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Abstract

We consider the entry and information diffusion process into a
(telecoms) market where only informed consumers consider to buy
the new product, and only actual customers of the entrant spread
information. Diffusion is slower (faster) than socially optimal if the
incumbent has few (many) captive customers. Advertising by the
entrant, though it accelerates diffusion, has ambiguous welfare effects.
Regulatory intervention may impose time-varying mandatory prices
on the incumbent, while imposing uniform pricing can lead to high
prices and too fast diffusion. If consumers can search, or wait until
they are informed, all search occurs at the moment of entry.
Keywords: Entry, Diffusion, Word-of-mouth, Differential Games
JEL: C73, L11, L51

1 Introduction

This paper was motivated by the observation that market the penetration
of new telephone operators on the fixed network continues to remain disap-
pointing. This is quite surprising given that savings in call charges can be
substantial as compared to the traditional incumbent operator: One should
expect many more users to change providers than is actually observed. This
is true for call-by-call access, with choice of a possibly different operator for
each call, with the inconvenience of having to dial an access code, as much
as for an actual change of provider.

∗With financial support from NovaForum. Thanks to Toker Doganoglu for helpful
comments. All erros are mine.
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Switching costs are only part of the explanation. Enough savings could be
realized by consulting just one alternative operator, and still many consumers
do not even consider this possibility. What is most common is a lack of trust
in the reliability and the business practices of new operators, as well as lack
of information about their offers. For most consumers the cost of acquiring
this information seems to be rather high.
Most models of entry presume that all consumers have instant knowledge

about the existence of the new product or service, and that consumers are
willing buy the new product if its price is low enough to compensate for
eventual switching costs.
The model we have in mind assumes that “uninformed” consumers ran-

domly meet current customers of the entrant, and the ensuing exchange of
information and opinions leaves the former “informed”. This does not mean
that they will necessarily become customers of the entrant, rather they take
notice of its offer in the first place, which then they may take up or not. We
thus introduce a distinction between consumers that are informed about a
product, and customers who actually buy it. Lastly, we assume that an ad-
ditional part of the population remains completely impenetrable to whatever
information they may receive about the new product. Therefore, there will
be inertia not only due to a slow increase in potential customers, but also due
to customers who will never switch. (Armstrong, Shapiro/Varian: described
but not modelled). The latter, as they remain captive to the incumbent, can
strongly influence the incumbent’s pricing decisions: He must trade off gains
from competing with the entrant with profits obtained by milking his captive
customers.
Modelled as described above the number of informed customers increases

over time following a diffusion process. What makes our approach different
from a significant part of the existing literature on diffusion is that the speed
of diffusion is endogenous. From the point of view of both firms involved there
is strategic value in influencing the speed of diffusion. The entrant wants to
accelerate diffusion to be able to sell to more customers in the future, and
thus sets low prices to gain market share today. On the other hand, the
incumbent has an interest in limiting the speed of diffusion to maintain his
share of the total market, and his most effective instrument is to lower prices.
This latter effect is mitigated because of the “fat cat effect”: Lowering price
too much leads to large losses on captive consumers.
Though not directly related to our model, we mention the work of Peitz

and de Bijl (2000, 2002). They take the innovative approach of considering
entry under a dynamic process whereby the consumers’ utility derived from
the entrant’s product increases over time, so that entry is again described by
a dynamic process. The main difference to our approach is that this dynamic
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process is completely exogenous. In fact, in their models both entrant and
incumbent play static Nash equilibria since there are no intertemporal strate-
gic effects present. Our paper, on the other hand, concentrates precisely on
these effects.
Discuss literature on diffusion models here.
A second channel through which the entrant can “spread the news” is

advertising its presence, the type of service it offers, and its pricing schemes.
If advertising is assumed similarly “informative” as word-of-mouth trans-
mission then it serves as a substitute for lower prices by the entrant. The
likely result should be higher prices in the short run, but possibly a faster
diffusion. Thus even before taking into account the costs of advertising the
welfare consequences of advertising are ambiguous.
Telecoms regulators have been trying to facilitate entry through imposing

restrictions on the incumbent’s pricing, among other instruments. Universal
service obligations such as uniform pricing, even though their original moti-
vation was primarily egalitarian and not based on arguments of competitive
entry, can have a positive influence on entry. In our model the incumbent’s
uniform price for both “inert” and “active” consumers creates a price um-
brella that the entrant benefits from. The additional dimension revealed by
our model is that this price umbrella not only protects the entrant’s profits
in the short run, but also has dynamic effects in the form of influencing the
speed of diffusion. We show below that imposing uniform pricing may raise
welfare, through faster diffusion, if the incumbent’s captive customers are
not too many, while may have ambiguous effects if the number of captive
consumers is large.
In the following section we will introduce the model, and section 3 charac-

terizes the socially optimal rate of diffusion. Section 4 considers competition
in prices only, while section 5 adds informative advertising by the entrant.
Section 5 considers simple regulatory interventions such as fixing the incum-
bent’s price or imposing a price cap, and section 6 concludes.

