1. The “mixed-complementarity problem” (MCP):

Given: F:RN - RN ¢ uweRN (MCP)
Find: z,w,v € RN
s.t. F(z)—=w+v=0

(<z<wu, w=>0, v=>0

wli(z=60) =0, vi(u—2)=0

in which —co < /¢ < u < +o00.



Special case i: a linear system of equations
Given: Ae R be R™ (LSYS)

Find: x € R"
s.t. Axr =0b
which is represented as an MCP by letting £ = —o0, u = 00,

z=u=x, and F(z) = Az — b;



Special case ii: a nonlinear system of equations
Given: f:R"— R"™ be R" (NLSYS)

Find; xr € R™
s.t. f(x) =0
which is represented as an MCP by letting ¢ = —o0, u = 400,

z=uzx, and F(z) = f(»2);



Special case iii: a linear complementarity problem
Given: M e R*™"™ qge& R" (LCP)

Find: z € R"
s.t. g+ Mz>0, z>0, zl'(¢g+Mz)=0

which is represented as an MCP by letting £ = 0 u = +o00, and
F(z) =q+ Mz,



Special case iv: a nonlinear complementarity problem
Given: f:R" — R" (NCP)

Find: z € R"
s.t. f(z) >0, z>0, zlf(z)=0

which is represented as an MCP by setting £ =0, u = 400, and
F(z) = f(2);



Special case v: a nonlinear program

Given: f:R*"— R, g¢g:R*"— R™, /7, 4ac€R* (NLP)

Find: x € R™ to

max f(x)
s.t. g(z) =
r<zx<a

which (when f() is concave and g() is convex) may be repre-



sented as an MCP by setting N = n 4+ m, and partitioning

=3 = () ()

Vi(z) —Vg(x)ly

Fz) = { o(x)



Special case v: a finite-dimensional system of variational in-
equalities

Given: f:R*"—> R" g¢g:R"— R™ (VIP)
Find: x* e X ={£ € R"g(&) > 0}

max f(z)!(z —2*) >0 VzxeX

which (when f() is convex and g() is concave) may be repre-
sented as an MCP by setting N = n + m, and partitioning:

[z _ [~ L (o N — f(x) —Vg(z)ly
Z“(y)’ E“(O)’ = (e0), F”“{ o(@)



The Hitchcock-Koopmans Transportation Problem

A linear program seeks a transport schedule which minimizes the
cost of meeting demands in markets (j) from suppliers (i):

min Zij CijTij
S.T. Zg Tij < a;
22 Tij = by

x>0



GAMS representation:

SETS
I canning plants / SEATTLE, SAN-DIEGO /
J  markets / NEW-YORK, CHICAGO, TOPEKA / ;
PARAMETERS
A(I) capacity of plant i in cases
/ SEATTLE 325

SAN-DIEGO 575 /,
B(J) demand at market j in cases
/ NEW-YORK 325
CHICAGO 300
TOPEKA 275 /,
F freight in dollars per case per thousand miles /90/ ;

TABLE DIST(I,J) distance in thousands of miles

NEW-YORK CHICAGO TOPEKA
SEATTLE 2.5 1.7 1.8
SAN-DIEGO 2.5 1.8 1.4 ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;

C(I,J) = F * DIST(I,J) / 1000 ;



VARIABLES X(I,D) SHIPMENT QUANTITY FROM I TO J
COST MINIMAND - TOTAL COST OF SHIPMENT

POSITIVE VARIABLE X;

EQUATIONS
SUPPLY(I) SUPPLY LIMIT
DEMAND (J) DEMAND CONSTRAINT (FIXED)
OBJDEF DEFINES COST;

SUPPLY(I).. A(I) =G= SUM(J, X(I,1));

DEMAND (J) .. SUM(I, X(I,J)) =G= BQJ);

OBJDEF. . COST =E= SUM((I,J), C(I,J) * X(I,3));

MODEL MINCOST / SUPPLY, DEMAND, OBJDEF/;

SOLVE MINCOST USING LP MINIMIZING COST;



Interpretation as a Market Equilibrium Problem
w; marginal cost in supply market ¢

p; market price in demand market j

> %5 S ap, w20, w; (aq; — 2 %‘j) =0 Wi
>i%ij = b, p; =0, pj (bj — > :r:ij> =0 Vi
w; + Cij 2 Pj, Tij =0, Xy (w@' + ¢y — pj) =0 Vij

This is a linear complementarity problem.



GAMS representation:

POSITIVE VARIABLES

EQUATIONS

SUPPLY(I)..

DEMAND (J) . .

PROFIT(I,J)..

