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Abstract

This paper examines whether UK firms that locate their R&D activity
in the USA benefit more than other UK firms from knowledge spillovers
originating from US R&D. Patent data provides a firm-level measure of the
location of innovative activity, which enables the identification of knowl-
edge spillovers associated with "technology sourcing". We find evidence for
such spillovers, although the data do not currently allow a clear differentia-
tion between technology sourcing and an absorptive capacity effect. Future
research may be able to clarify these issues by using an enlarged dataset
and exploiting more of the information provided by the patent data. In
particular the use of citations data to create a more precise measure of the
spillover pool available to each firm provides a potentially fruitful avenue
of research.
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1. Introduction

This paper examines whether UK firms that locate innovative activity in the USA

benefit more than other UK firms from knowledge spillovers originating from US

R&D. Several recent studies have found that gaining access to new technology is

an increasingly important reason for firms to locate R&D abroad [For example

Serapio and Dalton (1999) and Kuemmerle (1999).], and that, as the technological

leader in many industries, the USA is one the principal recipients of this kind

of R&D investment by subsidiaries of foreign firms. Evidence that knowledge

spillovers are partly geographical in scope [See for example Jaffe, Trajtenberg

and Henderson (1993) or Keller (2001).] provides a rationale for such ‘technology

sourcing’ behaviour in order to overcome geographical barriers. In this context

the flow of knowledge from foreign R&D subsidiaries of domestic multinationals

back to the domestic economy may play an important role in the diffusion of

new technologies and productivity growth. This has implications for both firm

strategy and government policy. For example, an R&D tax credit that encourages

firms to repatriate R&D activity may be partly counterproductive.

This paper has two main advantages over most previous studies of international

knowledge spillovers. Firstly it uses a firm-level panel data set, which allows for

better modelling of heterogeneity between firms than industry or country-level

studies. Secondly it uses information from patent data on the location of inven-

tors to create a geographical measure of firms’ innovative activity. This provides

a specific channel through which to identify international knowledge spillovers
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associated with technology sourcing.

The structure of this paper is as follows. Section 2 discusses previous literature

on spillovers, and puts this research in context. Section 3 presents the basic model

and Section 4 describes the data. Section 5 explains our methodology and presents

the empirical results, and a final section concludes.

2. Spillovers Literature

Knowledge spillovers have been a major topic of economic research over the last

thirty years. The theoretical literature considers the impact of externalities from

R&D on strategic interactions between firms (e.g. Spence, 1984; Reinganum,

1989), as well as the role of spillovers in economic growth (e.g. Aghion and Howitt,

1992). Empirically, spillovers have been analysed at the country, industry, firm

and establishment level using a wide variety of techniques and data types [For

surveys ee Griliches (1992), Mairesse (1995), and Hall (1996)]. More recently

there has been a great deal of interest in international spillovers, both empirically

and theoretically, in terms of their implications for growth and convergence in

living standards [For recent surveys of empirical studies see Keller (2001) and

Cincera and Van Pottelsberghe de la Potterie (2001)].

There are several ways in which one firm’s innovative activity can affect as-

pects of another firm’s behaviour, so it is important to define exactly what is

meant by ‘knowledge spillovers’. Pure knowledge spillovers occur when innova-

tion benefits not only the innovator, but ‘spills over’ to other firms by raising

the level of knowledge upon which new innovations can be based. Several au-
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thors, following Griliches (1979), differentiate between pure knowledge spillovers

and ‘rent spillovers’. The latter occur for example when R&D-intensive inputs are

purchased from other firms at less than their full ‘quality’ price. Such ‘spillovers’

are simply consequences of conventional measurement problems. In addition, in-

novation by competitors is likely to have strategic as well as productivity effects if

it is embodied in new products or processes. For example other firms’ R&D may

have negative strategic effects because successful innovation can erode monopoly

rents. Several studies have found evidence for such negative effects [For example

Jaffe (1986) and more recently Harhoff (2000)] which may be hard to distinguish

from any positive externality from innovation.

These issues make the identification of knowledge spillovers a difficult under-

taking. The dominant approach to estimating knowledge spillovers over the last

twenty years has been country, industry or firm-level regression-based estimates

of returns to a measure of ‘outside’ R&D in a production (or cost) function frame-

work, although other performance measures such as patenting have also been used

as dependent variables. Aside from many problems associated with the estimation

of production functions, the key difficulty for identification of spillovers is that the

"spillover pool" of outside knowledge available to a firm must be specified a pri-

ori. This problem is eloquently summed up by Griliches (1992): “To measure

[spillovers] directly in some fashion, one has to assume either that their benefits

are localised in a particular industry or range of products or that there are other

ways of identifying the relevant channels of influence, that one can detect the path

of the spillovers in the sands of the data”.
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A simple measure of the spillover pool available to a firm is the stock of knowl-

edge generated by other firms in its industry. An example of this approach is

Bernstein and Nadiri (1989) who use the unweighted sum of the R&D spending

of other firms in the (two-digit) industry and find evidence of spillovers. However,

there are several reasons why this may not be a good measure of the potential

spillover pool available to a firm. It assumes firstly that firms only benefit from

the R&D of firms in their industry, and secondly that all those firms’ R&D is

weighted equally in the construction of the spillover pool. In addition, measures

based solely at the industry level risk picking up spurious results due to common

industry trends or shocks unrelated to spillovers. More sophisticated approaches

recognise that a firm is more likely to benefit from the R&D of other firms that

are ‘close’ to it in some technological and/or geographical sense. In these models

the ‘spillover pool’ available to firm i is equal to:

Gi = ΣjwijRj (2.1)

where wij is some ‘knowledge-weighting matrix’ applied to the R&D expendi-

tures of other firms or industries, Rj.

