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Non–technical Summary

There are many situations in which the applied researcher wants to combine two different

administrative data sources without knowing the exact link or merging rule. This paper

considers different areal interpolation methods for interpolating attributes from German

labor office districts to German counties and vice versa such that combining both data sets

is no longer an obstacle to labor market research in Germany.

In particular, we apply dasymetric weighting based on an auxiliary information on the

spatial distribution of attributes as an alternative to simple area weighting and naive binary

weighting. Both dasymetric weighting and simple area weighting are based on estimated

intersection areas of the source and the target regions of interpolation. Such estimates

are derived from the GIS procedure of polygon overlay using the Software package ArcView.

Since the estimated intersection areas can be spurious if the underlying maps come with some

degree of cartographic generalization and/or digitizing errors, our theoretical framework

extends the well-known Goodchild and Lam (1980) approach to the presence of measurement

error in the underlying maps.

We also present conditions under which the choice of interpolation method does not

matter. Under a high degree of local homogeneity in the region-specific information used

for the dasymetric weighting and under a high degree of similarity between source and

target regions, all interpolation methods yield comparable results. A number of simulations

demonstrates that with increasing local heterogeneity differences between weighting schemes

disappear.

Our application to German administrative data suggests robustness of estimation re-

sults of interpolated attributes with respect to the choice of interpolation method. We

conclude that in our particular case, a high degree of local homogeneity in the neighboring

regions combined with a relatively high degree of similarity between both entities and a

positive spatial autocorrelation of the regional characteristics even out differences between

the interpolation methods. Thus, even simple area weighting appears to be a feasible solu-

tion to the area interpolation problem between German labor office districts and German

counties. The estimated weighting matrices for the interpolation of data between the two

largest German data producers, the federal Employment Office and the federal Statisti-

cal Office, are freely accessible to the research community and can be downloaded from

ftp : //ftp.zew.de/pub/zew − docs/div/arntz − wilke− weights.xls.
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In many situations the applied researcher wants to combine different data sources

without knowing the exact link and merging rule. This paper considers different in-

terpolation methods for interpolating attributes from German labor office districts to

German counties and vice versa. In particular, we apply dasymetric weighting as an

alternative to simple area weighting both of which are based on estimated intersec-

tion areas. Since these estimates can be spurious, our theoretical framework extends

the well-known Goodchild and Lam (1980) approach to the presence of measurement

error in the underlying maps. We also present conditions under which the choice of

interpolation method does not matter and confirm the theoretical results with a sim-

ulation study. Our application to German administrative data suggests robustness of

estimation results of interpolated attributes with respect to the choice of interpolation
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and Anette Haas for providing us the map with the employment office districts. We are also thankful for

useful comments at the Interdisciplinary Spatial Statistics Workshop in Paris (JISS 2004), at a seminar at

Goethe-University Frankfurt and at the IAB Nutzertagung, Nuremberg. All errors are our sole responsibility.
†Corresponding author, ZEW Mannheim, Zentrum für Europäische Wirtschaftsforschung (ZEW), P.O.
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1 Introduction

With a rising interest in research on the effects of recent German labor market reforms such

as Hartz IV, researchers from both economics and social sciences alike have been increas-

ingly concerned with combining information from different administrative data sources. In

particular, researchers intend to combine information collected by the federal statistical bu-

reau (Statistisches Bundesamt) which is coded at the level of German counties with data

from the federal employment office (Bundesagentur für Arbeit) which is reported for labor

office districts. Yet, the two sets of regions are geographically incompatible, i.e. one set

of regions does not in general respect the boundaries of the other set and the two sets are

not nested hierarchically. In this case, transferring data from one set of regional objects to

the other is non-trivial and proves to be an obstacle to current research on German labor

market reforms. Thus, what is needed are appropriate weighting matrices in order to trans-

fer attributes from the labor office districts to counties and vice versa. The purpose of this

paper is to develop appropriate weighting matrices and thus provide a solution to this areal

interpolation problem that may facilitate research based on data from both data sources in

Germany.

Since this areal interpolation problem has often been encountered in all kinds of situa-

tions, there is a rich literature suggesting different types of interpolation in order to derive at

appropriate weighting matrices. Following the literature in this field, we refer to the regions

for which an attribute is known as source region and the region to which the attributes have

to be transferred to as target areas (Goodchild and Lam, 1980). One simple cartographic

approach based on the intersections of source and target regions is considered by Goodchild

and Lam (1980). Assuming a uniform distribution of the attribute of interest, each entry

in the weighting matrix corresponds to the share of the source region that lies within the

target region. Clearly, this simple form of areal weighting method critically hinges on the

assumption of uniform densities within the source region. Since in many cases, this assump-

tion is not plausible, two different techniques have been proposed to relax this assumption:

smoothing techniques and dasymetric weighting techniques.

Smoothing techniques try to estimate a continuous density surface based on some density

information of the source region that may then be used for calculating target area densities.

Tobler (1979) proposes the so called smooth pycnophylactic interpolation which minimizes

curvature on the surface under the constraint that data from a source region can only be al-

located to an intersecting target region (”pycnophylactic criterion”). An alternative method

makes use of source zone centroids and a spreading function such as a radially symmetric
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kernel function (Bracken and Martin, 1989; Bracken, 1994). Such smoothing methods crit-

ically rely on knowing the central location of the source area and an adequate spreading

function. In cases in which no center-periphery structure can be assumed, using such a

spreading function may thus be quite inappropriate.

Dasymetric mapping provides a more general approach by using auxiliary information

on the source area in order to identify a non-uniform density distribution within the area.

Based on satellite images of land use, it is, for example, possible to distinguish unpopulated

from populated areas in order to refine density estimates within the regions before allocating

attributes to the target regions (Fisher and Langford, 1995). As an extension to this binary

approach, it is also possible to distinguish more than two types of land use. In this case

dasymetric mapping is only straightforward if the densities of different land use classes

are known or somehow pre-defined (Eicher and Brewer, 2001). Alternatively, a regression

technique has been proposed to derive population density estimates based on regressing the

population of the source region on the different areas of land use (Langford et al., 1991;

Yuan et al., 1997).

While dasymetric techniques summarize all approaches that use additional information

on the source areas in order to refine its density distribution, a related approach uses aux-

iliary information from either the target areas or another external set, called control zones.

Flowerdew and Green (1989) refine the simple area weighting by assuming uniform densities

for the target areas. In this case, population densities for the target zones can be estimated

by using the observed attributes for the source area and the area of overlap. Goodchild et al.

(1993) develop a more general approach by using an external set of control zones for which

uniform densities can be assumed. In a first step, control zone densities are being estimated

similar to the procedure described by Flowerdew and Green (1989). In a second step, the

estimated control zone densities are used to estimate target zone densities.

