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Non-technical summary

In empirical economics, it is often necessary to use discrete choice models with more than

two alternatives of a qualitative variable. Examples are the examination of the choice of

modes for the journey to work, the household portfolio choice, the choice of living arrange-

ments, or the brand choice of consumers. In these discrete choice models, intertemporal

relationships should be included if panel data are available. Multiperiod multinomial pro-

bit models are generally suitable for the analysis of such economic problems because of the

flexible structure in these approaches. For a long time, the application of the multiperiod

multinomial probit model was restricted because of the occurring multiple integrals. But

by combining classical estimation methods and simulators, the use of such approaches has

become feasible. When the multiperiod multinomial probit model is estimated in practice,

the application of the simulated maximum likelihood method, e.g. the simulated counter-

part of the maximum likelihood method, including the so-called GHK simulator, seems to

be preferable. Asymptotic properties of the simulated maximum likelihood estimator as well

as properties with finite numbers of observations and with finite numbers of random draws

in the GHK simulator have been considered in the past.

The focus of this paper, however, is not on parameter estimation but on classical testing

in the multiperiod multinomial probit model. By examining groups of variance-covariance

parameters of the stochastic model components, special probit models can be tested. Note

that the use of the Wald test, the score test, and the likelihood ratio test in complex multi-

period multinomial probit models is computationally not feasible because of the appearing

multiple integrals. But according to the inclusion of simulators into the maximum likeli-

hood method, classical tests can also be associated with simulators. Thus, on the basis of

simulated maximum likelihood estimates, one can construct simulated classical tests. The

asymptotic properties of the simulated counterparts of the classical test statistics have been

discussed in detail in the work of Lee (1999). But in view of the empirical application of

simulated classical tests, the properties with finite numbers of observations and with finite

numbers of random draws in the GHK simulator are more important than the asymptotic

properties.

Hence, within the framework of Monte Carlo experiments, the present paper systematically

compares different versions of the simulated Wald test, the simulated score test, and the

simulated likelihood ratio test in the multiperiod multinomial probit model. Exemplarily, the

five-period three-alternative probit model is considered here. The comparative analysis refer

to the deviations of the frequency of type I errors from the basic significance levels as well as to

the frequency of type II errors. In view of the empirical practice, the number of observations

and the number of random draws in the GHK simulator are varied. One important finding is



that in contrast to the investigations of Lee (1999) in multiperiod binary probit models, the

inclusion of the quasi maximum likelihood theory into the simulated classical tests and in

particular into the simulated likelihood ratio test is not advantageous in general. Instead, the

simple form of the simulated likelihood ratio test provides the comparatively most favorable

results. Furthermore, neither the number of observations nor the number of random draws

in the GHK simulator have a systematic effect on the frequency of type I errors. An increase

in the number of observations only reduces the frequency of type II errors.
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Abstract

This paper compares different versions of the simulated counterparts of the Wald test,

the score test, and the likelihood ratio test in the multiperiod multinomial probit model.

Monte Carlo experiments show that the simple form of the simulated likelihood ratio

test delivers the most favorable test results in the five-period three-alternative probit

model considered here. This result applies to the deviation of the frequency of type I

errors from the given significance levels as well as to the frequency of type II errors.

In contrast, the inclusion of the quasi maximum likelihood theory into the simulated

likelihood ratio test leads to substantial computational problems. The combination

of this theory with the simulated Wald test or the simulated score test also produces

no general advantages over the other versions of these two simulated classical tests.

Neither an increase in the number of observations nor a rise in the number of random

draws in the considered GHK simulator systematically lead to a more precise con-

formity between the frequency of type I errors and the basic significance levels. An

increase in the number of observations merely reduces the frequency of type II errors.
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1 Introduction

By combining classical estimation methods and simulators, the application of flexible mul-

tiperiod binary or one- or multiperiod multinomial probit models has been feasible for quite

a while in spite of the appearance of multiple integrals (see e.g. Lerman and Manski, 1981,

McFadden, 1989, Börsch-Supan and Hajivassiliou, 1993, Keane, 1994, Hajivassiliou and

McFadden, 1998). Examples for the empirical use of simulated classical estimations are

Chintagunta, 1992, Börsch-Supan et al., 1992, Hajivassiliou, 1994, Bolduc et al., 1996, or

Asea and Turnovsky, 1998. When such complex (particularly multinomial) probit models are

estimated in practice, the simulated maximum likelihood method (SMLM), that is the simu-

lated counterpart of the maximum likelihood method (MLM), including the GHK simulator,

seems to be the most advantageous approach among the multitude of approaches suggested

in the literature. This can be explained by the favorable computational properties of the

SMLM and the high precision of the GHK simulator, but in particular by the fact that this

simulated estimation method has also been implemented in some software packages, such as

GAUSSX and LIMDEP.

Moreover, in different probit models, the properties of the SMLM estimator have been in-

vestigated with finite numbers of observations and with finite numbers of random draws in

the GHK simulator within the framework of Monte Carlo experiments (see e.g. Keane, 1994,

Lee, 1997a, Inkmann, 2000, in multiperiod binary probit models, Börsch-Supan and Haji-

vassiliou, 1993, Geweke et al., 1994, Stern, 2000, in one-period multinomial probit models,

Geweke et al., 1997, in multiperiod multinomial probit models, Ziegler and Eymann, 2001,

in one- and multiperiod multinomial probit models). Compared to the known asymptotic

properties of the SMLM estimator, these systematic analyses are essential for the practical

evaluation of estimation results in the empirical work.

The focus of this paper, however, is not on parameter estimation, but on classical testing in

probit models. The basis for a traditional classical test is the corresponding MLM estimate.

In flexible multiperiod binary or one- or multiperiod multinomial probit models, however,

the MLM estimation is computationally not feasible because of the occurrence of multiple

integrals. For this reason, also the application of the three classical tests is not possible in

such complex probit models. The Wald test, the score test, and the likelihood ratio test

can merely be practiced in special simple probit models in which an MLM estimation is

feasible. But simulators can also be combined with classical tests pertinent to the inclusion

of simulators into the MLM. Thus, on the basis of SMLM estimates, it is possible to construct

simulated classical tests.

These kinds of tests refer to either a single parameter or to several parameters together.

In the first case, by using the simulated counterpart of the z-test, it can be tested if a
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choice depends on a single explanatory variable or if it depends on single contemporary or

intertemporal relationships within the framework of flexible probit models. By examining

groups of variance-covariance parameters of the stochastic model components, special probit

models can be tested. In previous empirical SMLM estimations in probit models, particularly

simulated z-tests have been regularly used, but special probit models have also been tested

with the simulated counterparts of classical tests (see e.g. Börsch-Supan et al., 1992, Bolduc

et al., 1996, and Inkmann, 2000). However, the problem of including simulators in these

tests has been completely neglected. Only the asymptotic properties of different versions of

simulated classical test statistics have been discussed in detail in the seminal work of Lee

(1999).

In contrast, systematic Monte Carlo experiments that are extremely important for practical

use in the empirical work, have seldom been performed with simulated classical tests in probit

models. Even an analysis of (unsimulated) classical tests on the basis of MLM estimates in

simple probit models is rare (so e.g. Davidson and MacKinnon, 1984, Guilkey and Murphy,

1993, Lechner, 1995, in one- or multiperiod binary probit models). To my knowledge, the

only Monte Carlo experiments with simulated classical tests of several parameters together

in probit models (resp. in more flexible discrete choice models) can be found in Lee (1997b,

1999), whereas Ziegler (2001) merely examines the special case of simulated z-tests. Lee

(1999) exclusively investigates multiperiod binary probit models, however. Thus, he does

not consider multinomial probit models. But these models are very important in empirical

economics, for example in researching the choice of living arrangements or the consumer

brand choice, in particular in multiperiod approaches (if panel data are available).

