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Abstract 
 
 This paper looks directly at the impact of a firm’s age and (process) innovations on 
productivity growth. A model that specifies productivity growth as an unknown function 
of these variables is devised and estimated using semiparametric methods. Results show 
that firms enter the market experiencing high productivity growth and that above average 
growth rates tend to last for many years, but also that productivity growth of surviving 
firms converges. Process innovations at some point then lead to extra productivity growth, 
which also tends to persist somewhat attenuated a number of years. 
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1. Introduction 
 

 There is a vast amount of literature about the impact of technological activities on 

productivity, including an important tradition of empirical estimations of this effect using 

firm-level data (see Griliches (1995) for a survey, and Griliches (2000), for example, for 

an updated assessment.1) The standard form of these exercises has been the construction of 

a stock of knowledge capital, starting from R&D investment data, and its introduction as 

an additional input into the firms' production function. However, as Griliches (1979) 

already pointed out in his pioneering work, the relationship between productivity and the 

(constrained) weighted average of R&D expenditures embodies in a simplified way two 

very different and presumably complex processes: the production of innovations starting 

from the R&D activities, and the incorporation of these innovations to production. The 

knowledge capital construction and specification imply a number of important constraints 

on the form of these processes (see Klette (1996) for a discussion and the relaxation of a 

number of these constraints, and Crepon, Duguet and Mairesse (1998) for a departure 

from the traditional modelling using innovation data). This provides an important reason 

for looking more closely at every one of these processes. 

 

 This paper carries out an investigation focussed on the relationships between the 

introduction of innovations and the growth of productivity.  It looks directly at the effects 

of innovation on total factor productivity growth, using (unbalanced) panel data on the age 

of more than 2,300 Spanish manufacturing firms and their process innovations brought in 

during the period 1990-1998. The investigation is mainly intended to examine whether 

innovations really induce growth, the life span and time pattern of these productivity 

                                                 
1 See Hall and Mairesse (1995) and Klette (1996) for recent examples of this literature. 
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effects, and the presumed heterogeneity associated with different frequencies of 

innovations. To answer these questions, it seems the effects of firm age must also be 

disentangled (in some sense the first radical process innovation takes place with entry into 

a market). Conclusions contribute evidence on the effects of firms’ innovative activity and 

have interesting implications for their modelling. 

 

  Productivity growth is measured by means of the (cost shares based) Solow 

residual, corrected for (possible) non-constant returns to scale and using other necessary 

controls. To pick up the presumably highly non-linear relationships with age and process 

innovation, we devise and use a semiparametric model and techniques of estimation. 

Estimates show that firms enter the market experiencing high productivity growth, and 

that above average growth rates tend to last, although progressively weakened, for many 

years. The estimates also point out that productivity growth of surviving firms converges, 

to different values according to activities, and to a yearly 1.25% on average. Process 

innovations at some point then lead to some extra productivity growth, which tends to 

persist, somewhat attenuated a number of years. If the introduction of process innovations 

then stops, however, innovation appears to be associated with an end to all productivity 

growth the following years. This suggests that process innovations are very much in a race 

to bring future growth.  

 

 The rest of the paper is organised as follows. Section two is devoted to establishing 

the framework of measurement of productivity and Section three to the way to estimate the 

impact of age and innovation. Section four deals with the data and variables and Section 

five presents the empirical results. Section 6 comments on implications and concludes. A 

Data Appendix describes the sample and gives the definition of the variables employed. 
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2. Measuring productivity growth 

 

 In this section we describe the theoretical framework which relates productivity 

growth to firms’ age and innovations and we derive the econometric model to estimate this 

relationship. Assume firms are characterised by production functions of the type 

 

    ),,()( itititiiit MLKFtAY =                                        (1) 

 

where Y denotes output, K is capital, L represents labour and M stands for materials. Fi are 

the (presumably specific) production relationships that link produced output to 

conventional inputs, and the factor )(tAi  represents the level of efficiency reached by firm 

i. The way this factor enters the equation implies Hicks neutrality of productivity 

increases, and notation emphasises the idiosyncrasy and time dependence of the efficiency 

level. It can be interpreted, for example, as an unspecified form for the role of the 

traditional technological or knowledge capital variable used in the exercises aimed at 

measuring the productivity effects of technological activities. But it can also be understood 

simply as a completely unspecified efficiency level evolving over time.  