All of the approaches based on regression techniques have to deal with a number of es-

timation issues such as the required non-negativity of estimated densities and meeting the

pycnophylactic criterion. Moreover, frequency data such as population (”spatially extensive

data”) and proportional data such as average income or unemployment rates (”spatially

intensive data”) have to be treated differently (Goodchild and Lam, 1980). For spatially

extensive data, Poisson regression has been proposed (Flowerdew and Green, 1989) as an

alternative to constrained OLS regression (Judge and Yancey, 1986). In particular, Flow-

erdew and Green (1989) suggest an iterative Poisson regression using an EM algorithm to

derive target area estimates. While this approach was first developed for spatially extensive
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data and binary auxiliary information only, extensions to continuous auxiliary data and spa-

tially intensive data followed (Flowerdew and Green, 1992). Recently, Bayesian hierarchical

models have been used for modelling Poisson responses with covariates that are spatially

misaligned and thus unknown. Unlike the earlier approaches, the Bayesian approach allows

for full inference of the distributions of estimated target zone attributes (Mugglin and Carlin,

1998; Mugglin et al., 2000; Best et al., 2000).

Thus, ever more sophisticated methods have been applied to deal with the areal in-

terpolation problem and to reduce the error involved in any interpolation exercise. Several

authors have addressed the reliability of different methods and typically conclude that simple

area weighting performs poorly compared to more sophisticated methods such as dasymetric

mapping using regression frameworks (Goodchild et al., 1993; Fisher and Langford, 1995).

Despite the shortcomings that have been attributed to the simple area weighting, this

paper proposes simple area weights as suggested by Goodchild and Lam (1980) as a feasi-

ble solution to the areal interpolation problem between German counties and labor office

districts. Alternatively, we consider a specific form of dasymetric mapping that uses infor-

mation on a control variable that is available for both source and target region and does not

necessitate the use of regression techniques in order to derive at refined density estimates.

While the areal weighting matrices differ quite substantially for some source and target re-

gions, transferred target area attributes are remarkably similar. We therefore introduce the

concepts of local homogeneity and local similarity to explain this finding. In fact, under

a high degree of local homogeneity and/or similarity, the choice of interpolation used does

not have much influence. In the context of interpolating data from German labor office

districts to German counties, these conditions seem to be met such that differences between

different types of interpolation are rather small. Thus, from a practitioners point of view,

even using the simple area weighting seems a feasible solution in this case. A sensitivity

analysis of the types of interpolation when using the interpolated attributes as covariates in

an economic analysis confirms that estimation results are not strongly affected by the choice

of interpolation.

Since intersection areas that form the basis of any intersection based weighting schemes

are not readily available for German counties and German labor office districts, intersection

areas were being estimated by the GIS procedure of polygon overlay using the software

package ArcView. Since the map of labor office districts comes with a stronger generalization

than the map of German counties, intersecting both maps by polygon overlay results in

spurious polygons, i.e. nonzero entries in the weighting matrix that are spurious due to
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digitizing errors and the degree of generalization. This measurement error has typically been

neglected by erasing any entries below an arbitrary threshold. Due to the arbitrariness of this

approach, we decided to keep spurious polygons and develop a general framework of areal

interpolation in the presence of measurement error. We discuss theoretical conditions under

which estimated weighting schemes are unbiased even in the presence of spurious polygons.

Our paper has therefore a slightly different focus compared to the recent contributions in

this field which address errors due to misspecified interpolation methods only, but neglect

errors stemming from measurement errors of the underlying map intersection (see Fisher and

Langford, 1995). Using a Monte Carlo simulation, we therefore demonstrate the effect of local

homogeneity in presence of measurement error on the proposed methods of interpolation.

The paper is structured as follows: section 2 presents the theoretical framework of the

estimation of map intersections and it suggests several interpolation methods with different

weighting matrices. Section 3 contains the application to German communities and labor

office districts. Section 4 summarizes the main findings.

2 Theory

2.1 Estimation of map intersections

This subsection introduces the theoretical framework for the estimation of map intersections.

We have two maps R and D. Each map contains a different disjoint regional classification of

the same country. Denote {Dj}j=1,...,n and {Rj}j=1,...,m as two sequences of disjoint regions.

Let us denote µ as a measure of land area with the usual properties (Elstrodt, 1999,

definition 4.1): µ(∅) = 0, µ(A) ≤ µ(B) for A ⊂ B (monotonicity). For a sequence of

subregions Rj (or Dj) we have

µ(
⋃
j

Rj) ≤
∑

j

µ(Rj) (σ-additivity).

The inequality holds with equality if Rj is a sequence of disjoint subregions. Then µ(R) =

µ(
⋃

j Rj) = µ(
⋃

j Dj) = µ(D). Our purpose is to determine µij = µ(Di∩Rj), the intersection

size of regions Di and Rj, for i = 1, . . . , n and j = 1, . . . , m.

Since we don’t know the true µ(Rj) and µ(Dj) we have to estimate them by intersecting

the two maps with a GIS procedure called polygon overlay based on the GIS software package

ArcView. The estimated areas may be affected by the properties of the underlying maps.

In particular, maps usually come with a certain degree of cartographic generalization. The

5



corresponding smoothing of the border lines generates a non-systematic error component

whenever a part of region i is allocated to region j on the map. For the exposition of the

theoretical framework, we assume the border lines of map R to be exact whereas the border

lines of map D generate a non-systematic random error by smoothing the true border1. For

this reason some part of Dj is falsely allocated to Di (i 6= j) and vice versa. Figure 1 shows

the resulting spurious polygons.

Figure 1: Map generalization, random measurement error and spurious polygons
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We assume that in expectation over two randomly chosen regions these errors balance

out. Let us denote εj as the error set associated with region j, i.e. some subset of Dj that is

misleadingly allocated to Di, i 6= j, on the map. The error area µ(εj) is therefore a stochastic

measurement error. Also, note that µ(Dj ∩ εj) = 0 since by definition Dj and εj are disjoint

subsets. Moreover, εj is not necessarily a subset of D since at the outer border of the map

εj may lie outside the territory of map D. Denote DC as the complementary set of D, i.e.

the area surrounding D, and let us denote τ−j = Dj ∩ (
⋃

i εi ∪ εDC
) and τ+

j = (D ∪DC)∩ εj.

The intersections with DC and εDC
are relevant at the outer border of D only. We make

three assumptions about the outer border line and the aggregated error area:

Assumption 1 The measurement error does not systematically in- or decrease the area of

any region, i.e. Eµ(τ+
j ) = Eµ(τ−j ) ≥ 0.

Assumption 2 µ(DC ∩⋃
j εj) = µ(D ∩ εDC

), i.e. the error area at the outer border of D

balances out.

In this paper, expectations are always taken over the regions and over the nonsystematic

smoothing error of the border lines.

Let us denote µ̂(A) as an estimate of µ(A).

1The theoretical framework carries over to the more complex case with both maps introducing a random

error due to cartographic generalization.
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Theorem 1 Suppose assumptions 1-2 hold, then µ̂(Rj) equals to µ(Rj) and µ̂(Dj) is an

unbiased estimator for µ(Dj).

The first result is stable with respect to all unions of Rj and therefore also applies to
⋃

j Rj.

The second result is due to the observation µ̂(Dj) = µ(Dj)−µ(τ−j )+µ(τ+
j ) and assumption

1. We need an additional lemma before we come to µ̂(D).

Lemma 1 The error areas between the regions (εj) perfectly balance out, i.e.
∑

j µ(τ−j ) =∑
j µ(τ+

j ).

