  Niveau	
  zu	
  
höherer	
  Preisvolatilität,	
  eine	
  höheren	
  Anzahl	
  an	
  Insolvenzen	
  und	
  höherem	
  systemischen	
  Risiko.	
  Es	
  ist	
  
kaum	
  überraschend,	
  dass	
  eine	
  höhere	
  Verschuldung	
  der	
  Marktteilnehmer	
  die	
  Fragilität	
  des	
  Finanz-­‐
systems	
  erhöht.	
  Auf	
  der	
  anderen	
  Seite	
  weist	
  das	
  Niveau	
  der	
  Kreditfriktionen	
  (ein	
  niedrigeres	
  Niveau	
  
kann	
  hierbei	
  als	
  das	
  Ausmaß	
  der	
  Kurzfristfinanzierung	
   interpretiert	
  werden)	
  komplexe	
  Rückwirkun-­‐
gen	
  auf.	
  Konkret	
  senken	
  geringe	
  Kreditfriktionen	
  die	
  Anzahl	
  der	
  Insolvenzen,	
  welche	
  in	
  einer	
  vordefi-­‐
nierten	
  Zeitspanne	
  auftreten,	
  erhöhen	
  jedoch	
  gleichzeitig	
  die	
  Möglichkeit	
  von	
  extremen	
  Ereignissen.	
  
Schwerwiegende	
  Liquiditätskrisen,	
  welche	
  zu	
  einem	
  Zusammenbruch	
  des	
  ganzen	
  Finanzsystems	
  füh-­‐
ren	
  können,	
  ereignen	
  sich	
  mit	
  einer	
  höheren	
  Frequenz.	
  Geringe	
  Kreditfriktionen	
  führen	
  somit	
  in	
  dem	
  
Modell	
  zu	
  einem	
  Finanzsystem,	
  welches	
  im	
  Normalfall	
  stabiler	
  ist,	
  jedoch	
  mit	
  einem	
  erhöhten	
  syste-­‐
mischen	
  Risiko	
  einhergeht.	
  Die	
  Einführung	
  eines	
   „Lender	
  of	
   Last	
  Resort“	
  und	
  einer	
   Instanz,	
  welche	
  
insolvente	
   Agenten	
   graduell	
   abwickelt,	
   können	
   jedoch	
   zu	
   einer	
   Stabilisierung	
   des	
   Finanzmarkts	
   im	
  
Modell	
  beitragen.	
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Abstract

We develop an agent-based model in which heterogeneous and bound-

edly rational agents interact by trading a risky asset at an endogenously

set price. Agents are endowed with balance sheets comprising the risky

asset as well as cash on the asset side and equity capital as well as debt

on the liabilities side. A number of findings emerge when simulating the

model: We find that the empirically observable log-normal distribution of

bank balance sheet size naturally emerges and that higher levels of lever-

age lead to a greater inequality among agents. Furthermore, greater lever-

age increases the frequency of bankruptcies and systemic events. Credit

frictions, which we define as the stickiness of debt adjustments, are able

to explain a key difference in the relation between leverage and assets

observed for different bank types. Lowering credit frictions leads to an in-

creasingly procyclical behavior of leverage, which is typical for investment

banks. Nevertheless, the impact of credit frictions on the fragility of the

model financial system is complex. Lower frictions do increase the stabil-

ity of the system most of the time, while systemic events become more

probable. In particular, we observe an increasing frequency of severe liq-

uidity crises that can lead to the collapse of the entire model financial

system.
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1 Introduction

The past few years have indicated that the understanding of the dynamics in fi-
nancial markets is far from satisfactory. Economists and regulators often seem to
rely on intuition rather than model-guided comprehension when pondering and
designing new rules for the financial system. As a result, most of the suggested
financial market regulations are impeded by controversy about their efficiency
and uncertainty about their impact. One reason why financial market dynamics
prove so difficult to grasp and model is that they are driven by heterogeneous
market participants’ actions and interactions that feed back into the financial
system.

Agent-based models (ABMs) constitute a promising method for advancing
the understanding of the financial system’s underlying dynamics.1 We develop
an ABM that includes debt in order to facilitate an analysis of the dynamics
ensued by agents’ capital structure. Each agent in our model is therefore en-
dowed with a highly stylized balance sheet containing a tradable risky asset
and cash on the asset side and equity capital and debt on the liabilities side.
Agents trade according to their price expectations, which they form through
either fundamental value considerations (fundamentalists) or technical analysis
(chartists). The price of the risky asset depends on agents’ transactions and
therefore evolves endogenously. Leverage can generally be managed by agents
but is constrained by the debt supply of an exogenous risk managing financier.
We furthermore introduce a measure of credit frictions into the model, which we
define as the stickiness of desired debt adjustments.2 Simulations demonstrate
how our model operates and identify some of the new possibilities of analysis
provided by the model, which are unfeasible with either standard representative
agent models or existing agent-based financial market models focusing predom-
inantly on price dynamics.3 We can report several findings. By looking at
the emergent market structure of the model, we find that balance sheet size
is approximately log-normally distributed and that leverage has an important
influence on market structure. Higher leverage leads to greater inequality be-
tween agents. We show how credit frictions can change the relation between
leverage and assets and thereby account for the differences observed for com-
mercial and investment banks in this context: for investment banks leverage is
procyclical, while no such relation can be observed for commercial banks. We
furthermore study the impact of leverage and credit frictions on the stability
of the model financial system. While it is hardly surprising that an increase in
leverage also increases the fragility of the system, credit frictions have a more
complex impact on financial stability. We observe that low credit frictions in-
crease the stability of the financial system most of the time. Extreme events,

1For a discussion of the limitations of mainstream economic models see e.g. Leijonhufvud
(2009); Colander et al. (2009); Kirman (2010); Stiglitz (2011). Comparisons between agent-
based models and DSGE models can e.g. be found in Farmer and Geanakoplos (2009);
Fagiolo and Roventini (2012).

2A market with high credit frictions can be interpreted as a market in which agents hold
long-term debt that adjusts slowly. When credit frictions are low, on the other hand, debt
has a short maturity and needs to be rolled over frequently.

3Analyzing the effect of bankruptcies is e.g. not feasible within a representative agent
framework. The fact that the possibility of default is mostly neglected in theoretical models
(cf. Goodhart and Tsomocos, 2011) is unfortunate, not least when considering the devastating
effects of the Lehman Brothers default in 2008.
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however, become more likely. Occasionally severe liquidity crises develop which
lead to the collapse of the entire system. We introduce a lender of last resort
entity and an entity that unwinds defaulting agents and show how these entities
can significantly increase systemic stability. We compare the outcomes of the
simulations with balance sheet data from a sample of international banks where
possible and make reference to the views expressed in the relevant literature.
Policy implications, especially with regard to financial stability, are given where
appropriate.

The remainder of the paper is organized as follows. After reviewing the
related literature in the next section, Section 3 presents the model. Section 4
then provides simulation results. Here, we start by showing some basic dynamics
of an exemplary simulation in Section 4.1. We proceed, in Section 4.2, by looking
at the distribution of agents’ balance sheet size and the effects of leverage on
market structure and stability. The role of credit frictions in our model market
is analyzed in Section 4.3. Section 5 concludes.

2 Literature Review

The majority of agent-based financial market models focus on price dynamics,
which emerge through the interaction of heterogeneous agents. Such models
have been quite successful in replicating and explaining some intriguing fea-
tures of the financial market, such as endogenous bubbles and crashes as well
as stylized facts of return time series including fat tails and clustered volatil-
ity. Compelling reviews of the literature can e.g. be found in LeBaron (2006),
Hommes (2006), Chiarella et al. (2009), Hommes and Wagener (2009), and Lux
(2009). Incorporating balance sheets containing debt and equity into financial
market ABMs is a sensible extension to established models and is mostly novel.
A notable exception is Thurner et al. (2012). However, Thurner et al. (2012)
are less interested in pure balance sheet dynamics and rather focus on the effects
of leverage on returns, which they find to produce fat tails and clustered volatil-
ity. Furthermore, their setup differs from ours in many respects, including the
portfolio choice of agents, the separation of investment and leverage strategies,
the risk management of the financier and the role of credit frictions.

Although the study of leverage and balance sheet dynamics is mostly novel
in the context of agent-based models, the issue has been addressed by promi-
nent researchers in other contexts. Early work emphasizing the role of lever-
age and balance sheets can be found in the debt deflation theory of Fisher
(1933) and in Minsky’s financial instability hypothesis (see Minsky, 1986). In
Bernanke and Gertler (1989) as well as Kiyotaki and Moore (1997) leverage acts
as a financial accelerator for non-financial borrowers. The resurfacing of re-
search on leverage and balance sheet dynamics in the aftermath of the recent
financial crisis suggests its importance for understanding the workings of the
financial system and the events precipitating the crisis. Adrian et al. (2010)
argue that there is an important relation between financial intermediaries’ bal-
ance sheet dynamics and real economic activity. The dynamics of market and
funding liquidity, which reinforce each other and can lead to destabilizing effects
on financial markets, are analyzed theoretically by Brunnermeier and Pedersen
(2009), while Geanakoplos (2009) shows how changes to leverage can cause wild
fluctuations in asset prices. More generally, the inclusion of the financial sector
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into new macroeconomic DSGE models (see e.g. Curdia and Woodford, 2010;
Gertler and Kiyotaki, 2010) is a further indicator for the increasing importance
of financial markets for economic theory. Conversely, the linkage between the
real economy and the financial sector is also being addressed in recent agent-
based research (see Lengnick and Wohltmann, 2013; Scheffknecht and Geiger,
2011; Westerhoff, 2011).