2 The Model

Time is continuous, t ≥ 0, and firms discount the future with factor δ ∈
(0, 1). We assume the total mass of consumers is 1 + L, of which L ≥ 0 are
captive with the incumbent (firm 1), and the rest of mass 1 may consider
switching to the entrant (firm 2) once “informed”. The share of informed
consumers at any moment t is S ∈ [0, 1] (we omit the time indext to not crowd
notation). We measure the entrant’s market share at any point in time β as
relative to informed consumers, so that the mass of his customers is M2 =
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βS, while the customers of the incumbent have mass M1 = (1− βS + L).
The fundamental assumption of this paper is that at each point in time the
entrant’s customers βS meet randomly with the rest of the population and
transmit the knowledge about the entrant. The (1− β)S customers of the
incumbent that are informed, but have chosen to stay with the incumbent, are
not seen to consume the entrant’s product, and therefore do not transmit any
information. Of these encounters only meetings with the (1− S) customers
who do not yet know the entrant, but might consider switching once they
have that information, have any effect. We assume that in a proportion
α ∈ (0, 1) of these meetings useful information is transmitted, so that the
diffusion of knowledge is described by the following equation:

Ṡ = αβS (1− S) . (1)

Contrary to what it seems, this is not a logistic diffusion equation (though it
is similar) because the market share β is endogenous and will depend, among
other variables, on S. This diffusion equation will later be augmented by a
term that models the effect of advertising (see Section 5).
Unfortunately this formulation implies that we must assume an initial

level of S0 > 0 of informed customers (which can be the CEO of the entrant,
for example), otherwise no diffusion would take place. This problem will
be resolved in section 7 when consumers can decide to become informed, as
immediately some consumers acquire the necessary information.
In principle competition between the entrant and the incumbent could

take any form. Since we are considering the market for telecommunication
services, we are interested in modelling the (discrete) choice between the
entrant’s and the incumbent’s variety. Any discrete choice model described
for example in Anderson et al. (1992) or the Hotelling model would be
appropriate, but not models like differentiated goods Cournot or Bertrand
duopolies. There has been a recent tradition of using the Hotelling model to
represent telecommunications markets, for example Armstrong (1998) and
Laffont, Rey and Tirole (1998), so we adopt it as well. A remark on the
side: It would also be interesting to consider a model with homogeneous
goods, but the presence of captive customers means that at each point in
time equilibrium would be in mixed strategies (this goes back at least to ),
which leads to technical problems that a yet are unresolved.
Assume thus that all (1 + L) consumers are distributed uniformly on a

Hotelling line [0, 1], with the entrant situated at zero and the incumbent at 1.
Consumers’ location on this line is independent of whether they are captive
to the incumbent, or willing to switch once they are informed. One could
of course argue that the captive consumers should be the ones closest to
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the incumbent, but this would take the bite out of information transmission.
“Transport costs” are z |x− a|, where z ≥ 0measures product differentiation,
x is the location of each consumer, and a the supplier’s location. Captive
and uninformed customers buy at the incumbent’s, while informed customers
choose between both firms; the indifferent informed customer β is situated
at

v2 − zβ = v1 − z (1− β) ,

where vi is the consumer surplus derived from firm i’s offer. For now we as-
sume that consumers buy exactly one unit to which they attribute a valuation
v, so vi = v − pi.1 The entrant’s market share will be

β =
1

2
+
p1 − p2
2z

(2)

while p2 ≥ p1 − z, and β = 1 otherwise.
The incumbent and the entrant have constant marginal cost of production

c1 and c2, respectively, and the difference is∆ = c1−c2, which we will assume
is positive (entrant more efficient than incumbent, for example due to modern
technology). Instantaneous profits, given the mass S of informed consumers,
are then given by πi =Mi (pi − ci) .
In the following we will first characterize the socially optimal pattern of

diffusion, and then in section 4 we determine the market equilibrium.

3 The Social Optimum

At each instant consumers buy from one of the firms and support transport
cost. The average instantaneous consumer surplus of the mass S of informed
customers is given by

s12 = βv2 − z
Z β

0

xdx+ (1− β) v1 − z
Z 1

β

(1− x) dx

= v − βp2 − (1− β) p1 − 1
2
z
¡
1− 2β + 2β2¢

while the average surplus of uninformed and captive consumers is

s1 = v1 − z
Z 1

0

(1− x) dx = v − p1 − 1
2
z.

1In later versions we will consider variable demand, which is indispensable if we wish to
consider the efficiency effects of lower prices: With inelastic demand different prices only
lead to transfers between consumers and firms but do not change total welfare. A further
reason is that with inelastic demand we cannot model non-linear tariffs.
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We will first determine the static social optimum, for a given level of diffusion
S. This serves as a benchmark against which to contrast the socially optimal
market shares, or price difference. This static social optimum is found by
solving

max
p1,p2

s12S + s1 (1− S + L) + π1 + π2, (3)

which can be expressed equivalently as

max
β
Sβ (∆+ z (1− β)) +K, (4)

where K is a constant term that contains neither S nor β. The socially
optimal market static share would be independent of S, with

βst =
1

2
+

∆

2z
. (5)