Proof.

∑
j

µ(τ−j ) =
∑

j

µ(Dj ∩
⋃
i

εi) +
∑

j

µ(Dj ∩ εDC

)

= µ(D ∩
⋃
i

εi) + µ(D ∩ εDC

)

= µ(D ∩
⋃
j

εj) + µ(DC ∩
⋃
j

εj)

= µ(D ∪DC ∩
⋃
j

εj)

=
∑

j

µ(D ∪DC ∩ εj)

=
∑

j

µ(τ+
j )

where we use the properties of µ and assumption 2. ¥

Theorem 2 Suppose assumption 2 holds, then µ̂(D) equals µ(D).

Proof.

µ̂(D) = µ̂(
⋃
j

Dj)

=
∑

j

µ(Dj)−
∑

j

µ(τ−j ) +
∑

j

(τ+
j )

= µ(D),

where lemma 1 immediately applies. ¥
An interesting quantity is the relative bias of the size of Dj. Rewrite the previous equation

for one particular area Dj as a fraction of its true area size µ(Dj):

µ̂(Dj)

µ(Dj)
= 1 +

µ(τ+
j )− µ(τ−j )

µ(Dj)
.

7



In expectation, the last term equals zero due to assumption 1. However in an application

the distribution of this error may depend on the perimeter-size ratio of Dj.

A similar line of argument applies to the area size of the intersection of regions Di and

Rj if we make an additional assumption that slightly extends assumption 1.

Assumption 3 The measurement error does not systematically in- or decrease the area of

any intersection between Rj and Di, i.e. Eµ(τ−i ∩Rj) = Eµ(τ+
i ∩Rj) ≥ 0 for all i, j.

This is a non crucial assumption if one considers that the partitioning of the regions into

sub-regions as a result of the intersection between Di’s and Rj’s does not systematically

depend on the topology of the border lines. In the real world this is because administrative

considerations typically form the basis of establishing border lines between sub-regions.

Theorem 3 Suppose assumptions 2-3 hold, then µ̂(D∩R) equals to µ(D∩R) and µ̂(Di∩Rj)

is an unbiased estimator for µ(Di ∩Rj).

Proof. The first part is shown by

µ̂(D ∩R) =
∑
i,j

µ̂(Di ∩Rj)

=
∑
i,j

µ(Di ∩Rj)−
∑
i,j

µ(τ−i ∩Rj) +
∑
i,j

µ(τ+
i ∩Rj)

=
∑
i,j

µ(Di ∩Rj)−
∑

i

µ(τ−i ∩
⋃
j

Rj) +
∑

i

µ(τ+
i ∩

⋃
j

Rj)

=
∑
i,j

µ(Di ∩Rj)−
∑

i

µ(τ−i ) +
∑

i

µ(τ+
i )

= µ(D ∩R),

where lemma 1 immediately applies. The second part follows from an application of the

expectation operator to the second equality above together with assumption 3. ¥
Again, rewrite the previous equation for one particular intersection area µ̂(Di ∩Rj) as a

fraction of its true area size µ(Di ∩Rj):

µ̂(Di ∩Rj)

µ(Di ∩Rj)
= 1− µ(τ−i ∩Rj)

µ(Di ∩Rj)
+

µ(τ+
i ∩Rj)

µ(Di ∩Rj)

where the last two terms balance out in expectations due to assumption 3. As argued above,

these two terms may affect the estimated intersection area in an application and higher

moments of the error distribution may depend on the perimeter-area ratio of any Dj.
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2.2 Weighting schemes for area interpolation

In this section, we present different interpolation methods for transferring attributes from

Dj, the source region, to Ri, the target region2 and show how the required weighting matrices

may be constructed based on the available estimates of areas µ̂(Dj), µ̂(Ri) and µ̂(Ri∩Dj). In

particular, this section discusses how the measurement error of the map intersection affects

such weighting matrices. We also consider a possible misspecification of these weighting

schemes if the underlying assumptions regarding the density distributions of the source zone

attributes do not hold. Moreover, we derive conditions under which such a misspecification

does not affect the resulting area interpolation.

Before discussing several possible weighting schemes, note that there are two different

kinds of attributes which have to be treated differently, i.e. for which different weighting

matrices need to be used: frequencies (F) such as the number of job vacancies, participants

in certain employment policies etc. and proportions (P) such as an unemployment rate3.

Weighting Schemes Without loss of generality, we focus on the case where we convert

information from regions Dj to regions Ri. Let us denote fi,j and pi,j as weights with the

usual properties: fi,j and pi,j ≥ 0,
∑

i fi,j = 1 and
∑

j pi,j = 1 for all i, j. The general rule

for interpolating data from Dj to Ri is

FRi
=

∑
j

FDj
fi,j for i = 1, . . . , n

where fi,j is an appropriate weight for frequency FDj
, j = 1, . . . , m and

PRi
=

∑
j

PDj
pi,j for i = 1, . . . , n

where pi,j is an appropriate weight for proportion PDj
, j = 1, . . . , m. These merging schemes

contain the special case of uniform weights fi,j = fi or pi,j = pi for all i. Uniform weights

imply that FRi
and PRi

are simple averages over the FDj
and PDj

and corresponds to the

simple area weighting proposed by Goodchild and Lam (1980).

Construction of weights There are several ways how the weights fi,j and pi,j can be

constructed. Apart from simple area weights, we focus here on two alternative approaches:

2Note that the vice versa case is not considered but our framework directly carries over.
3Goodchild and Lam (1980) have introduced the terms spatially extensive data for frequencies and spa-

tially intensive data for proportions in the context of area interpolation.
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naive binary weights4 and some special form of dasymetric weighting that refines the sim-

ple area weights by using additional information on a region-specific attribute such as the

population density that is known for both source and target regions.

First, consider naive binary weights. Region Dj is allocated to region Ri if they posses

the largest intersection. In other words, we allocate a weight of one to the region Dj that

shares the largest common area with Ri among all other intersecting regions. Obviously,

wi,j = fi,j = pi,j, where

wi,j =





1/]i,j (µ(Ri ∩Dj) = µ(Ri ∩Dl)) if µ(Ri ∩Dj) = supDl
µ(Ri ∩Dl)

0 otherwise

for all i, j, where ]i,j (µ(Ri ∩Dj) = µ(Ri ∩Dl)) is the number of sets Dl for which the equality

holds. In an application we have typically ]i,j = 1 for all i, j and therefore we refer to these

weights as binary weights. They may be considered as a rule of thumb and can be obtained

by simple visual inspection. We include this naive binary weighting despite the much more

sophisticated methods available because this rule of thumb is still being used by practitioners

who are not familiar with the area interpolation literature. Therefore, it is worthwhile to

compare these weights to more sophisticated methods for our application to German counties

and labor office districts.