The literature contains many different approaches to constructing this matrix.

A fairly common method, suggested by Griliches (1979) and first used in Jaffe

(1986), is to use firm-level data on patenting by class of patent, or sometimes the

distribution of R&D spending across product fields, to locate firms in a multi-

dimensional technology space. A weighting matrix is then constructed using the
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uncentered correlation coefficients between the location vectors of different firms.

Harhoff (2000) is a recent application of this approach that uses several different

metrics. Another possibility is to use input-output flows (e.g. Scherer, 1982), al-

though this method seems more likely to become contaminated by "rent spillover"

effects.

Even in the absence of rent spillovers and strategic interactions between firms,

these approaches to estimating spillovers suffer from a fundamental identification

problem. This is that it is not easy to distinguish a spillovers interpretation from

the possibility that any positive results are “just a reflection of spatially correlated

technological opportunities” (Griliches, 1996). In other words, if new research

opportunities arise exogenously in a firm’s technological area, then it and its

technological neighbours will do more R&D and may improve their productivity,

an effect which will be erroneously picked up by a spillover measure.

This issue is discussed by Manski (1991) under the general title “the reflection

problem”. True knowledge spillovers correspond to an endogenous social effect,

in the sense that an individual outcome (e.g. productivity) varies with the be-

haviour of the group (e.g. R&D spending). This can be differentiated from an

exogenous social effect, whereby an individual outcome varies with the exogenous

characteristics of the group, or a correlated effect whereby individuals in the same

group tend to have similar outcomes beacuse they have similar characteristics

or face similar environmental influences. Identification of endogenous effects is

not possible unless prior information is available with which to specify the com-

position of reference groups. This is the role played by a knowledge weighting
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matrix, or even a simple industry-level measure of the spillover pool. However,

even if this information is available, identification is not possible if the variables

defining reference groups are functionally related to variables that directly affect

outcomes. This is quite likely to be the case for many of the approaches found in

the literature. For example, technological closeness is likely to be correlated with

exogenous technological opportunity, and firms in the same industry are likely to

be subject to similar supply or demand shocks. Thus the task for anybody trying

to identify knowledge spillovers is to find a set of variables with which to define

firms’ reference groups that are not related to unobserved variables that directly

affect the outcomes being measured.

2.1. International spillovers

The topic of international spillovers has received a great deal of attention over

recent years [For recent surveys of empirical studies see Keller (2001) and Cin-

cera and Van Pottelsberghe de la Potterie (2001)]. The theoretical literature has

considered the role of technological externalities in generating endogenous growth

and determining the pattern of trade. In some of these models externalities can

have important effects on the equilibrium pattern of trade and production. For

example, if spillovers are localised or mostly intra-national in scope, there can be

multiple equilibria, and government policies can permanently affect comparative

advantage by promoting domestic producers in high-technology sectors. This is

very different to the traditional Hecksher-Ohlin framework where equilibrium is

determined by exogenous factor endowments. These kinds of theoretical devel-
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opments have made estimating the determinants, scope and size of international

spillovers a major goal of empirical research.

In particular many papers have attempted to evaluate the importance of a

particular mechanism, such as trade or foreign direct investment, as a channel for

technology diffusion. An often-cited early empirical investigation is Coe and Help-

man (1995). They undertake pooled cointegrated regressions of country-level log

TFP on domestic and foreign knowledge stocks, where the foreign R&D capital

stock is constructed using import-weighted sums of trading partners’ cumulative

R&D spending. They find that foreign R&D is an important source of domes-

tic TFP growth, the more so the more open the economy is to trade. Several

authors have questioned Coe and Helpman’s methodology, suggesting amongst

other things that the spillovers they pick up are mostly ‘rent spillovers’, and that

their import weightings may be proxying for other features of an economy such

as openness to foreign competition. The relevance of their weightings is certainly

questioned by Keller (1996) who finds higher coefficients on foreign R&D using

random trade weightings.

Branstetter (1996) casts doubt on the usefulness of studies that use such high

levels of aggregation and so do not account for technological heterogeneity between

firms. In particular, without some firm-level measure of proximity, either geo-

graphical or technological, any positive results may be due to common demand or

input price shocks, or a common time trend, rather than actual spillovers. He uses

firm-level panel data from the US and Japan to estimate the relative importance

of international and intranational knowledge spillovers. He constructs domestic
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and foreign spillover pools using the knowledge-weighting technique developed by

Jaffe (1986), and estimates a patent equation and a production function. He con-

cludes that knowledge spillovers are mainly intranational in scope, although this

conclusion may be partly a result of the choice of the US and Japan, both large

countries at the forefront of technological innovation. Keller (2001) does a geo-

graphic analysis of industry-level R&D spillovers from the G5 countries to 9 other

OECD countries. He finds that spillovers from R&D do get weaker with distance,

becoming half as strong over about 1,200 kilometres. However, he also finds that

the pool of knowledge became substantially more global between 1970-82 and

1983-95.

