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Abstract
The main objective of this paper is to analyze the links between

product market competition, innovation and growth. We capture the
idea that …rms innovate in order to try to escape -albeit temporarily
- from the pressure of competition exerted on them by their rivals.
There are two ways in which competitive pressure can be thought of
as a driving force to innovate. In leveled industries where all the …rms
have access to the same technological knowledge, the greater is the
intensity of competition between the neck by neck …rms the lower will
be their current pro…ts. Thus, as the competitive pressure increases,
these …rms will devote a higher R&D e¤ort to obtain a leadership and
escape from the unpro…table state. In unleveled industries, where one
…rm has obtained a technological lead, the greater is the intensity of
competition, the lower will be the current pro…t of the laggard …rm.
This should increase the incentive of this …rm to eliminate its disad-
vantage by catching-up or leapfrogging the current leader. We assume
that if a laggard …rm succeeds in innovating, it will either leapfrog
the leader with some probability or catch-up its technology with the
complementary probability. The dynamics of industry are thus more
complex than in pure leapfrogging models. By using a quadratic R&D
cost function, we investigate how innovation and growth are a¤ected
in the stationary state by the intensity of competition and by the
probability of leapfrogging.

¤EUREQua – Université de Paris I.
yUniversity College London.
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1 Introduction
The link between competition and innovation has been at the heart of much
of the economic theory of innovation, going back to the classic works of
Schumpeter (1942), Arrow (1962) and Dasgupta and Stiglitz (1980). There
has been a resurgence of interest in this question following the recent devel-
opments in endogenous growth theory. The particular aspect in which we
are interested in this paper is the link between product market competition,
innovation and growth.

The consensus emerging from much of the recent literature on endogenous
growth is that increased product market competition is bad for growth - see
for example Aghion and Howitt (1992, 1998), Grossman and Helpman (1991).
However these models are based on the Schumpeterian idea of growth taking
place through a process of creative destruction. This is captured in these
models by assuming that progress takes the form of what we will call strong
leapfrogging. This contains two ideas:

(L1) whichever …rm successfully innovates becomes the technological leader;
(L2) the previous leader is driven out of the market.
The corollary of these two assumptions is that each industry is character-

ized by persistent monopoly - with the identity of the monopolist continually
changing.

In the context of such models the only meaning one can give to increased
product market competition is that there is some exogenous change in, say,
demand conditions that lowers the level of pro…ts that the monopolist can
earn. Thus increased product market competition takes the form of what
we will call a more competitive environment. It is clear that this will reduce
the returns to R&D and hence both the pace of innovation and the rate of
growth. So this form of competition is indeed bad for growth.

The problem with this line of argument is that it fails to capture the
idea that …rms innovate in order to try to escape - albeit temporarily - from
the pressures of competition being exerted on them by their rivals . The
notion of competitive pressure being referred to here relates to the intensity
of competition between …rms within any given market environment (demand
conditions, etc.) rather than the competitiveness of the environment within
which they are competing.

There are two ways in which this type of competitive pressure can be
thought of as driving …rms to innovate.

(a) In situations where …rms are very equal - what is known as neck-and-
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neck competition - then the greater is the intensity of competition between
…rms the lower will be their pro…ts. If, by innovating, a …rm could obtain
some advantage - a better product or a better technology than its rivals -
then the greater is the intensity of competition between …rms the more the
…rm will be able to exploit this advantage to increase its pro…ts. Intuitively,
for both these reasons, an increase in the intensity of competition should
increase the incentives of …rms to escape from neck-and-neck situations.

(b) In situations where one …rm has obtained an advantage, then the
greater is the intensity of competition between …rms the lower will be the
pro…ts of the …rms that are disadvantaged. This should increase the incentive
of these …rms to eliminate their disadvantage by catching up or overtaking
the current leaders.

Implicit in this discussion is the idea that an increase in the intensity of
competition is being de…ned by the two properties:

(i) when …rms are neck-and- neck the pro…ts of all …rms fall;
(ii) when …rms are in a leader-follower situation then:
¢ the pro…ts of the leader increase;
¢ the pro…ts of the follower fall;
¢ industry pro…ts increase.
Now it is clear that it is impossible to formally investigate the e¤ects on

innovation of this type of increase in competition within the usual Schum-
peterian framework. Since that is characterized by permanent monopoly the
intensity of competition is constant. In order to investigate the e¤ects on in-
novation of this type of increase in competition, one needs a model in which,
in equilibrium, many …rms can co-exist in the same industry. In a recent
paper Aghion, Harris and Vickers (1997) use a catch up or step-by-step in-
novation to explore this issue. They also, brie‡y, examine what we will call a
weak-leapfrogging that is characterized by L1 but not L2 - creation without
the destruction.

In this paper we propose a much more general class of models within
which to investigate the e¤ects of an increase in the intensity of competition
on innovation. This will incorporate both catch-up and weak leapfrogging as
special cases.

As in Aghion, Harris, Vickers our model has just two …rms and we assume
that the maximum gap between the …rms is always 1. To explain this latter
assumption and the way our model embraces both leapfrog and catch up,
consider the case where the industry is in a leader-follower situation, with
one …rm on the current technological frontier and the other …rm one step
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behind. If the leader succeeds in innovating it will move one step ahead to
a new technological frontier. However we assume that patents protect only
latest technological frontier, so the follower is also able to move up one step
onto the technological frontier, leaving the leader’s gap as 1. We assume
that if the follower innovates then, with probability µ, (0 � µ � 1), it will
actually understand the ideas at the current frontier. This progress will take
it onto a new frontier and so it will leapfrog the current leader. However,
with probability 1¡ µ, the follower will not master the ideas at the current
frontier, and so its 1 step of progress will just take it onto the existing frontier
alongside the follower, and so into a situation of neck-and-neck competition.
Thus our model allows both weak leapfrogging and catch up, and reduces to
the pure forms of these in the cases where respectively µ = 1 and µ = 0.