Secondly, we suggest a special form of dasymetric weighting that refines the simple area

weights by using a region-specific attribute that is known for both source and target regions

and which is denoted as SRi
and SDj

. Under the assumption that the distribution of this

known attribute is highly correlated to the attribute to be interpolated to the target ar-

eas, one can use this information to re-estimate attribute densities of the intersection areas

between source and target area5. For frequencies we suggest

fi,j =
µ(Ri ∩Dj)SRi∑
i µ(Ri ∩Dj)SRi

for all i, j

with an appropriately defined SRi
. For the merger of proportions we suggest

pi,j =
µ(Ri ∩Dj)SDj∑
j µ(Ri ∩Dj)SDj

for all i, j

4These weights are also considered by Goodchild and Lam (1980), see their equation (13).
5Thus, instead of using zones assumed to have equal densities in order to refine density estimates for

the source regions (see e.g. Goodchild et al., 1993), we refine the source area density by using the known

densities of intersecting target areas. In an application one may use any known region-specific information

that is highly spatially correlated to the attributes to be interpolated. When using, for example, population,

SRi = pop(Ri)/µ(Ri) where pop(Ri) is the number of individuals in Ri.
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with an appropriately defined SDj
. These weights include the special case in which the

region-specific variable does not contain any information, i.e. SRi
= SR or SDj

= SD for all

i, j. In this case the information is uniformly distributed across area space6 and the weights

simplify to the simple area weights by Goodchild and Lam (1980) which is

fi,j =
µ(Ri ∩Dj)

µ(Dj)
for all i, j

in the case of frequencies and

pi,j =
µ(Ri ∩Dj)

µ(Ri)
for all i, j

in the case of proportions. These weights use information on the intersection and area size

of Ri and Dj only.

Estimation of weights The above weights can be estimated by replacing the true area

sizes µ with their empirical counterparts µ̂. Naive weights can be estimated by

ŵi,j =





1/]i,j (µ̂(Ri ∩Dj) = µ̂(Ri ∩Dl)) if µ̂(Ri ∩Dj) = supDl
µ̂(Ri ∩Dl)

0 otherwise.
(1)

for all i, j.

Theorem 4 Suppose assumptions 1-3 hold, then estimator (1) is unbiased, i.e. Eŵi,j = wi,j.

The proof is straightforward by taking expectations over µ̂(Ri ∩Dj).

The estimator for the second continuous weight is given by

f̂i,j =
µ̂(Ri ∩Dj)SRi∑
i µ̂(Ri ∩Dj)SRi

, (2)

for all i, j and for p̂i,j analogously. Note that for simplicity we assume here that SRi
and SDj

are known numbers. Furthermore we require:

Assumption 4 Assume that the measurement error of Dj intersected with any Ri is inde-

pendent of the total measurement error of Dj for all i, j.

From assumption 4 follows

E

[
µ(τ+

j ∩Ri)− µ(τ−j ∩Ri)

µ(τ+
j )− µ(τ−j )

]
= 0

for all i, j.

6For a given region i this requirement could be relaxed since it is only necessary that SRi does not vary

in the neighborhood of i.
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Theorem 5 Suppose assumptions 1-4 hold, then estimator (2) is unbiased, i.e. Ef̂i,j = fi,j.

The proof uses the results of the previous subsection and assumption 4. Note that SRi

and SDj
are constants. In an application, however, f̂i,j may be affected by the random

measurement error of the map intersection.

We conclude that our proposed estimators have nice theoretical properties, i.e. they are

unbiased. The estimates in an application are more precise if the underlying maps are exact.

Note that the theorems directly carry over to the case of p̂i,j.

Misspecification of area interpolation Area interpolation based on the proposed weight-

ing matrices may not only be affected by the random measurement error of the underlying

map intersection. The construction of weights, i.e. interpolation method itself, may be mis-

specified if underlying assumptions do not hold. In particular, simple area weighting assumes

a uniform density distribution within the source region while our dasymetric weighting ap-

proach assumes the distribution of a known attribute in intersecting target areas to reflect

the density distribution within the source region. Clearly, none of the proposed interpola-

tion methods need to be appropriate if there is further local heterogeneity within the source

region. However, this case is not modelled here and we assume the dasymetric approach

to yield the least misspecified interpolation results. The question thus arises under which

conditions the misspecifications implied in naive binary weighting and simple area weighting

result in large differences between the estimated frequencies FRi
and proportions PRi

across

interpolation methods and under which conditions all methods yield very similar results. For

this purpose we introduce the concept of local homogeneity and global heterogeneity with

respect to information S.

Definition 1 Local homogeneity with respect to information contained in Si induces that

Si ≈ Sj for all i and all j in the direct neighborhood of i.

Definition 2 Global c−heterogeneity corresponds to

supi infj |Si − Sj| ≤ c

for all regions i and all regions j in the direct neighborhood of i and any c ≥ 0.

It is then evident that a small c implies local homogeneity for all regions i. Having this

in mind it is easy to show that local homogeneity implies that simple area weighting and

dasymetric weighting using the region-specific information S yield very similar results.
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Definition 3 Similarity of the regional entities Ri and Dj is defined by

supRi
|µ(Ri)− supDj

µ(Ri ∩Dj)| < ε

for all i, j and any ε > 0.

Similarity of the regional entities suggests that weights are similar across all weighting

schemes. Clearly, if for all intersections i, j there is one large intersection that almost com-

pletely covers the reference region, differences between the interpolation methods tend to be

small. In practice, a combination of local homogeneity and similarity of the two regional

entities may yield very similar results for all interpolation methods.

Monte Carlo Evidence It is interesting to investigate how the weighting schemes con-

sidered above affect the results in the presence of measurement error when the true value is

known.7 For this reason we perform a series of simulations for the prediction of frequency

FR. In order to make the simulation results comparable to our application in the following

section we use here the same regional classification for R and D. The number of sets Ri

and Dj and the set of intersections is therefore identical to the empirical framework. The

remaining simulation framework is chosen as follows:

• maximum dissimilarity of regional entities conditional on the set of intersections. This

implies equal intersection areas for a given Ri, i.e. µ(Ri ∩ Dj) = µ(Ri ∩ Dl) for all l

s.t. µ(Ri ∩Dl) > 0.

• FD ∼ U(900, 1100) is a discrete and independently drawn random variable, i.e. no

autocorrelation in FDj
.

• the measurement error of the estimated intersection areas follows a normal distribution:

µ̂(Ri ∩Dj)− µ(Ri ∩Dj) = εi,j, where εi,j ∼ N(0, µ(Ri ∩Dj)). This error is resampled

in each repetition of the 500 simulations.

• SR is drawn according to three different designs of spatial autocorrelation:

– i) SR = 1, no variation in the region-specific information.

– ii) SR is drawn element by element from N(5, 0.5). If there is already a SR as-

signed to the direct neighborhood of SRi
we compute SRi

= 0.2εRi
+ S̄Ri

, where

7See also Fisher and Langford (1995) for an extensive Monte carlo study for the comparison of different

weighting schemes in the absence of measurement errors.
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εR ∼ N(0, 0.5) and S̄Ri
is the average over all neighboring and already assigned

SRi
. This simulation design induces a weak spatial autocorrelation which is con-

firmed by a Moran’s I statistic. Accordingly, there is significant clustering of

similar values of the region-specific information SRi
8.