Our paper is also related to a large body of literature on systemic risk. Sev-
eral sources of self-reinforcing dynamics have been identified that can lead to the
breakdown of the entire financial system. These include classical bank runs, fire
sales of assets, counterparty risk in the interbank market or synchronized behav-
ior due to similar risk management structures (see e.g. Diamond and Dybvig,
1983; Shleifer and Vishny, 1992; Allen and Gale, 2000; Zigrand et al., 2010, re-
spectively). Recently, considerable research has been devoted to the analysis
of interbank networks with multi-agent models.4 Interbank networks in which
agents are highly interconnected allow for the pooling of liquidity risk, but at the
same time open a contagion channel where idiosyncratic distress can propagate
through the system (Iori et al., 2006). The general structure of the interbank
network thereby influences the system’s susceptibility to systemic events (cf.
Georg, 2010, 2011; Lenzu and Tedeschi, 2012; Markose et al., 2012). Further-
more, the size of shocks and their locations within the interbank network are
critical to their subsequent impact on the system (see Ladley, 2013; Gai et al.,
2011, respectively). In general, a more concentrated system is shown to be
more prone to systemic risk (Nier et al., 2007). When agents are highly lever-
aged and credit is short-term, a single case of bankruptcy can rapidly cascade
through the interbank network, wiping out large portions of the financial sys-
tem (cf. Battiston et al., 2012). The fundamental difference between research
on systemic risk conducted by modeling financial networks and the approach
taken in this paper lies in the underlying channel of contagion. The balance
sheets of our agents are not directly linked through creditor/debtor relation-
ships, but rather indirectly linked via overlapping portfolios. Changes in asset
prices or market liquidity therefore have an impact on all agents.5 A first at-
tempt to incorporate both channels of contagion into one model has been made
by Tasca and Battiston (2013). However, while the formal representation of
their model does contain an interbank network, simulations and the subsequent
analysis are conducted with a strongly simplified model. Tasca and Battiston
(2013) show that the probability of a systemic event brought upon by a debt de-
flation dynamic depends on both market liquidity and compliance with capital
requirements.

3 The Model

The model described in the following can be classified as a "few type" agent-
based financial market model. While agents cannot produce entirely new trad-
ing strategies, as is possible through evolutionary learning algorithms in some
"many type" models, they are given a set of predefined trading rules from
which they are free to choose the rule they deem most profitable under the

4See Chinazzi and Fagiolo (2013) for a recent survey.
5This does not mean that all agents are affected equally by price movements or liquidity

issues. Heterogeneous expectations lead to heterogeneous exposures in an asset.
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limitations imposed on their rationality. Specifically, in our model agents can
select either a strategy based on fundamentals or a chartist strategy based
on technical analysis. The implied assumption that real traders choose and
switch between these two strategies finds strong support in the literature (see
e.g. Menkhoff and Taylor, 2007) and chartist-fundamentalist approaches fig-
ure among the most common agent-based financial market models (see e.g.
Lux and Marchesi, 2000; Farmer and Joshi, 2002; Westerhoff and Dieci, 2006).
In order to help the reader maintain an overview of the meaning of all variables
and parameters contained in the model developed below, the reader is referred
to Table 1 in Appendix A.

3.1 Model Structure

While the replication of financial market return time series stylized facts has
constituted the aim of many ABMs, much less attention has been directed to-
wards emergent behavior in the balance sheet dimension of financial markets.
For this reason, we endow each agent j in our model with the following schematic
balance sheet at time t:

Assets Liabilities
Qj,tPt Ej,t

Cj,t Oj,t

The assets side of the balance sheet comprises quantity Qj,t of a risky asset
with price Pt as well as cash Cj,t which can be held without risk. As it will
often be useful to consider logarithmic prices, we denote these in lower case
(i.e. pt = log(Pt)).

6 On the liabilities side, each agent is endowed with equity
capital7 Ej,t and outside capital (debt) Oj,t. The balance sheet total Bj,t is
given by:

Bj,t = Qj,tPt + Cj,t = Ej,t +Oj,t (1)

From the beginning of period t to the beginning of period t + 1 balance sheets
evolve as sketched below:

Assets Liabilities
(Qj,t +Dj,t) exp(pt + rt+1) Ej,t +∆Ej,t+1

Ct +∆Ct+1 Oj,t +∆Oj,t

where Dj,t is the demand of agent j for the asset in period t and rt+1 is the
logarithmic return, with rt+1 = pt+1 − pt.

8 The debt level Oj,t+1 in period
t + 1 consists of the debt level from the beginning of period t, i.e. Oj,t, and a
change to outside capital ∆Oj,t, which depends on the agent’s strategic demand
for debt and the available supply of debt. As indicated by the time index, the
change in outside capital ∆Oj,t already takes place before the end of period t,
so that agents can use the newly acquired debt for trading in period t. More

6We henceforth use lower-case letters for logarithmic values and upper-case letters for real
values. The main rationale for using log prices pt is to ensure that real prices Pt remain
non-negative in the price formation process.

7We assume that agents cannot issue new equity after the initial endowment, for instance
in the form of a seasoned equity offering. Equity capital therefore evolves as the difference
between the balance sheet total and debt. Strategic changes to the liabilities side of the
balance sheet can therefore only be incurred by changes to the debt level.

8The relation between logarithmic (r) and real (R) returns is defined as r = log(1 +R).
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generally the time index t in the balance sheet table indicates that the value of
the corresponding variable is already known (or will be decided in) period t. The
time index t+ 1 indicates the emergent property of the corresponding variable,
i.e. the value of the variable materializes only after agents have interacted.
The timing of the model is schematized in Figure 1. Each period t in the model
represents a trading day in which all agents first revise and possibly change their
trading strategy (see Section 3.3), forecast the return of the following period t+1
(see next section), make a decision on how much debt they want to hold and
ultimately trade.

return 

forecasts 

interest 

payment 

and debt 

adjustment 

trading at 

price   

strategy 

revision 

new period 

Figure 1: Timing of the model.

Equity capital grows with the returns Rt+1 and RC on the risky and risk
free (cash) asset respectively. It decreases with interest Ri paid on debt. Both
the risk-free rate and the interest rate on debt are exogenous in our model. In
a frictionless market we would assume RC = Ri. Equity capital (equivalent to
an agent’s net worth) evolves endogenously:

∆Ej,t+1 = (Qj,tPt)Rt+1 + Cj,tRC −RiOj,t+1 (2)

We thereby assume that new assets (i.e. Dj,t) are bought and sold at price
Pt+1 = Pt(1 + Rt+1). In a model with debt bankruptcy is always possible,
i.e., an agent’s equity capital Ej,t becomes smaller than or equal to zero. This
possibility needs to be taken into account by introducing a resolution procedure
for bankrupt agents. We force bankrupt agents to liquidize all assets they hold
on their balance sheet upon bankruptcy.9 Bankruptcies can thereby impose a
fire sale externality on the market. The bankrupt agent then disappears from
the market and all losses are borne by the exogenous financier.

Using the balance sheet equality from Equation (1), the change in cash
amounts to

∆Cj,t+1 = −Dj,tPt+1 + Cj,tRC −RiOj,t+1 +∆Oj,t (3)

9Technically the demand function from Equation (7) changes to Dj,t = −Qj,t when Ej,t ≤
0, i.e., all assets of a bankrupt agent are thrown onto the market regardless of the execution
price.
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We model the agent’s portfolio choice (i.e. the proportion Aj,t+1 of the
balance sheet he wants to hold in the risky asset in the upcoming period t+ 1)
in dependence of the agent’s forecast of log excess return and his confidence in
this forecast, which is modeled with a measure of historic forecast errors σFE

j,t :

Aj,t+1 =
Ej,t[rt+1]− rC

γσFE
j,t

(4)

Generally we denote the forecast of agent j made in period t for the variable
x in period t + 1 as Ej,t[xt+1]. The parameter γ > 0 can be viewed as a risk
aversion parameter. The forecast error is modeled as the square root of an
exponentially weighted moving average of squared differences between return
expectations and return realizations:

σFE
j,t =

√

θFE( E
j,t−1

[rt]− rt)2 + (1− θFE)(σFE
j,t−1)

2, (5)

with 0 ≤ θFE ≤ 1 being a memory parameter defining how much weight should
be assigned to the most recent forecast error.