Therefore, in this study, various versions of simulated classical tests in the multiperiod multi-

nomial probit model (MMPM) based on constrained and/or unconstrained SMLM estimates

are examined. Due to its favorable properties, only the GHK simulator is included both

in the basic SMLM estimation and in the final derivation of the test statistics. Within the

framework of a flexible MMPM, two special MMPM are tested. By using several versions

of the simulated estimation of the information matrix (i.e. the exclusive inclusion of the

Hessian matrix of the simulated loglikelihood function, the exclusive inclusion of the gradi-

ents of the simulated loglikelihood function, or the inclusion of both the gradients and the

Hessian matrix as pertinent to the quasi maximum likelihood theory according to White,

1982), one obtains different versions of the simulated Wald test and the simulated score test.

In addition, the ideas of the quasi maximum likelihood theory can also be included in the

simulated likelihood ratio test.

Exemplarily, according to the empirical application of Börsch-Supan et al. (1992), the five-

period three-alternative probit model is considered in this study. In this framework, the (null)

hypothesis that no contemporary relationships are present and the (null) hypothesis that no
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autoregressive correlations are present in the stochastic model components are tested. The

comparative analysis of the various versions of simulated classical tests refers to the deviation

of the frequency of type I errors from the basic significance levels as well as to the frequency

of type II errors. In view of the empirical work, the number of observations in addition to

the number of random draws in the GHK simulator is varied here. In contrast, Lee (1999)

only analyzes one number of observations.

In the investigations of Lee (1999), the inclusion of the quasi maximum likelihood theory

into the simulated classical tests is advantageous. Moreover, a better conformity between the

frequency of type I errors and the given significance levels results from a rise in the number

of random draws in the GHK simulator. These outcomes cannot be confirmed by the Monte

Carlo experiments in the present study. The number of random draws in the GHK simulator

has no systematic influence both on the frequency of type I errors and on the frequency of

type II errors. In addition, an increase in the number of observations merely reduces the

frequency of type II errors. Most notably is, however, that there arise no general advantages

from including the quasi maximum likelihood theory. Instead, by combining this theory and

the simulated likelihood ratio test, substantial problems emerge in the calculation of the

corresponding test statistic. In contrast to the analysis of Lee (1999), the simple form of

the simulated likelihood ratio test delivers the comparatively most favorable results in the

five-period three-alternative probit model considered here.

The structure of this paper is as follows: In the second section, the SMLM estimation in

flexible MMPM is illustrated. On this basis, different versions of the simulated classical test

statistics in MMPM are explained in the third section. In the fourth section, the design of

the Monte Carlo experiments is described. The results of these analyses are discussed in the

fifth section. The final section summarizes the results and draws some conclusions.

2 Simulated maximum likelihoood estimation in mul-

tiperiod multinomial probit models

Assume that an agent i (i = 1, . . . , N) chooses in each of the considered time periods

t = 1, . . . , T among a finite number J of mutually exclusive alternatives of a qualitative

variable. If i chooses in t the alternative j, then the following hypothetical utility is obtained:

υijt = β
′
xijt + εijt i = 1, . . . , N ; j = 1, . . . , J ; t = 1, . . . , T (1)

The utility υijt depends on the vector of explanatory variables xijt = (xijt1, . . . , xijtK)′ and

on the corresponding parameter vector β = (β1, . . . , βK)′. In the following, the xijt are

summarized in the vector xit = (x′i1t, . . . , x
′
iJt)

′, and then the xit are summarized in the
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vector Xi = (x′i1, . . . , x
′
iT )′. One obtains the MMPM if the stochastic utility components

εijt are jointly normally distributed: εi = (εi11, . . . , εiJ1, . . . . . . , εi1T , . . . , εiJT )
′ ∼ NV (0; Σ).

The random vectors εi are independent of each other and are independent of all Xi. Diverse

versions of the MMPM result from various restrictions on the variance-covariance matrix Σ.

In this paper, the stochastic utility components εijt allow any contemporary relationship

between the alternatives j as well as time invariant stochastic effects and intertemporal

autoregressive correlations (see also Ziegler and Eymann, 2001), that is

εijt = αij + ζijt i = 1, . . . , N ; j = 1, . . . , J ; t = 1, . . . , T (2)

with

ζijt = ρjζi,j,t−1 +
√

1− ρj
2 ηijt

whereby ηijt ∼ NV (0; σ2
ηj

) holds for t = 0, 1, . . . , T , and the ηijt are uncorrelated over all

periods. For t = 1, . . . , T it is (∀j, j′) cov(ηijt, ηij′t) = σηjj′ . The ρj denote the autocorre-

lation coefficients for category j (where |ρj| < 1). Moreover, αij ∼ NV (0; σ2
αj

) holds with

cov(αij, αij′) = σαjj′ , whereby the αij and ζijt are uncorrelated with each other. Finally, it fol-

lows for the components of the variance-covariance matrix Σ of εi (with i = 1, . . . , N ; j, j′ =

1, . . . , J ; t, t′ = 1, . . . , T and t ≥ t′):

cov(εijt, εij′t′) = σαjj′ + ρj
(t−t′)

√
1− ρj

2
√

1− ρj′
2

1− ρjρj′
σηjj′ (3)

In the present study, the coefficients σ2
ηJ

and σ2
ηJ−1

are constrained to the value one, and the

coefficients σηjJ
(∀j 6= J) are constrained to the value zero in order to be able to formally

identify the model. The parameters σ2
αJ

and σαjj′ (∀j 6= j′) of the stochastic effects and

the autocorrelation coefficient ρJ are also constrained to the value zero. Note that due to

practical aspects in the basic SMLM estimations of this study, the corresponding standard

deviations σηj
(j = 1, . . . , J − 2) and σαj

(j = 1, . . . , J − 1) and the correlation coefficients

corr(ηijt, ηij′t) = σηjj′/σηj
σηj′ (j, j′ = 1, . . . , J − 1; j 6= j′) are used instead of the variances

σ2
ηj

and σ2
αj

and the covariances σηjj′ . For this reason, the tested hypotheses refer to these

transformed parameters in this study.

In the following, all free coefficients of the considered MMPM are summarized in the vector

θ = (θ1, θ2, . . .)
′. Over time, every observation i must choose between JT different category

sequences. For this reason, with regard to a chosen category sequence s, i chooses in every

period the alternative that offers the highest utility according to the stochastic maximization

hypothesis. In the flexible MMPM, the resulting probability Pis(θ) that an agent i chooses

the category sequence s is characterized by a (J − 1) · T -dimensional integral.

Such choice probabilities Pis(θ) can be quickly and accurately approximated with (unbiased)

stochastic simulation methods, i.e. with R repeatedly transformed draws of pseudo random
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numbers (see e.g. the overviews in Hajivassiliou et al., 1996, Vijverberg, 1997). By including

such a simulator, one obtains the simulated counterpart P̃is(θ) of Pis(θ). In comparative

Monte Carlo experiments, the so-called GHK (Geweke-Hajivassiliou-Keane) simulator (see

Börsch-Supan and Hajivassiliou, 1993, Geweke et al., 1994, Keane, 1994) has proven to be

superior to other simulators with regard to the approximation to the true probability (see

also Mühleisen, 1994). For this reason, only this simulation method is considered in this

study.