– iii) SR ∼ N(5, 0.5), random variation in the region-specific information,

Simulation designs i-iii allow us to evaluate the relevance of the information SR in an ap-

plication. Simulation results are presented in table 1, where we relate the resulting F̂R to

their true values. The true values are computed with the exact µ(Ri ∩ Dj) and the cor-

rect interpolation method which is assumed to be the dasymetric weighting approach that

uses the region-specific information. Any biases and higher moments of the distribution

are therefore due to either measurement errors or due to the misspecification of the weight-

ing scheme. In particular, the interpolation based on the dasymetric weights that use the

region-specific information deviate from the true FR only due to the measurement error,

while the other weighting schemes may be affected by a combination of measurement errors

and misspecification.

Table 1 clearly supports our theoretical framework that the measurement error does

not bias estimation results if the weighting scheme is correctly specified. As expected for

our simulation design, naive binary weighting performs poorly in our simulation framework.

We also observe that ignoring region-specific information biases results and the variance

increases slightly (see ii) and iii)). Moreover, the misspecification is more sever in case of

a random variation in S than in the case of spatial autocorrelation. Moreover, in case of

spatial autocorrelation in FD and similarity of the regional entities, all three interpolation

methods produce similar results9.

8We calculate Moran’s I using different weights for the spatially lagged vector. Using a weight of one for

regions within a 0.5 degree radius of the grid location of the county, we get a test statistic of 0.23 (z = 7.0).

Using a 1 degree radius the test statistic falls to 0.15 (z = 9.6) but again is highly significant. 0.1 degree

correspond to 11.1 km along the longitude and between 6.5 to 7.5 km along the latitude. Clearly, using the

grid position for the weighting scheme is a somewhat crude but justifiable approach.
9These cases are not presented but results are available on request.
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Table 1: Monte Carlo Evidence for the distribution of (F̂R − FR)/FR

Mean Sd MSE‡ MSE‡in % of i

Simulation i

Naive weights −0.2417 1.5350 2.4146 100%

Area weights, SRi
= 1 −0.0001 0.0436 0.0019 100%

Dasymetric weights −0.0001 0.0436 0.0019 100%

Simulation ii

Naive weights −0.2369 1.5166 2.3562 97.6%

Area weights, SRi
= 1 0.0035 0.0682 0.0047 247.4%

Dasymetric weights −0.0000 0.0436 0.0019 100%

Simulation iii

Naive weights −0.2331 1.5337 2.4066 99.7%

Area weights, SRi
= 1 0.0085 0.0965 0.0094 494.7%

Dasymetric weights −0.0000 0.0436 0.0019 100%

‡ Mean squared error

We conclude that without any precise information on the spatial distribution of the

data and the degree of similarity of the regional entities, there is no way to tell how strongly

research results are affected by the choice of interpolation method. In empirical applications,

a sensitivity analysis may be useful to investigate the robustness of research results based

on different interpolation approaches. Our simulation results suggest that higher moments

of the error distribution are also affected by the choice of the weighting scheme.

3 Empirical application

The purpose of the empirical application is to identify an appropriate interpolation method

in order to transfer attributes from the German labor office districts to the counties. As has

been discussed in the introduction, different administrative agencies report data for different

sets of regions such that research is severely hampered. In particular, both agencies pro-

vide important data for researchers in labor economics, other fields of economics and social

sciences alike. Typically, microdata are coded at the level of the German counties while

important labor market characteristics are coded at the level of the federal employment

office districts. Since current research on German labor market reforms often necessitates
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combining both data sources, solving this areal interpolation problem is thus of some im-

portance and urgency. We apply the three interpolation methods proposed in the previous

section and perform a sensitivity analysis in order to test the robustness of estimation results

with regard to the choice of method and discuss the results in light of the above theoretical

considerations.

Figure 2: The German Communities (left) and the German federal employment office dis-

tricts (right)

Figure 2 shows a map of German counties (Kreise) and a map of federal employment office

districts (Arbeitsamtsdienststellen). Think of the German counties as the Ri target regions

with i = 1, . . . , 440 disjoint entities. The federal employment office districts correspond to the

Dj source regions with j = 1, . . . , 840. In order to develop weighting schemes based based on

intersecting both regional classifications, we estimate the county areas Ri, district areas Dj

and their intersections µ̂(Ri∩Dj) using the GIS procedure of polygon overlay provided in the

software package ArcView. Figure 3 to the right shows the resulting map from intersecting

counties and districts. This intersection results in more than 3, 600 subregions, some of which

are certainly spurious due to the measurement errors involved in any intersection based on

maps with some degree of cartographic generalization.
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Figure 3: The intersection of German Communities and German federal employment office

districts (left) and stochastic measurement error at the Berlin border lines (right)

In line with the theoretical framework, the district map D comes with a larger imprecise-

ness than the county map R10. However, both maps come with a scale that involves some

smoothing of the border lines. This slightly extends the theoretical framework with two

instead of one source of random noise, the border lines of Dj as well as the border lines of

Ri. The spurious polygons resulting from the measurement error can be seen at the border

line of the Berlin area (see figure 3 to the right). Moreover, the stochastic measurement

error now is also relevant at the outer border of Germany. Still, the spirit of our theoretical

framework directly carries over to this application.

In particular, we expect area estimates not to show any systematic biases, but to be very

close to the true area sizes on average. Thus, we examine the measurement error involved

in estimating regional area sizes by comparing µ̂(Ri) to its exact area size µ(Ri) which are

10In our particular case, map D was not available electronically such that we scanned the map in a raster

data format. Afterwards the raster data have been converted to vector data by means of digitizing. Thus,

in addition to smoothing errors due to cartographic generalization, digitizing errors may be another source

of measurement error. However, the conversion should not produce any systematic errors so that consistent

with the theoretical framework, the measurement error along the border lines may be considered random.
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officially released by the federal German statistical office (Statistik Regional, 1999). Table

2 shows the summary statistics of µ̂(Ri), µ(Ri) and their percentage deviation.

Table 2: Comparing the estimated to the true area size of 440 German counties.

Mean Std. dev. 25th pct. 50th pct. 75th pct. Min Max

µ̂(Ri) 812.23 599.28 264.1 760.5 1186.5 35.7 3073.6

µ(Ri) 811.15 596.97 262.1 759.5 1188.7 35.6 3058.2
µ̂(Ri)−µ(Ri)

µ(Ri)
∗ 100 -0.075 2.180 -0.214 0.048 0.313 -19.764 10.275

Comparing the summary statistics for µ̂(Ri) and µ(Ri), suggests that, on average, the

estimated and true areas are very similar with a percentage deviation of less than 0.1%.

However, note that there are some rather extreme outliers in both directions. In particular,

we find that some Eastern urban areas such as Chemnitz, Zwickau, Görlitz, Stollberg, Wart-

burgkreis and Leipzig are among these outliers. Apparently, there is a problem with some

Eastern areas stemming from the fact that there have been reforms during the last decade

to spatially restructure the county such that the µ(Ri) reported in Statistik regional (1999)

do not reflect the true area sizes of all Eastern areas. Consequently, excluding the Eastern

areas eliminates some of the major outliers. The remaining outliers unsurprisingly tend to

be coastal areas such as Lübeck and Bremerhaven. For coastal areas which typically possess

a natural border line, the smoothing of the border lines may be expected to result in larger

error components than for other regions. Apart from this aspect, no systematic relationship

between the measurement error and any regional characteristic (e.g. perimeter-area ratio)

can be found. Thus, as predicted by the theoretical framework, area estimates seem to be

unbiased.