Note that for Equation (4) we choose a similar structure as in classical myopic
portfolio choice models with CRRA utility functions or models that maximize a
linear combination of return mean and variance (see e.g. Campbell and Viceira,
2002). The essential difference is that here the portfolio choice variable Aj,t+1

represents the ratio of risky assets to balance sheet total rather than the ratio of
risky assets to net worth. Thus, to implement the portfolio choice from Equation
(4), an agent j must act so that the following relation is satisfied in the balance
sheet dimension:

Aj,t+1 =
Ej,t[Pt+1](Qj,t +Dj,t)

Ej,t[Bj,t+1]
(6)

The proportion of an agent’s balance sheet held in the risky asset is bounded
by [−1, 0] ≤ Aj,t+1 ≤ 1. The upper bound 1 arises due to an agent’s budget
constraint, while the lower bound can take a value between 0 and −1, depending
on the constraints imposed on short selling. The closer to 0 the lower bound
is set, the higher the barriers for going short. By varying the lower bound we
can thus study how short-selling constraints of different intensities affect the
financial market.10

The approach detailed in Equations (4) and (6) allows us to separate an
agent’s leverage strategy from his portfolio choice. In classical myopic portfolio
choice models leverage is linked to investment opportunities - leverage only
enters the model when large returns are expected (i.e. when Aj,t > 1). Here,
on the other hand, the agent’s debt choice enters the demand function, which
can be obtained by rearranging Equation (6):

Dj,t =
Aj,t+1 Ej,t[Bj,t+1]

Ej,t[Pt+1]
−Qj,t (7)

10While a lower bound of 0 implies that an agent can sell only as many assets as he owns
(i.e. Dj,t = −Qj,t), a lower bound of −1 implies that an agent cannot go short in more assets
than he has means for repurchasing at any given point in time.
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with

E
j,t
[Bj,t+1] = E

j,t
[Pt+1](Qj,t +Dj,t) + Cj,t + E

j,t
[∆Cj,t+1]

= E
j,t
[Pt+1]Qj,t + Cj,t(1 +RC)−RiÕj,t+1 +∆Õj,t (8)

The amount of debt Õj,t+1 held by the agent in the upcoming period is subject to
negotiations (indicated by the tilde) between agent and financier. The amount
depends on an agent’s demand for debt and the financier’s willingness to supply
the desired debt. If neither of the negotiating parties wishes to make changes
to the debt level, i.e. ∆Õj,t = 0, the absolute debt volume Oj,t will have to
be rolled over at interest rate Ri. To determine the trading price we choose
a process that can be described as Walrasian tâtonnement, where all agents
trade at the market clearing price p∗t , i.e. the price for which

∑J
j=1 Dj,t = 0.

The demand of an agent is thereby contingent on his forecast of future returns
(see Equation (7)), which is, as detailed in the next section, a function of the
current price pt. By means of numerical analysis the current price is changed
until pt = p∗t and markets clear.

3.2 Fundamental, Chartist and Debt Strategies

Agents can choose between a fundamental and a chartist strategy when forming
expectations of future returns. When following a fundamental strategy, agents
(i.e. j ∈ F) believe that prices will revert to fundamental value. They therefore
compare their perception of fundamental value Ej,t[ft+1] with the current price
in order to obtain a forecast of future returns:

E
j,t
[rt+1] = αF (E

j,t
[ft+1]− pt), ∀j ∈ F (9)

with αF > 0 being the speed at which the fundamentalist believes prices to
converge to fundamental value. Fundamentalists update their perception of
fundamental value by evaluating relevant fundamental news ∆ft, which can be
modeled as an arbitrary stochastic process, and by identifying and correcting
past valuation errors:

E
j,t
[ft+1] = E

j,t−1
[ft]

︸ ︷︷ ︸

past valuation

+ (∆ft + ǫj,t)
︸ ︷︷ ︸

evaluation of news

+ θF (ft − E
j,t−1

[ft])

︸ ︷︷ ︸

past error correction

(10)

The error term ǫj,t ∼ N (0, σ2
f ) accounts for fundamentalists’ imperfect infor-

mation and limited cognition and implies disagreement about the true value ft
of the risky asset. In the model we assume that disagreement on fundamental
value may persist for some time, but agents will eventually become aware of
erroneous evaluations and correct for them. The speed of this error correction
is thereby given by 0 ≤ θF ≤ 1.

In order to obtain a forecast of future returns, chartists (j ∈ C), in a first
step, extrapolate a buy or sell signal. They do so by employing moving average
(MA) rules, which are among the simplest and most popular with practicing
technical analysts.11 The signal is generated by comparing a short-term MA of

11Brock et al. (1992) provide evidence for the MA rule’s capability to predict stock returns.
In an agent-based context, Chiarella et al. (2006) analyze the ensuing price dynamics when
agents employ MA rules.
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prices to a long-term MA of prices. Specifically, chartists identify an emerging
upward trend and a buy signal (Sj,t = +1) when the short-term MA is higher
than the long-term MA, and vice versa for a downward trend and a sell signal
(Sj,t = −1):

Sj,t = sgn




1

sj,t

sj,t−1
∑

u=0

Pt−u −
1

lj,t

lj,t−1
∑

v=0

Pt−v



 , ∀j ∈ C (11)

The maximum number of lags sj,t and lj,t may differ from agent to agent as
well as over time. Note that in order to allow for additional heterogeneity
within the chartist strategy we do not specify sj,t < lj,t. A chartist j will thus
follow a contrarian strategy whenever sj,t > lj,t. The forecast of future returns
then depends on the direction in which the extrapolated signal is pointing, the
aggressiveness of the chartist denoted by αC and the absolute value of a random
component ρj,t ∼ N (0, ς̂2t ):

Ej,t[rt+1] = αCSj,t |ρj,t| (12)

The random component is necessary because the signal Sj,t extrapolated by
chartists does not imply a specific return expectation. We assume that while
the moving average rule indicates the direction of the expected return, chartists
randomly choose an absolute value of the expected return, which is scaled with
the perceived price variability calculated as an exponentially weighted moving
average:

ς̂2t = θS(rt − rt−1)
2 + (1− θS)ς̂2t−1, (13)

with θS being a memory parameter specifying how much weight is attributed
to the most recent log return movement. Chartists thus adapt their return
expectation to the prevailing price volatility. Chartists can therefore also be
viewed as volatility traders who take strong positions in times of high volatility
and vice versa.

Generally, we define the change in exposure to outside capital as

∆Õj,t = (1− µO)
(

Õj,t+1 −Oj,t

)

, (14)

with Õj,t+1 being the targeted debt volume after negotiation with the financier.
Since neither the agent nor the financier can force the other party to supply or
demand more debt than that party is willing to supply or demand, the debt
volume will be set to the lower value of the financier’s supply OS

j,t+1 and the

agent’s demand OD
j,t+1:

Õj,t+1 := min{OD
j,t+1, O

S
j,t+1} (15)

The parameter 0 ≤ µO ≤ 1 in Equation (14) introduces credit friction into
the debt market. When µO > 0 the targeted changes to debt volume take
place more slowly than desired by either agent or financier. When the financier
delimitates the debt demand of the agent (i.e. OD

j,t+1 > OS
j,t+1), the friction can

be interpreted as credit maturity hindering the financier to withdraw funds at
once. When, on the other hand, the financier is willing to cover the agent’s full
debt demand (i.e. OD

j,t+1 ≤ OS
j,t+1), the friction can be interpreted as the time-

consuming task of raising funds from different investors. Furthermore, a very
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high value for µO could be interpreted as limited institutional space to actively
manage debt levels. Customer deposits held by commercial banks e.g. constitute
such a limitation: while a commercial bank can invest customer deposits to a
certain extent, it cannot directly increase or decrease them at will.

The structure of our model allows for the integration of arbitrary debt de-
mand and supply functions. A simple debt strategy for an agent could be to
aim for a constant leverage ratio:12

λfix =
OD

j,t+1

Ej,t[Ej,t+1]
=

OD
j,t+1

Ej,t[Bj,t+1]−OD
j,t+1

(16)

Note that agents are forward-looking, i.e., their desired debt level depends on
their expectation of the size of their future balance sheet. Following from the
previous equation, debt demand can be derived:

OD
j,t+1 =

λfix Ej,t[Bj,t+1]

1 + λfix
(17)

Using Equation (8) we algebraically deduce that for the period t + 1 agent j
demands:

OD
j,t+1 =

Ej,t[Pt+1]Qj,t + Cj,t(1 +RC)−Oj,t

Ri +
1

λfix

. (18)

We assume that financiers do not form expectations about future price move-
ments, but rather try to assess the risk of supplying debt to individual agents.
Due to the seniority of debt over equity the financier focuses on the risk that
incurred losses in the subsequent periods fully deplete an agent’s equity capital
(i.e. the agent goes bankrupt). Specifically, the financier is willing to supply
debt OS

j,t+1 if the probability of default over the next M periods is lower than
ω:

Pr
{
(Ej,t +OS

j,t+1)(1 +R
B
j,t)

M ≤ OS
j,t+1(1 +Ri)

M
}
≤ ω (19)