Here we assume that βst < 1, or ∆ < z, otherwise the problem is trivial. If
this were to be implemented using prices, it corresponds to prices related by

p2 = p1 −∆, (6)

while the level irrelevant due to the assumption of inelastic demand.
Assume that the social planner also has discount factor δ, and maximizes

the sum of discounted instantaneous surplus. Since the constant K men-
tioned above does not contain S and β it does not change over time and thus
can be dropped:

max
β

Z ∞

0

e−δtβS (∆+ z (1− β)) dt (7)

s.t. Ṡ = αβS (1− S) ,
with initial condition S (0) = S0 and transversality condition limt→∞ e−δtλ =
0 on the shadow price of the equation of motion λ. This is an optimal control
problem with current value Hamiltonian, with costate λ,

H = βS (∆+ t (1− β)) + λαβS (1− S) (8)

Applying the maximum principle lets to the necessary conditions

∂H

∂β
= S (∆+ t (1− 2β)) + λαS (1− S) = 0, (9)

∂H

∂S
= β (∆+ t (1− β)) + λαβ (1− 2S) = δλ− λ̇, (10)
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where we implicitly assume an interior solution for β. The boundary solution
β = 1 will be considered below.
Solving (9) for β leads to

β =
1

2
+

∆

2z
+

α

2z
λ (1− S) . (11)

The dynamically optimal market share, as compared to the static optimum
(5), corrects for the effect of current market share on the diffusion of knowl-
edge about the entrant. If (what is likely) the shadow social value λ of an
additional informed consumer is positive then the dynamically optimal mar-
ket share β is larger than the static one. As all non-captive consumers become
informed (S → 1) this market share converges to the statically optimal one.
Substituting β into the dynamic equations yields the system

λ̇ = δλ− 1

4z
(z +∆+ αλ (1− S)) (∆+ z + αλ (1− 3S)) ,

Ṡ =
α

2z
(z +∆+ αλ (1− S))S (1− S) , (12)

S (0) = S0, lim
t→∞

e−δtλ = 0,

which describes the dynamics of diffusion in the social optimum. This cannot
be solved explicitly, but nevertheless its solution can be completely charac-
terized.
First notice that it has steady states

S∗ = 1, λ∗ =
1

2

(z +∆)2

2δz + α (z +∆)
> 0, (13)

which is the one that we would like to converge to, and, if and only if δ ≥
α (1 +∆/z),

Ŝ = 0, λ̂ =
2zδ − α (z +∆)± 2pzδ (zδ − α (z +∆))

α2
> 0. (14)

In Appendix 1 we show that the steady state with S = 1 is saddle-path
stable, while the other two (if they exist) are unstable. The solution to the
system (12) we be on this saddle path, where S is monotonically increasing,
and λ and β are monotonically decreasing. We can already compare the
dynamically optimal market shares to the static optimum:

Proposition 1 The dynamically optimal market share of the entrant is al-
ways higher than at the static social optimum: β > βst.
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Proof. From the equation of movement for the shadow price λ in 12 we can
infer that for S ∈ [0, 1] the shadow-price never crosses over from negative to
positive values as

λ̇
¯̄̄
λ=0

= − 1
4z
(z +∆)2 < 0.

Since in the stable steady state λ is positive, it will be so on the whole saddle
path, and therefore the last term in (11) is strictly positive.2

As concerns the cost of inert consumers, given by λ∗, it is decreasing in
patience δ and speed of diffusion α, but increasing in the cost difference ∆; it
is decreasing (increasing) in transport cost depending on whether it is small
(large):

dλ∗

dδ
< 0,

dλ∗

dα
< 0,

dλ∗

d∆
> 0;

dλ∗

dz
> (<) 0 if z > (<)

∆ (2δ − α)

2δ + α
.

If the social planner is impatient (δ ≥ α (1 +∆/z)) then the saddle path
emanates from the lower one of the other two steady states, as shown in
Figure 1.3

2If we are in the boundary case β = 1, which is considered below, then naturally the
same result holds.

3All numerical calculations were done by programs written for Matlab 5 which are
available from the author. In particular, the saddle paths were found by deviating a
bit from the steady state along the stable eigenvector and then running the equations
in inverse time. These numerical results use specific values for the parameters and are
merely illustrative, while the qualitative analysis performed in the main text applies to all
(reasonable) parameter values.
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Figure 1: Phase portrait and saddle path at the social optimum with
impatient social planner (a = 0.5, δ = 1, ∆ = 0, z = 1).

In this case the highest value that β can take on is

β̂ =
δ

α
−
s

δ

α

µ
δ

α
− (1 +∆/z)

¶
.

If on the other hand he is patient (δ < α (1 +∆/z)), then these other
steady states do not exist. The saddle path is as shown in Figure 2.
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Figure 2: Phase portrait and saddle path at the social optimum with
patient social planner (a = 0.5, δ = 0.2, ∆ = 0, z = 1).

The main difference is that it emanates from a zone on the lower right
where depending on the initial value S0 the optimal market share is β = 1,
as for smaller and smaller initial values λ increases without bound on the
saddle path. This zone is delineated by the curve β = 1 or λ (1− S) =
(z −∆) /α. By the principle of optimality, what happens below this curve
does not influence the location of the saddle path above it: Our above results
continue to be valid without qualification up until the point where the saddle
path “hits” this boundary.
Below this curve the entrant’s market share will be β = 1 in equilibrium.