We conclude that for some (coastal) sub-regions the smoothing of the border lines results

in pronounced under- or overestimation of the true area size due to the stochastic measure-

ment error involved. However, on average, this stochastic component is very small. Moreover,

no systematic influences could be detected. This suggests that, in line with the theoretical

predictions, area estimates and the corresponding weighting schemes are unbiased.

Sensitivity Analysis Of course, having unbiased weighting schemes is only one necessary

precondition for an appropriate interpolation of attributes from labor office districts to coun-

ties. However, due to the possibility of misspecifying the weighting schemes, even unbiased

weights may produce invalid results. Put differently, unbiasedness does not tell us anything
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about the best choice among the various interpolation methods. Ultimately, whether a par-

ticular method is preferable compared to an alternative method depends on the degree of

similarity and local homogeneity in the underlying spatial context. As presented in section

2.2, a high degree of similarity between two types of regions as well as a high degree of local

homogeneity render differences between merging schemes negligible. Under such conditions,

even a naive merging scheme may be an appropriate choice. Otherwise, only a sensitiv-

ity analysis reveals whether estimation results are robust with respect to the interpolation

method used.

Therefore, this section conducts a sensitivity analysis of the effect of certain regional labor

market characteristics on the job-finding hazard of unemployed individuals in West Germany

(excluding the Berlin area) between 1981 and 1997. The micro data set used for the analysis

is the IAB Employment Subsample (IAB-Beschäftigtenstichprobe) 1975 to 1997. See Bender

et al. (2000) for a detailed discussion of the data. The data set contains daily register data

of about 500,000 individuals in West-Germany with information on their employment spells

as well as on spells during which they received unemployment insurance. The data set is a

representative sample of employment that is subject to social security taxation and excludes,

for example, civil servants and self-employed individuals. All individual information is coded

at the level of the so called micro-census regions. These regional sub-divisions lump together

up to four communities. There are 270 micro-census regions in West Germany. Based on

this data set, we want to test the effect of two regional labor market indicators, namely the

unemployment rate (PDj
) and the ratio of unemployed individuals to vacancies in the region

(FDj
) on the job-finding hazard of unemployed individuals. Both indicators are proxies

for labor market tightness and may be expected to have a significant negative effect on

the job-finding hazard of unemployed individuals in West Germany. More importantly,

since these regional indicators are reported for labor office regions only, they need to be

interpolated to micro-census regions. Labor office regions lump together three to four labor

office districts. Thus, we can use the map intersection of German labor office districts and

counties for an interpolation between the 270 microcensus regions and the 141 labor office

regions by aggregating the estimated areas to the level of microcensus and labor office regions.

Intersecting these two regional entities yields a total of 1.149 sub-regions.

There are two possible reasons why estimated weights might not differ substantially

between alternative weighting schemes. First of all, there may be a high degree of local

homogeneity in the region-specific information that is used for the dasymetric weighting

approach. Here, we use regional labor force densities as the region-specific information S
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because the distribution of the labor force should be highly correlated to other labor-market

related attributes. Using a Moran’s I statistic11, we find evidence in favor of positive spatial

autocorrelation, i.e. areas with high (low) labor force densities tend to be close to other

regions with high (low) densities. Apparently, there is a high degree of local homogeneity

or a low level of c-heterogeneity in the underlying region-specific information S (see section

2.1). As a consequence, differences between area and dasymetric weighting should be rather

small.

Secondly, we may also expect differences between the naive and the two continuous

merging schemes to be rather small. This is because the intersected regional maps do show

a high degree of similarity (see figure 2). In several cases, counties do not even intersect

with a labor office region or only have small intersections with one additional labor office

region. As a consequence, the naive merging scheme may be relatively close to the more

sophisticated interpolation methods.

Indeed, we find that the resulting weights on average do not differ substantially. In fact,

with an average value that differs only in the 10th decimal place, dasymetric weights show

an extremely similar distribution to simple area weights that assume a uniform distribution

of the region-specific information. Standard deviations, percentiles as well as minima and

maxima are also quite similar. However, while on average both methods seem to be quite

similar, weights differ substantially for some sub-regions for which there is a low degree of

local homogeneity within the neighboring area. Table 3 looks at an extreme example to

demonstrate this point.

Table 3: Weighting schemes f̂i,j for the Bremen labor office region

Labor office region Micro census region ŜRi
= 1 ŜRi

= lf(Ri)
µ̂Ri

Naive

Bremen Bremen .31311 .83763 1

Bremen Diepholz .00189 .00039 0

Bremen Wesermarsch .01382 .00208 0

Bremen Osterholz .65232 .15748 1

Bremen Rotenburg .01576 .00169 0

Bremen Verden .00309 .00073 0

11See footnote on page 14 for details on the test statistic. Using a weight of one for regions within a 0.4

degree radius of the grid location of the county, we get a test statistic of 0.21 (z = 5.3). Using a 0.8 degree

radius the test statistic falls to 0.16 (z = 8.9) but again is highly significant.
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Bremen is a large city in the north of Germany with about 500,000 residents and a

relatively high labor force density compared to the surrounding rural areas (Diepholz, We-

sermarsch, Osterholz, Rotenburg, Verden). Thus, while around 31 % of the area of the

Bremen labor office region intersects with the micro-census region of the same name, tak-

ing account of the fact that most of the labor force of the labor office region works in this

intersecting area results in a weight of almost 84 %.

We conclude that, on average, weights do not differ substantially at all. Apparently,

in most cases, labor force densities in neighboring and intersecting regions are relatively

homogenous or the underlying regions are relatively similar so that all schemes result in

very similar weighting matrices. However, for some selective regions with a high degree of

heterogeneity in the region-specific information within the local neighborhood, the choice

of merging rule may have an important influence. We therefore decide to look at two dif-

ferent samples for the sensitivity analysis, a full and a selective sample. The full sample

includes all 255,100 unemployment spells 12 generated by 126,189 individuals and beginning

between 1981 and 1997 in any West German micro-census region13. The selective sample

includes only unemployment spells from those micro-census regions whose estimated weight-

ing schemes differed substantially14. Given the above results, we expect the analysis based

on the full sample to be more sensitive with respect to the chosen interpolation method than

the heterogeneous subsample. However, even for the selective sample, estimation results

may be quite robust if the regional data to be converted, FDj
and PDJ

, does not vary signif-

icantly between adjacent and nearby regions. Indeed, a Moran’s I statistic for both regional

12Periods of registered unemployment cannot be identified easily given the data structure of the IAB

employment subsample. This is because we only observe periods of dependent employment and periods of

transfer payments from the labor office, but do not observe any information on the labor force status of the

individuals during these spells or during the gaps between spells. For a detailed discussion of these problems

see Fitzenberger and Wilke (2004). For our purpose, we define an unemployment spell as all episodes after

an employment spell during which an individual continuously receives transfer payments. There may be

interruptions of these transfer payments of up to four weeks - in the case of cut-off times up to six weeks.

