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1. INTRODUCTION

1.1. The Importance of Explicit R&D Models

Ongoing R&D efforts to improve product and process quality consume resources

which could instead be used for production of sellable goods and services. Nev-

ertheless, the quest for market share and future profitability can make it worth

while to divert some productive resources to R&D. Indeed, many firms spend as

much as 25% of their sales revenue on R&D.1 However, these R&D expenditures

differ widely across sectors, across firms within the same sector, and over time for

any given firm, (for a comprehensive study see Griliches (1995)). Moreover, due

to uncertainty about the results of many R&D ventures, R&D results are only

stochatically related to the levels of R&D expenditures.

Most existing studies of industrial R&D evaluate its contribution by adding

corporate R&D expenditures as another explanatory ”input” variable to econo-

metric estimates of the production function.2 Within the context of our frame-

work, this approach may be problematic because the firm’s input choices are made

after it has realized the results of its R&D effort. As a result, the firm’s chosen

1The R&D-sales revenue ratio, (R&D intensity), displays huge variety across firms in the US.
For instance, the total R&D investment of the top 100 R&D-investing US companies in 1998,
(estimated as 2/3 of the total R&D investment by US companies), amounted to 5.6% of their
combined sales revenue. The average R&D intensity of the top 10 of these 100 R&D-leading
companies, (covering among them 25% of the total Business Expenditure on R&D in the US),
was 9.7%, while many among the 100 leading firms invested well over 25% of their revenue in
R&D. Smaller firms with less than 500 workers had an average R&D intensity of about 13%.
Moreover, variations within and across industries in this measure are huge. The median R&D
intensity in the Drug & Pharmaceutical industry was 11%, with a 5%-95% range of 6% to 20%,
while in Electronic & Electric Equipment the median R&D intensity was 3%, and the 5%-95%
range was 1% to 7%. See: Research Technology Management, Vol. 43, No. 1, (January-February
2000), pp. 16-27, Industrial Research Institute.

2See, for instance, Griliches (1995).

1



inputs are endogenous to their productivity levels. Consequently, the estimated

productivity attributed to the various inputs used in production, including R&D,

are likely to be biased.

In this paper we propose an explicit model of optimizing R&D behavior, and

estimate it using firm-level data. We believe that eventually our results may be

useful in understanding the vastly different R&D behavior and performance of

different kinds of firms, as well in as in assessing the likely impact of various forms

of government support programs ranging from R&D subsidies to commissioned

research.

Understanding the process by which firms decide how much to invest in R&D,

and when, as a function of available resources, technological position, and the

likelihood of success - can improve forecasts of technological progress, estimates

of productivity gains, and identification of the sources of these beneficial outcomes.

As a result, a more efficient system of allocating R&D supports may be developed.

A structural estimation like the one proposed here may serve as a tool to answer

some basic questions facing policy makers who are interested in the impact of

R&D support. There are several levels of this issue, which we may be able to

address. First, using the structural model, we may assess the effectiveness of

supporting R&D, for instance in the context of estimating how much additional

R&D is generated by R&D subsidies. Second, we may identify the industries

which are more likely to benefit from such a support. Third, such a model can

suggest why R&D conduct is different across firms of different sizes.

The underlying theoretical model used here borrows from the search-theoretic

mechanism of endogenous growth, which we explored in Bental and Peled (1996),

(originally proposed by Evenson and Kislev (1975), and sharing some common
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elements with the evolutionary industry growth models of Nelson and Winter

(1982)). In our framework, the search for better technologies consumes resources

which can be used instead in production. Profit maximizing, competitive firms

must continuously decide how to allocate their resources between these two alter-

native uses. This decision process is at the focus of our model. 3

The model assumes that firms can combine capital and labor at each point

to produce marketable output using their current available technology. However,

firms can also attempt to improve that technology by allocating some resources

to R&D. The R&D process precedes production, and is conducted sequentially by

each firm. R&D consists of sampling from a ”pool of untried ideas”, represented as

a distribution function of productivity factors. Each draw from that distribution

requires a fixed amount of resources, and reveals the profitability and usefulness

of the sampled ”idea”. Once observed, the firm can decide whether to exploit

the idea just drawn with its remaining resources, or keep on searching. The op-

timal solution to this sequential search problem generates a random outcome for

the firm, consisting of actual R&D expenditure for the period, the technological

improvement achieved by the R&D efforts, and the resulting output and profits.

Interpreting observable firm-level measures of output, inputs, and R&D expen-

ditures as stemming from this process, allows us to estimate the parameters of

the R&D-search environment in which firms operate. In particular, the procedure

3In our previous work we showed that the model is capable of generating some results that
resemble actual performance of economies at the aggregate level. In particular, the model
predicts that as the technology level rises, the search for further technological improvements
requires an ever increasing investment in R&D. Concurrent with evidence from aggregate data,
this feature generates a feedback mechanism, whereby successful R&D leads to technological
improvements and higher output which, in turn, can provide resources for increased investments
needed for further technological improvements generated by continued R&D.