 

 Total differentiation of equation (1) yields   

   ititMititLititKiit mlktay ,,,)( εεε +++=       

where the small letters employed to represent output and inputs denote logarithmic 

differences, the ε's stand for the respective input elasticities, and the term )(tai  stands for 

the proportional change 
i

i

A
dA

 or productivity growth. In order to investigate productivity 
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growth characteristics, we will specify this last term, without loss of generality, as the sum 

of a firm and time idiosyncratic term and a function (common to all firms) of the vector of 

variables z whose role we want to assess:  

)()( ititi zaata +=  

 Now we must obtain an estimable model. Cost minimisation implies that input 

elasticities equal the products of scale elasticity and cost shares (robustness with respect to 

market power implies the use of cost shares, see e.g. Hall (1990)). Then, using s to denote 

cost shares and assuming a common scale elasticity  γ  across firms we can write: 

   )()( ,,, ititMititLititKititit mslskszaay ++++= γ      

Rearranging terms, this expression can be easily transformed into an econometric model 

that links the observable (cost shares based) Solow residual, a correction for the scale 

elasticity effect on productivity, and productivity growth. The model is 

 

    ititititit ezaav +++−= )()1(γθ                   (2) 

 

where θ represents the Solow residual, (γ -1) is a parameter to be estimated involving scale 

elasticity, v stands for the weighted sum of input variations, and e is a zero mean 

disturbance which we will assume uncorrelated across firms and time.  

 

 Let us briefly comment on specification (2). Firstly, the weighted input sum term is 

a correction for the productivity effects of variations in the scale of operation. While this 

term should become irrelevant under constant returns to scale, in practice short-run input 

movements turn out to be associated to somewhat decreasing returns (probably due to the 

short-run fixity of some misspecified production aspects). Hence its inclusion is important.  
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 Secondly, the ita  term must be specified to account for any variation in 

productivity growth across firms which should be controlled for when studying the 

relationship of productivity growth with the variables z (in our case age and innovation). 

We will specify it as a linear function of control variables. In particular, the empirical 

exercise performed here will include the variations in the firms’ capacity utilisation, 

dummy variables to account for some sources of discrete changes in firms’ efficiency 

levels (mergers, acquisitions, scissions), and time dummies as a way to pick up the 

influence of “macroeconomic” factors common to all firms (e.g. manufacturing cycle). In 

addition, the presumably high heterogeneity among activities makes it convenient to 

include sets of activity and firms’ size dummies in order to control for any systematic 

differences in productivity growth. As we are interested in the unknown function 

representing average growth (including the constant term of the regression), we are going 

to specify the time, activity and firms’ size dummies as picking-up differences from this 

average (constraining them to add up to zero; see Suits (1984) ). 

  

 The linear nature of the controls makes it possible to write (2) in the slightly more 

compact form: 

 

  itititit ezax ++= )(βθ     (3) 

   

 Finally, we leave a(.) as an unknown function aimed at picking up the presumably 

highly non-linear relationships between productivity growth, firms’ age and innovations. 

The next section is devoted to the specification and estimation of these relationships. 
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3. Estimating the impact of age and innovation 

 

 We take the age of the firm, τ , as the number of years it has been in the market, 

establishing a maximum category of 40 years or more (see the Data Appendix for details). 

The impact of age can be guessed to be highly non-linear, and hence difficult to pick up 

with standard linear regression methods. Consequently, we specify age as the argument of 

the function )(⋅a  and we use an estimator of the function based on the semi-parametric 

estimation of (3). Robinson (1988) and Speckman (1988), among others, have proposed 

estimators of this type. Assuming τ  and e uncorrelated, from (3) we have 

 

    [ ] ititititititit exExE +−=− βττθθ )|()|(                    

 

and the semiparametric estimator of β is the ordinary least squares estimator (OLS) after 

replacing the conditional expectation functions by some nonparametric estimate.2 Once 

the β parameters have been estimated, we can recover an estimate of the )(τa  function:  

   

     βττθτ ˆ)|(ˆ)|(ˆ)(ˆ itititit xEEa −=          (4) 

         

 Let us cite two important properties of this estimate. Firstly, the estimated function 

constitutes an expectation conditional on surviving. As disappearance from the sample (by 

death or attrition) is likely to be correlated with low productivity growth, older (surviving) 

firms are likely to show better than average productivity growth. Secondly, to implement 

the estimator, we compute the conditional expectations using nonparametric regressions, 

                                                 
2 We use the kernel regression Nadaraya-Watson estimator; see, for example, Wand and Jones (1995). 
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and estimate (4) is hence derived from a linear combination of nonparametric regressions. 

As firm numbers become lower at some ages, the variance of the estimator becomes 

higher and the (implicit) confidence intervals are broader.3  

 

 The next questions to answer are whether process innovations introduced by firms 

along their lives induce extra productivity growth, in what intensity, and for how much 

time. This implies the estimation of the effects of process innovations the year the 

innovation is introduced and the years to follow. To estimate this, we will enlarge the 

specification of the )(⋅a  function by adding the innovation effects on productivity growth 

(at any point of life). Calling sα  the successive impacts of an innovation, from moment 0 

(introduction) to T (the last considered lag), we have the function ∑
=

+
T

s
sa

0

)( ατ . 