If, as it seems, spillovers from foreign innovation are important and beneficial,

a natural question from a policy point of view is how they can be enhanced or

used to best effect. As discussed above, many papers investigate whether partic-

ular activities, mainly trade or FDI, are particularly associated with knowledge

spillovers, often but not always coming to a positive conclusion. Griffith, Red-

ding and Van Reenen (2001) investigate whether domestic R&D, in addition to

its conventional role of stimulating innovation, also enhances knowledge spillovers

by improving the ability of firms to learn about innovations at the leading edge

of technology. This corresponds to the notion of "absorptive capacity" associ-

ated with Cohen and Levinthal (1990). Using a panel of industries across twelve

OECD countries they find that domestic R&D does indeed facilitate technology

‘catch-up’, although they only find a small impact of trade on productivity growth.

The results suggest that estimates of the return to R&D that are based on the
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USA could be too low when applied to other countries that operate within the

technological frontier.

One influential avenue of recent research uses the rich source of data found

in patent citations to trace the path of knowledge flows. This can be seen as

an attempt to look directly at the process of knowledge diffusion, as opposed

to the “reduced form” evidence provided by productivity regressions. Jaffe et al

(1993), and Jaffe and Trajtenberg (1998), find that even after controlling for other

factors, patents whose inventors reside in the same country are typically 30% to

80% more likely to cite each other than inventors from other countries, and that

these citations tend to come sooner. They also find that localisation does fade over

time, but only very slowly. Branstetter (2000) uses patent citations to show that

foreign direct investment (FDI) between Japan and the USA increases knowledge

flows. Using similar techniques, Singh (2002) investigates the role of multinational

subsidiaries in knowledge diffusion. He finds that the extent of knowledge flows

from domestic firms to multinational subsidiaries seems to be much stronger than

that in the opposite direction, while Criscuolo (2002) also uses citations and finds

that multinationals act as a channel for the transmission of knowledge developed

abroad to other home country firms.

2.2. Technology sourcing

These last two studies come close to addressing the issue of technology sourcing.

Several recent papers have suggested that access to new technology is an increas-

ingly important motivation for firms locating R&D activity abroad. Serapio and
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Dalton (1999) argue that much of the globalisation of innovative activity has in-

volved foreign firms locating R&D activities in the USA in order to benefit from

technology sourcing at the leading edge of technological innovation: “Foreign par-

ent companies, particularly in the drugs/biotechnology and electronics industries,

have established or acquired foreign R&D laboratories in the US in order to gain

access to science and technology, and enhance their global capabilities for technol-

ogy development and innovation.” This interpretation of foreign R&D investment

is in contrast with earlier interpretations which focussed on the importance of

adapting technologies developed at home to the conditions of the foreign market

(Le Bas and Sierra, 2002).

Serapio and Dalton document the fact that UK firms are a particularly signif-

icant part of this development, with the third highest R&D expenditures in the

USA in 1996 of all foreign countries. Bloom and Griffith (2001) have documented

the internationalisation of UK R&D, both in terms of R&D that is performed in

the UK but funded from abroad, and UK firms doing more of their R&D overseas.

They find that UK R&D is more internationalised than in other G5 countries and

is becoming more so at a faster rate.

Much of the research discussed above, especially the work by Jaffe and others

on patent citations, suggests that technology sourcing may be a plausible mecha-

nism for reducing the geographical localisation of knowledge spillovers. However,

we are aware of no studies that attempt to find empirical evidence for technology

sourcing in terms of its effects on productivity. We believe that the information

on inventor location used in this study provides an ideal channel for identifying
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knowledge spillovers associated with technology sourcing.

3. The basic model

The basic approach follows Griliches (1979) and many subsequent papers by in-

cluding measures of the external knowledge stock available to the firm in a firm-

level production function. Thus we assume that the firm’s value added can be

written as follows

Yit = Q(Xit, Git) (3.1)

where Yit is real value added for firm i in year t, Xit is a vector of the firm’s own

inputs including labour, capital and the firm’s own knowledge stock accumulated

by doing R&D, and Git is the external knowledge stock available to the firm. As

discussed above, the key assumption with respect to identifying spillovers is how

to define Git. Because we want to identify geographical aspects of spillovers we

assume that Git is composed of a domestic and a foreign component, and do not

restrict the response of the firm’s value added to each component to be the same.