3



allows us to differentially estimate the behavior of firms in different sectors and

compare the R&D prospects in these sectors. 4

One of the potential benefits of estimating the R&D decision rules in this ex-

plicit form, is that it delivers a sharp prediction about the probability distribution

of the returns to the firm from having one more unit of resource at the beginning

of the period, (the marginal gain from what is later denoted by q). The rates

at which firms can borrow additional funds in the capital markets, (which we

currently do not have in the model), in comparison with the estimated marginal

gain from q, may provide us with an important independent measure for gauging

the plausibility of the model. In addition, this estimate can be contrasted with

the exceedingly high indirect estimates of ”rate of return to R&D” obtained by

others researchers (e.g., Coe and Helpman (1995)). Another potential benefit of

an explicit model of a firm’s R&D decision is the ability to predict its responses

to R&D support programs, and the ability to refine such programs accordingly.5

In the next section we present the underlying model of R&D as a sequential

search. Section 3 describes the estimation procedure, and section 4 the standard

firm-level data needed for this procedure. In section 5 we present some initial

results obtained by applying the procedure to a particular US firm-level data

set. Section 6 concludes with some extensions and implications of the derived

estimates.

4The idea that R&D is an inherently a sequential activity that can be examined using in-
sight from optimal search theory was also recently exploited by Lach and Sauer (2001). Their
theoretical analysis, which applied search theory to examine firms’ R&D responses to subsidies,
concludes that the results depend on the model’s parameters and distributional assumptions,
which must be determined empirically.

5See Lach (2002) for a recent empirical examination of the change in firms’ own R&D
expenditures under a cost-sharing subsidy program in Israel.
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2. THEORETICAL FRAMEWORK

2.1. An Overview

In order to understand the emphasis on the sequential nature of R&D it is conve-

nient to start with a simplified model of the variety to be used below for estimation.

Particular extensions and elaboration, which are needed to match data charac-

teristics and modify over-simplification of this basic version, are discussed in the

next section.

Consider a firm that produces a single output by using installed capital and

technical know-how. For the sake of this concise presentation we ignore other

variable inputs, but these are added in the actual work. These inputs are trans-

formed into output via an appropriately defined objective function, (which can

be a standard production or a profit function), multiplied by a function of a firm-

specific productivity factor, θ, that represents the know-how of the firm. The

productivity factor is amenable to costly improvement by the firm, and captures

all impacts that R&D can have on the firm’s profitability. The firm enters the

”period”, (the length of which in empirical application is discussed below), with

three initial conditions: (i) a given stock of installed capital, K0, which captures

the firm’s current size; (ii) a default productivity factor, θ0; and (iii) an amount of

”flexible” resources, q0, which can be freely allocated between R&D and ”produc-

tion”, where the latter captures all other possible productive uses of these flexible

resources.

In order to introduce the notion of R&D as a sequential search, we first present

a skeleton version of the model, and defer further elaboration required for empirical

application. Let φ(K, θ) be the firm’s payoff when it produces with K units of
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capital, and has productivity θ. Before embarking on production, the firm goes

through a ”search phase”, in which it can attempt to improve upon its initial

productivity θ0. This search takes the form of successive draws from a distribution

of ”untried” ideas, H(· | Λ), where Λ is a vector of parameters of a distribution
known to the firm.6 Each draw costs α units of the resource. Observing the

outcome of each draw, the firm decides whether to stop the search, add all its

remaining resources to the installed capital and start production using its attained

productivity, or take another draw. Let V (q,K0, θ) be the (optimal) value of the

firm during the search phase, when it has q remaining units of the resource, and its

current best productivity is θ. Then, this value function must satisfy the following

Bellman equation:7

V (q,K0, θ | θ0) =Max
n
φ(K0 + q, θ),φ(K0 + q, θ0), E

h
V
³
q − α, K0, θ̃ | θ0

´io
.

(2.1)

The first two terms in the brackets on the right represent the option to stop

the R&D process and apply the better technology at hand, (max {θ, θ0}), to all
remaining resources. The last term in the maximand represents the decision to

continue for at least one more draw, and the expectations are taken with respect

to the realization of the next draw from the known distribution H(· | Λ).
For given φ and H the functional equation in (2.1) can be explicitly solved for

the optimal R&D decision rule, which takes the following form:

6We, of course, do not know the distribution’s parameters, but we pretend to ”know” the
family of distributions from which the firm draws. The parameters are the subject of the
estimation procedure described below.

7The following formulation assumes that the search is conducted ”without recall” of sampled
productivities which were initially rejected. This is an important, albeit unrealistic, simplifica-
tion. See Wolpin (1987, footnote 5) for a brief comment on this issue.
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Keep drawing from H as long as the level of flexible resources is sufficiently high

to allow another draw, until the first draw of a technology surpasses a threshold,

θ∗(q,K0, θ0), that depends on the remaining level of ”flexible” resources,q, the

installed capital,K0, and the default productivity at hand, θ0.

Optimal R&D decision rules of the kind implied by the functional equation in

(2.1) can be derived for alternative specifications. These can include alternative

specifications of the distribution of untried ideas, and different objective functions

attributed to the firm.8

2.2. The General Estimation Approach

The theoretical framework described above maps structural parameters, includ-

ing the characteristics of the distribution of the technological innovations, into

observables. In particular, the model generates stopping rules for firms engaged

in R&D, a distribution of R&D expenditures, as well as a distribution of produc-

tivity measures and of profits (or rates of return on investments).

All these objects depend on the underlying parameters. In particular, the

parameters governing the distribution of the potential technological innovations

and the sampling cost are central to the calculation of the optimal stopping rules

and through those, to all observables.