 

 Consistent estimation of the s'α  may be achieved in our context by the simple 

enlargement of the econometric model with the terms ∑
=

+
T

s
itsit tesd

0
0 δα ,4 where the 

artificial variables on the set ),...2,1,( teTteted  indicate that an innovation has been 

introduced and the time elapsed since then, respectively. These variables are defined as 

follows:

 


 ≤−≤

=
otherwise

Tktandktimeatinnovationaninbringsfirmtheif
dit 0

01
 

           
[ ]



 ∈=−=

=
otherwise

Tsforsktanddif
tes it

it 0
,111

 

                                                 
3 Variance of estimated expectations is ∫= dssK

xf
x

nh
mV 2

2

)(
)(
)(1)ˆ(

σ
, where K(.) is the kernel density 

function, h the smoothing parameter and 2σ  and f(x) the variance and density associated with each x.  
4 This may be understood as an estimator of the type studied by Delgado and Mora (1995). 
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Estimates of sα  are given by 0α̂ , and  ss δαα ˆˆˆ 0 −=  when s takes the values from 1 to T. 

 

 Let us briefly comment in turn on some properties of this estimate. Firstly, in 

applying it we must face the problem of left censoring. For firms which are born during 

the sample period we can observe every innovation carried out until the final year of the 

sample, but for firms with a history previous to the initial year of the sample (or the firm’s 

particular entering year in a few cases), we cannot determine the time elapsed since the last 

innovation, or even if there was such innovation at any point in time. Hence, there is a set 

of data points before the first innovation is observed for which, strictly speaking, we have 

no reliable value to attribute to our set of dummies. However, this set of data points is 

likely to include mostly observations of really non-innovating firms (the bulk of the firms 

for which we have not yet observed any innovation by the final year of the sample), or 

scarcely innovating firms, after which a long period of time has elapsed when we observe 

the first innovation. We will experiment alternatively by dropping these observations from 

the sample and attributing to them  an “absence of innovation” value. 

 

 Secondly, delays between innovations constitute a sample with a special type of 

selectivity problem. Firms’ available time observations reach a maximum at the years 

covered by the sample (in our case 9 years). Hence, again for censoring reasons, the 

probability of observing each delay value between innovations is lower the longer the 

delay and zero for the length of the sample. However, our non-parametric dummy method 

of estimating the conditional expectation of productivity growth for each time elapsed is 

statistically robust to this sort of selectivity (although the estimates must be attributed a 

lower precision the higher the value of the time elapsed). 
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4. Data and variables 

 

 Estimations are carried out with an unbalanced panel data sample of more than 

2,300 firms surveyed during the period 1990-1998.5 Details are provided in the Data 

Appendix. This sample is approximately representative of manufacturing, and hence 

inferences can be considered globally valid for this ambit. Firms with fewer than 200 

workers were sampled randomly by industry and size strata, retaining 5%, while firms 

with more than 200 workers were all requested to participate, and the positive answers 

represented more or less a self-selected 60%. The statistical methods applied here are 

robust to this type of sample mixture. In addition, the coefficients obtained for the size 

dummies confirm that very little or nothing linked to size remains to be explained. 

 

 To preserve representation, samples of newly created firms were added to the 

initial sample every subsequent year. At the same time there are exits from the sample, 

coming from both death and attrition. The two motives can be distinguished and attrition 

was maintained to sensible limits. All the exercises performed here use all observations 

with complete data, independently of the available firm time observations. Hence the 

sample includes, approximately in population proportions, surviving, entrant and exiting 

firms, and experiences some decay over time due to attrition.  

 

 The available information allows us to compute the cost based Solow residual, 

construct the control variables, and fix the age of the firm according to the number of years 

it has been active in the marketplace (see the Appendix for details). A process innovation 

                                                 
5 The survey was sponsored by the Ministry of Industry, “Encuesta sobre Estrategias Empresariales,” and 
carried out at the Programa de Investigaciones Económicas of the Fundación Empresa Pública. 
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is assumed to occur when the firm answers positively to the question of whether it has 

introduced some significant modification of the productive process (affecting machines, 

organisation or both) along the year. The question appears in the questionnaire along with 

all the other R&D and innovation related-questions (e.g. product innovation), and is 

clearly separated from other sections on technology adoption and usage. Hence it is likely 

to pick up rather precisely what firms consider major innovative changes in their 

productive process and the frequency of these changes.6  

  

 The sample average relative frequency of process innovation is about 1/3 (34%). 

This implies that we expect a firm to introduce a process innovation every three years. 

However, the sample also has a high proportion of firms which never innovate (about 

42%) and a small proportion which innovate every year they are in the sample (15%). 

These values constitute two modes and proportions of intermediate relative frequencies 

that are slightly decreasing. The sample average relative frequency of innovation of the 

strictly uncensored sample (all the non innovation-datable observations dropped) is, as 

expected, higher: about 1/2 (52%). The probability of introducing process innovations 

varies greatly by activities, sizes, and over firm ages. Huergo and Jaumandreu (2002) 

estimate this probability, showing how small size per se tends to reduce the probability of 

innovation, but also how entrant firms tend to present the highest probability of innovation 

as well as the oldest firms tend to present a somewhat lower probablity. Exiting firms are 

clearly associated to lower levels of pre-exit innovations.7 

 

 

                                                 
6 Notice that an advantage of this type of output measure is that it avoids the well-known reporting problems 
associated with the coexistence of formal and informal innovative activities.  
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5. Empirical results 

 

 This section presents the empirical exercise. Firstly, we report the results of 

estimating the age and the age/innovation models using the whole sample and the strictly 

non-censored sample. Then, we briefly comment on the results of estimating the age 

model by industries, using a disaggregation of manufacturing in ten industries. 