The adjoint equation in this case is

∂H

∂S
= ∆+ λα (1− 2S) = δλ− λ̇, (15)

leading to the equations of motion

λ̇ = δλ−∆− λα (1− 2S) (16)

Ṡ = αS (1− S)
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These have the exact solutions, with constants of integration C1 and C2,

λ (t) =

µ
C1 −∆

Z t

t0

1

e(δ+α)u (1 + C2e−αu)
2du

¶
e(δ+α)t

¡
1 + C2e

−αt¢2 ,
S (t) =

1

1 + C2e−αt
, (17)

and

C1 = λ (0)S (0)2 , C2 =
1− S (0)
S (0)

.

Here it is useful to normalize to t = 0 the point in time when the saddle path
crosses the boundary

λ (0) (1− S (0)) = z −∆

α
.

For a patient social planner the optimal path of diffusion (17) is such that for
small initial values S0 diffusion at first occurs along a traditional logistic S-
curve. In this phase the social planner sacrifices a short-term rise in transport
cost for faster diffusion. After a while the trade-off between faster diffusion
and high transport cost for customers close to the incumbent is reversed, and
the optimal market share decreases continuously towards the static optimum,
implying slower diffusion than on an exogenously imposed S-curve.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
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Figure 3: The entrant’s market share β with a patient social planner
(a = 0.5, δ = 0.2, ∆ = 0, z = 1).

We will now determine the market equilibrium, and compare this with
the social optimum.

4 Market Equilibrium

The incumbent (firm 1) and the entrant (firm 2) play the following differential
game:

max
p1(.)

Π1 =

Z ∞

0

e−δt (1− βS + L) (p1 − c1) dt

max
p2(.)

Π2 =

Z ∞

0

e−δtβS (p2 − c2) dt (18)

s.t. Ṡ = αβS (1− S)
S (0) = S0

Here L ≥ 0 is the mass of captive customers of the incumbent; for L > 0 the
above expression implicitly assumes uniform pricing by the incumbent, while
setting L = 0 includes the case of non-uniform pricing. In the latter the
captive customers will have to pay as high a price as the incumbent is able
to set, at the same time that their presence and number does not influence
pricing for the other customers.
We will solve this game in open-loop strategies, i.e. pricing strategies

that only depend on the initial state and time (see Basar and Olsder 1999
, Dockner et al. 2000). It would clearly be preferrable to find a solution
in closed-loop strategies, but at the current state of economics this is not
feasible.
Current-value Hamiltonians are, with shadow values for an additional

informed customer µ1 and µ2,

H1 = (1− βS + L) (p1 − c1) + µ1αβS (1− S) , (19)

H2 = βS (p2 − c2) + µ2αβS (1− S) ,
and the necessary conditions for the controls p1 and p2 are

∂H1
∂p1

= − 1
2z
S (p1 − c1) + (1− βS + L) + µ1α

1

2z
S (1− S) = 0,

∂H2
∂p2

= − 1
2z
S (p2 − c2) + βS − µ2α

1

2z
S (1− S) = 0.
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Substituting β and solving for p1 and p2 leads to equilibrium prices

p1 = c1 +
1

3

µ
z

·
4
1 + L

S
− 1
¸
−∆+ α (1− S) (2µ1 − µ2)

¶
(20)

p2 = c2 +
1

3

µ
z

·
2
1 + L

S
+ 1

¸
+∆+ α (1− S) (µ1 − 2µ2)

¶
Letting µ = (µ1 + µ2), equilibrium market shares will be

β =
1

6z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ αµ (1− S)

¶
. (21)

This equilibriummarket share will be larger or smaller than the static equilib-
rium market share (which corresponds to α = 0 i.e. no diffusion) depending
on whether µ is positive or negative.
The two adjoint equations are

∂H1
∂S

= −β (p1 − c1) + µ1αβ (1− 2S) = δµ1 − µ̇1,
∂H2
∂S

= β (p2 − c2) + µ2αβ (1− 2S) = δµ2 − µ̇2, (22)

and after substituting β we obtain

µ̇1 = δµ1 −
1

18z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S)µ

¶
×
µ
z

·
1− 41 + L

S

¸
+∆+ α (1− S)µ− 3αSµ1

¶
, (23)

µ̇2 = δµ2 −
1

18z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S)µ

¶
×
µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S)µ− 3αSµ2

¶
.

The sum of both equations is

µ̇ = δµ− 1

9z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S)µ

¶
(24)

×
µ
z

·
1− 1 + L

S

¸
+∆+ α

µ
1− 5

2
S

¶
µ

¶
,

and the evolution of market shares follows

Ṡ =
α

6z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S)µ

¶
S (1− S) (25)
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The steady states of the system in (µ1, µ2, S) are

S∗ = 1, µ∗1 = −
1

3

(3z + 4Lz −∆)

α+ 6δz/ (3z + 2zL+∆)
,

µ∗2 =
1

3

(3z + 2Lz +∆)

α+ 6δz/ (3z + 2zL+∆)
; (26)

Ŝ = −2z 1 + L
z +∆

, µ̂1 = 0, µ̂2 = 0,

and of the simpler system (S, µ),

S∗ = 1, µ∗ =
2

3

∆− zL
α+ 6δz/ (3z + 2zL+∆)

; (27)

Ŝ = −2z 1 + L
z +∆

, µ̂ = 0.