Git = (Dit, Fit) (3.2)

Yit = Q(Xit, Dit, Fit) (3.3)

The key innovation is that we allow the elasticity of value added with respect

to the foreign and domestic external knowledge stocks to depend on firm-specific
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characteristics, namely a measure of "absorptive capacity" and a measure of the

geographical location of the firm’s innovative activity. So we have

∂Yit
∂Dit

Dit

Yit
= d(Pi,W

D
i ) (3.4)

∂Yit
∂Fit

Fit

Yit
= f(Pi,W

F
i ) (3.5)

where Pi is some measure of absorptive capacity, and WD
i and WF

i are measures

of the amount of the firm’s innovative activity that is located at home or abroad

respectively. Allowing the response of value added to the spillover pool to vary

with the firm’s absorptive capacity is a fairly standard extension, and as will

become clear later on, it may be an important control to prevent any possibly

spurious effect of the location measures. One plausible restriction is that a firm’s

absorptive capacity affects its ability to pick up domestic or foreign spillovers

equally.

∂d

∂Pi
=

∂f

∂Pi
(3.6)

It truns out that this restriction is not rejected by our data, and we impose it in

our preferred specification. However, it is only a simplifying restriction and the

main results are robust to relaxing it.

The most important aspect of our basic model is that the location measures

allow identification of knowledge spillovers associated with technology sourcing in

a way that should be less susceptible to the Manski-Griliches critique discussed
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earlier. While many studies claim identification of knowledge spillovers in this

context from a positive response of value added to the external spillover pool, we

only infer the existence of spillovers if the magnitude of that response depends

positively on a direct proxy for a channel of knowledge transfer. In other words

only if

∂f

∂WF
i

> 0 (3.7)

A positive response of value added to the spillover pool could be due to a

"correlated effect" if the variables used to define the spillover pool are related to

unobserved variables that directly affect value added. Inferring the existence of

knowledge spillovers simly from an observed positive response thus depends on

the assumption that no such relationship exists. In our approach identification

depends only on the much weaker assumption that the nature of the relationship

does not depend on our measure of the geographical location of innovative activity.

4. Data

The IFS-Leverhulme database used in this paper is a combination of two datasets.

Full details of the matching between the datasets can be found in Bloom and Van

Reenen (2000), and the process is sketched in the Appendix at the end of this

paper. The first dataset is the NBER patent citations data file which contains

computerised records of over two million patents granted in the USA between 1901

and 1999. This is the largest electronic patent data set in the world. The second
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dataset is the Datastream on-line service which contains accounts of firms listed

on the London Stock Exchange over 1968-2000. The initial sample is all firms

existing in 1985 with names starting with the letters A-L, plus any of the top 100

UK R&D performers not already included, in order to maximise the number of

patents matched to firms. This gives 415 firms.

4.1. Patent data

The intersection of the two datasets gave 266 firms who had taken out at least

one patent between 1975 and 1998, categorised by date of application. The reason

for restricting our attention to patents applied for after 1975 was partly in order

to make the patent information as up to date as possible, and partly because

citations data is only available after 1975. While we do not use citations data in

this paper, we plan to in the future.

The information that we use from the patent data is the country address of the

inventor(s) listed on the patent application. Table 1 lists the inventor’s country for

the 63,733 patents matched to the 266 firms. The high share of patents invented

in the USA is probably partly due to home-country bias from using a US dataset,

but also reflects the county’s strong innovative performance and the location of

many UK firms in the USA. An overall bias towards US based patents should not

be a problem as long as it is not different across firms in a way that is related to

other firm characteristics.

[Table 1 here]
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4.2. Accounts data

The initial sample of 415 firms was cleaned for estimation. This included ensuring

that employment observations were available, deleting firms with less than five

consecutive observations over 1990 - 2000, and excluding firms for which there

were jumps of greater than 150% in any of the key variables (capital, labour, sales).

Capital stock was constructed by a perpetual inventory method as in Bloom and

Van Reenen (2000). The data does not include intermediate inputs, so value

added was constructed as the sum of total employment costs, operating profit,

depreciation and total interest charges. Because of UK accounting regulations,

most of the firms did not report R&D expenditure before 1989, and so the analysis

is restricted to the years 1990-2000. [Even after 1989 when a firm reports zero

R&D it is not clear that this corresponds to a true zero, although it is unlikely to

perform a large amount of R&D. In the results presented in this paper, a dummy

variable was used to denote reported zero R&D expenditure, but the results are

not very sensitive to the exact treatment of reported zeros.] An R&D capital stock

was constructed using a perpetual inventory method and an assumed 15% rate

of obsolescence, but the results are fairly robust to different rates. Spending on

R&D is also included in the main labour and capital variables so any estimated

returns to R&D are "excess" returns [See Griliches (1979)].

Although these are "UK firms" in the sense that they are listed on the London

Stock Exchange, a key feature of the data is that it relates to the firm’s global

activities. As discussed later this has potentially important consequences for the
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interpretation of our results. For now we maintain the assumption that, while a

firm’s innovative activity may be located anywhere in the world, its production

activity is located in the UK. We examine the validity of this assumption and the

consequences of any violations later on.

4.3. Spillover pool data

The domestic and foreign spillover pools were constructed using the OECD’s "An-

alytical Business Expenditure on R&D" dataset (ANBERD, 2002) on R&D spend-

ing by two-digit manufacturing industry (ISIC Revision 3) in the UK and the USA.