We propose to utilize these relationships in order to estimate a structural

model of R&D investment. We interpret the data on individual firms engaged in

R&D as stemming from our model. In particular, we think of the observed R&D

expenditure as if it results from a sequence of "stop or continue" decisions. The

8Detailed description of the procedure for recursively solving similar functional equations is
provided in Appendix A.
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data is also used to provide us with both the default and the resulting productivity

improvement, as measured by total factor productivity. A sufficiently large sample

of observations on ex-ante similar firms engaged in R&D which contains these

bits of information, combined with the theoretical structure of the stopping rules,

allows us to identify and estimate the structural parameters.

We proceed by describing in some detail how firm level data can be used to

estimate the parameters of such a model of R&D.

The model produces threshold acceptance levels for productivity, {θ∗ (q,K0, θ0)},
for any given level of remaining flexible resources, q. The θ∗0s depend in a known

way on:

The amount of available ”flexible” resources for the period, q,

”Installed production capital”, K,

The cost of a ”search step”, α,

The number of search steps taken up to that stage, n,

The parameters of the distribution of new productivity levels, Λ,

The objective function, φ(·, ·).
Observables at the firm level over a given period need to include:

Amount of installed capital at the beginning of the period, K0,

Initial and final levels of "productivity": θ0 and θe,

Investment in capital during the period, I,

R&D expenditure during the period, R.

We reconstruct the initial level of "flexible" resource which was available to

the firm at the beginning of the period as:

q0 = R + I. (2.2)
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Accordingly, themaximum number of R&D-search steps the firm could have taken

during the period is:

N = [q0/α]

whereas the actual number of R&D-search steps taken by the firm during the

period is:

n = [R/α]. (2.3)

Using the above structure, we can construct a likelihood function for a sample

of searching firms. In particular, given observations on K0, R and θ0 and θeand

q0, and the inference on n and N , conditional on the unobserved search cost

parameter α, and the parameters of the distribution H(· | Λ), the contribution of
an individual firm to the likelihood of a given sample is:

Pr
n
first n− 1 draws were unacceptable, nth draw ≥ θ∗

o
· Pr {θe | θe ≥ θ∗}

=
nYn−1

i=1
H [θ∗(q0 − iα, K0, θ0)]

o
h(θe;Λ)

where h is the (unconditional) density of H.

Accordingly, a maximum likelihood procedure allows us to estimate the pa-

rameters of the model using a sample of firms with the observables described

above. In particular, we can estimate the parameters of the distribution of "un-

tried ideas". Moreover, samples of firms from different sectors, will enable us to

estimate sector-specific parameters. Such estimates potentially allow us to com-

pare the marginal value of flexible resources, (capital infusion), across sectors, and
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for differently sized firms within a sector, and predict how firms would react to a

particular R&D-support program, should one be offered to them.

In practice, there are many additional details that need to be added to the

model to prevent the implied likelihood from being set to zero by the data. In the

next section we explain in details how we accomplish that within a more elaborate

version of the static R&D-search model presented above.

3. AN ESTIMABLE MODEL OF SEQUENTIAL R&D

We begin by specifying functional forms for some of the components of the full

model which will be used in the estimation. Let φ (k, θ) = θ1/γk be the outcome of

applying technology θ to k units of capital, (after labor and other variable inputs

have been optimized).9

The second specification involves the distribution of the untried technologies,

H. Here we assume that potential technologies are drawn from an Exponential

distribution10

H (θ) = 1− exp−λ(θ−b), θ ≥ b ≥ 0, λ ≥ 0. (3.1)

Although this distribution has two parameters, we focus at this stage on the

standard case where b = 0, and hence θ is the only parameter to be estimated.11

9Such an objective results from treating capital as a fixed factor, and substituting the profit
maximizing labor input for the production function y = θAKγL1−γ , given a real wage rate. See
Bental and Peled (1996) or Appendix A for details.
10Our previous work that has investigated the implications of the sequential search model for

economic growth, showed that to sustain growth the distribution of untried technologies has to
be Pareto with a sufficiently "thick tail". Empiriacllay, the Pareto distribution is rejected by
the data.
11As a matter of fact, b = 0 turned out to yield the highest likelihood.
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3.1. The Firm’s Search Problem

As noted above, the firm begins the period with three initial conditions. First,

it has what we call ”installed capital”, K0, which represents the firm’s market

size or basic production capacity. This is the minimal level of operation that the

firm will undertake with the random outcome of the R&D-search process. It is

a minimal measure of scale, since the firm might augment that with some of its

flexible resources, should there be any left from the sequential R&D.

Second, the firm begins the period with a given amount of flexible resources, q0,

which can be used for R&D or production. This amount can be retained earnings

from operations during the previous period, or an external investment or loan.

Since the model is based on just a single period snapshot of the firm, there is no

way it can explain the source of these funds, or examine the interaction between

the source of such funds and the firm’s conduct during the observed period.

The third initial condition is a default productivity level, θ0, which we take to

be the previous productivity level achieved by the firm in the previous period.

At any point during the observed period, the firm can abort the R&D process,

and attempt to utilize θ0 with all its remaining resources. However, we assume

that the previous knowledge depreciates at the rate δ, and accordingly, when such

a default option is exercised, it yields an effective productivity of (1− δ) θ0.12

Specifically, if a firm ends the R&D process after it consumed R ≤ q0 units of

the flexible resources and attempts to exploit the default technology θ0, then the

outcome is given by φ (K0 + (q0 −R) , (1− δ) θ0).