 

 Table 1 reports the results of the estimations with the whole sample. The first 

estimate reports the results of a fully parametric estimation of the age model, where age 

enters the equation linearly. The second and third estimates report the results of 

semiparametric estimations of the age and age/innovation models, with age entering the 

equation as the argument of an unknown function. The third estimate adds to this function 

the set of dummies designed to account for the effects of innovation and their persistence 

over time. The fourth column reports the same estimate as the third, applied to the strictly 

non-censored sample (68% of the previous data points). Table 1 (cont.) reports the 

dummies’ coefficients for the semiparametric estimate with the whole sample of the 

age/innovation effects model (third estimate; but, in fact, dummy coefficients remain fairly 

stable across estimates), and panels a, b and c of Figure 1 depict the functions obtained by 

means of the semiparametric estimates of the model, plotting the value of productivity 

growth as a function of firm age. 

 

 Controls turn out to give repeatedly robust and sensible results, which –in addition 

to their interest- stress the validity of the framework employed. Firstly, the average 

                                                                                                                                               
7 All this agrees well with the standard findings on industry dynamics related to innovation; see, for 
example, Audretsch (1995).  
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elasticity of scale, estimated through the coefficient of the scale correction, is about 0.76. 

Secondly, firms' utilisation of capacity is important in explaining variations in productivity 

growth (10 percentage points of increase (decrease) in the utilisation of capacity imply 

nearly 1 percentage point of increase (decrease) in productivity growth). Thirdly, mergers 

or acquisitions and scissions turn out to have a significant impact on productivity growth 

(the year following the fact). On average, this impact is positive for mergers or 

acquisitions and negative and stronger for scissions. 

 

 Let us briefly comment on the time, size and industry dummy coefficients. Recall 

that, given the method used to specify these sets of dummy variables, dummy coefficients 

must be interpreted as giving percentage deviations from average growth. 

  

 Firstly, time dummies show how the industrial cycle determined a sharp average 

productivity decrease which reached bottom in 1993, and intense increases the two 

following recovering years. Secondly, interestingly enough, firm size dummies are not 

significant, which points to the absence of firm size patterns in the heterogeneity 

remaining to be explained beyond the model. This means that, with the determinants 

explicitly embodied, we can account for all the differences in productivity growth 

apparently linked to size that emerge so often in empirical exercises. Thirdly, some 

industries (1/3) tend to show significant differences with respect to average productivity 

growth.       

 

 Let us comment on the central results. The second estimate shows a clear 

relationship between productivity growth and age (see Table 1 and Fig 1, panel a). Entrant 

firms present high productivity growth (more than 5%) and, although decreasing as time 
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goes by, average growth tends to be higher than average until firms reach 8 years in the 

market. At this age, growth tends to stabilise by about 2% (the wandering of the curve 

denotes higher variance as age becomes higher, but shows no clear trend). That is, 

productivity growth tends clearly to a “normal” rate, presumably different according to 

activities (recall the industry dummy effects), to which surviving firms converge after a 

number of years of rapid productivity growth. Recall that the estimation is conditional on 

observed lives, and the result consequently suggests that closing firms are the ones that fail 

to reach this “normal” rate. 

 

 Notice that the fully parametric estimate, reported as the first estimate, is clearly 

unable to approach properly the evidence contributed by the semiparametric estimate. 

Average productivity growth is evaluated at 3% (something more or less in the middle of 

the early growths), and age appears to reduce this rate by about 0.3% after 10 years and 

0.6% after 20. The radical non-linearity of the relationship is missed. 

 

 The third and fourth estimates introduce the set of dummies aimed at picking up 

the effects of innovation. The third estimate (Table 1 and Figure 1, panel b) uses the whole 

sample. Introduction of innovation leaves the estimate almost unchanged, mainly affecting  

the constant implicit in the age function (notice that shape changes are minimal). The 

convergence value is now situated at 1.25%. At the same time, innovation shows a clear 

contemporaneous impact on productivity growth by about 1.5%. Positive impacts seem to 

persist for three years with a lower average value of 0.7% (estimated, however, with a high 

variance), but they also seem to be followed by three more years in which average firm 

productivity growth is reduced by about 1.2% a year. All happens as if product innovation 

moved ahead future productivity growth by three or four years.  
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 When the same specification is estimated employing the strictly non-censored 

sample, the average values of the age function again move upwards (convergence value is 

now located at  about 2.8%), contemporaneous innovation turns out to have no impact on 

average rates, but the schedule of diminishing returns of innovations is estimated to be 

virtually the same. The reasons for this result are the following. On the one hand, this 

sample avoids wrongly attributing no-innovation values to data points which by nature 

cannot be established without further non-available information. But, on the other, and by 

the same token, it constitutes a selected sample of entry, innovations and close data points 

at which the value of innovation is already picked up by the implicit average productivity 

growth. Results with this subsample confirm for us, however, that the possible bias in the 

whole sample cannot be too important, and that the innovation lags schedule is reliable.  