Since the financier does not have the expertise required to assess an agent’s
strategy, he must solely rely on the agent’s past performance (i.e debt-adjusted
balance sheet growth rBj,t), which, for the sake of simplicity, is modeled as a

log-normal random variable with log(1 + R
B
j,t) = r

B
j,t ∼ N (µB

j,t, z
2
j,t). Mean

and variance are estimated by the financier as exponentially weighted moving
averages:

µB
j,t = θfin (log(Bj,t +RiOj,t)− log(Bj,t−1 +∆Oj,t))

︸ ︷︷ ︸

rBj,t

+(1− θfin)µB
j,t−1

z2j,t = θfin(rBj,t − rBj,t−1)
2 + (1− θfin)z2j,t−1 (20)

θfin thereby defines how much weight is attributed to the respective last ob-
servation. With the risk constraint in Equation (19) and with H−1(·) being
the inverse cumulative distribution function of the random variable r

B
j,t, the

maximum amount of debt the financier is willing to supply to agent j can be
derived:

OS
j,t+1 =

Ej,t exp
(
MH−1(ω)

)

(1 +Ri)M − exp (MH−1(ω))
. (21)

12We define leverage as the ratio of debt to equity capital (net worth): λ = O/E.
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3.3 Choosing a Strategy

Agents in the model try to adapt to the prevailing situation by updating their
trading strategy if it seems to be underperforming. For this purpose, each agent
revises his strategy every τj periods. In order to avoid a synchronized change
in strategy, 1 < τj < n is a random number drawn from a discrete uniform
distribution with n being the maximum number of periods before an agent
revises his strategy. Formally, agent j revises his strategy at time t ∈ Kj :=
{t|t mod τj = 0}.13 When deciding on whether to keep or change a strategy,
each agent compares a measure of the profit Πj,t his strategy has earned to a
benchmark Π̄t. This comparison is modeled by a discrete choice model pioneered
by Manski and McFadden (1981) and popularized in the context of agent-based
models by Brock and Hommes (1998). Specifically, when agent j revises his
current strategy he will stick to it with probability

WF
j,t =

exp(ηΠj,t)

exp(ηΠj,t) + exp(ηΠ̄t)
∀t ∈ Kj , (22)

whereby η > 0 can be understood as a (bounded) rationality parameter. It limits
agents’ abilities to identify whether their strategies are performing well or poorly
in comparison to the benchmark. Low values for η imply poor identification
ability and vice versa.

The profitability measure is computed as an exponentially weighted average
of the most recent growth in an agent’s equity capital and past equity growth:

Πj,t =

{

Π̄t if the strategy in t does not equal the strategy in t− 1

θΠ(log(Ej,t)− log(Ej,t−1)) + (1 − θΠ)Πj,t−1 else
(23)

with 0 ≤ θΠ ≤ 1 being a memory parameter assigning how much weight is
attributed to the most recent equity growth. Note from Equation (23) that the
profitability measure for agent j is set to the benchmark when he changes his
strategy. Thereby Π̄t is simply the average of all agents’ profitability measures,
i.e.:

Π̄t =
1

J

J∑

j=1

Πj,t (24)

We assume that although agents cannot directly observe the benchmark prof-
itability, they have a notion of whether their own strategy is performing better
or worse than the average strategy. The fact that this notion is not perfect is
reflected by the rationality parameter η in Equation (22).

Upon opting for a chartist strategy, an agent must choose the specifications
for the moving average rule, i.e. he must determine the maximum lags in Equa-
tion (11). In period t ∈ Kj agent j ∈ C draws sj,t and lj,t randomly from
a triangular distribution with the respective lower limits slow and llow, the re-
spective upper limits sup and lup and the respective modes csj,t and clj,t, with

slow ≤ csj,t ≤ sup and llow ≤ clj,t ≤ lup. The purpose of employing a trian-
gular distribution with a variable mode is to ensure that chartists gravitate to
the specifications of successful moving average rules. Specifically the modes are

13The modulo operator ensures that each agent only trades in a period t which is a multiple
of his trading frequency τj .
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chosen so that the expected value of the triangular distribution14 equals the
expected value for the lag parameters ŝj,t and l̂j,t computed from a probabil-
ity mass function where the respective lags for each chartist is weighted by its
relative profitability:

ŝj,t =
∑

j∈C

(

sj,t
exp(ηΠj,t)

∑

j∈C exp(ηΠj,t)

)

(25)

l̂j,t =
∑

j∈C

(

lj,t
exp(ηΠj,t)

∑

j∈C exp(ηΠj,t)

)

(26)

Note that the choice of memory parameter is also dependent on the rationality
η of agents.

4 Simulations

In order to simulate the model described in the previous section, we first have to
define parameter values and initial conditions. Quite a few parameters including
rationality and memory relate to behavioral aspects of market participants and
are therefore not directly observable. Since we mainly aim at deriving qualita-
tive results and the calibration of complex agent-based models poses a consid-
erable challenge (cf. Winker et al. (2007)), we refrain from trying to estimate
the behavioral parameters for our model. The choices for parameter values are
therefore often without deeper economic meaning. In the exemplary simulation
presented in the following subsection, we introduce some of the dynamics the
model features with the parameters and initial conditions documented in Tables
1 and 2. For the simulations in Sections 4.2 and 4.3, we change selected param-
eters in order to analyze their qualitative (ceteris paribus) effect on the model
economy. As our model incorporates random terms at several instances15, each
simulation result is unique. In fact, simulation outcomes display strong path
dependence. In order to ensure that the patterns emerging in our simulations
are not caused by coincidence, we run numerous simulations for each parameter
value. The exact number of runs depends on the specific analysis and ranges
between 40 and 10,000 runs.

4.1 Exemplary Simulation

We define the process of fundamental value evolution as a noise process with a
trend and mean reversion, which lets us emulate upswings and downswings.16

14Given the lower and upper limits, the relation between the mode c and the expected value
µ of a triangular distribution amounts to c = 3µ − (xup + xlow) (Evans et al., 2000).

15Specifically, this includes noise ǫt in the expectation process of the fundamental traders.
The exact values for the moving average lags are randomly drawn for each agent from a
specific distribution. The same holds true for the value ρj,t determining the absolute value of
chartists’ return expectations. Last but not least, the frequency τj with which agents revise
their strategy is assigned randomly at the beginning of each simulation.

16Formally, this is modeled by an Ornstein-Uhlenbeck process where the daily return of the
fundamental value rf,t evolves according to the following stochastic differential equation with
a Wiener process Wt: drf,t = θ(µ− rf,t)dt+ σfdWt. The daily expected return is arbitrarily

set to µ = 0.05
250

(i.e. 5 percent growth per trading year), volatility to σ2
f = 0.01, and mean

reversion speed to θ = 0.1. The model is initialized by setting p0 = f0 = 0.
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Category Symbol Description Value

General Simulation Parameters
N Number of agents 500
T Simulation periods 1, 000d ≡ 4a

Portfolio Composition
γ Risk aversion 4

θFE Memory for 0.1
forecast error

Fundamental Trading

ǫj,t Error term ǫ ∼ N (0, σ2
f )

in trading

θF Error correction 0.03
term

αF Aggressiveness of 1
fundamental traders

Chartist trading

αC Aggressiveness of 5
chartists

θS Memory for price 0.1
variance estimator

Leverage
λfix Target leverage 25

µO Credit friction 0

Financier

ω Maximum accepted 0.1%
default probability

M Maturity (in days) 10

θfin Memory of the financier 0.1
for the forecast process

Switching mechanism

η Rationality 100

θΠ Memory for strategy 0.1
comparison

τj Frequency of Drawn from uniform
strategy change distribution with the

limits 1 and 250

Fundamental Price Process
E(rf,t) Daily expected return 0.05

250
σ2
f Price volatility 0.01
θ Mean reversion speed 0.1

Table 1: Benchmark simulation parameters.