By linking an (unbiased) simulator to the MLM, one obtains the SMLM (see e.g. Gouriéroux

and Monfort, 1993). In the following, the JT -dimensional vector Yi = (Yi1, Yi2, . . .)
′ contains

the observable endogenous variables

Yis =





1 if observation i chooses category sequence s

0 else

where s ∈ S and S represents the set of all JT potential category sequences. By embedding

the simulator P̃is(θ) into the MLM approach and by considering N independent pairs (Yi, Xi)

in the MMPM, one obtains the particular SMLM estimator:

θ̂ = (θ̂1, θ̂2, . . .)
′ = arg max

θ

[
N∑

i=1

∑

s∈S

Yis lnP̃is(θ)

]
(4)

In the following, the parameter vector of the DGP is labelled θ̇ =
(
θ̇1, θ̇2, . . .

)′
.

Note that the parameters in the iterative maximization process can take values that are

outside of the domain. Due to this problem, the specially developed GAUSS programs take

advantage of the fact that the MLM is invariant to reparameterizations of a model. Thus,

for the free variance-covariance parameters of the MMPM, the following parameterizations

are made at the beginning of the SMLM estimation:

ln ση1 , . . . , ln σηJ−2

ln

[
1 + corr (ηijt, ηij′t)

1− corr (ηijt, ηij′t)

]
(∀j 6= j′; j, j′ 6= J)

ln σα1 , . . . , ln σαJ−1

ln

(
1 + ρ1

1− ρ1

)
, . . . , ln

(
1 + ρJ−1

1− ρJ−1

)

Subsequently, these transformed coefficients are entered into the optimization process. In the

iterative adjustment of the variance-covariance matrix Σ of εi, as well as in the derivation of

the SMLM estimates after the maximization process, the corresponding reparameterizations

are undertaken:
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exp
[
ln ση1

]
, . . . , exp

[
ln σηJ−2

]

exp
{
ln

[
1+corr(ηijt,ηij′t)
1−corr(ηijt,ηij′t)

]}
− 1

exp
{
ln

[
1+corr(ηijt,ηij′t)
1−corr(ηijt,ηij′t)

]}
+ 1

(∀j 6= j′; j, j′ 6= J)

exp
[
ln σα1

]
, . . . , exp

[
ln σαJ−1

]

exp
[
ln

(
1+ρ1

1−ρ1

)]
− 1

exp
[
ln

(
1+ρ1

1−ρ1

)]
+ 1

, . . . ,
exp

[
ln

(
1+ρJ−1

1−ρJ−1

)]
− 1

exp
[
ln

(
1+ρJ−1

1−ρJ−1

)]
+ 1

This guarantees that the standard deviations (and thus the variances) in and after the

optimization process only take positive values and the correlation resp. autocorrelation

coefficients only take values between −1 and +1. Note that the (unsimulated or simulated)

classical tests do not possess this invariance property as a rule, however. For this reason, in

this study, the formulation of the tested null hypotheses refers to the initially parameterized

coefficients that enter the maximization process.

3 Simulated classical test statistics in multiperiod

multinomial probit models

The starting point for the tests considered here is the following flexibly formulated null

hypothesis

H0 : g(θ̇) = 0 ⇐⇒





g1(θ̇) = 0
...

gm(θ̇) = 0

(5)

with m ≤ dim θ and rg
(

∂g(θ)′
∂θ

)
= m. Based on (unsimulated) MLM estimates, the Wald

test, the score test, or the likelihood ratio test are usually used for the analysis of such test

problems. However, as J and/or T grow, the MLM, and therefore also the classical tests are

computationally not feasible in a flexible MMPM because of the underlying multiple inte-

grals. Analogous to the inclusion of simulators into the MLM, simulation methods can also be

combined with classical tests. By embedding an (unbiased) simulator into the classical tests,

one obtains the simulated Wald test, the simulated score test, and the simulated likelihood

ratio test. This makes the simulated loglikelihood function lnL̃(θ) =
∑N

i=1

∑
s∈S YislnP̃is(θ)

the basis of such simulated classical tests. In the following, θ̌ signifies the SMLM estimator

constrained by H0, and θ̂ signifies the corresponding unconstrained SMLM estimator.
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According to Lee (1999), with different simulated estimations of the information matrix (i.e.

with the exclusive inclusion of the Hessian matrix of the simulated loglikelihood function,

with the inclusion of only the gradients of the simulated loglikelihood function, or with the

inclusion of both the gradients and the Hessian matrix corresponding to the quasi maximum

likelihood theory according to White, 1982), one can gain access to various versions of

the simulated Wald test and the simulated score test. Furthermore, the quasi maximum

likelihood theory can also be included in the simulated likelihood ratio test.

Hence, in the MMPM, the three considered simulated Wald test statistics are

SWT1 = −g(θ̂)′




∂g(θ̂)

∂θ′

[
N∑

i=1

∑

s∈S

Yis
∂2lnP̃is(θ̂)

∂θ∂θ′

]−1
∂g(θ̂)′

∂θ





−1

g(θ̂) (6)

SWT2 = g(θ̂)′




∂g(θ̂)

∂θ′

[
N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̂)

∂θ

∑

s∈S

Yis
∂lnP̃is(θ̂)

∂θ′

]−1
∂g(θ̂)′

∂θ





−1

g(θ̂) (7)

SWT3 = Ng(θ̂)′
{

∂g(θ̂)

∂θ′
Â(θ̂)−1B̂(θ̂) Â(θ̂)−1∂g(θ̂)′

∂θ

}−1

g(θ̂) (8)

whereby

Â(θ̂) =
1

N

N∑

i=1

∑

s∈S

Yis
∂2lnP̃is(θ̂)

∂θ∂θ′

and

B̂(θ̂) =
1

N

N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̂)

∂θ

∑

s∈S

Yis
∂lnP̃is(θ̂)

∂θ′

Note that the calculation of the simulated Wald test statistics in (6), (7), and (8) depends

first on the pertinent unconstrained SMLM estimates θ̂. In addition, in the flexible MMPM,

further simulations must be carried out within the framework of the estimation of the infor-

mation matrix.

In the MMPM, the three examined simulated score test statistics are:

SST1 = −
N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ′

[
N∑

i=1

∑

s∈S

Yis
∂2lnP̃is(θ̌)

∂θ∂θ′

]−1 N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ
(9)

SST2 =
N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ′

[
N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ′

]−1

· (10)

N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ
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SST3 =
1

N

[
N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ′

] [
1

N

N∑

i=1

∑

s∈S

Yis
∂2lnP̃is(θ̌)

∂θ∂θ′

]−1

· (11)

∂g(θ̌)′

∂θ

[
∂g(θ̌)

∂θ′
Â(θ̌)−1B̂(θ̌)Â(θ̌)−1∂g(θ̌)′

∂θ

]−1
∂g(θ̌)

∂θ′
·

[
1

N

N∑

i=1

∑

s∈S

Yis
∂2lnP̃is(θ̌)

∂θ∂θ′

]−1 [
N∑

i=1

∑

s∈S

Yis
∂lnP̃is(θ̌)

∂θ

]

The formulation of Â(θ̌) and B̂(θ̌) follows analogously to the above formulations Â(θ̂) and

B̂(θ̂). Again, more simulations are necessary in order to calculate the simulated score test

statistics in (9), (10), and (11) in the flexible MMPM apart from the simulations in the

constrained SMLM estimator θ̌.