A stock measure was constructed using a perpetual inventory method and an as-

sumed 15% rate of obsolescence, with a starting year of 1987. Although there are

various problems with using industry-level measures as discussed above, this data

has the crucial advantage for our purposes that it contains R&D expenditures by

geographical location. This would be extremely hard if not impossible to recreate

using a weighted sum of other firms’ R&D. It also has the advantage of including

all R&D carried out in each industry in each country, and not just the R&D of

the other sampled firms.

Because the source of identification in our model comes from the way the

response of value added to the spillover pool depends on the geographical loca-

tion of innovative activity, the possibility of spurious "correlation effects" due to

a spillover pool constructed at the industry-level should not be a serious prob-

lem. However, in order to at least partly control for industry level cyclical effects

and shocks not associated with knowledge spillovers, we also include two-digit
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industry-level value added in our preferred specification. This was taken from the

OECD’s "Structural Analysis" database (STAN, 2001).

Firms were assigned to a two-digit industry according to where the largest

proportion of their sales was classified. Although this inevitably leads to some

misclassification of activity, Aghion et al (2002) used the same data and found

that for 35% of firms this captured all their sales, and that the median percentage

of sales captured by this classification was 90%. Keller (2001) concludes that any

bias resulting from such misclassification is likely to be small.

After cleaning as described above and limiting the sample to manufacturing

firms we are left with 1774 observations on 194 firms, 142 of which are matched

to at least one patent. Table 2 reports summary statistics.

[Table 2 here]

5. Methodology and Results

5.1. Functional form

We consider a Cobb-Douglas production function with constant returns in labour

and capital inputs

Yit = AitL
α
itK

1−α
it Rβ

itD
γ1
jt F

γ2
jt (5.1)

where i indexes a firm, j indexes the firm’s two digit industry, and t indexes the

year. Yit is real value added, Lit is observed labour inputs, Kit is a measure of

the firm’s capital stock, Rit is a measure of the firm’s own knowledge stock, and

Djt and Fjt are the R&D stock in the firm’s two-digit industry in the UK and

the USA respectively. We assume that the elasticities of value added with respect
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to the external knowledge stocks are a linear function of a firm-specific measure

of absorptive capacity and firm-specific measures of the location of innovative

activity

γ1 = θ0 + θ1Pi + θ2W
UK
i (5.2)

γ2 = φ0 + φ1Pi + φ2W
US
i (5.3)

where the restriction embodied in equation (3.6) implies that θ1 = φ1, and a

positive estimate of φ2 would provide evidence of knowledge spillovers associated

with technology sourcing.

WUK
i and WUS

i are constructed as the proportion of the firm’s total patents

where the inventor is located in the UK or the USA respectively. They are both

equal to zero if the firm has no patents. This form for the measure of the geo-

graphical location of innovative activity discards two forms of information in the

patent data. The first is variation over time, so that the measure represents an

average of the location of the firm’s innovative activity over the period 1975-1998.

The second form of information is the total number of the firm’s patents. While

this may be relevant information, normalising the location measures to a propor-

tion between zero and one helps to deal with difficulties associated with firm size

and differences in propensity to patent across industries.

This form for the location measures motivates the form of the measure of

absorptive capacity Pi. This is a firm-specific dummy variable that is equal to
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one of the firm is matched to at least one patent, and zero if it has no patents

at all. Without controlling for absorptive capacity in this way, it would not be

possible to determine to what extent a positive effect of WUK
i and WUS

i on γ1

and γ2 was due to the fact that the firm was a patenter at all rather than due

to geographical location of innovative activity. However, this raises a problem of

multicollinearity. When Pi is equal to zero, WUK
i and WUS

i are also zero because

the firm has no patents. If "abroad" is taken to be the whole of the rest of the

world, then when Pi = 1 we must have WD
i + WF

i = 1. Because we use only

the USA this will not generally be exactly true, but as reported in Table 3 the

median value of WUK
i +WUS

i in our sample of 194 firms is 0.95, so the problem

remains. The key point is that to identify technology sourcing effects, there must

be enough actual variation in the data to enable us to differentiate between the

information inWUK
i andWUS

i that relates to geographical location of innovation,

and that information which captures the fact that the firm does any innovation

at all. As we shall see this problem plays a key role in the interpretation of our

results.

[Table 3 here]

We estimate this functional form in logs

(yit − kit) = α(lit − kit) + βrit + γ1djt + γ2fjt + ait. (5.4)

where variables in lower case denote the natural logarythm. Once all the interac-

tions with patenting and geographical location are included, as well as industry

value added in the UK and the USA, the full specification becomes
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(yit − kit) = α(lit − kit) + βrit + θ0djt + φ0fjt + θ2W
UK
i djt + φ2W

US
i fjt

+θ1Pi(djt + fjt) + δ1v
UK
jt + δ2v

US
jt +WUK

i +WUS
i + Pi + ait(5.5)

5.2. Estimation

We assume that the residual productivity term takes the form

ait = tt + ηi + uit. (5.6)

where the year dummies control for common macro effects and the firm effect

and stochastic productivity shock may be correlated with the regressors. We al-

low for arbitrary heteroskedasticity and possible serial correlation in the stochastic

productivity shock. We include industry dummies in all regressions. We estimate

using Systems-GMM [See Blundell and Bond (1999) for an exposition and a pro-

duction function example], where the information from the levels equation helps

to alleviate the weak instruments problem associated with first-difference GMM

when series are persistent. The additional moment conditions take the form

E[∆xi,t−s(ηi + uit)]. = 0 (5.7)

for s = 1 when uit ∼ AR(0) and for s = 2 when uit ∼ AR(1), where xit

indicates the regressors being instrumented. This requires the first moments of

xit to be time-invariant, conditional on common year dummies.