 

 Then, estimate three offers a good picture of the average impact of innovation over 

the life of firms. According to this picture, process innovation clearly accelerates 

productivity growth during a number of years (1.5% the year of introduction of the 

innovation and a bit less for three more years), but productivity growth also tends to fall 

and even fully stop the following years if new innovations are not introduced as well. This 

sensibly suggests that innovating firms basically made an effort to move forward future 

productivity increases, which other firms will reach at a different pace. 

 

 Table 2 reports semiparametric estimates of the age model for a disaggregation of 

manufacturing in ten sectors. The number of data points for each estimation are obviously 

lower and hence variance is higher, but these estimates let us assess to some extent the 

degree of heterogeneity involved in the estimates for all of manufacturing. The lack of 

statistical precision makes the industry semiparametric estimates of the age/innovation 
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effects model less useful here (there are too few observations on each innovation lag) and 

they are not reported.8  

 

 Let us briefly comment on the results reported in Table 2. Control variables show 

quite plausible values. Returns to scale present values which range from 0.65 to 0.80, with 

the exception of the constant returns to scale case found for the transport equipment sector. 

Impacts on productivity of capacity utilisation range from a reasonable maximum with 

transport equipment to a minimum with the food, drink and tobacco industry. At the same 

time, a simplified set of size dummies, which divides the samples according to the 

threshold of 200 workers, shows small coefficient values and not very much significance, 

and time dummies reveal some heterogeneity in sectors’ productivity evolution over time. 

 

 Figure 2 depicts the industry age functions obtained by means of semiparametric 

estimates. Panels of Figure 2 confirm that with every industry there is a starting period of 

high relative productivity growth, corresponding to the initial years of a firm's life, at 

which productivity growth tends however to decrease steadily. The number of years of this 

initial period varies between 8 and 12 according to the firm's activity. After this, the higher 

variance associated with the smaller number of firms makes it difficult to summarize the 

patterns (particular observations acquire an important weight). Panels show, however, 

some interesting features. In some sectors, the first years of productivity growth decay 

seem to inscribe in a more long term towards lower productivity growth rates. But, at the 

same time, there are sectors in which firms of intermediate age and even the oldest firms 

show high productivity growth rates, the likely output of selection.     

                                                 
8 Nevertheless they have been computed and do not show remarkable novelties. 
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6. Implications and concluding remarks 
 
 
 This paper has looked directly at the productivity growth impact of process 

innovations introduced by firms along the different ages of the firm. The main findings 

may be summarized as follows. Newborn firms tend to show higher rates of productivity 

growth which, as time goes by, tend to converge on average to common (activity 

specific) growth rates. Process innovation tends, however, to induce extra productivity 

growth at some point in this process.  Growth tends to persist for a number of years, and 

is followed by a halt if innovation then stops. Let us briefly develop some interpretations 

and implications of these findings. 

 

 Firstly, as we have already emphasized, process innovation appears to be an 

effort of firms to bring today productivity growth which tomorrow will be generalized to 

all firms. This is the likely reason for the halt in productivity growth observed in firms 

introducing innovations followed by a large delay without innovations. Innovators seem 

to reach in advance the productivity improvements that other firms will obtain with 

some lag at a more regular pace. Notice that this picture agrees very well with what we 

would expect from an industry full of “dynamic” spillovers, in which process 

innovations were systematically generalized with some lag, bringing productivity 

growth to even the non-innovative firms.    

    

 Secondly, entrant firms are likely to derive their high rates of productivity 

growth from a mix, with unknown weights, of innovative processes and the course of 

learning. Notice that our estimation does not say a word about efficiency levels, only 
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indicates that new firms’ productivity increases more rapidly. Then, in principle, we can 

attribute these productivity improvements either to the potential of their completely new 

processes brought into the market to jump away from the average efficiency levels or 

just the necessity to quickly adapt to them. Evidence on low surviving rates of entrant 

firms seems to point to the importance of the learning factor. But trying to disentangle 

the relative weight of these two effects seems a relevant question which cannot be 

answered with the present model. 

