

A Stiglerian View on Banking Supervision

Friedrich Heinemann and Martin Schüler ZEW Mannheim

> ZEW-AEI-Conference Mannheim, 10/11 July 2003

Contents

- Stigler's capture view on regulation
- Banking industry's interest in supervision
- Testing strategy
- Variable definition and data source
- Estimation results
- Conclusions

Stiglerian view on regulation as capture (1971)

- Regulation offers ideal opportunities for intransparent redistribution.
- Producers in a much better position to understand and influence regulation than consumers.
- Therefore, regulation captured by producers.
- Peltzman (1976): consumer interests have an impact on regulative equilibrium.
- Applications of this literature in financial market regulation: US banking regulation of market entry restrictions.

Banking industry's interest in supervision

• Highly technical and complex nature of supervisory regulation: good preconditions for capture.

• Barriers to entry:

 Tight supervisory rules could possibly function as barriers to market entry.

Preference for laxity:

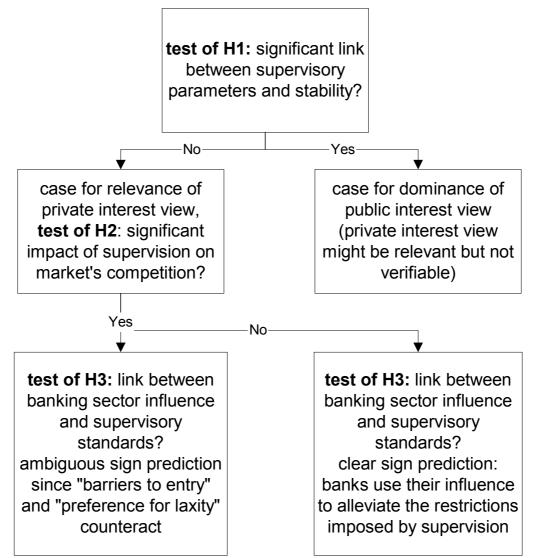
 If supervision is not effective as protective tool, domestic banks would simply regard supervision as a cost burden.

Difficulties with empirical testing

- Opposite signs for the impact of the banking industry's potential impact on supervision.
- No a priori exclusion of public interest view possible.
- => Three-step testing procedure

Testable hypotheses

- *H1: Relevance of the private interest view* There is a significant link between the characteristics of the supervisory system and banking stability.
- H2: Barriers to entry


The competition of financial services markets depends on the stringency of supervision. A high degree of supervisory stringency reduces competition.

• H3: Preference for laxity

Countries with a relatively influential banking sector are, ceteris paribus, countries with relatively low supervisory standards and costs.

Tree-step testing approach

Variable definition and data source (1)

- Construct variables that serve as proxies for the strength of prudential rules and variables that represent the strength of the respective interest groups.
- In addition construct several variables to control for other explanatory factors.
- Sources:
 - Surveys conducted by the World Bank and the U. S. Office of the Comptroller of the Currency (OCC).
 - IFS and World Bank data
- Strength of supervisory regulation
 - Total budget for supervision
 - Number of supervisors per institution
 - Official supervisory power

Variable definition and data source (2)

- Banking industry variables
 - Bank claims/GDP, Bank assets, deposits, loans
 - Number of banks
- Banking competition variables
 - Lending minus deposit rate
 - Concentration (% of total assets/deposits accounted for by 3 largest banks)
- Interindustry rivalry variables
 - Insurance dummy (1 if banks are allowed to sell insurance)
 - Insurance penetration (premiums/GDP) and density (premiums/population)
- Ownership variables (not successful)
 - % of banks/bank assets that are government owned
 - % of banks/bank assets that are foreign owned

Variable definition and data source (3)

- Banking system safety and soundness variables
 - Number of banks closed in last 5 years
 - Crisis dummy (1 if a country experienced a banking crisis according to Caprio/Klingebiel, 1999)
- Macroeconomic variables
 - GDP, GDP/capita
 - Population
- Supervision structure variables
 - Dummies for multiple bank supervisor and central bank involvement
- Other variables
 - Private monitoring index
 - Deposit insurance dummy
 - OECD and EU dummy

Empirical models and methodology (1)

H1: Relevance of the private interest view

 $S_i = \alpha + \beta_1 SUP_i + \beta_2 C_i + \varepsilon_i$

H2: Barriers to entry

 $COMP_i = \alpha + \beta_1 SUP_i + \beta_2 C_i + \varepsilon_i$

H3: Preference for laxity

 $SUP_i = \alpha + \beta_1 B_i + \beta_2 I_i + \beta_3 S_i + \beta_4 C_i + \varepsilon_i$

Empirical models and methodology (2)

- Estimate several specifications selecting different combinations of the respective proxy variables.
- OLS and Logit regressions using White and Huber/White heteroskedasticity consistent covariance estimates.
- Endogeneity problem and potential measurement errors
 => Use instrumental variable procedures additionally.