We assume that all firm-level variables are endogenous, while all industry-level

variables are treated as strictly exogenous. The results are robust to lagging the
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industry-level variables by one period, in which case they can be treated as pre-

determined. We instrument firm-level variables in the differenced equation with

their levels lagged from two to five times inclusive, and in the levels equation by

their first-differences lagged once, as well as by all time and industry dummies

and all exogenous variables.

5.3. Empirical Results

Table 4 presents results for the basic production function and the basic spillover

and value added terms. Column (1) is OLS without imposing constant returns

to scale in labour and capital, while column (2) does impose constant returns.

[Nickell- type justification for CRS? CRS rejected in OLS but not GMM specifi-

cations]. Column (3) is the basic production function using Systems-GMM. The

coefficient on capital is lower than in the OLS case. This is quite a common fea-

ture of GMM estimation of production functions, and may reflect measurement

error in the capital stock [See Griliches and Mairesse (1995) for a discussion]. The

estimated elasticity with respect to own R&D corresponds to a median private

excess rate of return to R&D of about 20%, which is similar to that found in other

studies [See Griliches (1992)]. Tests are presented for first and second order ser-

ial correlation in the first-differenced residuals, with robust p values in brackets.

Thus the negative first order serial correlation is as expected for first-differenced

residuals, and the absence of second order correlation in the differenced residuals

suggests that the original stochastic productivity shock is not serially correlated.

This justifies the use of twice lagged instruments in the difference equation and
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once lagged instruments in the levels equation. A Sargan test of overidentifying

restrictions is not significant. Columns (4) and (5) introduce the main industry

level spillover terms and value added terms respectively. The main spillover terms

do not enter significantly, and the coefficient on the UK term becomes close to

zero when value added is included. Both value added terms are positive and sig-

nificant at the 10% level, suggesting that they are indeed controlling for industry

level effects not associated with knowledge spillovers.

Table 5 presents the key results. Column (1) is the same as Column (5) of

Table 4 for ease of comparison. Column (2) introduces the geographical location

interactions. The interaction with the US location measure is positive and signif-

icant at the 1% level, suggesting the existence of knowledge spillovers associated

with technology sourcing from the USA. The UK interaction is smaller and not

significant. This is not very surprising for a sample of UK firms, in that the mar-

ginal effect of locating innovative activity in the UK on the firm’s ability to benefit

from spillovers from UK R&D is likely to be smaller than in the US case. The

significant negative effect of the location measures WUK
i and WUS

i themselves is

only observed conditonal on the inclusion of the interaction terms, and they both

enter positively when the interactions are not included. The median marginal

effect of WUK
i and WUS

i on value added remains positive.

As discussed earlier, just looking at the evidence presented in Column (2)

does not enable us to distinguish with certainty between a technology sourcing

interpretation and an absorptive capacity interpretation. As Column (3) shows,

the measure of absorptive capacity on its own does seem to have some explanatory
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power. However, when the location and the absorptive capacity interactions are

all included in Column (4) none of them enters significantly, although a Wald test

reveals that they are jointly significant at the 10% level. This is the collinearity

issue referred to above; the data do not contain enough variation to distinguish

clearly between a technology sourcing and an absorptive capacity interpretation.

However, closer inspection of the point estimates reveals, that while the coef-

ficients on the location interactions are not greatly reduced between columns (2)

and (4), the coefficient on the absorptive capacity interaction is now very close to

zero. This suggests that in a contest between the two interpretations, the data

appears to favour technology sourcing, but not unambiguously so.

A further issue relates to the fact that the data represents firms’ global activity.

Although we have been assuming that production activity is located in the UK,

this is not completely true in practice. It is possible that the location measure

WUS
i is not only proxying for the location of innovative activity, but also for the

location of production. In other words, firms with innovative activity in the USA

are likely also to have productive activity located there. If this is the case, then we

may not only picking up international spillovers but also domestic spillovers within

the USA, with all the ensuing identification issues that were discussed earlier.

We attempt to control for this by using the separate reporting of domestic

employment to total employment. 118 out of 194 firms report domestic employ-

ment separately to total employment at least once during 1990-2000. For those

that do not report separately we assume that all employment is domestic. Of

those 118 firms, 54 report total employment greater than domestic employment
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at least once. We drop these firms from the sample and re-estimate our model on

the remaining 140 firms, which we expect to have little or no foreign production

activity. Table 6 presents the same specifications as table 5 except now only for

the 140 firms. The results are very similar, suggesting that the initial results were

not primarily driven by the location of firms’ production activities. Future inves-

tigation of this issue might attempt to control for the country location of sales,

for which there exists some limited data.