Finally, in the MMPM, the two considered simulated likelihood ratio test statistics (the

second version contains the quasi maximum likelihood theory) are:

SLRT1 = 2
[
lnL̃(θ̂)− lnL̃(θ̌)

]
(12)

SLRT2 = 2
[
lnL̃(θ̂)− lnL̃(θ̌)

]
+ (θ̂ − θ̌)′ · (13)





N∑

i=1

∑

s∈S

Yis
∂2lnP̃is(θ̂)

∂θ∂θ′
+ N

∂g(θ̂)′

∂θ

[
∂g(θ̂)

∂θ′
Â(θ̂)−1B̂(θ̂)Â(θ̂)−1∂g(θ̂)′

∂θ

]−1
∂g(θ̂)

∂θ′



 (θ̂ − θ̌)

Note that the specially developed GAUSS programs allow the analytical computation of the

gradients of the simulated loglikelihood function. In contrast, the second-order derivatives

can only be calculated numerically (with the GAUSS module OPTMUM). However, it must

be kept in mind that in GAUSS even the analytical computation of the gradients cannot be

implemented efficiently due to the high number of loops (see also Mühleisen, 1994). This

is why their calculation requires comparatively long computation times. In fact, prelimi-

nary studies have shown that the duration of the analytical computation greatly exceeds the

duration of the numerical computation of the gradients. But since it also turns out that

the resulting SMLM estimates are very similar in both versions, the gradients in the iter-

ative optimization process of the SMLM estimation are exclusively calculated numerically

in this study. In contrast, in the framework of the derivation of the simulated classical test

statistics, the gradients are calculated analytically. This is computationally feasible since

the computation of the test statistics that follow the parameter estimation is not undertaken

iteratively.

Irrespective of the inclusion of a specific (unbiased and continuous) simulator, all previously

mentioned versions of the simulated Wald test, the simulated score test, and the simulated

likelihood ratio test statistics are asymptotically equivalent under both the null hypothe-

sis and sequences of local alternative hypotheses (see Lee, 1999). Under such sequences

of local alternative hypotheses, these simulated classical test statistics are asymptotically

9



noncentral χ2 distributed with m degrees of freedom (and a noncentrality parameter λ2) for

limN→∞
√

N
R

= c (where c is a finite constant). Under H0, these test statistics have an asymp-

totic noncentral χ2 distribution with m degrees of freedom and a noncentrality parameter

λ1 for limN→∞
√

N
R

= c. If c = 0 and therefore limN→∞
√

N
R

= 0, then λ1=0, so that under

H0 the simulated classical test statistics are asymptotically central χ2 distributed with m

degrees of freedom. In this case, the asymptotic distribution of the unsimulated classical

test statistics can be attained.

4 Design of the Monte Carlo experiments

But for the empirical application, the asymptotic properties of simulated classical tests (like

the asymptotic properties of the SMLM estimator) are of less interest than the behavior with

finite numbers N of observations and with finite numbers R of random draws in the included

simulator. Hence, the following Monte Carlo experiments can give potential applicators

practical tips for the use of simulated classical tests. It should again be stressed that in

these examinations solely the GHK simulator is included both in the basic SMLM estimation

and in the final derivation of the test statistics. The analysis refers to the deviations of the

frequency of type I errors from the given significance levels as well as to the frequency of

type II errors.

Throughout the study, the simulated classical tests are analyzed with 200 replications of the

data generating process (DGP). This number is rather small for the systematic examination

of tests, but due to the long computation times, it was impossible to investigate relevant

problems with a much higher number of replications of the DGP. Furthermore, the main

focus of this paper is not on the exact inspection of the conformity between the frequency of

type I errors and the basic significance levels. The paper focuses instead on the comparative

analysis of different test problems and in particular on the comparison of different versions

of the simulated classical tests. In addition, by varying the number N of observations and

the number R of random draws in the GHK simulator, the influence of these two variables

is considered with regard to the empirical application of such tests. In this respect, many

conclusions can already be drawn from 200 replications of the DGP.

The DGP of the five-period three-alternative probit model used here corresponds to the one

used by Ziegler and Eymann (2001), but there are only SMLM estimations analyzed. By

considering the same DGP in the present study, the relationships between the simulated

classical test results and the basic SMLM estimations can be examined. Note that the DGP

is subject to the aforementioned formal identification conditions. The utility function in the

DGP is (i = 1, . . . , N ; j = 1, 2, 3; t = 1, . . . , 5):

υijt = β1xijt1 + β2xijt2 + εijt

10



In the two explanatory variables, intertemporal correlations are considered (following the

investigations of Geweke et al., 1997):

xijt1 = x
(1)
ij1 + x

(2)
ijt1 whereby x

(1)
ij1 ∼ NV (0; 1) and x

(2)
ijt1 ∼ NV (0; 1)

xijt2 = x
(1)
ij2 + x

(2)
ijt2 whereby x

(1)
ij2 ∼ NV (0; 1) and x

(2)
ijt2 ∼ NV (0; 1)

In the DGP, the values of the corresponding parameters are:

β̇1 = 1 β̇2 = 0

The variance-covariance parameter values of the DGP in the flexible MMPM are:

σ̇η1 = 1.5 ˙corr(ηi1t, ηi2t) = 0.5

σ̇α1 = 1.5 σ̇α2 = 0.5

ρ̇1 = 0.8 ρ̇2 = 0.5

The null hypothesis for the testing that no contemporary relationships are present is (with the

formulation of the aforementioned parameterization of the variance-covariance parameters):

H0 : ln σ̇η1 = ln

(
1 + ˙corr(ηi1t, ηi2t)

1− ˙corr(ηi1t, ηi2t)

)
= 0

The corresponding null hypothesis for the testing that no autoregressive correlations are

present is:

H0 : ln

(
1 + ρ̇1

1− ρ̇1

)
= ln

(
1 + ρ̇2

1− ρ̇2

)
= 0

Both hypotheses are examined with all versions of the simulated Wald test, the simulated

score test, and the simulated likelihood ratio test discussed above. The frequency of rejections

of H0 over all 200 replications of the DGP is displayed under the null hypothesis at the 5%,

10%, 25%, and 50% quantiles as well as under the alternative hypothesis at the 5% and

10% quantiles of the central χ2 distribution with two degrees of freedom. In contrast to the

description above, note that in the analysis of the frequency of type I errors, the DGP is

characterized by the variance-covariance parameter values under the two null hypotheses,

i.e. σ̇η1 = 1 and ˙corr(ηi1t, ηi2t) = 0 (or ln σ̇η1 = ln
(

1+ ˙corr(ηi1t,ηi2t)
1− ˙corr(ηi1t,ηi2t)

)
= 0) resp. ρ̇1 = ρ̇2 = 0 (or

ln
(

1+ρ̇1

1−ρ̇1

)
= ln

(
1+ρ̇2

1−ρ̇2

)
= 0).