The firm has to decide whether to engage in R&D at the beginning of the

12The "knowledge depreciation" parameter is required by the data. One may think of it as
representing the cost of remaining with an old technology, while other firms adopt a new one.
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period, and if so when to stop it. It faces a cost of α units of the flexible resource

for each R&D-search step, and faces a sequence of “go” “no-go” R&D investment

decisions.

The optimal solution to the firm’s sequential R&D-search problem is obtained,

as in the previous section, by dynamic programming. Let q ≥ α be the remaining
amount of the flexible resource during the search phase, when the firm has just

drawn a technology θ. Then the value function satisfies:

v (q, θ | K0, θ0) = max


E [φ (q +K0, θ)] ,

E [φ (q +K0, (1− δ) θ0)] ,

E
h
v
³
q − α, θ̃ | K0, θ0

´i


(3.2)

The first term on the RHS corresponds to adopting θ and applying to all remaining

resources. The second term corresponds to resorting to the default technology with

all remaining resources. The third term corresponds to taking another technology

draw, θ̃, and then decide what to do next.

For 0 < q < α we have:

v (q, θ | K0, θ0) = max {φ (q +K0, θ) , φ (q +K0, (1− δ) θ0)} (3.3)

The functional equations (3.2) and (3.3) imply a set of threshold values,

{θ∗i}Ni=1, with the maximal number of R&D-search steps given by N =
h
q0

α

i
. These

threshold values depend on q,K0, θ0, δ,α, and the parameters of the distribution

of untried technologies, H (·). The firm proceeds in the R&D process as long as

the technology it has sampled falls below the threshold value corresponding to its

remaining flexible resources. The threshold values can be computed recursively,
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(see appendix A).

3.2. The likelihood function

It is convenient to abstract, at this stage, from the parameters that pertain to the

firm’s technology and regard them as if they are known. In particular, the values

of α , δ, and θ0, that are not directly observable and will eventually need to be

estimated. However, at this stage they are regarded as known. This leaves only

the parameter λ of the exponential distribution (see (3.1)) to be estimated.

The probability that a firm with default technology θ0 and K0 units of capital

will take N R&D steps before stopping is:

Ã
(1−H (θ∗N))

N−1Y
i=1

H (θ∗i )

!
.

The pdf of the actual productivity finally applied by a firm conditioned on finding

a suitable one at the N th step, denoted by θe, is:

h (θe)

1−H (θ∗N )

Accordingly, the contribution to the likelihood function of a firm which took N

R&D steps, and displayed productivity level θe is:

Ã
N−1Y
i=1

H (θ∗i )

!
h (θe) (3.4)

3.3. Consistency Constraints

(a) End-of-search constraint:
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Search is terminated when the firm draws a θ which surpasses the appro-

priate threshold. Thus, if firm j in the sample, started the R&D process with

(q0j , K0j, θ0j), preformed Nj R&D steps, and ended with actual observed pro-

ductivity θej, then necessarily the result of the N th
j R&D step must have been

acceptable. That is:

θej ≥ θ∗Nj (q0j −Njα, K0j , (1− δ)θ0j) . (3.5)

This constraint is not explicitly incorporated into the likelihood function. How-

ever, that function is valid only if the constraint is satisfied.

(b) Continued search constraint:

For the search to continue for Nj steps, it must be true that: (1− δ) θ0j <

θ∗ (q0j − nα, K0j, z0j) for n = 0, 1, 2, ..Nj − 1. Since the threshold levels are de-
creasing, this amounts to:

(1− δ) θ0j < θ
∗
Nj−1 (q0j − (Nj − 1)α, K0j , (1− δ)θ0j) . (3.6)

This constraint is not explicitly incorporated in the estimation procedure of the

likelihood function below. Notice, however, that in general it is more readily

satisfied the higher is δ, and the lower is λ, (lower λ increases θ∗).

c) Non-participation constraint:

For firm j to abstain from even starting the R&D process, it must have:

(1− δ) θ0j ≥ θ∗ (q0j, K0j , (1− δ)θ0j) . (3.7)

Note that this constraint has the exact opposite implications on δ and λ than
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(3.6).

At this stage, we have not incorporated information on firms which do not

report any R&D expenditures.13

4. DATA AND PRELIMINARY CALCULATIONS

4.1. Data

We use two data sets. General industry characteristics are derived from the

NBER-CES Manufacturing Data base described by Bratelsman and Gray (1996).

This data set contains a panel of 4-digit ISIC industry indicators, from which we

compute the capital shares (denoted by γ) for the sectors under consideration as

explained below.