Estimation results:

relevance of the private interest view (H1) (dependant variable: CRISIS)

			/			
	(1)	(2)	(3)	(4)	(5)	
BUDGET/	226.2526	115.5582	299.2640	-176.2492	239.9885	
ASSETS	(0.7402)	(0.8627)	(0.6571)	(0.7955)	(0.7262)	
DI		1.827320**				
		(0.0275)				
MONITOR			0.250335			
			(0.9349)			
СВ				-1.484122		
				(0.1257)		
MULTIPLE					0.264357	
					(0.7445)	
GDPCAPITA	-6.62E-05*	-0.000101**	-5.77E-05	-9.99E-06*	-6.74E-05*	
	(0.0859)	(0.0321)	(0.1630)	(0.0523)	(0.0959)	
Constant	0.778839	0.091577	0.489893	2.045046*	0.740585	
	(0.1636)	(0.8917)	(0.8010)	(0.0796)	(0.1958)	
McFadden	0.121121	0.209155	0.090846	0.177193	0.1222605	
R-squared						
Ν	35	35	33	35	35	

Estimation results: barriers to entry (H2)

	CONC1		DRATES		FOREIGN1	
BUDGET/	6314.850	-2751.420	5444.376**	4256.048*	4821.832	-4197.664
ASSETS	(0.2554)	(0.5305)	(0.0233)	(0.0923)	(0.5657	(0.4544)
ASSETS/GDP		-1.372384***		-1.697712*		2.092148***
		(0.0000)		(0.0589)		(0.0000)
Constant	51.26983***	54.16240***	6.034815***	8.598640***	43.92110***	38.35308
	(0.0000)	(0.0000)	(0.0001)	(0.0020)	(0.0000)	(0.0000)
Adj. R-squared	0.006696	0.032146	0.073284	0.068663	-0.013838	0.074492
Ν	43	39	37	35	44	39

Estimation results: preference for laxity (H3) (dependant variable: BUDGET)

	(1)	(2)	(3)	(4)	(6)
CLAIMSGDP	-55.58529**	-56.18351**	-54.93925**	-54.32665**	-64.77470**
	(0.0218)	(0.0158)	(0.0173)	(0.0137)	(0.0250)
CONC1	0.050819	0.015308			-0.024432
	(0.8313)	(0.9475)			(0.9055)
INSUR	33.64866**	31.20449**	26.62701**	25.30852**	
	(0.0164)	(0.0179)	(0.0182)	(0.0163)	
INSPEN	-12.52122	20.01542	24.46130	49.34437	
	(0.9566)	(0.9232)	(0.9074)	(0.7829)	
INSUR*INSPEN					368.1552**
					(0.0303)
CRISIS	2.279620		-0.017789		4.089653
	(0.8753)		(0.9990)		(0.7495)
GDP	4.24E-05***	4.17E-05***	4.09E-05***	4.06E-05***	4.03E-05***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
Constant	4.422598	7.450915	12.53331	11.44378	23.82833
	(0.8070)	(0.5345)	(0.4582)	(0.1580)	(0.2469)
Adj. R-squared	0.812212	0.815351	0.815490	0.818604	0.804016
Ν	33	34	36	37	33

Estimation results: preference for laxity (H3) (dependant variable: BUDGET/ASSETS)

	(1)	(3)	(4)	(5)	(7)
CLAIMSGDP	-0.000714**	-0.000701*	-0.000668**	-0.000644**	-0.000772**
	(0.0486)	(0.0504)	(0.0407)	(0.0439)	(0.0335)
CONC1	-2.37E-06	-2.92E-06			-2.14E-06
	(0.4636)	(0.3865)			(0.4825)
INSUR	5.76E-05	7.60E-05	4.10E-05	5.84E-05	
	(0.7962)	(0.6779)	(0.8543)	(0.7501)	
INSPEN	-0.001462	-0.000665	-0.001707	-0.000923	
	(0.3522)	(0.5806)	(0.3093)	(0.4502)	
INSUR*INSPEN					-0.000997
					(0.5028)
CRISIS	-4.23E-05		-3.76E-05		-5.67E-05
	(0.8350)		(0.8532)		(0.7596)
Constant	0.000789	0.000715*	0.000677*	0.000574**	0.000823
	(0.1010)	(0.0627)	(0.0827)	(0.0297)	(0.0501)
Adj. R-squared	0.081981	0.096909	0.106520	0.112922	0.110239
Ν	32	34	32	34	32

Conclusions I

- The difference of supervisory systems in terms of stringency has no significant impact on the likelihood of a banking crisis.
- => Scope for the private interest view following Stigler's capture theory.
- Some evidence that tougher supervision is associated with higher interest rate margins.
- However, higher supervisory standards do not significantly effect concentration in the banking market.

Conclusions II

- => Concentrate on the "preference for laxity" hypothesis which is clearly supported.
- The regulated banking industry exerts influence on supervisory standards.
- Evidence that industry presses for lax and low-cost supervisory standards.
- Not likely in European reform debate: Industry resistance against supervisory centralisation motivated by protectionism.