6. Summary and Conclusions

The results presented in this paper provide some evidence for the existence of

knowledge spillovers associated with technology sourcing. Using the current data

it is difficult to distinguish clearly between an absorptive capacity effect and tech-

nology sourcing, but it seems likely that the location information provided by

patent data does have some explanatory power in explaining the pattern of inter-

national knowledge spillovers. Future research may be able to clarify these issues

by using an enlarged dataset and exploiting more of the information provided by

the patent data. In particular the use of citations data to create a more precise

measure of the spillover pool available to each firm provides a potentially fruitful

avenue of research.
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8. Data Appendix

The full data matching process can be found in Bloom and Van Reenen (2000),

but the main aspects are sketched here. From the population of public firms

quoted on the London Stock Exchange, a random sample of all companies whose

names began with the letters ‘A’ through ‘L’ were selected. Also selected were

the top 100 R&D performing firms in the UK in order to maximise the number of

patents that could be matched. For all of these 415 firms Who Owns Whom 1985

was used to manually match each patenting subsidiary to their parent companies.
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This process was subsequently checked for all large subsidiaries and outliers using

the Internet. Being a manual matching process, the matching accuracy appears to

be quite good, and is certainly substantially greater than a computerised flexible

string search. In direct comparisons this uncovered only about 10% of the matches

found manually.
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Table 1: Country of inventor 
 

Country of Inventor Number of  Patents % Share 

USA 28,731 45.1 

Japan 4,411 6.9 

Germany 2,481 3.9 

France 1,457 2.3 

UK 19,745 31.0 

Other 6,908 10.8 

Total 63,733 100 
 
 

• 266 firms



Table 5: Interactions results 
 

    (1)    (2)    (3)    (4) 

Dependent variable ln (VA/K) it ln (VA/K) it ln (VA/K) it ln (VA/K) it 

ln (L/K) it  0.826 *** 
(0.054) 

 0.832 *** 
(0.051) 

 0.812 *** 
(0.053) 

 0.826 *** 
(0.049) 

ln (R&D) it  0.031 ** 
(0.015) 

 0.027 * 
(0.017) 

 0.030 * 
(0.017) 

 0.030 * 
(0.017) 

ln (UK R&D) jt  0.013  
(0.095) 

 0.039 
(0.096) 

-0.007 
(0.095) 

 0.043 
(0.103) 

ln (US R&D) jt  0.018  
(0.047) 

-0.067 
(0.050) 

-0.005 
(0.045) 

-0.068 
(0.054) 

ln (UK Value Added) jt  0.169 * 
(0.095) 

 0.190 ** 
(0.092) 

 0.160 * 
(0.094) 

 0.167 * 
(0.088) 

ln (US Value Added) jt  0.147 * 
(0.076) 

 0.126 * 
(0.074) 

 0.140 * 
(0.072) 

 0.139 * 
(0.073) 

UK
iW * ln (UK R&D) jt   0.067 

(0.045) 
  0.049  

(0.070) 
US
iW * ln (US R&D) jt   0.097 *** 

(0.037) 
  0.080 

(0.065) 

iP * ln (UK + US R&D) jt    0.030 ** 
(0.014) 

 0.005 
(0.028) 

UK
iW   -0.688 * 

(0.416) 
 -0.365 

(0.646) 
US
iW   -0.875 * 

(0.358) 
 -0.548 

(0.610) 

iP    -0.541 ** 
(0.231) 

-0.278 
(0.462) 

     
Industry dummies  Yes  Yes  Yes  Yes 

Year dummies  Yes  Yes  Yes  Yes 

1st order serial correlation -2.822 
(0.005) 

-2.802 
(0.005) 

-2.792 
(0.005) 

-2.817 
(0.005) 

2nd order serial correlation -0.877 
(0.380) 

-0.773 
(0.440) 

-0.815 
(0.415) 

-0.819 
(0.413) 

Sargan  82.63 
(0.310) 

 77.57 
(0.460) 

 81.36 
(0.345) 

 77.27 
(0.470) 

 
• 1774 observations, 194 firms, 1990-2000 
• one-step robust standard errors in brackets, except for tests where p 

values are in brackets. 
• All three interactions just jointly significant in (4), (p = 0.07) 



 
Table 4: Basic production function 
 

   (1) 
OLS 

  (2) 
CRS, OLS 

  (3) 
CRS, GMM 

  (4) 
CRS, GMM 

  (5) 
CRS, GMM 

Dependent Variable ln (VA) it ln (VA/K) it ln (VA/K) it ln (VA/K) it ln (VA/K) it 

ln (L) it  0.644 *** 
(0.018) 

 0.697 *** 
(0.015) 

 0.833 *** 
(0.054) 

 0.832 *** 
(0.054) 

  0.826 *** 
(0.054) 

ln (K) it   0.297 *** 
(0.014) 