The second data set we use is the Compustat based firm-level data compiled

from a US Productivity Panel by Bronwyn Hall for the years 1977-1989.14 We

selected five sectors from this data set which roughly correspond to high-, medium,

and low-tech sectors. The sectors chosen were: (i) electronics and other electric

equipment, instruments, computers and office equipment; (ii) industrial machinery

and equipment; (iii) tobacco products, lumber and wood products, furniture and

fixures, stone clay and glass products, and miscellaneous manufacturing industries;

(iv) paper, paper products, printing and publishing; and (v) chemical and allied

13The specific data set we use contains information only on firms that report some positive
amount of R&D. We were forced to actually curtail this set further, and take into account only
firms that report a sufficiently high level of R&D (1.1 million dollars). This restriction was
dictated by the maximal number of search steps that could be handled by the PCs we use.
Clearly, this constraint may be relaxed by using more powerful computers.
14The data set is available from ftp://elsa.berkeley.edu/users/bhall/index.html.
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products and drugs.15

We constructed a sample consisting of all firms in the data for each of our

five sectors in the years 1985-6 and 1987-8.16 The observations we have on these

firms include measures of output, (y = value of sales net of material cost), capital

stock at the end of the period, (K0), investment, (I), and expenditure on R&D,

(R&D) as well as expenditures on labor and materials. Some descriptive statistics

on the distributions of firm characteristics across sectors in the two time periods

considered are presented in Tables 1 below. For each industry, in each of the two

periods, we report statistics on the number of firms in the sample, (and the number

of firms excluded from estimation), sales, capital stock, R&D expenditure, and

R&D intensity, (R&D expenditures to sales). We also report some measures which

we compute from that data, according to our model. Those include the fraction

of flexible resources allocated to R&D, which we proxy by: R&D/(R&D + I),

denoted in the table as R&D/q0, and the productivity levels of the firms before

and after conducting R&D. The latter are reported in the last two rows of Table

1 as Aθ0 and Aθe, computed as yt
Kγ
t L

1−γ
t

for the t = 1985-6, and for t = 1987-8,

respectively, where the capital share γ is computed from the NBERManufacturing

database, as described below.

15Precise sectoral classicifications are described in references in the data documentation, (see
previous footnote).
16Here too the sample is dictated by the capacity constraints of our PCs. See below.
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Table 1: Descriptive Satistics
1986 & 1988 US R&D Manufacturing Firms (used in estimation)
Electronics Machinery Tobacco Paper Chem
1986 1988 1986 1988 1986 1988 1986 1988 1986 1988

Ns 262 231 73 66 32 25 17 16 81 67

excl.(a)
68 56 23 18 15 14 12 11 28 28

y(b) avg 333.43 376.70 806.72 833 .04 889.26 693.51 1791 .98 1968.91 938.24 928.20

med 114.33 126.41 297.90 328 .65 426.15 171 .88 1743.31 1665.08 355.39 387.04

min 4.79 11 .16 18 .38 6 .96 42.90 18 .30 416.94 541 .68 2 .34 2.25

max 5111 .35 6395 .67 7555.21 5158.47 5429 .49 6957 .59 4440.77 5186.06 5720 .33 5288 .98

K
(b)
0 avg 97.06 100.60 310.14 264 .98 341 .12 235.80 1519.12 1438.52 433.17 389.87

med 27.63 29 .12 119.39 104 .91 134.81 48 .55 1458.51 1272.82 98.06 99 .48

min 1 .33 1 .04 4.10 2 .06 12.47 7.94 98 .45 111 .10 2 .74 1 .46

max 1113 .32 1213 .19 3971 .18 1701 .29 2516 .67 1556 .19 4023.94 3452.59 2785 .37 2763 .96

R&D(b) avg 21 .28 22 .97 22 .62 20.30 11 .71 7.80 22 .39 23.09 42.48 38 .79

med 7.14 7.78 9.96 9 .11 4 .40 3.19 11 .78 12.23 11 .73 13 .96

min 1 .11 1 .12 1 .22 1 .28 1 .12 1 .14 4.23 4 .83 1 .21 1 .30

max 315.48 263.30 225.87 208 .61 63.36 60 .33 111 .56 107 .15 337.19 287.83

RDI (%) avg 8.08 7.48 4.03 3 .82 1 .82 1 .59 1 .31 1 .25 16.45 17 .52

med 7.23 6.86 2.63 2 .58 1 .30 0.88 1 .23 1 .25 4 .31 4.24

min 0.45 0.70 0.36 0 .18 0 .37 0.07 0.21 0 .23 0 .77 0.86

max 60.60 28 .74 21 .76 35.30 5 .61 5.43 2.83 2 .45 414.75 380.02

R&D/q0 avg 0.53 0.52 0.42 0 .49 0 .23 0.31 0.14 0 .16 0 .43 0.44

med 0.54 0.54 0.38 0 .47 0 .19 0.27 0.10 0 .13 0 .41 0.43

min 0.05 0.04 0.03 0 .07 0 .03 0.01 0.02 0 .02 0 .04 0.10

max 0.94 0.92 0.88 0 .95 0 .59 0.79 0.32 0 .45 0 .99 0.94

A · θ0 avg 9.55 11 .02 8.88 9 .88 8 .01 9.14 5.28 6 .46 4 .69 5.78

med 8.34 9.39 8.37 9 .31 7 .39 8.02 4.19 5 .77 4 .02 5.12

min 2.91 3.62 3.50 4 .27 4 .34 3.28 2.42 3 .10 0 .53 0.72

max 39.06 42 .96 19 .41 22.35 21 .95 23 .02 11 .09 12.30 12.28 33 .35

A · θe avg 10.21 10 .99 9.15 10.25 8 .44 9.41 5.56 6 .65 4 .96 5.57

med 8.93 9.64 8.56 9 .90 7 .83 7.69 4.41 5 .45 4 .41 5.27

min 2.09 3.32 3.61 3 .65 5 .05 3.53 2.67 3 .32 0 .77 0.67

max 44.53 36 .25 20 .88 23.17 18.23 34 .04 11 .28 12.83 11 .72 14 .00

(a) Number of firms excluded from estimation due to incomplete data, or R&D ex-
penditures which were either less than $1.1m or total investments (q) exceeding $550.m.