That is, if the number of captive consumers is large, L > ∆/z, then the steady
state shadow value µ∗ is negative, while it remains positive if L < ∆/z. This
time the saddle path cannot “emanate” from the vicinity of the other steady
state because it cannot cross the line S = 0. In fact, close to this line µ̇ tends
to infinity while Ṡ becomes zero.
In appendix 2 we show that the steady state (S∗, µ∗) is again saddle-path

stable, and that on the saddle path S and µ are increasing. We also show
that the market share β of the entrant is monotonically decreasing. Market
shares on this saddle path, as compared to the static equilibrium market
shares, depend on the sign of µ:

Proposition 2 If the number of captive consumers L is large (L ≥ ∆/z)
then the entrant’s market share in the dynamic equilibrium is smaller than
in the static equilibrium for the corresponding number of informed consumers
S. If on the other hand the number of captive consumers is small (L <
∆/z) then for small S the entrant’s market share is smaller than in the
static equilibrium, but exceeds this value as the number of informed customers
becomes sufficiently large.

Proof. From (24) we can deduce that (see also Figures 4 and 5 below)

µ̇|µ=0 > 0 if 0 < S <
1 + L

1 +∆/z

µ̇|µ=0 < 0 if S >
1 + L

1 +∆/z
.

This means that for L ≥ ∆/z only the first case is relevant, thus the saddle
path cannot cross the axis µ = 0 from the right. Since µ∗ ≤ 0 in this case
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this means that for L ≥ ∆/z we must have µ < 0 on the whole saddle path.
On the other hand, for L < ∆/z the steady state value µ∗ is positive, so
that at some point in time t0 the saddle path must have crossed the vertical
axis from the left (µ̇ is so large for small values of S that the saddle path
must begin with negative values of µ). After this point it cannot get back to
negative values of µ because otherwise it would not be able to reach µ∗ > 0.

This result may appear counter-intuitive. One would expect competition
to be less intensive when the number of captive consumers is large, this would
translate into a larger (not smaller) market share by the entrant. In fact,
we are making the wrong comparison here. The correct one would be with
a static situation with the same number of captive customers, and where
the incumbent knows that he will not lose customers to the entrant. Now it
seems natural that there will be a more aggressive equilibrium price by the
incumbent, and therefore a smaller market share for the entrant. Even more
interesting is therefore the case of few captive customers and S approaching
1: Almost all non-captive customers are now informed. In this situation
there is no point in being aggressive, also given the fact that the incumbent
is at a cost disadvantage.
The phase portrait for the case of large L > ∆/z is shown in Figure 4:

-3 -2.5 -2 -1.5 -1 -0.5
0.2

0.4

0.6

0.8

1

15



Figure 4: Phase portrait and saddle path in market equilibrium when L is
large.

If on the other hand L is less than ∆/z we obtain the following Figure 5:

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0.2

0.4

0.6

0.8

1

Figure 5: Phase portrait and saddle path in market equilibrium when L is
small or zero.

The most important issue in this section is the comparison between the
dynamic equilibrium market share and the socially optimal market share.
Since in both cases β is monotonically decreasing over time it is difficult to
establish direct comparisons. A first attack is to compare the steady states:

Proposition 3 If the number of informed customers is sufficiently large then
if the number of captive consumers is large (small), i.e. L > (<)∆/z, the
entrant’s market share β in market equilibrium is higher (lower) than the
socially optimal market share.

Proof. We have β = 1
2
+ 1
6z
∆+ 1

3
L in the market steady state, and β = 1

2
+ ∆
2z

in the socially optimal steady state. The statement follows from continuity.
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We find the expected: If the incumbent has a large group of captive
consumers then he prefers to set high prices instead of fighting the entrant
(remember that L > 0 if the incumbent is subject to uniform pricing). As
result, diffusion is even more rapid than in the social optimum, but this is
more than counterbalanced by the additional transport cost of the entrant’s
customers who are close to the incumbent on the Hotelling line.4 If on the
other hand there are only few captive customers, or if the incumbent is not
subject to uniform pricing, then the incumbent prices more aggressively than
would be socially optimal to achieve the optimal path of diffusion. This not
a phenomenon of limit pricing, but rather a competitive response that arises
from the incumbent realizing that preserving market share today will slow
down the future cost of customers.
(Do some numerical simulations here).

5 Advertising

Assume the entrant can spend an amount a2/2k at each point in time on
advertising, which influences the diffusion process in the following way:

Ṡ = (αβS + a) (1− S) .
The variable ameasures the percentage of uninformed non-captive customers
that are effectively informed when they are reached by an advertisement.
How does this possibility change the pattern of diffusion?
With shadow values ηi, the entrant’s current-value Hamiltonian becomes

H2 = βS (p2 − c2)− a2/2k + η2 (αβS + a) (1− S) , (28)

and the optimal values of his controls p2 and a are described by

∂H2
∂p2

= − 1
2z
S (p2 − c2) + βS − η2α

1

2z
S (1− S) = 0. (29)

∂H2
∂a

= −a/k + η2 (1− S) = 0.
That is, the optimal advertising intensity is a = kη2 (1− S), and equilibrium
prices are given by (20), where the µi are substituted by ηi. These prices
do therefore only indirectly depend on a, through S and ηi, and the optimal
market share is as above,