 

 Thirdly, the impact of process innovation seems to spread beyond what can be 

picked up by the simplest “knowledge capital” models. In these models, the perpetual 

inventory method of capital stock construction implies time productivity growth effects 

proportional to the contemporaneous net rates of R&D investment (investment over 

cumulated capital minus depreciation). The obtained evidence departs from this model 

in several aspects. The productivity growth impact takes place when a process 

innovation is introduced and it is spread over a number of years. But “knowledge 

capital” models posses the interesting feature of trying to weigh innovations by their 

value. This suggests the relevance of trying to advance in the modeling of innovation-

specific investment weights and their dynamic effects.    
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Data Appendix 
 

All employed variables come from the information furnished by firms at the 
survey ESEE (see footnote 1). The employed sample results from dropping the 
observations for which the data needed to perform the exercise are incomplete. 
Composition of the unbalanced panel sample in terms of time observations is shown in 
Table A.1. The table also reports the frequency with which firms introduce process 
innovations. The columns “% of process innovations” are constructed by averaging 
across firms the relative frequencies or proportions of their time observations in which 
they report process innovations. The number of firms by size intervals are the following: 
up to 20 workers: 712; 21-50 workers: 555; 51-100 workers: 179; 101-200 workers: 
203; 201-500 workers: 488; and more than 500 workers: 219. Figure A.1 depicts the 
histogram of the variable age. Notice its bimodal character after grouping values at 40 
years. 

 
Detail on variables construction: 
 
Solow residual: Computed using the Tornqvist index mskslsy MKL −−−=θ , where 
the input measures are in log differences and the s weights for moment t are average 
cost shares for years t and t-1. Output and intermediate consumption real changes are 
obtained by deflating, respectively, (sales + inventory changes) and (raw materials and 
services purchases + energy and fuel costs). The price indices used are Paasche-type 
firm individual indices, constructed starting from the price changes on output and inputs 
reported by firms. Labour input changes are the changes in total effective hours of work 
(normal hours + overtime - lost hours), and capital variations are computed from a 
measure of the stock of capital obtained starting from the firms’ investments in 
equipment goods. Cost and cost shares are computed also using the labour cost per 
worker and a user cost of capital calculated as the firm’s interest rate paid by long run 
debt plus a sectoral estimate of equipment depreciation minus the rate of change of a 
capital goods price index. 
 
Capacity utilisation: yearly percentage of utilisation of installed capacity reported by 
firms. 
 
Merger/acquisition and scission variables: dummy variables that take the value one the 
year in which a merger/acquisition or a scission has taken place. When two observed 
firms merge only the biggest is supposed to survive. 
 
Size variables: dummy variables based on the average number of workers of the firm 
during the year. 
 
Industry variables: 18 industry dummy variables classification (see Table 1 (cont.)) 
which constitutes an adaptation of a standard NACE classification, and the 10 industries 
classification aggregates the previous one (to have a significant number of firms in each 
industry) in the following way: 1=1+4, 2=2, 3=3+17, 4=5, 5=6+7, 6=8+9, 7=10+11+12, 
8=13+14, 9=15, 10=16. Firm numbers by industry appear in Table 2. 
 
Age: computed from the difference between the current year and the constituent year 
reported by the firm; when this difference is higher than 40 years we change it to a 
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unique category of 40 or more years. This is the maximum life span with economic 
meaning in Spanish manufacturing circa 1998. Higher ages reported by firms are 
probably important in terms of prestige but we assume that cannot have technological 
content. The unit surveyed is the firm, not the plant or establishment, and some firms 
closely related answer as a group. Constitution of groups and mergers implying major 
law changes including a new constituent year introduce a small number of ambiguous 
ages that we have respected. Ages distribution, given the character of the sample, is 
expected to be representative of the ages distribution in manufacturing population. 
Quartiles of the ages distribution of firms in the sample for 1991 are 7, 17 and 31 years.  
   
Process innovations: a process innovation is assumed to have occurred when the firm 
answers positively to the following request: “Please indicate if during the year 199x 
your firm introduced some significant modification of the productive process (process 
innovation). If the answer is yes, please indicate the way: a) introduction of new 
machines; b) introduction of new methods of organisation; c) both.”      
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Table 1 
Results from the estimation of models eax ++= )(τβθ  and ∑ ++++= utesd)(ax s0 δατβθ  

(Age and age/innovation effects models) 
Dependent variable: (Cost based) Solow residual1  
Explanatory variables                     Coefficients and t-ratios2 

 Age effects 
Parametric estimate 

Age effects 
Semiparametric estimate 

Age and innovation effects 
Semiparametric estimate 

Age and innovation effects 
Semiparametric estimate 

(uncensored sample) 
Scale correction -0.236  (-15.6) -0.237 (-15.6) -0.238 (-15.7) -0.226 (-12.8) 
     
Capacity utilisation  0.092 (7.6) 0.092 (7.6) 0.091 (7.5) 0.107 (7.1) 
Merger 0.054  (4.4) 0.055 (4.4) 0.055 (4.4) 0.043 (3.0) 
Scission -0.071  (-2.8) -0.072 (-2.8) -0.071 (-2.8) -0.079 (-3.0) 
     
Time, size, industry dummies3 Included Included See Table 1 (cont.) Included 
     
Constant 0.030  (8.8)       
     