The initial endowment of all N = 500 agents is the same: the balance sheet total
of each agent amounts to Bj,0 = 2/N and each agent holds the amount of risky
assets that leads to an optimal portfolio when expecting the return to be equal
to the trend of the fundamental value process.17 Agents target a leverage ratio
of λ = 25, which means that agents are endowed with equity that is around 4
percent of total assets. This is not unusual for large banks or investment banks
(cf. Adrian and Shin, 2010). At t = 0, the passive side of the balance sheet is
constructed in order to satisfy a leverage of λ = 25. The constraints imposed
by the credit supply of the financier, however, cause the agents’ leverage to
drop substantially in the first period. We make the simplifying assumption that
Ri = RC = 0 and thereby completely abstract from the effect of interest rates in
this paper. Initially, chartists and fundamentalists each account for 50 percent
of traders. The specific frequency τj with which each agent revises his strategy is
initially drawn from a uniform distribution with the limits of 1 and 250, which
means that agents revise their strategy at least once every trading year (one

17Note that when agents initially expect the price to increase by the daily trend, they
greatly underestimate the average absolute daily variation of fundamental value. This means
that agents will typically expect much higher returns than initially (i.e. when t = 0) and,
correspondingly, have a much higher demand for assets in the subsequent periods (t > 0).
When taking into account that the total number of assets in the market is fixed, it becomes
evident that we have (deliberately) initialized the model with excess liquidity. This is necessary
in order to avoid systematic shortages of liquidity (which would distort prices) when the
fundamental value increases or agents default. Agents, in turn, internally manage the upward
price pressure entailed by excess liquidity by going short. A short sale effectively increases
the number of assets available for trading.
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Category Symbol Description Value

Financier
µB
j,0 Initial estimator for adjusted E(rf,t) = 0.05

250
balance sheet growth

z2
j,0 Initial estimator for volatility (σFE

j,0 )2 = 0.05
of adjusted balance
sheet growth

Portfolio composition (σFE
j,0 )2 Initial forecast error 0.05 (

∧
= 5 · σ2

f

for all agents
∧
= 5 · V ar(∆f))

Chartist trading
ς̂2j,0 Price volatility estimator 0.01

∧
= σ2

f

of chartists
sj,0/lj,0 Length of short and long Drawn from uniform

moving average distribution with the
limits of 1 and 200

Balance Sheet
Bj,0 Balance sheet sum 2

1,000

Aj,0 Proportion of risky assets
E(rf )

γ(σFE
j,0

)2
= 0.1%

Table 2: Benchmark simulation initial conditions.

simulation period represents one trading day) and at the most every trading
day. For the chartist strategy the boundaries of the moving average lags lj,t
and sj,t, which are initially drawn from a uniform distribution, are set to 1 and
200, which are common values in business practice (see e.g. Lo et al., 2000). In
the benchmark simulation, we set the credit friction parameter to its minimum,
i.e. µO = 0, allowing agents and financiers to make immediate changes to the
amount of debt they hold on their balance sheet or provide as credit.

Figure 2(a) shows the price dynamics of an exemplary simulation run. It
can be observed that the price diverges from the fundamental value on a regular
basis. The changes in market composition depicted in Figure 2(b) thereby have
a substantial effect on the efficiency of the asset price. This is documented in
the first regression of Table 3. When linearly regressing the absolute logarith-
mic difference between price and fundamental value against the market share
of chartists trading in the model ( # of chartists

# of solvent agents ), we find a significant pos-
itive relation. On the other hand, it does not seem to matter much, whether
the chartists in the model predominantly follow a momentum (lj,t > sj,t) or
contrarian (lj,t < sj,t) strategy. The results of the second regression of Table 3
indicate a slightly higher potential for price inefficiency when a large proportion
of chartist traders follow a momentum strategy (# of momentum traders

# of chartists ). However,
this only explains a very small part of the variation in the price deviation from
fundamental value. The reason for this lies in the heterogeneous use of the mov-
ing average rule. Two chartists following a momentum strategy with a different
lag structure (i.e. different choices for lj,t and sj,t) can receive a different trading
signal Sj,t. The degree to which the trading signals generated by the moving
average rules are equivalent can again explain a substantial part of the variation
in price inefficiency, as indicated by the third regression documented in Table

3. The proxy for the homogeneity of trading signals (
|
∑

j∈C
Sj,t|∑

j∈C
|Sj,t|

) ranges be-

tween zero and one. When all chartists receive the same signal the proxy equals
one; when buying and selling signals are evenly distributed among chartists, the
proxy equals to zero.

A shortcoming of the model is the apparent smoothing of the price, result-
ing in first-order autocorrelation of returns. This inconsistency with real return
time series can be overcome by introducing arbitrageur-agents trading on this
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regularity.18 However, because the analysis of return time series and their styl-
ized facts is not a focus of our model, we refrain from further extending the
model, which would increase model complexity. For a brief overview of our
model’s ability to reproduce the stylized facts of return time series please refer
to Appendix B.
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(b) Market Composition

Figure 2: Dynamics in an exemplary simulation.

independent variable Coef. Std. Error R2

chartist market share 0.1753*** 0.012
0.1758

constant -0.0654*** 0.0055
share of momentum traders 0.0336*** 0.0064

0.0272
constant -0.0018 0.0032
trading signal equivalence 0.0201*** 0.0012

0.2136
constant 0.0062*** 0.0006

*** p < 0.001, ** p < 0.01, * p < 0.1

Table 3: Regressing price inefficiency (|pt−ft|) against the chartist market share;
against the proportion of chartists following a momentum strategy; against the
degree of trading signal equivalence for the exemplary simulation.

Figure 3 shows the dynamics of the mean balance sheet total as well as mean
leverage. Although all agents are initially equal, the initial homogeneity changes
quickly as simulation time progresses. As the plotted quantiles illustrate, sub-
stantial differences between agents develop. The nature of how these differences
evolve in terms of balance sheet size will be addressed in the upcoming section.
The apparent co-movement of mean leverage and mean balance sheet total is
also noteworthy and will be addressed in Section 4.3.

18The model presented by LeBaron (2010) has e.g. included such agents.
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(b) Leverage

Figure 3: Mean and quantiles of agents’ balance sheet total and leverage for the
exemplary simulation.

4.2 Distribution and Leverage

Distributions of e.g. wealth, income or output constitute an emergent property
of an economy and can reveal valuable information about its state.

As stated, we initially assume that all agents are of equal size and thereby
homogeneous. In the simulation, however, the distribution converges to a stable
log-normal distribution. This result is presented in Figure 4, showing that the
Jarque-Bera statistic (testing for the normality of logarithmic balance sheet size)
converges to a value lower than the critical value given a 5 percent significance
level.19 The most convincing argument for the emergence of a log-normal distri-
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Figure 4: Jarque-Bera test statistics for the log-balance sheet size distribution
(median results after 40 simulation runs).

bution for balance sheet size in our model is given by Gibrat’s law, which states
that convergence to log-normality occurs when balance sheet growth is nor-

19Note that we suppressed the first 200 periods due to the fact that we initially assume all
agents to be equal, which leads to very high test statistics. Furthermore, we take the median
of the simulation results to control for outliers.
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mally distributed and independent from size.20 Figure 5(a) shows the emerging
distribution for the 40 simulations.21 For comparison, Figure 5(b) depicts the
distribution of an international sample of investment banks.22 The distributions
qualitatively resemble each other, as is also confirmed by the Jarque-Bera test
for log-normality. The test statistics are provided in Table 5 in the appendix.23
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Figure 5: Histogram for simulations and empirical data.

When looking at the average evolution of balance sheets throughout sim-
ulations (see Figure 6), we observe no particular trend in mean balance sheet
size, whereas the variance displays an increasing trend. Furthermore, the size
dispersion of balance sheets, which we measure with the coefficient of variation
(i.e. σ/µ),24 steadily increases, which is indicative of an endogenous increase
of inequality with progressing simulation time. Effectively, our model suggests
that the financial system naturally generates a large number of small institu-
tions and a small number of very large institutions. There is thus a natural
tendency for the system to produce institutions that are too big to fail.

20If we assume xt−xt−1 = gtxt−1 for small values for growth rate gt, the function converges
to log xt = log x0 + g1 + g2 + · · ·+ gt, implying a log-normal distribution (Sutton, 1997).

21The multitude of simulation runs ensures that the log-normal feature is general model
property rather than an idiosyncratic single simulation result.

22Here we use annual balance sheet data of international investment banks from the
Bankscope database.

23As presented in Janicki and Prescott (2006) this result does not hold for commercial
banks, which can rather be described by a Pareto distribution. A theoretical rationale can
be found in their business model and in a product differentiation argument: regional banks
provide credit to regional small and medium-sized enterprises. The non-log-normal distribu-
tion of non-financial firms (cf. Axtell, 2001) is therefore also reflected in the distribution of
commercial banks (Ennis, 2001).

24The coefficient of variation provides an inequality measure insensitive to changes in the
mean (Cowell, 2000).
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Figure 6: Endogenous average evolution of balance sheets (median results after
40 simulation runs).

Leverage seems to play an interesting role in the evolution of balance sheet
distribution. In order to analyze this role, we replace the debt supply function
of the risk-managing financier with unlimited debt supply, while agents keep
aiming for a constant leverage λ. By varying the target leverage for all agents
from λ = 0-15, we can now control for the overall leverage in the model econ-
omy. Note that we only provide simulations up to a leverage target of λ = 15
rather than the more realistic target value of λ = 25 in the benchmark simu-
lation. In the framework without the stabilizing financier, the model market
becomes highly fragile for large values of λ, with frequent breakdowns of the
entire financial system.

As shown in Figure 7, our model displays a positive and convex relation
between leverage and size dispersion. The quintessence of Figure 7 is that lever-
age seems to foster the natural evolution towards greater inequality described
above. This conclusion may be of importance for policy makers. In this con-
text, the introduction of a maximum leverage ratio, which is part of the Basel
III regulatory framework, may not only help to stabilize the financial system in
a more traditional sense (lower leverage decreases the probability of default),
but could also decrease the speed with which inequality increases. Lower size
dispersion arguably generates less institutions that classify as too big to fail.25

25At first glance, the data seems to support the emergent positive relation between leverage
and inequality in our model. At least when looking at data of international investment banks
from the end of the dot-com crisis in the year 2002 until 2009, such a relation can be observed
(we present simple regression results in the Appendix in Table 6). Yet, we feel that a more
thorough empirical validation is not only beyond the scope of this paper but also beyond the
scope of our dataset.
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Figure 7: Size inequality for variation of target leverage λ in simulations (median
results after 40 simulation runs).