β =
1

6z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ αη (1− S)

¶
, (30)

4If demand were elastic we would encounter the additional effect of less than efficient
quantities due to highe prices.
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where η = η1+η2. The question about how advertising affects diffusion boils
down to asking how it influences the shadow value η.
The co-state equations are

∂H1
∂S

= −β (p1 − c1) + η1αβ (1− 2S)− aη1 = δη1 − η̇1,

∂H2
∂S

= β (p2 − c2) + η2αβ (1− 2S)− aη2 = δη2 − η̇2, (31)

so that the equations of motion for (η, S) become

η̇2 = (δ + kη2 (1− S)) η2 −
1

18z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S) η

¶
×
µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S) η − 3αSη2

¶
η̇ = (δ + kη2 (1− S)) η −

1

9z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ α (1− S) η

¶
(32)

×
µ
z

·
1− 1 + L

S

¸
+∆+ α

µ
1− 5

2
S

¶
η

¶
Ṡ =

µ
α

6z

µ
z

·
1 + 2

1 + L

S

¸
+∆+ αη (1− S)

¶
S + kη2 (1− S)

¶
(1− S)

The steady states are the same as before: Advertising has no influence since
in the limit S → 1 it is ineffective. On the other hand, in both co-state
equations the effect of advertising is to raise the effective discount rate from
δ to δ + a, which means that the industry behaves as if it had become more
impatient. This effect should lead to a reduction in competitive intensity
because making profits now gains in relative importance as compared to
increasing S. Still, S tends to increase more due to the direct effect of
advertising, therefore it is ambiguous where diffusion is slower or faster.
Our intuition would be that advertising crowds out low prices as a means

of gaining market share, therefore one would expect to see higher prices, a
lower β and a smaller η on the equilibrium path.
This analysis is obviously not yet complete (e.g. the welfare effects of

advertising should be discussed), and will be pursued further, at least nu-
merically.

6 Regulatory Constraints on Pricing

We have analyzed above the market equilibrium assuming that the incumbent
has L ≥ 0 captive customers and that uniform pricing is imposed on him. For
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L = 0 the above considerations can be interpreted as not involving uniform
pricing: In the latter case the captive consumers are irrelevant for pricing
under competition. Thus the above finding applies that in this case diffusion
is slower than socially optimal because the incumbent prices too aggressively.
The uniform pricing constraint makes the incumbent less aggressive, but, as
shown above, may lead to “overshooting” in that for large L diffusion may
be too fast as compared to the social optimum.
Assume now that a regulator can impose on the incumbent that his price

should be equal to p0. This restriction turns the incumbent into a passive
by-stander, and only the entrant makes strategic decisions. His current value
Hamiltonian is

H2 = βS (p2 − c2) + ναβS (1− S) (33)

and the optimal prices and market shares are

p2 =
1

2
(c2 + z + p0 − να (1− S))

β =
1

4

z + p0 − c2 + να (1− S)
z

(34)

If we compare with the socially optimal market share (11) is becomes im-
mediately clear that if p0 were to be chosed to reach the social optimum it
cannot be fixed but must be a function of time.
The adjoint equation is

∂H2
∂S

= β (p2 − c2) + ναβ (1− 2S) = δν − ν̇, (35)

and both equations of motion are, with P = p0 − c2,

ν̇ = δν − 1

8z
(z + P + να (1− S)) (z + P + να (1− 3S))

Ṡ =
α

4z
(z + P + να (1− S))S (1− S) . (36)

The steady state is

S∗ = 1, ν∗ =
1

2

(z + p0 − c2)2
4δz + α (z + p0 − c2)

β∗ =
1

4
+
1

4z
(p0 − c2) .

To achieve the socially optimal market share in steady state p0 must be equal
to

p0 = c1 + (∆+ z) .
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That is, the socially optimal price imposed on the incumbent must be high
enough.
(in future, more numerical results here)

7 Consumer search

In this section we will give a more active role to consumers, at least to the
ones who are not captive to the incumbent: These consumers can decide
whether to pay a search cost k and get informed immediately, or wait until
they meet someone who tells them.
A fundamental question in this approach is: What do consumers know,

and what do they believe? We see our analysis as a starting point, and will
assume rational expectations over all relevant variables. That is, even though
consumers do not “know” the entrant’s prices or market share, or even the
number of informed customers, they have correct expectations about these
variables. Obviously this is a very strong assumption, but is needed here
to make the question well-defined since without this information consumers
cannot assign values to waiting or searching.5

7.1 Market Equilibrium

We state our result first, then discuss the intuition, and only then introduce
the formal model.

Proposition 4 For moderate search cost all consumers on some interval
[0, x∗] search, and all search occurs at time 0. That is, this group of con-
sumers becomes informed immediately, while all other consumers prefer to
wait until someone else informs them.

It is not surprising that all consumers situated close to the entrant search,
because these have higher transport cost when they buy from the incumbent.
All else equal, they have more to gain from switching to the entrant. The
interesting result is that all searching occurs right at the beginning. This hap-
pens for two reasons, which depend on the paths of prices discussed above.6

5An alternative would be to assume that consumers only expect that the entrant will
not be more expensive than the incumbent (but have no beliefs over the price difference).
In this case a consumer searches if he is close enough to the entrant: zx+ δk ≤ z (1− x),
or x ≤ 1/2− δk/2z. This searching occurs immediately, so that qualitatively we arrive at
the same result as below.