Moreover, the gap between employment and the beginning of transfer payments may not exceed 10 weeks.

The gap between the end of transfer payments and the beginning of employment may not exceed 12 weeks.

Otherwise, the unemployment spell is treated as censored when transfer payments end. This is a reasonable

restriction because longer gaps may mean that individuals temporarily or permanently left the labor force

or that they became self-employed in which case we do not observe them any longer in our sample.
13The sample has been restricted to individuals aged 18-52 at the beginning of the unemployment spell.
14A micro-census region belongs to the selective sample if either the absolute deviation between f̂i,j(S =

const.) and f̂i,j(S 6= const.) or the absolute deviation between p̂i,j(S = const.) and p̂i,j(S 6= const.) is above

the 99th or below the 1st percentile.
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indicators finds significant spatial clustering of similar values15. As a consequence, even for

a selective sample of regions for which weighting matrices differ significantly, the converted

regional data FRi
and PRi

might be quite similar for different merging schemes.

Table 4: Summary statistics of unemployment rates for the full and

the selective sample by merging scheme

Weights ŜRi
Obs. Mean Std. dev. Min Max

Full Sample

f̂i,j 1 270 7.864 2.833 3.183 15.757

f̂i,j
lf(Ri)
µ̂Ri

270 7.890 2.848 3.172 15.760

Naive - 270 7.873 2.864 3.167 15.767

Selective Sample

f̂i,j 1 14 9.226 3.646 3.905 15.009

f̂i,j
lf(Ri)
µ̂Ri

14 9.245 3.679 3.917 14.769

Naive - 14 9.227 3.809 3.933 14.333

Summary statistics of the converted unemployment rate PRi
and the converted unemployment-

vacancy ratio FRi
at the level of micro-census regions (see table 4 and 5) confirm that dif-

ferences between interpolation methods are levelled out. Even for the selective sample of

14 micro-census regions for which the weights differed most, there is not much variation

across the weighting schemes. There is some more variation in the selective sample for the

unemployment-vacancy ratio than for the unemployment rate. Still, summary statistics are

quite similar across merging schemes. This suggests that estimated effects of the unem-

ployment rate and the unemployment-vacancy ratio on the unemployment duration of West

German job seekers should be very robust across merging schemes, even for the selective

sample.

15Again (see footnote on page 14) we calculate Moran’s I using different weights for the spatially lagged

vector. Using a weight of one for regions within a 0.4 degree radius of the grid location of the county, we get

a test statistic of 0.85 (z = 16.3). Using a 0.8 degree radius the test statistic is 0.72 (z = 31.4) which again

is highly significant.
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Table 5: Summary statistics of unemployment/vacancy ratio for the

full and the selective sample by merging scheme

Weights ŜDi
Obs. Mean Std. dev. Min Max

Full Sample

p̂i,j 1 270 8.371 5.121 1.723 30.803

p̂i,j
lf(Dj)

µ̂Dj
270 8.372 5.109 1.730 31.001

Naive - 270 8.544 5.484 1.720 31.494

Selective Sample

p̂i,j 1 14 9.833 6.788 1.727 25.023

p̂i,j
lf(Dj)

µ̂Dj
14 10.064 6.625 1.733 24.994

Naive - 14 11.549 8.178 1.720 25.278

For the sensitivity analysis, we estimate a proportional hazard model where the baseline

hazard includes common fixed effects for individuals in the same labor market region16. This

may be estimated using Cox’s partial likelihood estimator (Cox, 1972). Including location-

fixed effects in this estimator removes a potential bias of individual and labor market related

variables that may result from omitting important regional labor market characteristics

(Kalbfleisch and Prentice, 1980; Ridder and Tunali, 1999). In addition to the location-

specific fixed effects we also take account of the fact that some individuals have repeated

unemployment spells. Thus, we use the modified sandwich variance estimator to correct for

dependence at the level of the individual (Lin and Wei, 1989).

Table 6 summarizes estimation results for the unemployment rate and the unemployment-

vacancy ratio for the full sample and the three interpolation methods. We control for educa-

tion, sex, age, marital status, occupational status, economic sector, a set of year dummies as

well as some indicators of prior employment history including total previous unemployment

duration, tenure in the previous job and an indicator variable of whether there has ever been

a recall from the previous employer. Summary statistics and estimation results using the

full and the selective sample can be found in the appendix17.

16We use labor market regions instead of microcensus regions because labor market regions are likely to

be the relevant regional context in which individuals mainly seek employment. There are a total of 180

West-German labor market regions.
17Since estimation results across the various specifications are very similar, the appendix only includes

detailed results for the Cox model using the unemployment rate as the regional labor market variable in
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Table 6: Cox PH model estimates for regional indicators by merging scheme and sample

Full Sample Selective Sample

Merging Scheme Haz. Rat. Std. Err. Haz. Rat.Std. Err.

Unemployment-vacancy ratio

f̂i,j with SRi
= 1 0.989∗∗ 0.000 0.986∗∗ 0.001

f̂i,j with SRi
6= 1 0.989∗∗ 0.000 0.985∗∗ 0.001

Naive 0.989∗∗ 0.000 0.987∗∗ 0.001

Unemployment rate

f̂i,j with SDj
= 1 0.967∗∗ 0.001 0.971∗∗ 0.005

f̂i,j with SDj
6= 1 0.966∗∗ 0.001 0.973∗∗ 0.005

Naive 0.967∗∗ 0.001 0.976∗∗ 0.005

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

As expected from the above discussion, the effect of the unemployment rate and the

unemployment-vacancy ratio on the job finding hazard is extremely robust across the differ-

ent interpolation methods for the full and the selective sample. In our empirical application

the effects of interpolated attributes on the estimated hazard ratios do not differ up to the

4th decimal place for the full and up to the 3rd decimal place for the selective sample. This

even holds for naive binary weighting.

We conclude that, at least in the case of interpolating data between German districts

and counties, the choice of interpolation method does not substantially affect our estimation

results. In our specific application it even seems safe to take the simplest approach available

to the researcher: an interpolation based on simple binary weights. However, due to a high

degree of local homogeneity in S, a high degree of similarity of the regional entities and a

strong positive spatial autocorrelation of the data to be interpolated, this is likely to be a

result that is unique to this particular application. Thus, researchers applying the above

approach to a different set of regional entities should be aware that these factors have an

important effect on the robustness of their results. Also, they should check the degree of

spatial autocorrelation of the spatially misaligned data. If there is spatial clustering of dis-

similar values, interpolation is likely to be much more sensitive to the choice of interpolation

method than in our particular application. Therefore, researchers are advised to examine

addition to the individual-specific characteristics. Moreover the estimation results only show the case of

merging the unemployment rate based on a uniform distribution of the region-specific information.
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the conditions of local homogeneity, similarity of regional entities and positive or negative

spatial autocorrelation in detail before choosing an interpolation method. If there is evidence

that even the dasymetric weighting approach may be seriously misspecified and no positive

spatial autocorrelation of the attributes to be interpolated mitigates this misspecification,

other more sophisticated methods might be necessary to derive at satisfactory results.