Although there exists some empirical evidence suggesting that banks, the
agents in our model, target a constant leverage (cf. Gropp and Heider, 2010),
an unlimited supply of debt is certainly not a realistic assumption. When look-
ing at the effects of leverage on our model financial market, it should be kept
in mind that a constrained debt supply may lead to less clear or even different
results. Nevertheless, we briefly want to show some interesting patterns emerg-
ing in simulations in the context of varying leverage targets. As most of these
patterns are empirically untested, further research is needed before meaningful
conclusions can be drawn.

Figure 8(a) shows an emerging positive relation between leverage and trad-
ing volume. Here leverage acts as a multiplier to trades: A higher leverage
target causes agents to acquire or dispose of larger sums of nominal debt in
order to meet their target as the value of the risky asset on their balance
sheet rises or falls, respectively. Since debt is obtained and repaid in cash,
any change in agents’ nominal debt also changes the composition of agents’
balance sheets. The rebalancing of portfolios generates trading volume, which
therefore increases as the leverage target is raised.
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Figure 8: Trading volume and price volatility for variation of target leverage
ratio λ (median results after 40 simulation runs).

18



Increased trading activity translates into a higher return volatility as can
be observed in Figure 8(b). It comes as somewhat of a surprise, however, that
increased volatility entails higher price efficiency (Figure 9(a)), meaning that
prices are more closely connected to their underlying fundamentals.26 The rea-
son for this counterintuitive link is depicted in Figure 9(b): higher leverage
leads to a greater average proportion of fundamental traders in the model mar-
ket. Higher leverage means that agents operate with less relative equity capital,
which is quickly depleted in downturns. In order to survive, it becomes increas-
ingly important for agents to anticipate price movements. Here fundamentalists
are at an advantage. Figure 9(c) shows the number of bankruptcies for both
fundamentalists and chartists. The number of defaulting chartists27 is always
higher than the number of defaulting fundamentalists. The losses incurred by
chartists have a stronger impact with increasing leverage. Leverage, in our
model, may thus help to stabilize the market. This emergent behavior of the
model is reminiscent of the classical argument for the existence of efficient mar-
kets. Friedman (1953) already argued that in the long run, speculative trading
is not profitable and will therefore eventually disappear.
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Figure 9: Market efficiency, composition, and stability for variation of target
leverage ratio λ (median results after 40 simulation runs).

26As proposed in Westerhoff (2008), we measure inefficiency as the median absolute dif-
ference between log-fundamental value and price: MI = median(|ft − pt|). In a first-order
approximation, this can be interpreted as the percentage point deviation from fundamental
value.

27More precisely, those agents who form expectations using technical analysis prior to de-
faulting.
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On the other hand, the observed efficiency gain is deceptive. As illustrated in
Figure 10(a), leverage strongly increases the probability of systemic events. For
the purpose of our analysis we define a systemic event as one where all agents
default within the 1,000 trading periods (4 trading years) we simulate. Part of
the increase in systemic risk is due to a positive feedback process triggered when
a big agent defaults or when many agents default simultaneously. Defaulting
agents liquidize their assets in a fire sale, which can affect prices and lead to
contagion. A large drop in prices evaporates the equity of agents and leads to
further defaults. Trend-following chartists may evoke further price declines in
the following periods. A loss spiral could ensue, causing the system to fail.

In order to measure the effect of such loss spirals on the fragility of the
model financial system, we introduce a resolution entity (RE) into the model,
which takes on all assets of distressed agents in order to sell them gradually
(over 20 trading days) rather than in a fire sale. In order to filter out the
defaults caused by fire sales within the price determination process, we first
determine the order in which the agents default and then transfer only the assets
of the first defaulter to the resolution entity. The price determination process
is then repeated. Optimally, the transfer of assets of the first defaulter to the
resolution entity prevents the default of further agents. If this is not the case,
we again determine the order of defaults, and in addition to the assets of the
first defaulter, the assets of the next defaulter are transferred to the resolution
entity. This procedure is repeated until no further agents default. All fire sale
dynamics due to defaults can thus be filtered out.28
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Figure 10: Systemic risk and the impact of the resolution entity (RE) in depen-
dence of the leverage target (based on 1,000 simulation runs).

We find that the resolution entity can reduce the probability of fire sale-
induced systemic failure, as shown by the solid blue line in Figure 10(b). For
high leverage targets the RE can reduce the probability of systemic events by
4 percentage points and more. In addition to reducing systemic events, the
number of agents surviving a simulation run is increased when the resolution

28To obtain the order in which agents default we calculate the price P ∗
j,t+1

(default price)

at which the equity of agent j is equal to zero: Ej,t+1 = Bj,t+1 − Oj,t = Bj,t + (P ∗
j,t+1

−

Pt)Qj,t − Oj,t = 0. The order of defaults is revealed by ordering ascendingly all agents
defaulting in the same period according to the difference between their specific default price

P ∗
j,t+1

=
Oj,t−Bj,t+PtQj,t

Qj,t
and the current price Pt. The first defaulter is e.g. the agent

whose default price is closest to the current price.
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entity is introduced into the model (see the dashed green line in Figure 10(b)).
However, in consideration of the eminent fragility of the model financial market
when leverage targets are high (see Figures 9(c) and 10(a)), the resolution en-
tity fails to significantly stabilize the system. Most bankruptcies and systemic
events observed are not due to fire sale dynamics, but rather thinly capital-
ized agents unable to absorb adverse price shocks. This makes clear that while
it is sensible to implement mechanisms able to constrain the impact of self-
reinforcing dynamics such as fire sales, financial fragility is mainly a result of
fragile (inadequately capitalized) financial institutions.

4.3 Credit Frictions

Agents and financiers in our model actively manage their demand or supply
of debt. The immediacy with which desired changes to debt can occur is con-
strained by the credit friction parameter µO in Equation (14). High credit
frictions (i.e. high values for µO) imply slow changes to debt and vice versa.
Frictions arise from the maturity structure of debt or from institutional charac-
teristics of different bank types, which both restrict deliberate and immediate
changes to the capital structure of agents. Credit frictions thus have the poten-
tial to affect the behavior of the financial system as a whole. To analyze the
effects of credit frictions we first show how they affect the relation between lever-
age and balance sheet size. Following the method of Adrian and Shin (2010), we
scatter-plot the logarithmic changes of leverage against the logarithmic changes
of balance sheet size.29 Setting µO = 1 (complete credit frictions) means that
agents and financiers have passive leverage strategies. The nominal debt agents
are endowed with at the beginning of a simulation remains on their balance
sheets while changes to the value of agents’ assets lead to a negative relation
between leverage and total assets. Consider a simple example: In period t, the
total balance sheet sum amounts to Bt = 100 and debt equals Ot = 90, which
implies a leverage of λt =

O
B−O = 90

100−90 = 9. If in the subsequent period t+ 1
the value of the assets on the balance sheet declines so that Bt+1 = 99, then
λt+1 = 90

99−90 = 10.30 This negative correlation, as plotted in Figure 11, can
typically be observed for household data (see Adrian and Shin, 2010). It seems,
however, very unlikely that (professional) financial market participants would
follow a completely passive leverage strategy. If we allow for slight leverage
adjustment, the correlation between leverage and balance sheet size changes. A
high value for µO implies that adjustments to agents’ debt levels are constrained
and take time. Commercial banks e.g. face such constraints, as customer de-
posits, which they cannot raise or reduce at will, figure prominently on the
liabilities side of their balance sheets. Figure 12(a) shows the leverage-balance-
sheet correlation for µO = 0.99 while Figure 12(b) shows the correlation for
commercial banks in EU27.31 The two graphs lack a clear positive or negative
relation. The transformation of the leverage-balance-sheet correlation stemming
from a marginal reduction of credit frictions from µO = 1 to µO = 0.99 can be
explained by the substantial cumulative effects of even very high credit frictions.

29More precisely, logarithmic changes of balance sheet size are changes in logarithmic bal-
ance sheet size after 50 periods, i.e. log(Bj,t)− log(Bj,t−50). The same applies for leverage.

30Formally, when the nominal value of debt does not change over time the following state-

ment holds: ∂λ/λ
∂B/B

= − B
B−O

< 0.
31We use quarterly data between 1996 and 2009 from the Bankscope database.
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Figure 11: The correlation between balance sheet total and leverage for the
passive agent (based on 40 simulation runs).

While agents’ debt levels do not change at all under complete credit frictions,
in an environment where µO = 0.99, approximately 92 percent of the desired
debt adjustment can be achieved within a trading year (250 trading days).32
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(a) Model data with µO = 0.99
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(b) Data from commercial banks

Figure 12: The correlation between balance sheet total and leverage with high
credit frictions (based on 40 simulation runs).