 0.303  0.167  0.168  0.174 

ln (R&D) it  0.048 *** 
(0.007) 

 0.015 *** 
(0.003) 

 0.033 ** 
(0.015) 

 0.032 ** 
(0.015) 

 0.031 ** 
(0.015) 

ln (UK R&D) jt     0.108 
(0.094) 

 0.013  
(0.095) 

ln (US R&D) jt    -0.007 
(0.042) 

 0.018  
(0.047) 

ln (UK Value Added) jt      0.169 * 
(0.095) 

ln (US Value Added) jt      0.147 * 
(0.076) 

      

Industry dummies  Yes  Yes  Yes  Yes  Yes 

Year dummies  Yes  Yes  Yes  Yes  Yes 

1st order serial correlation    _    _ -2.796 
(0.005) 

-2.844 
(0.005) 

-2.822 
(0.005) 

2nd order serial correlation    _    _ -0.864 
(0.387) 

-0.827 
(0.408) 

-0.877 
(0.380) 

Sargan    _    _   77.09 
(0.476) 

 78.98 
(0.416) 

 82.63 
(0.310) 

 
• 1774 observations, 194 firms, 1990-2000 
• in columns (3), (4) and (5) firm-level variables assumed endogenous 

and industry level variables assumed strictly exogenous  
• endogenous variables are instrumented by levels lagged from two to 

five times in the differences equation and differences lagged once in 
the levels equation, as well as by all exogenous variables and year 
and industry dummies 

• one-step robust standard errors in brackets, except for tests where p 
values are in brackets. 

 
 
 
 



 
 
 
 
Table 3: Summary Statistics 
 

   Mean   Median  Standard 
Deviation    Min   Max 

All 194 firms:      

      

Observations 9.1 10 1.8 5 11 

Employees 10,850 1,699 28,780 31 308,000 

Value added (£m) 366 46 938 1.3 9,222 

Capital stock (£m) 573 55 1,635 1.1 14,500 

R&D expenditure (£m) 26 0.2 119 0 1,650 

UK industry R&D (£m) 560 399 711 22 3,078 

US industry R&D ($m) 6,278 3,339 6,534 244 23,929 

      

142 patenters only:      

      

Total patent applications  248 55 623 1 5590 

UK
iW   0.31 0.24 0.33 0 1 

US
iW  0.51 0.50 0.36 0 1 

UK
iW + US

iW  0.83 0.95 0.26 0 1 

      

 
• All monetary amounts are in 1995 currency 

 
• Value added is constructed as the sum of total employment costs, 

operating profit, depreciation and interest payments 
 

• Capital stock is constructed using a perpetual inventory method 
 

• Patenters are firms matched to at least one patent 
 
 
 
 



 
Table 6: Results for the 140 ‘domestic’ firms 
 

    (1)    (2)    (3)    (4) 

Dependent variable ln (VA/K) it ln (VA/K) it ln (VA/K) it ln (VA/K) it 

ln (L/K) it  0.748 *** 
(0.058) 

 0.752 *** 
(0.058) 

 0.728 *** 
(0.060) 

 0.754 *** 
(0.054) 

ln (R&D) it  0.041 ** 
(0.017) 

 0.035 * 
(0.018) 

 0.039 ** 
(0.019) 

 0.035 * 
(0.018) 

ln (UK R&D) jt  0.040  
(0.119) 

 0.069 
(0.120) 

 0.017 
(0.121) 

 0.083 
(0.124) 

ln (US R&D) jt  0.026  
(0.053) 

-0.057 
(0.056) 

 0.005 
(0.051) 

-0.073 
(0.061) 

ln (UK Value Added) jt  0.280 * 
(0.152) 

 0.313 ** 
(0.147) 

 0.279 * 
(0.152) 

 0.298 ** 
(0.143) 

ln (US Value Added) jt  0.139  
(0.115) 

 0.106  
(0.111) 

 0.131  
(0.112) 

 0.112  
(0.111) 

UK
iW * ln (UK R&D) jt   0.082 

(0.074) 
  0.072 

(0.098) 
US
iW * ln (US R&D) jt   0.093 ** 

(0.041) 
  0.106 

(0.078) 

iP * ln (UK + US R&D) jt    0.027 * 
(0.016) 

 -0.003 
(0.033) 

UK
iW   -0.855  

(0.713) 
 -0.589 

(0.909) 
US
iW   -0.385 ** 

(0.358) 
 -0.764 

(0.708) 

iP    -0.489 * 
(0.260) 

-0.133 
(0.529) 

     
Industry dummies  Yes  Yes  Yes  Yes 

Year dummies  Yes  Yes  Yes  Yes 

1st order serial correlation -2.822 
(0.005) 

-2.825 
(0.005) 

-2.795 
(0.005) 

-2.840 
(0.005) 

2nd order serial correlation -0.877 
(0.380) 

-0.892 
(0.440) 

-0.942 
(0.346) 

-0.915 
(0.360) 

Sargan  82.63 
(0.310) 

 76.51 
(0.494) 

 76.24 
(0.503) 

 74.23 
(0.568) 

 
• 1282 observations, 140 firms, 1990-2000 