W(I)
P(J)
X(I,3)

SUPPLY (I)
DEMAND (J)
PROFIT(I,J)
A(I) =G= SUM(J,
SUM(I, X(I,J))

W(I) + Cc(I,D)

SHADOW PRICE AT SUPPLY NODE I,
SHADOW PRICE AT DEMAND NODE J,
SHIPMENT QUANTITIES IN CASES;

SUPPLY LIMIT AT PLANT I,
FIXED DEMAND AT MARKET J,
ZERO PROFIT CONDITIONS;
X(I,3));

=G= B(@J);

G= P(J);

MODEL TRNSP / PROFIT.X, SUPPLY.W, DEMAND.P/ ;

SOLVE TRNSP USING MCP;



Price-Responsive Supply and Demand
T

Demand: D,(p;) = ﬁjpj_

ni
(4

Supply: S;(w;) = a;w

Zj Lg5 < Si(w;), w; >0, w; (Sz-(wz-) — Ej xij) =0 W
Yivgg > Di(py), pj=20, pj (Dj(z?j) — 2. %‘j) =0 WV
wi+cij > pj, w5 >0, ay (wit e —pj) =0 Vi, j

This is a nonlinear complementarity problem.



NLP Formulations

When the nonlinear complementarity problem is integrable, the
solution corresponds to the first order conditions for one (or two)
nonlinear programming problem. In this case, we could solve a

primal NLP:
e‘y €d .
max 35 viy;' + X kidy — 3 Cigi]

s.t. > %5 S Yy
22 Tij 2> dj

Cl?z] 2 O, d



where:

and




or we could solve a dual NLP model:

1_|_ l1—0;
min ZZ1—|—77 " Z]l cr]pj !

S.t. w; + Cij 2 Py

N.B. Although this example is integrable, this is not always true:
NLP C MCP

Economic equilibrium problems addressing interesting policy ques-
tions are typically not integrable. Taxes, income effects, spillovers
and other externalities interfere with the skew symmetry property
which characterizes first order conditions for nonlinear programs.



2. General Equilibrium Models

p = a non-negative n-vector of commodity prices including all
final goods, intermediate goods and primary factors of pro-
duction;

y =— a non-negative m-vector of activity levels for constant re-
turns to scale production sectors in the economy; and

M = an h-vector of income levels, one for each “household” in
the model, including any government entities.



M;(p) is the unit profit function for sector j, the difference be-
tween unit revenue and unit cost, defined as:

C;(p) = min {szl’ilfj(a?) = 1}
and

R;(p) = max {Zpiyilgj(y) = 1}



d;;,(p, M},) is a demand function derived from budget-constrained
utility maximization:

d;p(p, Mp) = argmax {Uh(a:)l > piwi = Mh}
7

in which Uy, is the utility function for household h.



Equilibrium

Market Clearance:

ol
>y, i(P) + > win > dip(p, My)
J h h

Op;

Zero Profit:

—M;(p) = Cj(p) — R;j(p) >0 v j

Income Balance:

My, = piwip
2



Model Representation: MPSGE

Social accounting data:

Sectors Consumers
(S) Households(H) | Government
Goods Markets (G): | A(G,S8)-B(G,S) -C(G,H)
Factor Markets (F): -FD(F,S) E(F,H)-D(F,H)
Capital taxes: -T("K",S) GREV
Transfers: TRN (H) -GREV




MPSGE model:

$SECTORS:

AL(S) I Activity levels
$COMMODITIES:

P(G) ! Commodity prices

W(F) ! Factor return

PT ! Tax revenue transfer market
$CONSUMERS::

RA (H) ! Representative households

GOVT ! Government

$PROD:AL(S) s:0 va:ELAS(S)

0
I:
I

$DEMAND:

Moo

$DEMAND:
D

:P(S) Q:A(S)

P(G) Q:B(G,S)

:W(F) Q:FD(F,S) P:PF(F,S) A:GOVT
RA(H) s:1 gds:ESUB(H)

:P(G) Q:C(G,H) gds:

W(F) Q:D(F,H)

:W(F) Q:E(F,H)

:PT Q:TRN (H)

GOVT

:PT Q:GREV

T:TF(F,S)

va:



Definition of Mixed Complementarity Problem (MCP)

The MCP format: Given: F-RY — RY, l.u e pV
Find: z,w,v € R"
s.t. F(z)-w+v=20 (MCP)
( <z<uw2=>0v2=>0
wiz-0)=0, v'(u-z)=0
0w </ <u< o
(with z: decision variable; v,w: slack variables, u:upper bound, /:lower bound)
encompasses a number of special cases, e.g.:
(i) a nonlinear system of equations:
Given: f:R" —> R"
Find: x e R" s.t. f(x)=10

(NLSYS)

with |=-0, U=+, z = x and F(z) = f(z);
(il) @ nonlinear complementarity problem:
Given: f>R" — R”
Find:z € R} s.t. f{z) = 0, 27 f{z) = 0 (NLCP)

with 1=0, u=+w, and letting F(z) = f(z);

(iii) a nonlinear program: Given: f*R" = R, g:R"— R", Afﬁ c R
Find: x € R to
max f(x)
s.t.g(x)=0

A

{ <x < u

(NLP)

(when f() is concave and g() is convex) with N = n+m, and partitioning:
M) - Ag(x )"y

e (L)) re
z = , = , U = , zZ) —
y - 0 T o0 g(x)