Age  -0.0003  (-2.2) Figure 1, panel a Figure 1, panel b Figure 1, panel c 
     
Process innovation dummy     0.015 (4.3) 0.0003 (0.0) 
Time elapsed 1 year     -0.008 (-1.4) -0.007 (-1.2) 
Time elapsed 2 years     -0.006 (-1.0) -0.005 (-0.9) 
Time elapsed 3 years     -0.007 (-1.1) -0.008 (-1.1) 
Time elapsed 4 years     -0.025 (-2.9) -0.025 (-2.9) 
Time elapsed 5 years     -0.019 (-1.7) -0.021 (-1.8) 
Time elapsed 6 years     -0.037 (-2.1) -0.037 (-2.2) 
     
Sigma squared 0.026 0.025 0.025 0.022 
     
No. of firms 2,356 2,356 2,356 1,750 
No. of observations 10,735 10,735 10,735 7,293 
1 Sample period: 1991-1998. 2  t-ratios computed using (unbalanced panel) robust standard errors formulas. 
3 8 time dummies, 6 size dummies and 18 industry dummies, with coefficients of each set constrained to add zero (Suits method)



 

 

Table 1 (cont.) 
Dummy coefficients of 

semiparametric estimate of the age and innovation effects model1 
 
 

Dummies Coefficient t-ratio 
Time dummies   
     91 -0.002 (-0.4) 
     92 -0.006 (-1.3) 
     93 -0.028 (-5.9) 
     94 0.012 (2.8) 
     95 0.022 (5.5) 
     96 0.000 (0.0) 
     97 -0.009 (-2.4) 
     98 0.011 (3.2) 
   
Size dummies (no. of workers)   
     Less than 20 0.001 (0.2) 
     From 21 to 50 0.002 (0.8) 
     From 51 to 100 -0.003 (-0.7) 
     From 101 to 200 0.002 (0.7) 
     From 201 to 500 -0.001 (-0.3) 
     More than 500 -0.001 (-0.4) 
   
Industry dummies   
  Ferrous and non-ferrous metals 0.016 (2.2) 
  Non-metallic minerals -0.004 (-0.9) 
  Chemical products 0.020 (4.6) 
  Metal products -0.004 (-1.0) 
  Industrial and agricultural mach. 0.001 (0.3) 
  Office and data processing m. 0.011 (0.9) 
  Electrical and electronic goods 0.008 (2.0) 
  Vehicles, cars and motors 0.018 (3.4) 
  Other transport equipment -0.032 (-2.3) 
  Meat and preserved meat -0.001 (-0.2) 
  Food and tobacco -0.012 (-3.3) 
  Beverages -0.005 (-0.9) 
  Textiles and clothing -0.001 (-0.3) 
  Leather and shoes -0.005 (-0.8) 
  Timber and furniture -0.015 (-2.7) 
  Paper and printing products -0.003 (-0.7) 
  Rubber and plastic products 0.016 (3.2) 
  Other manufacturing products -0.009 (-1.3) 

 
        1 Third estimate in main panel. 
 
 
 
 
 
 
 
 
 
 



 

 

 
Table 2 

Industry semiparametric estimations of model eax ++= )(τβθ   
 
Dependent variable: (Cost based) Solow residual1 

                                                                                                                                                                       Coefficients and t-ratios2  
 
Explanatory variables 

1. Ferrous and non-ferrous 
metals and metal products  

2. Non-metallic minerals  3. Chemical products 4. Industrial and 
agricultural machinery 

5. Office and data-
processing machines and 

electrical goods 
Scale correction -0.215 (-5.7) -0.298 (-5.7) -0.205 (-4.0) -0.187 (-4.5) -0.205 (-3.7) 
           
Capacity utilisation 0.059 (2.4) 0.143 (2.8) 0.098 (3.5) 0.104 (1.7) 0.067 (1.3) 
Merger -0.014 (-0.4) 0.049 (1.1) 0.067 (2.3) -0.062 (-2.2) 0.096 (2.5) 
Scission -0.080 (-1.2) 0.038 (0.7) -0.176 (-3.3) -0.559 (-11.4) -0.050 (-0.9) 
           
Up to 200 workers -0.003 (-0.9) -0.007 (-1.5) -0.004 (-1.3) -0.011 (-2.0) 0.000 (0.0) 
More than 200 workers 0.003 (0.9) 0.007 (1.5) 0.004 (1.3) 0.011 (2.0) 0.000 (0.0) 
           