(b) All dollar figures are in millions of current $.
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As can be seen, the five industries chosen span sectors with highly varied R&D

efforts. In particular, the R&D intensity ranges from an median value of 6-7%

in Electronics to around 1% in Tobacco. However, few intensive R&D firms in

Chemicals make the RDI average in that industry the highest among the five

considered. The share of flexible resources allocated to R&D is on average in the

40%-53% range for Electronics, Machinery and Chemicals, while it is only in the

15%-30% range for Tobacco and Paper. The average size of firms, as measured by

the average installed capital, is the highest in the Paper industry, and the lowest

in Electronics. Finally note that within each industry there is a huge variation in

size as well as R&D conduct, which is reflected in the minimum and maximum

levels, and the skewness captured by the mean/median ratios.

5. ESTIMATION PROCEDURE

For given values for α and δ, the likelihood function involves only λ, the parameter

of the distributions H (·). Given a sample of size Ns of searching firms from one

of the five sectors, the likelihood function implied by the model is:

NsY
j=1


Nj−1Y
n=1

H
³
θj∗n
´h (θej)

 (5.1)

where θej is the actual productivity displayed by firm j at the end of the period,

and θj∗n ≡ θ∗ (q0j − nα, K0j , (1− δ)θ0j), for n = 0, 1, 2, ..Nj, are the threshold

technology levels for firm j, given its default technology θ0j, its installed capital,

K0j, and the residual amount left of the flexible resource after n R&D steps.
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5.1. The regularity problem

Given the observed variables and all other parameters, one is tempted to pick λ

simply by maximizing the likelihood of the entire sample of firms. This procedure

turns out to fail the regularity conditions needed to make the maximum likelihood

estimator consistent (Wald (1949)). In particular, the effect of the parameter λ on

θ∗i biases the maximizing value of (5.1) downwards (see Appendix B).
17 As a result,

we have devised the following procedure: We pick an arbitrary value of λ, say λ0.

We use λ0 to compute the values of θ
∗
i for all i. We then find λ1(λ0) that maximizes

(5.1), using the computed values θ∗i . If λ1(λ0) = λ0, we stop the procedure. If not,

we replace λ0 by λ1, compute the values of θ
∗
i ,and again maximize (5.1) to obtain

λ2(λ1). We iterate in a similar fashion until λQ(λQ−1) = λQ−1. In Appendix B we

show (by a simple simulation) that (5.1) is indeed maximized at the true value of

λ, when that value is used to compute θ∗ias well.

5.2. Other Parameters

The discussion above assumed that the values of the remaining parameters: A,

γ, α, and δ are known. We turn now to describe the procedures adopted for

estimating these parameters.

17The problem seems to be related to that discussed by Donald and Paarsch (1993a,b). There,
the problem is that the support of the distribution depends on the parameters that are esti-
mated. The solution they propose circumvents the problem. While that solution is not directly
applicable to our case, we do use it in spirit for the estimation of other parameters. See below.
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5.2.1. Estimation of the Capital Share, γ

We cannot estimate the capital share directly from the production function, since

our theory implies that the capital and labor inputs are correlated with the ”error

term” (the technology factor) in any such equation. Therefore, we estimate the

labor share in each of the sectors as the average of the ratios between labor expen-

diture, (total pay), and output, (value of shipments net of material expenditure)

in the industries comprising that sector for three consecutive years. The capital

share is the complemet of this ratio to one. The results are reported in Table 2

below.

5.2.2. Estimation of α

In principle, a consistent estimator of α is the smallest observed amount of R&D

in the sample.18

In practice, since very low values of α imply huge matrices of θ∗, we had to

bind the value of α from below (see footnote 13 above).19

5.2.3. The choice of δ

Here we need to take into account the constraints (3.6). The value of δ is chosen

so as to satisfy all these constraints.20 The actual procedure is again iterative.

18See, for example, footnote 4 in Donald and Paarsch (1993b).
19The choice of α is not innocuous. In particular, lower values of α imply that λ has to

decrease, to ”justify” the increased number of search steps.
20This procedure follows, in spirit, the idea suggested by Donald and Paarsch (1993a). In their

case, the lower bound of the distribution they are interested in is determined by the smallest
observed value of a relevant variable. The bound is also a function of the parametrs they want
to estimate.They suggest to solve out one of the parameters, and then estimate the rest of the
parameters by maximizing the "concentrated" likelihood function. Setting δ so as to satisfy all
"continued search" constraints in effect does the same.
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Given A, we start with an initial value of δ and estimate λ. We then compute the

constraints. If some are violated, δ must be changed and λ is re-estimated. The

procedure stops when the "marginal" constraint is satisfied with equality.

Notice that the value of δ estimated in this way is likely to violate the non-

participation constraints, (3.7). We ignore this problem at this stage of our work.