In the following analyses, the number of observations varies between N = 250 and N = 500,

and the number of random draws in the GHK simulator varies between R = 10, R = 50,

and R = 200. In the various replications of the DGP of one experiment, the same (pseudo

randomly generated) explanatory variables are used exclusively also when R is varied. In

the case of an increase of N , the explanatory variables that have been firstly generated

with a smaller N are used again. In contrast, the pseudo random numbers for deriving the

GHK simulator are modified for every observation i over the respective replications of the

DGP. However, in the successive increase in N resp. R, the random numbers generated with

smaller N resp. R are taken again.
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5 Results

5.1 Testing that no contemporary relationships are present

5.1.1 Type I errors

Based on the constrained and/or unconstrained SMLM estimates, Table 1 reports the re-

sults of the testing that no contemporary relationships are present in the five-period three-

alternative probit model. Thereby, the frequency of rejections of the null hypothesis H0 :

ln σ̇η1 = ln
(

1+ ˙corr(ηi1t,ηi2t)
1− ˙corr(ηi1t,ηi2t)

)
= 0 is displayed at the given significance levels 5%, 10%, 25%,

and 50%. The unconstrained SMLM estimation refers to the flexible MMPM, whereas the

constrained SMLM estimation disregards the contemporary correlations. Since the validity

of H0 is first considered, the DGP is characterized by autoregressive and time invariant

relationships in the stochastic model components, but not by contemporary correlations.

Overall, Table 1 reports heterogenous test results. The frequency of incorrect rejections of

the null hypothesis is often noticeably higher or lower than the given significance levels. Only

by using the simulated Wald test statistic SWT2 for N = 250 observations and for R = 50

or R = 200 random draws in the GHK simulator, a relatively precise conformity between the

frequencies and the basic significance levels arises. This result seems to be purely random,

however. By using this test statistic, the frequency of type I errors differs sizeably from the

given theoretical values when other combinations of N and R are taken (e.g. for N = 500

and R = 10 based on a significance level of 50%).

For all combinations of N and R, the use of the simple simulated likelihood ratio test statistic

SLRT1 appears relatively robust compared to the use of other test statistics even if there

are noticeable differences between the frequencies and the underlying significance levels. But

the application of SST1 and SLRT2 is much more unfavorable due to the extremely strong

deviations of the frequency of type I errors from the basic significance levels (in particular

with the use of the simulated likelihood ratio test statistic SLRT2 based on a theoretical

value of 50%). But also the application of the simulated score test statistics SST2 and

SST3 proves to be hardly more favorable. With the use of SST3, the frequencies are mostly

below, and with the use of SST2, the frequencies are always above the given significance

levels. Thus, none of the considered test statistics provides accurate conformities between

the frequency of type I errors and the underlying significance levels for all combinations of

N and R.

Surprisingly, neither N nor R themselves have systematic effects on the frequency of type I

errors. Merely by considering special versions of the simulated classical tests, partial effects

can be recognized. By using, for example, the simulated Wald test statistic SWT2, an

increase of N (holding R constant) always leads to a rise in the frequency of incorrectly

12



Table 1: Frequency of rejections of H0 : ln σ̇η1 = ln
(

1+ ˙corr(ηi1t,ηi2t)
1− ˙corr(ηi1t,ηi2t)

)
= 0 (testing that no

contemporary relationships are present, validity of H0), 200 replications of the DGP

5%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.105 0.090 0.035 0.095 0.050 0.140 0.085 0.105

N = 250 R = 50 0.105 0.170 0.050 0.115 0.060 0.185 0.055 0.050

N = 250 R = 200 0.105 0.175 0.050 0.085 0.040 0.185 0.035 0.070

N = 500 R = 10 0.150 0.120 0.050 0.080 0.100 0.085 0.085 0.035

N = 500 R = 50 0.090 0.165 0.020 0.120 0.135 0.125 0.050 0.015

10%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.155 0.115 0.065 0.145 0.125 0.175 0.145 0.120

N = 250 R = 50 0.145 0.265 0.085 0.140 0.095 0.215 0.115 0.080

N = 250 R = 200 0.120 0.240 0.075 0.135 0.080 0.245 0.085 0.085

N = 500 R = 10 0.175 0.180 0.105 0.150 0.180 0.125 0.170 0.090

N = 500 R = 50 0.110 0.245 0.060 0.150 0.190 0.185 0.110 0.050

25%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.260 0.270 0.140 0.295 0.295 0.300 0.315 0.160

N = 250 R = 50 0.210 0.415 0.205 0.305 0.210 0.350 0.235 0.130

N = 250 R = 200 0.195 0.415 0.190 0.295 0.230 0.405 0.235 0.150

N = 500 R = 10 0.265 0.325 0.180 0.310 0.345 0.285 0.300 0.170

N = 500 R = 50 0.190 0.405 0.175 0.365 0.360 0.335 0.270 0.115

50%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.410 0.545 0.365 0.510 0.560 0.500 0.515 0.270

N = 250 R = 50 0.345 0.610 0.420 0.490 0.510 0.565 0.415 0.240

N = 250 R = 200 0.340 0.620 0.420 0.500 0.470 0.580 0.405 0.225

N = 500 R = 10 0.505 0.630 0.470 0.540 0.640 0.495 0.565 0.330

N = 500 R = 50 0.335 0.590 0.430 0.555 0.535 0.565 0.425 0.205
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rejected H0. When SWT3 is applied, this value mostly decreases as N grows (and R is

constant), while an increase of R (holding N constant) mostly delivers a rise in the frequency

of type I errors. In contrast, with the use of the simulated likelihood ratio test statistic

SLRT1, the frequency of incorrectly rejected H0 mostly decreases if R rises (holding N

constant). However, neither an increase in the number N of observations nor an increase in

the number R of random draws in the GHK simulator ever lead to a systematically more

precise conformity between the frequency of type I errors and the underlying significance

levels.

It must be pointed out that these results are connected with grave problems in the computa-

tion of the test statistics. Repeatedly over the 200 replications of the DGP, negative values

occur in the calculation of the simulated score test statistic SST1 (in such cases, the null

hypothesis is not rejected in this study). Obviously, the estimation of the information matrix

is computationally problematic when the Hessian matrix of the simulated loglikelihood func-

tion is applied. Even more difficulties occur, however, in the calculation of SLRT2. With it,

the extremely strong deviations of the frequency of type I errors from the given significance

levels can be explained. Accordingly, the inclusion of the quasi maximum likelihood theory

into the simulated likelihood ratio test statistic SLRT2 (contrary to the investigations of

Lee, 1999) is here very problematic. Note that also in the calculation of SLRT1 (where the

results are still relatively precise with the use of this test statistic) negative values emerge,

to a much smaller extent than in the calculation of SLRT2, however.

Overall, the computational problems and the imprecise test results illustrated in Table 1

might be influenced considerably by the corresponding unstable simulated estimates of the

information matrix (not displayed here) and maximal values of the simulated (constrained

or unconstrained) loglikelihood function. These substantial components of the simulated

classical test statistics are influenced for their part by the respective constrained or uncon-

strained SMLM estimates. The analysis of these estimates (not displayed here) actually

shows extreme instabilities. In particular, the estimates of the variance-covariance parame-

ters have a very strong variation over the 200 replications of the DGP (see also Ziegler and

Eymann, 2001, for the problem of the SMLM estimation of variance-covariance parameters

in the MMPM). Thus, the stability of the underlying (constrained or unconstrained) SMLM

estimations also seems to have an influence on the simulated classical testing of special

MMPM.