6Strictly speaking, it is still necessary to prove that the qualitative properties of price
paths are the same under the new laws of motion under consumer search. This is indeed
the case.
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First, the value of searching decreases over time since the entrant’s price
rises, that is the best deals are to made right after entry. Second, the value
of waiting increases as the incumbent’s price decreases, and the number of in-
formed consumers increases: Waiting costs less, and the expected time until
meeting an informed customers becomes shorter.
Let us now give the details of the model. We take the paths of prices p1,

p2, informed customers S, market shares β, and number of searchers x∗ as
given. Of the latter we assume that only consumers search who expect to
adhere to the entrant.
The surplus of a consumer located at x if he searches at time t and then

buys from the entrant is:

Vs (t) =

Z ∞

t

(v − p2 − zx) e−δ(τ−t)dτ

=

Z ∞

0

(v − zx) e−δτdτ −
Z ∞

t

p2 (τ) e
−δ(τ−t)dτ (37)

=
v − zx

δ
− P2 (t) .

Rational expectations are incorporated here through the assumption that the
consumer correctly anticipates the whole path of prices p2 (.). Over time Vs
decreases if the entrant’s price increases:

V̇s = −
Z ∞

0

ṗ2 (τ + t) e
−δτdτ . (38)

The value of waiting is given by the following HJB equation, with v1 =
v − p1 − z (1− x),

δVw − V̇w = v1 + r (Vs − Vw) , (39)

where the customer gets informed at the variable rate r = α (x∗ (1− S) + βS).
We assume that the consumer has correct expectations about the paths of p1,
β, S and x∗, where the latter are the consumers who already have searched.
We can treat the HJB equation as a linear ordinary differential equation

V̇w = (δ + r)Vw − (v1 + rVs) . (40)

Since (δ + r) > 0 while the steady state must be finite, the solution is

Vw (t) =

Z ∞

t

e−
R τ
t (δ+r)dy (v1 + rVs) dτ . (41)
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After substituting Vs and v1 and some further transformations we obtain

Vw (t) =
v − zx

δ
+ z (2x− 1)

Z ∞

t

e−
R τ
t (δ+r)dydτ

−
Z ∞

t

e−
R τ
t (δ+r)dy (p1 + rP2) dτ (42)

=
v − zx

δ
+ z (2x− 1)T1 (t)− T2 (t) ,

with Ti (.) > 0.7

Comparing Vs and Vw we obtain the result that a consumer at x searches
at time t if and only if

x ≤ x̃ (t) = 1

2
− k − (T2 (t)− P2 (t))

2zT1 (t)
. (43)

The right-hand side decreases in t, at least if x∗ (t) < 1/2, since T1 and T2
are decreasing, and P2 is increasing over time. This means that x̃ (0) > x̃ (t)
for all t > 0, and all customers that are ever willing to search do so at time
zero: x∗ (t) = x0 for all t.
The number of searching customers is given by the implicit equation

x0 = x̃ (0) =
1

2
− k − (T2 (0)− P2 (0))

2zT1 (0)
, (44)

where the implicit dependence is directly through r, and more hidden through
the equilibrium paths of p1, p2, β and S.8 While this means that x0 can only
be found through simulations, we can finally state the new law of motion
under consumer search, given x0: The number of uninformed customers that
are not captive of the incumbent are (1− x0) (1− S), and these customers
can meet the x0 customers who have searched and switched to the entrant, or
the (β − x0)S customers who became informed through meetings. Therefore
the new law of motion is

Ṡ = α (x0 + (β − x0)S) (1− x0) (1− S) . (45)

With this law of motion, and the corresponding versions of each firm’s objec-
tive function, for each x0 the equilibrium can be found, and one can iterate
on (44) until x0 is determined.

7It may help intuition that if r, p1 and p2 were constant we would have T1 = 1/ (δ + r),
P2 = p2/δ, T2 = (p1 + rp2/δ) (δ + r).

8As of yet we cannot show that there is a unique solution.
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7.2 Social Optimum

It would be useful to determine the socially optimal number of searching
consumers xs. It is clear that all search should again take place in the
beginning since there is no social gain from waiting. On the other hand,
there is a trade-off between faster spread of information and higher search
costs, so the optimal value of search will be finite.
The problem to solve is of the type

max
β(.),xs

Z ∞

0

e−δtF (S,β, xs) dt− kxs (46)

s.t. Ṡ = f (S,β, xs)

with initial condition S (0) = S0. In this problem xs acts as a constant control
variable. Alternatively, we can interpret xs as a constant state variable:

max
β(.),xs

Z ∞

0

e−δtF (S,β, xs) dt− kxs
s.t. Ṡ = f (S,β, xs) (47)

ẋs = 0

Here xs has associated shadow price µ, and the transversality condition cor-
responding to the free initial value of xs is µ (0) = k.
(to be continued)

8 Conclusions

We have described the socially optimal and market equilibrium processes
of diffusion of a new (telecoms) service when only informed customers con-
sider switching to the entrant, and when knowledge spreads mainly through
interactions between customers.
Competitive pricing leads to slower diffusion of the entrant’s new service

than is socially optimal if no uniform pricing is imposed on the incumbent,
or if only a small part of the population is captive to the incumbent. The
opposite is true if there is a large number of captive consumers who will never
consider switching to the entrant. This poses a dilemma for the regulator:
On the one hand, imposing uniform pricing on the incumbent accelerates
the process of entry and diffusion, but on the other leads to higher prices
and makes some customers buy from the entrant who in a first-best situation
should buy from the incumbent.
Advertising may accelerate diffusion, but lead to higher equilibrium prices.