5.2.4. The choice of the technology parameter A

We have explained above how we compute the value of Aθ0j .and Aθej. It is crucial,

of course, to identify A in order to be able to compute θ0j and θej that are the

basic ingredients of our estimation procedure. Since we cannot identify A in any

direct fashion, we search over a grid of admissible values of A and choose that

value that, in the final analysis, yields the highest value of the likelihood function.

6. RESULTS

As explained above, we had to bind the value of the search-cost, α, from below,

and the value of flexible resources, q0, from above, in order to keep the size of the

matrices involved within the memory capacities of the PC. The combination we

use is α = 1.1, and q = 550 (all in millions of $). Accordingly, the largest number

of potential search steps is 500. These choices dictate the sample sizes for the

various sectors and years. Table 2 below summarizes the estimated parameters of

our model for the five industries over two different time periods.
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Table 2: Estimation Results
Electronics Machinery Tobacco Paper Chemical

Capital Share (γ) 0.56 0.52 0.54 0.57 0.70

1986 N 262 73 32 17 82
A 3.4 3.3 5.1 1.7 0.6
δ 0.94 0.88 0.85 0.90 0.98
λ 2.4807 2.6254 2.5416 2.4354 2.3020

standard error 0.0398 0.0790 0.1587 0.1490 0.0437
5% confidence 2.4022-2.5591 2.4679-2 .7830 2.2181 -2 .8652 2.1194-2.7514 2.2150-2.3890

mean LogL -9.8492 -9.3393 -4.8676 -10.7015 -30.2892

1988 N 231 66 23 15 67
A 3.5 4.1 5.5 2.7 0.9
δ 0.95 0.87 0.77 0.88 0.99
λ 2.5428 2.6281 2.5157 2.5041 2.3283

standard error 0.0420 0.0879 0.1842 0.1857 0.0536
5% confidence 2.4600-2.6250 2.4525-2 .8038 2.1337-2 .8977 2.1057-2.9023 2.2213-2.4353

mean LogL -10.721 -8.2946 -4.9981 -8.1749 -20.9215

Table 2 reveals the following:

1. The λ coefficients seem to be quite stable over the two time periods we

have used. In particular, the coefficients of of 1986 and of 1988 in all sectors are

basically within one standard error of one another (except electronics).They are

clearly within the 5% confidence intervals of one another.

2. The λ coefficients are surprisingly similar across sectors.

3. The λ coefficients of the machinery, electronics and chemical sectors seem

to be ranked (with chemicals being lowest, machinery highest).

4. The λ coefficients of tobacco and paper are less sharply estimated. Their

5% confidence interval is quite similar, and basically includes the ranges of the

three other sectors. In particular, the higher end of the interval for these two

sectors tends to exceed that of the other sectors.

3. The A coefficients are all smaller in the 1986 sample than in the 1988
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sample. This implies that, on average, the technology level in 1988 is higher than

that of 1986.

4. The depreciation rates required to guarantee the ”continued search” con-

straints are very high. They are particularly high for the chemical products sector.

7. Discussion

It is quite revealing to compare the results in Table 2 to the data characterization

of Table 1. Looking at averages, Table 1 is characterized by the following rankings

(where >>> indicates a difference by a factor of about 4, and >> indicates a

difference by a factor of about 2):

y: Paper >> Chemicals >> Machinery ' Tobacco >> Electronics
K0: Paper >>> Chemicals > Machinery ' Tobacco >> Electronics
R&D: Chemicals >> Paper ' Machinery ' Electronics >> Tobacco
RDI: Chemicals >> Electronics >> Machinery >> Tobacco ' Paper
R&D/q0: Electronics > Machinery ' Chemicals >> Tobacco >> Paper
This ranking reflects that of the estimated "R&D environment" (indicated by

the value of λ) for the R&D Intensity. In other words, the model implies that R&D

intensity is as high as it is for the chemical industry because that industry faces

a more favorable R&D environment than that of electronics and machinery. The

low R&D intensity of the tobacco and paper industries is, of course, consistent

with the upper end of the confidence interval of λ for these industries.

These findings highlight the question of industrial policies our model raises.

While the R&D environment seems to be most favorable for the chemical industry,

it is also true that that industry is by far the most capital intensive in our sam-
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ple. Therefore, government support programs that are restricted to R&D may,

in the final analysis, be less suitable to the chemical industry than to electronics,

where capital intensity is much lower. Exact calculation are required to make this

judgement.21

While we believe that the initial success of the structural model proposed

above is quite encouraging, we realize that there is a lot that has to be added to

the model.

One of the striking findings is actually the failure of the model to fit the

data under a Pareto distribution of the untried technologies (see footnote XX

above). The Exponential distribution, on the other hand, yields what seem to us

to be quite high values of λ, that imply very low expected productivity gains. It

seems reasonable to ask whether a specification that will encompass the features of

both the Pareto and the Exponential distributions may not be more appropriate.

Accordingly, we plan to re-estimate the model, using the Gamma distribution.

The use of the Gamma distribution may help also resolve the problem of

the very high ”knowledge depreciation” rates the model requires at this stage.

These exceedingly high rates reflect the low threshold values generated under the

Exponential distribution. Another way to resolve this problem is to abandon the

requirement that all firms in the industry face the same ”knowledge depreciation”

rate. Doing this will relax the need to satisfy the ”continued search” constraint

of the marginal firm. However, at this stage it is not clear how this route is to be

pursued.