5.1.2 Type II errors

Such substantial computational problems obviously influence also the frequency of Type

II errors in the examined test problem. Based on the corresponding constrained and/or

unconstrained SMLM estimates, Table 2 reports the results of the testing that no contem-

14



Table 2: Frequency of rejections of H0 : ln σ̇η1 = ln
(

1+ ˙corr(ηi1t,ηi2t)
1− ˙corr(ηi1t,ηi2t)

)
= 0 (testing that no

contemporary relationships are present, validity of H1), 200 replications of the DGP

5%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.275 0.495 0.295 0.690 0.650 0.660 0.585 0.210

N = 250 R = 50 0.160 0.605 0.325 0.710 0.535 0.715 0.570 0.200

N = 250 R = 200 0.120 0.685 0.395 0.715 0.485 0.760 0.600 0.195

N = 500 R = 10 0.345 0.760 0.535 0.835 0.875 0.810 0.820 0.410

N = 500 R = 50 0.285 0.880 0.690 0.775 0.830 0.825 0.830 0.280

10%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.320 0.640 0.395 0.755 0.740 0.730 0.680 0.295

N = 250 R = 50 0.170 0.710 0.470 0.785 0.695 0.770 0.700 0.240

N = 250 R = 200 0.130 0.760 0.505 0.785 0.630 0.825 0.670 0.225

N = 500 R = 10 0.365 0.840 0.630 0.875 0.915 0.850 0.880 0.435

N = 500 R = 50 0.305 0.930 0.770 0.825 0.875 0.855 0.905 0.315

porary relationships are present. Again, the frequency of rejections of the null hypothesis

H0 : ln σ̇η1 = ln
(

1+ ˙corr(ηi1t,ηi2t)
1− ˙corr(ηi1t,ηi2t)

)
= 0 is displayed, but now only at the given significance

levels 5% and 10%. Since the validity of the alternative hypothesis H1 is considered here,

the DGP of the five-period three-alternative probit model is characterized by contemporary,

time invariant and autoregressive correlations in the stochastic model components.

The gravest difficulties emerge again in the calculation of the simulated score test statistic

SST1 and the simulated likelihood ratio test statistic SLRT2. Through the repeated oc-

currence of negative values, the highest frequency of type II errors results from the use of

these two test statistics. In contrast, the computation of the other test statistics is more

robust (only the calculation of SLRT1 leads to very few negative values). In the comparison

between the different versions of the simulated classical tests, Table 2 reports with the use

of the test statistics SST2, SWT1, SWT2, SWT3, and SLRT1 for all combinations of N and

R comparatively low frequencies of type II errors. Overall, the use of SST2 for N = 500

observations and R = 50 random draws in the GHK simulator provides the smallest value.

On the other hand, the frequency of type II errors is higher without exception when SST3 is

15



used. Thus, the inclusion of the quasi maximum likelihood theory (here into the simulated

score test) proves again unfavorable.

Some high frequencies of type II errors might again be influenced by the instability of the

simulated estimates (not displayed here) of the information matrix as well as by the het-

erogenous maximal values of the simulated loglikelihood function. Thus, the relatively stable

simulated estimations of the information matrix derived with the unconstrained SMLM es-

timates could have an influence on the partly low frequency of type II errors in the use of

all simulated Wald test statistics. In contrast, within the framework of the (misspecified)

constrained SMLM estimation, the simulated estimations of the information matrix are com-

paratively more unstable. For this reason, the higher frequency of type II errors with the

use of the simulated score test statistics SST1 and SST3 can be explained (an exception is,

however, the use of SST2 for high N or high R). This result is remarkable because in the

framework of the testing that no autoregressive correlations are present (see section 5.2.2),

the application of the different simulated score test statistics provides without exception a

smaller frequency of type II errors.

Another important result in Table 2 is the clear effect of an increase in the number N of

observations. As N grows (holding R = 10 or R = 50 constant), the frequency of type II

errors is (often substantially) reduced in the framework of the testing that no contemporary

relationships are present. This result holds for all considered simulated classical tests. In

contrast, again no systematic effects of the number R of random draws in the GHK simulator

arise. On the one hand, an increase of R (holding N constant) always leads to a rise in the

frequency of correct rejections of the null hypothesis when SST2, SST3, and SWT3 are used.

On the other hand, such an increase results without exception in a rise in the frequency of

type I errors when SST1, SWT2, and SLRT2 are used.

5.2 Testing that no autoregressive correlations are present

5.2.1 Type I errors

Based on the constrained and/or unconstrained SMLM estimates, Table 3 reports the re-

sults of the testing that no autoregressive correlations are present. The table displays the

frequency of rejections of the null hypothesis H0 : ln
(

1+ρ̇1

1−ρ̇1

)
= ln

(
1+ρ̇2

1−ρ̇2

)
= 0 at the given sig-

nificance levels 5%, 10%, 25%, and 50%. The unconstrained SMLM estimation takes place

in the flexible five-period three-alternative probit model, whereas the constrained SMLM

estimation disregards the autoregressive relationships. Since the validity of H0 is first con-

sidered, the DGP is characterized by contemporary and time invariant relationships in the

stochastic model components, but not by autoregressive correlations.
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Table 3: Frequency of rejections of H0 : ln
(

1+ρ̇1

1−ρ̇1

)
= ln

(
1+ρ̇2

1−ρ̇2

)
= 0 (testing that no autore-

gressive correlations are present, validity of H0), 200 replications of the DGP

5%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.075 0.060 0.035 0.015 0.025 0.065 0.015 0.065

N = 250 R = 50 0.080 0.060 0.030 0.035 0.025 0.040 0.035 0.045

N = 250 R = 200 0.090 0.055 0.020 0.030 0.020 0.055 0.035 0.050

N = 500 R = 10 0.125 0.055 0.045 0.040 0.035 0.060 0.060 0.050

N = 500 R = 50 0.075 0.080 0.055 0.045 0.045 0.065 0.070 0.065

10%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.145 0.115 0.080 0.075 0.060 0.095 0.110 0.110

N = 250 R = 50 0.140 0.110 0.070 0.070 0.060 0.085 0.085 0.090

N = 250 R = 200 0.130 0.105 0.070 0.065 0.050 0.090 0.065 0.100

N = 500 R = 10 0.180 0.135 0.115 0.090 0.080 0.110 0.110 0.120

N = 500 R = 50 0.145 0.130 0.105 0.090 0.065 0.110 0.105 0.110

25%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.310 0.285 0.225 0.240 0.180 0.245 0.280 0.260

N = 250 R = 50 0.290 0.290 0.255 0.215 0.190 0.240 0.280 0.250

N = 250 R = 200 0.270 0.260 0.225 0.200 0.160 0.255 0.260 0.230

N = 500 R = 10 0.340 0.310 0.290 0.245 0.225 0.250 0.290 0.265

N = 500 R = 50 0.280 0.255 0.230 0.200 0.185 0.220 0.240 0.220

50%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.540 0.540 0.500 0.475 0.455 0.475 0.535 0.480

N = 250 R = 50 0.520 0.535 0.485 0.465 0.450 0.490 0.500 0.470

N = 250 R = 200 0.485 0.530 0.470 0.470 0.415 0.470 0.490 0.465

N = 500 R = 10 0.540 0.535 0.500 0.465 0.480 0.460 0.515 0.470

N = 500 R = 50 0.515 0.540 0.495 0.475 0.485 0.450 0.525 0.440
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Table 3 reports more stable conformities between the frequency of type I errors and the given

significance levels than in the framework of the testing that no contemporary relationships are

present (see Table 1). Frequently, only extremely small differences to the basic significance

levels emerge, for example when the simulated score test statistics SST2 (for N = 250 and

R = 200) resp. SST3 (for N = 500 and R = 50), the simulated Wald test statistic SWT3 (for

N = 250 and R = 50), or the simulated likelihood ratio test statistic SLRT2 (for N = 250

and R = 200) are used. The low instabilities in these cases might be primarily caused by

the rather small number of 200 replications of the DGP.