1991 -0.022 (-1.3) -0.012 (-0.6) 0.013 (1.0) 0.002 (0.1) 0.007 (0.5) 
1992 -0.006 (-0.5) -0.033 (-2.2) -0.004 (-0.4) -0.026 (-1.2) -0.013 (-0.8) 
1993 -0.012 (-1.0) -0.044 (-2.6) -0.018 (-1.8) -0.025 (-1.1) -0.030 (-1.5) 
1994 -0.003 (-0.3) 0.035 (2.1) 0.012 (1.2) -0.001 (0.0) 0.022 (1.5) 
1995 0.034 (2.8) 0.039 (2.2) 0.011 (1.2) 0.041 (2.1) 0.008 (0.6) 
1996 -0.005 (-0.5) 0.012 (0.9) -0.004 (-0.3) 0.002 (0.1) 0.023 (1.8) 
1997 -0.006 (-0.6) -0.005 (-0.4) -0.031 (-3.0) -0.018 (-1.2) -0.019 (-1.5) 
1998 0.021 (2.6) 0.008 (0.6) 0.021 (2.1) 0.025 (2.0) 0.002 (0.1) 
Sigma squared 0.024 0.025 0.029 0.032 0.025 
      
No. of firms 325 153 305 141 219 
No. of observations 1321 752 1363 587 924 
1 Sample period: 1991-1998. 
2  t-ratios computed using (unbalanced panel) robust standard errors formulas. 
 



 

 

 
Table 2 (cont.) 

Industry semiparametric estimations of model eax ++= )(τβθ   
 
Dependent variable: (Cost based) Solow residual1 

                                                                                                                                                                      Coefficients and t-ratios2 

 
Explanatory variables 

6. Transport equipment 7. Food, drink and tobacco  8. Textile, leather and 
shoes 

9. Timber and furniture  10. Paper and printing 
products 

Scale correction -0.002 (0.0) -0.299 (-6.4) -0.328 (-10.9) -0.243 (-4.7) -0.349 (-5.9) 
           
Capacity utilisation 0.142 (3.1) 0.056 (2.7) 0.089 (2.8) 0.070 (2.0) 0.068 (1.7) 
Merger -0.058 (-1.4) 0.071 (2.6) 0.061 (1.5) -0.108 (-5.1) 0.130 (2.1) 
Scission -0.032 (-1.1) 0.062 (1.2) -0.251 (-1.7) -0.052 (-0.4) 0.029 (0.3) 
           
Up to 200 workers -0.001 (-0.3) 0.008 (2.1) -0.001 (-0.2) -0.016 (-2.2) 0.012 (1.9) 
More than 200 workers 0.001 (0.3) -0.008 (-2.1) 0.001 (0.2) 0.016 (2.2) -0.012 (-1.9) 
           
1991 -0.014 (-0.6) 0.004 (0.4) 0.012 (0.8) -0.022 (-0.9) -0.009 (-0.6) 
1992 0.001 (0.1) -0.002 (-0.2) -0.001 (-0.1) 0.024 (1.0) 0.005 (0.3) 
1993 -0.029 (-1.1) 0.009 (1.1) -0.072 (-5.8) -0.044 (-2.2) -0.015 (-1.1) 
1994 0.014 (0.7) -0.004 (-0.4) 0.056 (5.1) -0.032 (-1.7) -0.005 (-0.4) 
1995 0.035 (1.5) 0.011 (1.5) 0.005 (0.4) 0.032 (2.2) 0.033 (2.8) 
1996 0.009 (0.7) -0.014 (-1.9) -0.004 (-0.4) 0.021 (1.2) -0.013 (-0.9) 
1997 0.001 (0.0) 0.004 (0.5) -0.003 (-0.4) -0.024 (-1.3) 0.005 (0.4) 
1998 -0.018 (-1.6) -0.007 (-0.9) 0.009 (0.9) 0.045 (3.0) -0.002 (-0.2) 
Sigma squared 0.031 0.019 0.029 0.031 0.021 
      
No. of firms 156 356 361 157 183 
No. of observations 704 1795 1598 644 826 
1 Sample period: 1991-1998. 
2  t-ratios computed using (unbalanced panel) robust standard errors formulas. 
 
 
 



 

 

 
Table A.1 

 Number of firms, time observations and frequency of process innovation  
 

 
 

Total sample Strictly uncensored sample 
Time 
obs. 

No. of 
firms 

No. of 
observations 

% of 
process 

innovations 

Time 
obs. 

No. of 
firms 

No. of 
observations 

% of 
process 

innovations 
1 393 393 33.8 1 342 342 64.7 
2 353 706 31.6 2 288 576 49.1 
3 221 663 30.6 3 165 495 51.5 
4 278 1,112 31.1 4 197 788 48.5 
5 159 795 37.9 5 169 845 48.1 
6 180 1,080 30.2 6 155 933 43.8 
7 190 1,330 35.3 7 155 1,085 51.6 
8 582 4,656 38.2 8 279 2,232 57.9 

Total 2,356 10,735 34.0 Total 1,750 7,296 52.2 



 

 

Figure 1 
The )(τa  function1 

 

 
 

Panel a 
 

 
 

Panel b 
 

 
 

Panel c 
1 Values of the function )(τa (productivity growth), estimated with semiparametric techniques, against age. 



 

 

Figure 2 
The )(τa  function by industries1 
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Figure 2 (cont.) 
The )(τa  function by industries1 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Values of the function )(τa (productivity growth), estimated with semiparametric techniques, against 
age.   
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Figure A.1 
The histogram of age 
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