Conversely, Adrian and Shin (2010) show that the relation between leverage
and balance sheet growth is positive, i.e. leverage is procyclical, for investment
banks (see Figure 13(b)). Figure 13(a) exemplarily shows that our model pro-
duces a clearly positive correlation for µO a value of 0. In these cases there are
little constraints on the adjustment of leverage. Investment banks tend to have
very short-term debt (e.g. Repos) on their balance sheets, which allows them or
their financiers to quickly adjust the leverage to values they deem appropriate.
This characteristic is reflected in the low values for µO. The procyclical nature
of leverage entering the model with low credit frictions can be explained by the
debt supply function of the financier: a persistent positive development of an
agent’s balance sheet suggests to the financier that the agent is well-informed,
thus he perceives a lower risk level and is willing to supply more debt. On the
other hand, when losses reduce the size of balance sheets, the financier will be

32This result can be obtained by iterating the following formula for 250 periods: debtt+1 =
debtt + (1 − 0.99)(debtdesired − debtt).
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more concerned about the safety of credit supplied to agents and will conse-
quentially reduce his supply of debt.
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(a) Model data with µO = 0
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(b) Data from investment banks

Figure 13: The correlation between balance sheet total and leverage with low
credit frictions (based on 40 simulation runs).

The procyclicality of leverage induced by low credit frictions and the fi-
nancier’s risk management affects the price behavior of the risky asset. Fig-
ure 14(a) shows a negative relation between credit frictions and average return
volatility. An increase in friction reduces the procyclicality of leverage and yields
a lower average volatility. Our model suggests that return volatility could be
reduced through an increase of credit frictions, e.g. by curtailing the short-
term debt supply to agents. Short-term borrowing has often been cited as a
key contributor to financial instability and its curtailment has been called for
on various occasions (cf. Diamond and Rajan, 2001). However, as Figure 14(b)
indicates, such regulation could turn out to be counterproductive. Since outliers
distort the mean number of defaults when credit frictions are low, we plot the
ninety percent quantile of the number of defaults for 1,000 simulation runs, i.e.
in only 10 percent of the simulation runs does the number of defaults equal or
exceed the plotted value. The case of complete credit frictions is omitted for
clarity. Here, in 10 percent of the simulations the number of defaults exceeds
or is equal to 296. There is a clear, positive relation between credit frictions
and the number of defaults. Thus, the active management of debt levels, which
can best be accomplished in an environment with few credit frictions (i.e. an
environment with short-term credit), appears to be essential for the stability
of our model financial market. However, this observation proves to be highly
deceptive. Figure 15 shows that increasing credit frictions leads to a decrease in
systemic risk. The diametrical development of defaulting agents and systemic
risk is striking: While Figure 14(b) tells us that less than 6 agents default in 90
percent of completed simulation runs33 when credit frictions are low, a systemic
event occurs on average approximately every tenth simulation run (i.e. once
every 40 trading years). In the case of complete credit frictions, on the other
hand, there is not a single completed simulation run with less than 200 defaults
(see 16(a)), whereas a systemic event occurs only once in 1,000 simulation runs
(i.e. once every 4,000 trading years).

33In a completed simulation run, at least one agent must survive 1,000 trading periods, i.e.
4 trading years.
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Figure 14: Volatility and defaults in dependence of credit frictions (based on 40
and 1,000 simulation runs respectively).
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Figure 15: Systemic risk in dependence of credit frictions (based on 1,000 sim-
ulation runs).

As documented in Figure 16, credit frictions fundamentally change the un-
derlying probability distribution of the number of defaulting agents per simula-
tion run. While complete credit frictions (µO = 1) lead to an almost Gaussian
distribution of defaulting agents, decreasing credit frictions shifts the distri-
bution to the left (towards fewer defaults) and lengthens the right tail of the
distribution. In other words, decreasing credit frictions stabilizes the model fi-
nancial market most of the time, while extreme events with a large number of
bankruptcies and systemic events become more probable. For simulations with
low credit frictions and over a limited range of bankruptcy events the probability
density of defaults per run resembles a power law. Figure 17 plots the relative
frequency of defaults (ranging between 0 and 100 defaults) for simulations with
µO = {0.9, 0.5, 0} on a log-log graph.34 Power laws are sometimes considered
the statistical fingerprint of complex systems (cf. Sornette, 2007).

The shape of the probability distributions of defaulting agents per simulation
run for low credit frictions implies that it is impossible to infer the general
stability of the model financial system from observing short or medium-term

34In a log-log graph a power law becomes a linear relationship. Because a high number of
defaults per simulation run is a rare event, simulations were repeated 10,000 times for Figure
17.

24



0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 

 

Number of defaults

R
e
la

t
iv

e
fr

e
q
u
e
n
c
y

Gaussian fit

(a) µO = 1

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of defaults

R
e
la

t
iv

e
fr

e
q
u
e
n
c
y

(b) µO = 0.99
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(c) µO = 0.98
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(d) µO = 0.97

Figure 16: Probability distributions of the number of defaulting agents per
simulation run (based on 1,000 simulation runs).

market behavior. Figuratively speaking, when credit frictions are low agents
can interact within a financial market that seems perfectly stable for 39 years
until the entire system breaks down in year 40. On the other hand, when credit
frictions are high, bankruptcies in the financial system may be commonplace,
but it turns out to be very unlikely for any hypothetical generation of agents
to ever witness a collapse of the entire system.35 This counterintuitive trade-off
between the fragility of individual agents and the fragility of the whole system
can be explained as follows: Decreasing credit frictions increases the swiftness
with which the financier can withdraw credit from agents that begin to invest
imprudently. The balance sheets of those agents thus become less leveraged,
which diminishes their risk of bankruptcy. At the same time, decreasing credit
frictions increases the potential for self-reinforcing dynamics and the risk of a
systemic event: Imprudent agents may run into liquidity problems when the
financier decides not to renew their credit lines. They must sell assets to repay
debt. When credit dries up quickly and/or affected agents are big, fire sales can
depress prices, causing further agents to suffer losses. This will be of concern to
the financier, who may further restrict his credit supply. Along with more fire
sales, trend-following chartists will amplify the negative price movement, leading

35In his book "The Black Swan", Nassim Nicholas Taleb refers to this problem of induction
as "the turkey problem": A turkey being treated nicely and fed regularly may infer with
increasing confidence that humans mean it no harm. A few days before Thanksgiving, however,
the turkey’s confidence is shattered. This metaphor illustrates the inherent danger of relying
on past experience to reach general conclusions about the stability of financial markets.
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Figure 17: Probability distribution of the number of defaults per simulation run
ranging from 0 to 100 defaults (based on 10,000 simulation runs).

to a loss spiral and possibly to a systemic event. When credit frictions are high,
agents are unlikely to run into severe liquidity problems because nominal debt
changes slowly. A liquidity crisis, as described above, thus becomes less probable
and systemic risk is reduced.

The resolution entity employed in the previous section to gradually sell off
assets of distressed agents cannot stop the system from being fragile when liq-
uidity issues are the root of fragility (see Fig. 18(a)). Oddly, the resolution
entity even slightly increases systemic risk. A probable explanation for this is
that the gradual, but evenly distributed, selling of assets by the resolution entity
creates a small trend that can be exploited by chartists. A slightly increased
profitability of the trend-extrapolation strategy goes along with a marginally
higher concentration of chartists in the market (see Fig. 18(b)). Chartists
amplify liquidity induced loss spirals causing the market to crash more often.
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Figure 18: Impact of the resolution entity (RE) on systemic risk and the market
share of chartists in dependence of credit frictions (based on 1,000 simulation
runs).

In order to disrupt the liquidity-induced loss spiral, a lender of last resort
is needed. We implement a very simple entity that acts as a lender of last
resort. The entity intervenes when liquidity for an agent dries up. Whenever
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the financier cuts the debt supply of an agent by more than 20 percent36 of that
agent’s total debt-supply, the lender of last resort steps in to provide liquidity.
When the entity provides liquidity to an agent, negative debt adjustments are
restricted. Technically, the credit friction parameter µO is increased to 0.99
for the agent in question. For the sake of simplicity, however, agents under the
control of the entity are allowed to continue with their trading business as usual.
The lender of last resort entity cedes control of an agent’s debt only when the
external financier is again willing to supply more debt than the agent demands.37

Figure 19 shows that the lender of last resort entity can suppress the liquidity-
induced loss spiral and substantially reduce systemic risk when credit frictions
are low. Unlike the case where only the resolution entity is active, the joint
implementation of the lender of last resort and the resolution entity further
increases systemic stability because chartists can no longer amplify liquidity-
induced loss spirals when a lender of last resort is present. Furthermore, when
the lender of last resort provides liquidity to distressed agents, but lets them, as
in our case, continue with their trading business as usual, those agents become
very susceptible to bankruptcy. The resolution entity then ensures that fire
sales due to defaults are taken care of and thereby stabilizes the system. With
both entities active systemic risk can be reduced from above 10 percent to below
4 percent for low credit frictions. In other words, the average frequency of a
systemic event can be extended from once every 40 trading years to once every
100 trading years.
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Figure 19: Impact of the lender of last resort entity (LLRE) and the resolution
entity (RE) on systemic risk (based on 1,000 simulation runs).