This is so because these prices have a strategic in accelerating (entrant) or
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slowing down (incumbent) diffusion, both of which will leads to lower prices.
They are crowded out in this function by advertising and therefore prices
rise.
As concerns the imposition of mandatory prices on the incumbent by a

regulatory entity, we found that the optimal price will be time-dependent,
and that it must be high enough make diffusion socially optimal.
Future research will be concerned with analyzing interconnection and

price discrimination; market models other than Hotelling (which has its
weaknesses); and consumer choice: would consumers passively wait until
they meet some friend, or will they actively search for information? If so,
what are the welfare consequences?
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Appendices
Appendix 1: The Social Optimum
The stability matrix around the steady state (S∗,λ∗) is"

δ + α
2
(1 +∆/z) zα(8δ+3α(1+∆/z))(1+∆/z)3

8(2δ+α(1+∆/z))2

0 −1
2
α (1 +∆/z)

#
,

with positive eigenvalue δ+α
2
(1 +∆/z) and negative eigenvalue−1

2
α (1 +∆/z).

This means that this steady state is saddlepoint stable. Furthermore, the
stable eigenvector points upwards and left, which means that the saddlepath
approaches the steady state from the right. On the other hand, the eigenval-
ues of the stability matrices at the other two steady states can be shown to
be all positive, thus these are instable.
The curve λ̇ = 0 is given by

S (λ) =
1

3λα

µ
2 (z +∆+ λα)−

q
(z +∆+ λα)2 + 12zδλ

¶
,

which is always well-defined and approaches the steady state from the right.
This curve also divides the space (λ, S) into two halves, with λ̇ < 0 below
it, and λ̇ > 0 above it. Since the saddlepath approaches the steady state
from the right, at least close to it it must lie below this curve. But since S
is always increasing and the curve λ̇ = 0 does not bend backwards to lower
values of λ, the whole of the saddle path lies below the curve λ̇. In other
words, λ̇ < 0 on the whole saddle path.
If δ ≥ α (1 +∆/z) then the curve λ̇ = 0 cuts the horizontal axis at the two

additional steady states, while for δ < α (1 +∆/z) it either has a minimum
somewhere or continues to decrease monotonically; in both cases in the limit
λ→∞ it approaches S = 1/3.
Therefore for δ ≥ α (1 +∆/z) the saddle path emanates from the vicinity

of the steady state

S = 0,λ0 =
2zδ − α (z +∆)− 2p(zδ − α (z +∆)) zδ

α2
,

where the market share is

β0 =
δ

α
−
s

δ

α

µ
δ

α
− (1 +∆/z)

¶
≤ 1

For δ < α (1 +∆/z) it simply follow below the curve λ̇ = 0. Here must
take into account that the curve β = 1 cuts off this part of the saddle path,
and that to its right it takes on a different form.
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Appendix 2: The Market Equilibrium
First we will show that the steady state (S∗, µ∗) is saddle-path stable.

The stability matrix at the steady state has shape· ∂µ̇
∂λ

∂µ̇
∂S

∂Ṡ
∂λ

∂Ṡ
∂S

¸
=

·
δ + α

6
(3 + 2L+∆/z) T

0 −α
6
(3 + 2L+∆/z)

¸
,

where

T = − z
27
108(1+L)(4L+3−∆/z)δ2+6α(13L+6−7∆/z)(3+2L+∆/z)2δ+α2(8L+3−5∆/z)(3+2L+∆/z)3

(6δ+α(3+2L+∆/z))2

with positive eigenvalue δ + α
¡
1
2
+ 1

3
L+ 1

6
∆/z

¢
and negative eigenvalue

−α ¡1
2
+ 1

3
L+ 1

6
∆/z

¢
. Therefore this steady state is indeed saddle-path sta-

ble. The eigenvector associated with the latter, stable, eigenvalue points
upwards to the right, therefore the saddlepath approaches the steady state
from the left.
The curve of µ̇ = 0 is increasing and divides the space (µ, S) into two

halves. In the lower half µ̇ is positive, and in the upper half it is negative.
This means that as the saddle path approaches the steady state it must
eventually be below this curve. For this very reason, and since S is increasing
on every path, it can never have been above it. Therefore on the saddle path
µ̇ > 0.
As concerns market share β, from (21) we can calculate

β̇ =
1

54

α

S2
(1− S) 9δµzS

2 − (S (z +∆) + 2z (1 + L) + α (1− S)µS)2
z2

,

which is certainly negative while µ < 0. On the other hand it is also negative
at the steady state (µ∗, S∗), therefore β̇ remains negative for positive µ.
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