4 Conclusion

This paper presents several methods for interpolating spatially misaligned data from Ger-

man labor office districts to German counties. We compare interpolation results from binary

weighting, simple area weighting and a more sophisticated dasymetric weighting approach

that makes use of additional regional information. In particular, we apply dasymetric weight-

ing as an alternative to simple area weighting both of which are based on estimated inter-

section areas.

In a theoretical framework, we consider the attributes of these interpolation methods if

estimated intersection areas come with a measurement error in the form of spurious poly-

gons. Such spurious polygons results from intersecting maps that come with some degree

of cartographic generalization and/or digitizing errors. Thus, our theoretical framework ex-

tends the well-known Goodchild and Lam (1980) approach to the presence of measurement

error in the underlying maps.

Moreover, we identify conditions under which all interpolation methods including naive

binary weighting yield comparable and reliable results. Under a high degree of local homo-

geneity in the region-specific information used for the dasymetric weighting approach and

under a high degree of similarity between the two regional classifications, the choice of in-

terpolation method does not matter. We confirm these theoretical results with a simulation

study.

As a sensitivity analysis for the area interpolation between labor office districts and coun-

ties, we compare the effects of interpolated attributes on the job-finding hazard of unem-

ployed individuals using all three interpolation methods. Our application suggests robustness

of estimation results with respect to the choice of interpolation method. Apparently, local

homogeneity in the attribute to be interpolated further mitigates any differences between

the three methods. Thus, we conclude that in our particular application even a simple rule

of thumb yields reliable results. The estimated weighting matrices for interpolating data

from the two largest German data producers, the federal Employment Office and the federal
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Statistical Office, are freely accessible to the research community and can be downloaded

from ftp : //ftp.zew.de/pub/zew − docs/div/arntz − wilke− weights.xls
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5 Appendix

Table 7: Summary statistics for the full and the selective sample of

unemployment spells, IAB employment subsample, 1981-1997

Full Sample Selective Sample

Mean Std. Err. Mean Std. Err.

Unemployment duration (in days) 293.24 443.86 285.55 407.46

Female 0.41 0.49 0.44 0.50

Married 0.46 0.50 0.44 0.50

Married female 0.21 0.41 0.21 0.41

Age < 21 0.08 0.28 0.07 0.26

Age 21-25 0.23 0.42 0.21 0.41

Age 31-35 0.14 0.35 0.14 0.35

Age 36-40 0.11 0.31 0.13 0.32

Age 41-45 0.10 0.30 0.11 0.31

Age 46-49 0.07 0.26 0.08 0.27

Age 50-53 0.08 0.27 0.08 0.27

Low education 0.38 0.49 0.36 0.48

Higher education 0.04 0.20 0.05 0.23

Low educ. x Sex 0.16 0.37 0.17 0.37

High. educ. x Sex 0.02 0.13 0.02 0.15

Apprenticeship 0.07 0.25 0.06 0.25

Low skilled worker 0.34 0.48 0.32 0.47

White collar worker 0.25 0.43 0.30 0.46

Parttime work 0.08 0.27 0.09 0.28

Agriculture 0.03 0.17 0.02 0.13

Inv. goods industry 0.20 0.40 0.17 0.38

Cons. goods industry 0.12 0.32 0.08 0.28

Construction 0.15 0.36 0.12 0.33

Services 0.31 0.46 0.38 0.49

Tenure in previous job (in months) 27.20 38.09 26.88 38.64

Previous recall 0.06 0.23 0.05 0.22

Total unemp. duration (in months) 8.43 15.03 8.29 14.70

1983-1987 0.32 0.47 0.32 0.47

1988-1991 0.19 0.39 0.19 0.39

1992-1997 0.34 0.47 0.34 0.47

Unemployment ratea 9.70 3.38 9.34 3.56

Number of spells 255,100 83,104

Number of individuals 126,189 24,674

Percentage right-censored 28.4 29.7

a Regional information has been merged using the uniform distribution of the

region-specific information SDj = 1.
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Table 8: Cox PH model estimates using the full and the selective sample, IAB employment

subsample, 1981-1997

Full Sample Selective Sample

Variable Hazard Ratio (Std. Err.) Hazard Ratio (Std. Err.)

Female 1.112∗∗ (0.011) 1.127∗∗ (0.035)

Married 1.219∗∗ (0.008) 1.227∗∗ (0.031)

Married female 0.539∗∗ (0.013) 0.583∗∗ (0.022)

Age < 21 1.217∗∗ (0.010) 1.281∗∗ (0.045)

Age 21-25 1.103∗∗ (0.008) 1.141∗∗ (0.029)

Age 31-35 0.985† (0.009) 1.001† (0.029)

Age 36-40 1.000 (0.011) 1.002 (0.031)

Age 41-45 1.001 (0.011) 1.011 (0.035)

Age 46-49 0.968∗ (0.013) 0.930∗ (0.037)

Age 50-53 0.831∗∗ (0.015) 0.823∗∗ (0.037)

Low education 0.883∗∗ (0.009) 0.847∗∗ (0.023)

Higher education 0.792∗∗ (0.020) 0.779∗∗ (0.044)

Low educ. x Sex 0.968∗ (0.013) 1.035∗ (0.041)

High. educ. x Sex 1.149∗∗ (0.030) 1.120∗∗ (0.089)

Apprenticeship 1.082∗∗ (0.013) 1.136∗∗ (0.045)

Low skilled worker 0.798∗∗ (0.009) 0.845∗∗ (0.023)

White collar worker 0.752∗∗ (0.010) 0.805∗∗ (0.023)

Parttime work 0.806∗∗ (0.016) 0.829∗∗ (0.035)

Agriculture 1.317∗∗ (0.020) 1.333∗∗ (0.092)

Inv. goods industry 0.927∗∗ (0.010) 0.926∗∗ (0.027)

Cons. goods industry 0.925∗∗ (0.011) 1.029∗∗ (0.036)

Construction 1.221∗∗ (0.010) 1.347∗∗ (0.041)

Services 0.984† (0.009) 1.024† (0.025)

Tenure in previous job 0.995∗∗ (0.000) 0.994∗∗ (0.000)

Previous recall 0.781∗∗ (0.012) 0.756∗∗ (0.031)

Total unemp. duration 0.995∗∗ (0.000) 0.997∗∗ (0.001)

1983-1987 1.245∗∗ (0.008) 1.252∗∗ (0.033)

1988-1991 1.332∗∗ (0.009) 1.365∗∗ (0.039)

1992-1997 1.085∗∗ (0.009) 1.122∗∗ (0.032)

Unemployment rate 0.967∗∗ (0.001) 0.971∗∗ (0.005)

Log-likelihood -1,217,399.365 -121,004

χ2
(30) 18,724.774 1,961.91

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Using the merging scheme with SDj = 1.
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die Kreise und kreisfreien Städte Deutschlands. Wiesbaden.

[21] Tobler, W.R. (1979). Smooth Pycnophylactic Interpolation for Geographical Regions.

Journal of the American Statistical Association 74, 519–530.

[22] Yuan, Y., Smith, R.M. and Limp, W.F. (1997). Remodeling Census Population with

Spatial Information from LandSat TM imagery. Computers, Environment and Urban

Systems 21, 245–258.

30