With respect to the conformity between the frequency of type I errors and the given sig-

nificance levels, no version of the simulated classical tests is clearly advantageous or disad-

vantageous. Only sporadically, the use of the simulated Wald test statistic SWT2 and the

use of the simulated score test statistic SST1 (in particular for N = 500 and R = 10) lead

to stronger deviations of the frequencies from the underlying significance levels. Concerning

these deviations, the use of SST2 and SST3 as well as SWT1 and SWT3 is slightly more

favorable than the use of SST1 and SWT2. Thereby, the frequencies are always below the

given significance levels when SWT1 and SWT2 are used. It should again be stressed that

the use of the simple simulated likelihood ratio test statistic SLRT1, but here also the use

of the more complex test statistic SLRT2 lead to robust results.

Apart from these findings, rare computational problems occur. Negative values emerge again

with the calculation of SST1 and SLRT2 (this is also very seldom the case with the calcula-

tion of SLRT1), but to a comparatively small extent over the 200 replications of the DGP.

Thus, the derivation of these simulated classical test statistics is here clearly more robust

than in the framework of the testing that no contemporary correlations are present. The

comparatively strong computational stability and precise test results are probably influenced

by the comparatively stable simulated estimates of the information matrix (not displayed

here) and maximal values of the simulated loglikelihood function. The calculation of these

components (influenced by comparatively precise constrained or unconstrained SMLM esti-

mates, the estimates are not displayed here) is in particular more robust than in the pertinent

derivatives in section 5.1.1.

Note that again neither the number N of observations nor the number R of random draws

in the GHK simulator have systematic effects on the frequency of type I errors. Even

partial effects do not occur when the several simulated classical test statistics are used (in

contrast to the testing that no contemporary correlations are present in the five-period three-

alternative probit model, see Table 1). In particular, N and R do not have systematic effects

on the conformity between the frequency of type I errors and the basic significance levels.

Concerning the effect of an increase of R, this result opposes again the investigations of Lee

(1999) in the context of multiperiod binary probit models.
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5.2.2 Type II errors

Based on the corresponding constrained and/or unconstrained SMLM estimates, Table 4

reports the results of the testing that no autoregressive relationships are present. Thus, the

frequency of rejections of the null hypothesis H0 : ln
(

1+ρ̇1

1−ρ̇1

)
= ln

(
1+ρ̇2

1−ρ̇2

)
= 0 over all 200

replications of the DGP is displayed again, however, only at the given significance levels

5% and 10%. In contrast to the previous analysis, the validity of the alternative hypothesis

H1 is considered now so that the DGP of the five-period three-alternative probit model

is characterized by contemporary, time invariant and autoregressive relationships in the

stochastic model components.

According to Table 4, the use of the simulated likelihood ratio test statistic SLRT1 is again

very favorable. In comparison with all other considered test statistics, its use delivers the

smallest frequency of type II errors. This result holds for all combinations of N and R. The

use of the simulated score test statistic SST2 provides the second lowest frequencies, again

for all combinations of N and R. A somewhat higher ratio of the frequency of type II errors

is derived with the use of the simulated score test statistics SST1 and SST3 as well as with

the use of all simulated Wald test statistics SWT1, SWT2, and SWT3. The use of SWT2

delivers for N = 250 a comparatively high frequency of type II errors.

Overall, however, the use of SLRT2 proves most unfavorable in this regard. Only for N = 500

and R = 10, the frequency of correct rejections of H0 is here higher than the frequency of type

II errors. Thus, contrary to the results of Lee (1999), the inclusion of the quasi maximum

likelihood theory into the simulated likelihood ratio test is again comparatively unfavorable.

With the use of SLRT2, but also with the use of SST1, the type II errors over the 200

replications of the DGP are again strongly influenced by computational problems, i.e. by

negative calculations of the two test statistics. Altogether, note that in the test problem

considered here, the use of SLRT1 proves favorable, but the use of SST1 and in particular

the use of SLRT2 prove unfavorable. This result holds both for the precise conformity

between the frequency of type I errors and the given significance levels as well as for the

small frequency of type II errors.

Despite the repeated problems in the calculation of SST1 and SLRT2, it is remarkable

that according to Table 4, lower frequencies of type II errors occur in comparison to the

testing that no contemporary correlations are present (see Table 2). This result holds for all

combinations of N and R. Furthermore, this result also holds for the use of the simulated

score test statistics SST2 and SST3 and for the use of the simulated likelihood ratio test

statistic SLRT1. Again, these results might be considerably influenced by the more stable

simulated estimates of the information matrix (not displayed here) and maximal values of

the simulated loglikelihood function. Obviously, this leads to less computational problems
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Table 4: Frequency of rejections of H0 : ln
(

1+ρ̇1

1−ρ̇1

)
= ln

(
1+ρ̇2

1−ρ̇2

)
= 0 (testing that no autore-

gressive correlations are present, validity of H1), 200 replications of the DGP

5%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.650 0.690 0.535 0.565 0.455 0.610 0.775 0.395

N = 250 R = 50 0.680 0.815 0.665 0.635 0.350 0.750 0.880 0.365

N = 250 R = 200 0.605 0.825 0.705 0.700 0.310 0.810 0.915 0.350

N = 500 R = 10 0.885 0.925 0.875 0.820 0.925 0.770 0.945 0.605

N = 500 R = 50 0.730 0.985 0.975 0.800 0.910 0.905 0.990 0.445

10%

SST1 SST2 SST3 SWT1 SWT2 SWT3 SLRT1 SLRT2

N = 250 R = 10 0.760 0.785 0.690 0.665 0.660 0.660 0.855 0.490

N = 250 R = 50 0.715 0.885 0.790 0.735 0.540 0.785 0.925 0.390

N = 250 R = 200 0.640 0.910 0.800 0.785 0.470 0.875 0.945 0.415

N = 500 R = 10 0.905 0.945 0.940 0.850 0.960 0.855 0.975 0.675

N = 500 R = 50 0.740 0.995 0.995 0.840 0.975 0.940 0.995 0.490

in the calculation of SST1 and SLRT2 and, furthermore, to a higher frequency of correct

rejections of H0 for all versions of the simulated score and the simulated likelihood ratio test

statistics.

In contrast, concerning the frequency of type II errors, no systematic differences occur be-

tween the results in Table 4 and the corresponding results in Table 2 when the three simulated

Wald test statistics SWT1, SWT2, and SWT3 are used. But this finding is not surprising

after the previous discussion. The stability of the underlying constrained or unconstrained

SMLM estimation obviously has a relevant influence on the stability of the simulated esti-

mations of the information matrix (derived with the corresponding SMLM estimates) and,

thus, on the resulting frequency of type II errors. The derivative of the simulated Wald

test statistics both in the testing that no contemporary correlations are present and in the

testing that no autoregressive correlations are present depends itself (when the alternative

hypothesis is valid) on the same unconstrained SMLM estimates in the flexible five-period

three-alternative probit model.

Finally, as in section 5.1.2, an increase in the number N of observations has again a sub-
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stantial influence. A rise of N (holding R = 10 or R = 50 constant) always leads to a

decrease in the frequency of type II errors. This result holds for all considered test statistics.

In contrast, an increase in the number R of random draws in the GHK simulator (holding

N constant) provides no clear effects. On the one hand, the frequency of type II errors

decreases in this case when the simulated score test statistics SST2 and SST3, the simulated

Wald test statistic SWT3, or the simulated likelihood ratio test statistic SLRT1 are used.