21In Bental and Peled (2002) we have a macroeconomic model that compares government
support programs restricted to R&D, to programs that allow firms to decide on the allocation of
government funds between R&D and capital formation. The calibration of the model to Israeli
data reveals that the aggregate result is quite insensitive to the particular policy.
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We have mentioned above the question of calculating the return to another

unit of malleable resource to different firms in different industries. This calcula-

tion, while not complicated, needs still to be carried out in order to see whether

our model also yields exceedingly high returns to R&D as predicted by more

traditional estimation methodologies.

Finally, at this stage the model is static, and looks at every time period as

being independent of the next. Clearly, this is a gross simplification. What is

needed is a dynamic version of the model, that may exploit the panel data, and

allow for the possibility of multi-year R&D endeavours. Clearly, this is a very

ambitious goal.
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A. Solving an R&D-search Problem

The firm’s objective function for a single period, φ(k, θ), is derived from solv-

ing the firm’s profit maximization, given a Cobb Douglas production function,

productivity level θ, k units of capital, and real wage rate w:

max
L

n
θAkγL1−γ − wL

o
.

Substituting the resulting optimal labor input yields the following profit function:

π(k, θ, w) = A1/γγ ·
Ã
1− γ
w

!(1−γ)/γ

· kθ1/γ . (A.1)

The searcher controls only the last term,

φ(k, θ) = kθ1/γ (A.2)

by choosing a search strategy, which affects the productivity and scale of of pro-

duction in the current period.

Accordingly, the objective is to maximize the expected value of φ(·, ·) by choos-
ing a strategy that maps sampled technologies and remaining new capital into the

binary decision ”accept” or ”reject”. At each stage during the search process

the searcher can choose a default technology option, z0. Accepting a technology

means stopping the search and operating that technology with all available capi-

tal, q+K0. Rejecting a sampled technology means making at least one more draw,

at the cost of α units of new capital. The search is conducted over draws from the

distribution H(·). As noted in the text, we choose the Exponential distribution,
H(θ) = 1 − exp−λθ, θ ≥ 0.
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The Bellman equation that summarizes the optimal decision is:

V (q, θ | K0, θ0) = (A.3)

Max
n
φ(q +K0, θ),φ(q +K0, (1− δ) θ0), EV (q − α, θ̃ | K0, θ0)

o
,

Solving (A.3) yields the optimal search strategy, to be denoted θ∗(q,K0, θ0), such

that the search process is stopped, and the technology θ is utilized with q +K0

units of capital, as soon as θ ≥ θ∗(q,K0, θ0).

Since φ(k, θ) increases in θ, the threshold technology level can be found by

equating the first and last terms in the maximand in (A.3), utilizing the fact that

when θ ≥ θ0:

V (q−α, θ | K0, θ0) =

 φ(q − α+K0, θ), if θ ≥ θ∗(q − α,K0, θ0)

φ(q − α+K0, θ
∗(q − α,K0, θ0)), if θ < θ∗(q − α,K0, θ0).

(A.4)

In particular, (A.4) implies:

EV (q − α, θ̃ | K0, θ0) = H [θ
∗(q − α, K0, θ0)] · φ (q − α+K0, θ

∗(q − α, K0, θ0))

+
Z ∞

θ∗(q−α,K0,θ0)
φ(q − α+K0, θ)dH(θ) (A.5)

Equating the first and third terms in the maximand of (A.2), using (A.5), together

with the particular specification of φ(·) andH(·), we get θ∗(q,K; θ0) as the solution

to the recursive relation:
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θ∗(q,K0, θ0) =

Ã
1− α

q +K0

!γ
· (A.6)

(
[1− θ∗(q − α, K0, θ0)

−λ]θ∗(q − α, K0, θ0)
1/γ + λ

Z ∞

θ∗(q−α,K0,θ0)
θ1/γ−λ−1dθ

)γ

Equation (A.6) allows us to find θ∗(q,K, θ0) recursively. Specifically, given any

initial quantity of new capital, q, N(q) = [ q
α
] is the maximal number of possible

draws from H that can be taken. We let qr ≡ q−αN(q) be the residual amount of
flexible resource that is left if the firm uses the maximal number of draws within

the period. By definition, qr ≤ α, so that θ∗(qr, K0, θ0) = θ0. Using (A.6) we find

θ∗(qr + nα, K0, θ0) recursively for n = 1, 2, ..., N(q). Thus, θ
∗(qr +N(q)α,K0, θ0)

is the initial threshold which determines whether the firm takes at least one draw

from H, or implements θ0 with q +K0.
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B. The Bias Correction of the Proposed Estimation Proce-

dure

Here we illustrate graphically the bias introduced by a standard maximum like-

lihood estimation of the parameter of the distribution of new ideas sampled by

the firms, and how our proposed iterative procedure overcomes this problem.22

The first picture depicts the likelihood function with threshold levels that vary

with the distribution’s parameter. The data was artificially created with a Pareto

distribution with λ = 20.
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The following picture displays the result of the likelihood function constructed

22This illustration was computed by our former graduate student, Sivan Frenkel, using a
Pareto distribution with a single parameter, H(θ) = 1− θ−λ.

31



by the iterative procedure as described in the text. The threshold levels are being

held fixed in each iteration, and are re-computed in each iteration until the change

is small enough.

 
Likelihood function – iterative procedure
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