5 Conclusion

In this paper we develop an agent-based model of the financial market where
agents are endowed with balance sheets that contain equity capital as well as
debt. By conducting simulations we are able to analyze several aspects of the
financial system that are mostly inaccessible with conventional economic mod-
els. Several results are reported: We show that the distribution of agents’

36This value is set arbitrarily.
37The lender of last resort entity is inactive for the first 100 periods of the simulation in order

to not disturb any initial adjustments from variables’ initialization-values to endogenously
desired values.
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balance sheet size evolves endogenously to an approximately log-normal distri-
bution. Such a market structure is typically observed in real banking markets.
Leverage has a decisive impact on the market structure. We observe a positive
and convex relation between leverage and size-inequality among agents. This
suggests that a highly leveraged financial sector is more inclined to produce in-
stitutions that qualify as too-big-to-fail. Not surprisingly, high leverage in our
model increases both the average number of bankruptcies within 1,000 trad-
ing periods and systemic risk. We find that to a certain extent bankruptcies
trigger systemic events as fire sales of assets by defaulting agents can lead to a
self-reinforcing loss-spiral. However, an external resolution entity that prevents
fire sales by winding up defaulting agents is able to reduce bankruptcies as well
as systemic risk to some extent. Our model demonstrates that the correlation
between leverage dynamics and balance sheet dynamics is strongly influenced
by credit frictions, the stickiness of desired debt adjustments. Complete credit
frictions lead to a negative relation between leverage and balance sheet changes,
while high credit frictions lead to no specific relation at all, which is typically
observed for commercial banks. Investment banks, on the other hand, char-
acteristically exhibit a positive correlation between leverage and balance sheet
changes, which emerges in our model when credit frictions are low. Further-
more, the financial stability of our model financial system is intricately tied to
credit frictions. While high credit frictions increase the number of bankruptcies
they decrease the system’s susceptibility to systemic events. We observe that,
when credit frictions are low, systemic events are often the result of a severe
liquidity crisis. The introduction of a lender of last resort entity can suppress
the self-reinforcing liquidity-induced loss spirals and thereby significantly reduce
systemic risk.

The investigations conducted in this paper represent only a small subset of
feasible investigations. The impact of short selling constraints, the propagation
of external shocks, investigations of trading volume, rationality and disagree-
ment are all issues that could be assessed with the model framework presented
in this paper. However, the potential usefulness of the model is constrained
most notably by a lacking calibration and empirical validation. While a more
thorough validation of the model’s qualitative predictions would clarify where
the model can reveal valuable insights, a calibration of the model would make
it more attractive for policy considerations.
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Appendix

A Explanation of Symbols Used

Category Symbol Description

Simulation Parameters
N Number of agents
T Simulation periods

Balance sheet

Pt ≡ exp(pt) Market price
Qj,t Quantity of assets

Dj,t = ∆Qj,t Asset demand
Cj,t Cash (risk-free asset)
Oj,t Outside capital (debt)
Ej,t Net worth (equity)
Bj,t Total balance sheet sum
Aj,t Proportion of risky assets

λ = Oj,t/Ej,t Leverage ratio

Interest rates

Rt = (Pt/Pt−1) − 1 Return on risky assets
RC Interest on risk-free asset (cash)
Ri Interest on debt

Portfolio Composition

γ Risk aversion

θFE Memory for forecast error

σFE
j,t Forecast error for all agents

Fundamentalist trading

ǫj,t Error term in trading
θF Error correction term
αF Aggressiveness of fundamental traders

Chartist trading

αC Aggressiveness of chartists

θS Memory for price variance estimator
ς2j,t Price volatility estimator of chartists

sj,t (lj,t) Length of short (long) moving average

Leverage
λfix Target leverage

µO Credit friction

Financier

ω Maximum accepted default probability
M Maturity (in days)

θfin Memory of the financier for the forecast process

µB
j,t Estimator for adjusted balance sheet growth

z2
j,t Estimator for volatility of adjusted balance sheet

growth

Switching mechanism

η Rationality

θΠ Memory for strategy comparison
τj Frequency of strategy change

Fundamental value

E(rf,t) Daily expected return
σ2
f Price volatility
θ Mean reversion speed

Table 4: Model variables and parameters.

B Stylized Facts

To a certain extent, the model presented in this paper is able to reproduce the
stylized facts of financial market return time series. These include fat tails (ex-
cess kurtosis) and slowly decaying autocorrelation of absolute returns (implying
clustered volatility), while the first-order autocorrelation of returns remains in-
significant (Cont, 2001). We find that particularly the parameter controlling
for chartist aggressiveness αC (see Equation (12)) plays an important role in
generating these stylized facts. For the sake of brevity, we will restrict ourselves
to the discussion of that parameter. However, results for the other parameters
are also available upon request.

When increasing the aggressiveness αC of chartists, the buy or sell signals re-
ceived from applying a moving average rule are translated into greater demand
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or supply of the risky asset. This increases the price impact of the chartist
strategy. The increasing reflection of chartists’ expectations in the price of the
asset leads to a higher market share of chartists. This is the case because,
unlike fundamentalists, chartists ride the asset price bubbles they create. The
more pronounced these bubbles are, the more profitable the chartist strategy
results to be. Figure 20(a) documents the drop in market share of fundamen-
talist traders as chartists become more aggressive. More pronounced bubbles,
however, go along with more severe crashes. The probability of large price move-
ments increases, which is reflected by growing excess kurtosis in Figure 20(b).
Our model can thus produce fat tails that are in accordance with the empirical
literature (Cont, 2001) as well as other agent-based financial market models (cf.
e.g. LeBaron et al., 1999; He and Li, 2007; Lux, 2009).
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Figure 20: Market composition and kurtosis for variations of chartist aggres-
siveness αC (mean results based on 1,000 simulation runs).
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Figure 21: Autocorrelation of absolute returns within the first 20 lags for vari-
ation of αC , mean (solid) and 10% and 90% quantile (dashed lines) (based on
1,000 simulation runs).
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Figure 22: Autocorrelation of raw returns within the first 20 lags for variation
of αC , mean (solid) and 10% and 90% quantile (dashed lines) (based on 1,000
simulation runs).

The autocorrelation structure of returns in our model is also influenced by
chartist aggressiveness αC . Higher aggressiveness of chartists increases the au-
tocorrelation of absolute returns and, with the exception of the first lag, brings
the autocorrelation of raw returns closer to zero. Figures 21 and 22 show the
autocorrelations in dependence of αC for various lags of absolute and raw re-
turns respectively. In a real financial market, the observed significant first-order
autocorrelation of raw returns, which implies a general underreaction to news,
would be traded away by arbitrageurs trading at high frequency. Such traders
are not present in our setup.38

The reason why higher values of αC lead to an increase in volatility cluster-
ing is because chartist trading in our model entails a noise component. Equation
(12) shows that while the direction (signal Sj,t) of a chartist’s return expectation
is extracted from technical analysis, its amplitude (ρj,t) is random. Increasing
αC practically increases the variance of the noise component. Noise will there-
fore be increasingly reflected in the price of the risky asset. However, the impact
of noise-trading on the price is also dependent on the number of chartists trad-
ing at a given time. Since, as see in Figure 2(b), the market composition varies
rather slowly, volatility clustering prevails. In the context of agent-based fi-
nancial market models He and Li (2007) have already noted that noise-trading
not only strengthens the slow decaying of absolute return autocorrelation, but

38LeBaron (2010) has e.g. implemented an agent type trading on first-order autocorrelation
in his model of a financial market. Because the analysis of return time series is not a focus of
our model, we refrain from introducing further agent types, which would surely increase the
complexity of the model.

36



also transforms the autocorrelation function of raw returns from one indicating
market underreaction into one in accordance with the unit-root assumption.

C Results of Econometric Tests

Year Jarque-Bera Critical value

test statistics

1996 5.06 11.53
1997 9.99 11.16
1998 4.74 10.90
1999 5.66 10.85
2000 5.84 10.86
2001 4.45 10.85
2002 2.44 10.99
2003 2.85 11.05
2004 2.34 11.10
2005 0.74 11.17
2006 0.27 11.20
2007 0.03 11.27
2008 0.79 11.42
2009 0.14 11.35

Table 5: Jarque-Bera test statistics computed for the log-balance sheet size of
OECD investment banks (Bankscope data).

independent variable Coef. Std. Error R2

mean leverage 0.0057242* 0.0016657
0.6631

constant 2.415804*** 0.0817424
*** p < 0.001, ** p < 0.01, * p < 0.05

Table 6: Regressing the coefficient of variation (σ/µ) against the mean leverage
of international investment banks from 2002 until 2009 (annual data).
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