On the other hand, a rise of R (holding N constant) delivers decreases as well as increases

in the frequency of type II errors when the other simulated classical test statistics are used.

6 Summary and conclusions

The Monte Carlo experiments analyzed in this paper show that the simulated classical

testing in the MMPM can lead to instabilities. Thus, in the considered test problems,

partly strong deviations of the frequency of type I errors from the given significance levels

are present as well as high frequencies of type II errors. Note again that in each case, the

number of replications of the DGP is only 200. Probably, many of the instabilities can

be explained by this rather small number. Further Monte Carlo experiments about the

simulated classical testing of special MMPM with a larger number of replications of the

DGP would therefore be desirable in the future. However, the focus of this paper is on

the comparative analysis of different test problems and in particular on the comparison of

several versions of the simulated classical tests and on the investigation of the influence of

the number N of observations and the number R of random draws in the GHK simulator.

Therefore, many conclusions can be drawn with 200 replications of the DGP .

For example, the result that the calculation of some simulated classical test statistics is

problematic is irrespective of the number of replications of the DGP. On the one hand, the

simulated score test statistic SST1 proves unfavorable because repeatedly negative values of

this test statistic arise over the 200 replications of the DGP. Obviously, the estimation of

the information matrix is problematic when the Hessian matrix of the simulated loglikeli-

hood function is applied. This estimate of the information matrix is a substantial element

of SST1. The difficulties could have been influenced by the numerical calculation of the

second-order derivatives. It is remarkable, however, that the computation of the simulated

Wald test statistic SWT1 is clearly more robust although the Hessian matrix of the simu-

lated loglikelihood function is also included in this test statistic. It seems that the use of

unconstrained SMLM estimates in the context of SWT1 in contrast to the use of constrained

SMLM estimates in the context of SST1 is a computationally stabilizing factor.

But in particular, the calculation of SLRT2 is also very problematic. Thus, the inclusion of

the quasi maximum likelihood theory into the simulated likelihood ratio test is extremely
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unfavorable. With respect to this test statistic, this outcome in the MMPM considered in

the present study contradicts the results of Lee (1999) in multiperiod binary probit models.

Concerning the practical use of SLRT2, note also that the implementation of this test statistic

is very complex. A comparison between the simulated score test statistics SST2 and SST3

and the simulated Wald test statistics SWT1, SWT2, and SWT3 shows that no test statistic

is generally favorable. It should be stressed that (again in contrast to the results of Lee,

1999) the inclusion of the quasi maximum likelihood theory into the simulated score test

or into the simulated Wald test is not systematically superior. This result could be related

to the fact that the test statistics SST3, SWT3, and SLRT2 contain the Hessian matrix of

the simulated loglikelihood function as elements. Thus, instabilities are possible due to the

numerical calculation of the second-order derivatives.

At large, the most favorable test statistic is the simple simulated likelihood ratio test statistic

SLRT1. Both in the testing that no contemporary correlations and in the testing that no

autoregressive relationships are present in the MMPM, comparatively robust test results

emerge (despite sporadically occurring computational problems). Further own analyses (not

displayed here) have shown that in the framework of a one-period four-alternative probit

model, the use of SLRT1 is even more advantageous in relation to the other simulated

classical test statistics (the test results are available on request). This outcome refers to the

testing of the independent probit model (i.e. to the testing that no contemporary correlations

are present in the considered one-period multinomial probit model). Thus, according to all

these results, the use of SLRT1 seems to be very favorable for the empirical testing of

several variance-covariance parameters together in one- and multiperiod multinomial probit

models. The practical disadvantage of the application of this simulated classical test is

that both constrained and unconstrained SMLM estimations must be performed. In future

investigations, it should be examined whether this test statistic that can be implemented

very easily remains favorable in the framework of the testing of other multinomial probit

models.

Obviously, the precision of the underlying SMLM estimates has a strong influence on the

conformity between the frequency of type I errors and the basic significance levels, on the

frequency of type II errors, and on the frequency of computational problems. Concerning the

frequency of type II errors, with the use of all simulated score test statistics and simulated

likelihood ratio test statistics, based on the more precise SMLM estimates, the null hypothesis

that no autoregressive relationships are present in the MMPM is without exception more

frequently correctly rejected than the null hypothesis that no contemporary correlations are

present. In contrast, no systematic differences occur when the simulated Wald test statistics

are used. But these test statistics are based on the same SMLM estimates in both test

problems considered here.
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Concerning the conformity between the frequency of type I errors and the given significance

levels in the examined MMPM, the testing that no autoregressive correlations are present

leads to more precise results than the testing that no contemporary relationships are present.

Above all, however, in the framework of the second test problem, extreme problems arise in

the calculation of the test statistics SST1 and SLRT2. In this context, the DGP is charac-

terized by autoregressive and time invariant relationships under the null hypothesis. Thus,

both in the constrained and in the unconstrained case, the corresponding variance-covariance

parameters must be estimated together. However, the identification of the estimated coef-

ficients of both intertemporal correlations is difficult (see also Ziegler and Eymann, 2001).

Similarly, very imprecise and unstable SMLM estimates arise in the framework of the test

problem considered here. In contrast, in the testing that no autoregressive correlations are

present, the DGP is characterized by contemporary and time invariant relationships under

the null hypothesis. But the constrained and unconstrained SMLM estimation on the basis

of this DGP proves more stable. Thus, the stability of the underlying SMLM estimation

seems to have strong effects on the simulated classical testing in the MMPM.

An increase in the number N of observations reduces without exception the frequency of

type II errors. This result is in conformity with the corresponding results in simulated z-tests

about variance-covariance parameters (see Ziegler, 2001). On the other hand, the number

R of random draws in the GHK simulator has no systematic effects. Furthermore, a more

precise conformity between the frequency of type I errors and the underlying significance

levels cannot be obtained with an increase of N and/or R. In view of the effects of an increase

of R, these results are again in contrast to the investigations of Lee (1999) in multiperiod

binary probit models. Thus, the numbers N and R considered in the present study are

obviously not sufficient for the precise conformity between the frequency of type I errors

and the basic significance levels (this is similar for the stable and precise SMLM estimation

of variance-covariance parameters, see Ziegler and Eymann, 2001). However, it is not clear

whether these heterogenous results are particularly caused by the small N or R or by the

only 200 replications of the DGP. In this respect, further investigations would be desirable

in the future. Note that the computing times in the fundamental SMLM estimations would

rise vehemently if the number of these values were increased.

Finally, the simulated classical testing that no time invariant stochastic effects are present in

the MMPM should also be investigated. In the framework of the five-period three-alternative

probit model considered in this paper, the null hypothesis of this test problem is H0 : σ̇α1 =

σ̇α2 = 0 or with the parameterized coefficients H0 : ln σ̇α1 = ln σ̇α2 = −∞. As a result of

the underlying structure of the MMPM, however, the formulation of all simulated Wald test

statistics, all simulated score test statistics, and the simulated likelihood ratio test statistic

SLRT2 is problematic. Note that these problems also exist in the testing of the independent
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probit model since this special probit model is in particular characterized by the absence

of time invariant stochastic effects in the context of the flexible MMPM. Using the simple

test statistic SLRT1 that is comparatively favorable in this study, further own analyses (not

displayed here, the results are available on request) about these two test problems have been

undertaken in the MMPM. Thereby, strong deviations of the frequency of type I errors from

the underlying significance levels and, partly, great many type II errors have occurred.
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