An important feature of the model is that the dynamics of movement
from the leader-follower situation are more complex than in pure leapfrogging
models, since the industry can move from leader-follower to neck-and-neck
or to the next leader follower situation with the respective roles of the leader
and follower being reversed.

We use this general framework to investigate:
(i) how innovation and growth are a¤ected by an increase in the intensity

of competition as de…ned above;
(ii) how innovation and growth are a¤ected by µ.
However the model also enables us to address another important issue.

Since the primary factor driving …rms to innovate is to try to escape intense
competitive pressure, it is interesting to ask whether they actually succeed.
In other words does innovation result in industries which are frequently in
the leader-follower situation or frequently in the neck-and-neck situation?

We can also ask how the frequency with which the industry is in the neck-
and-neck situation is a¤ected by …rms having to work in a more competitive
environment or by an increase in the intensity of competition. Put somewhat
di¤erently - is competition good for competition?

This latter question is particularly pertinent since it helps us understand
whether positions of dominance are indeed the natural outcome of the in-
novative behavior of …rms trying to escape intense competitive pressure -
as Bill Gates would have us believe - or whether they re‡ect some lack of
competitive pressure in the market.

The paper is organized as follows. The basic set-up is described in section
II. The determination of the value functions and the rate of growth at the
stationary state are derived in section III. A quadratic R&D cost function
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is speci…ed in section III and the main results are derived in this case. The
concluding remarks appear in section IV.

2 The basic set-up

2.1 The consumption side

There exists a continuum of …nal goods in the economy. Each good is pro-
duced in a speci…c industry indexed by i 2 [0; 1] : Consumption of output
from industry i at time t is denoted by ci(t). Time is continuous. We sup-
pose that the representative consumer is in…nitely lived and has a separable
intertemporal utility function given by :

U =

Z 1

0

lnC(t)e¡½tdt (1)

where :
C(t) represents an index of overall consumption at date t and is de…ned

as a Cobb-Douglas instantaneous utility function on the continuum of …nal
goods :

lnC(t) =

Z 1

0

ln ci(t)di (2)

½ > 0 is the rate of time preference.
We suppose that …nancial markets are perfect and characterized by an

instantaneous interest rate rt: Since the intertemporal rate of substitution is
constant and equal to unity in (1), the utility maximization of the consumer
under an intertemporal budget constraint leads to the standard Ramsey equa-
tion:

:

E(t)

E(t)
= ½¡ rt (3)

where:
E(t) is the instantaneous global expenditure at date t : E(t) ´ P (t)C(t);
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P (t) is the general price index at date t de…ned as: lnP (t) =
R 1
0
ln pi(t)di;

pi(t) is the price in industry i at date t.
We choose the normalization rule:

E(t) ´ P (t)C(t) = 1 8 t 2 [0;1[ (4)

According to (3) and (4), the interest rate rt is thus equal to the discount-
ing rate ½ :

rt = ½ 8t 2 [0;1[ (5)

We will denote r the constant rate of interest.
According to (2), each …nal good has the same weight in the instantaneous

utility function. Thus the normalization rule leads also to a uniform spending
in each industry:

pi(t)ci(t) = 18t 2 [0;1[ ; 8i 2 [0; 1] (6)

2.2 The productive side

We suppose that in each industry there are two …rms which are involved
both in production and R&D. In each industry, the rival …rms can be at
di¤erent technology levels. A …rm at technology level k can produce 'k units
of output per unit of labour employed, where the exogenous parameter '
(' > 1) represents the labour productivity when k = 1. Thus, the cost
per unit of output of a …rm in technology k is w'¡k where w is the wage
rate. As our model is written in a partial equilibrium framework, we treat
w as an exogenous variable and we choose w = 1. The total production
qi(t) of industry i (i 2 [0; 1]) at date t is equal to the consumption of the
corresponding good: qi(t) = ci(t): The level of production qi(t) depends on
the technology levels of both …rms in industry i and on the intensity of
competition between the two …rms. We describe now how the technology
levels evolve in time.

At each date t, the current state of an industry can be described by a pair
of technology levels (k; k¡n), where k is the level of the technological leader
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and k¡n is the technological level of the follower. Thus, n is the technological
gap between the two …rms. This technological gap will be treated as a state
variable in what follows. According to (6); a constant proportion of income is
spent on the product supplied by each industry. Thus, whatever the nature
of product market competition is, …rms’ equilibrium pro…t ‡ows derived from
competition in the product market depend only upon the gap n and not upon
the level k: We denote by ¼n the equilibrium pro…t ‡ow of a …rm which is,
from a technological aspect, n steps ahead of it’s rival (or ¡n steps behind
it if n is negative).

As in A.H.V.(1997), we suppose that the technological gap between …rms
cannot exceed one step. This assumption, made only in order to simplify the
model and to allow analytical solutions, can be justi…ed in three ways. First,
it may be too costly (in terms of R&D e¤ort) to a …rm to get more than
one step ahead of it’s rival. Second, imitation by the follower might become
easy once the leader is more than one step ahead. Third, patents protect
much more the latest technological knowledge than the previous ones. The
consequence of this assumption is that, at any time, each of the two …rms
in an industry can be in one and only one of the following three states n
2 f¡1; 0; 1g. A …rm which is in the state n = ¡1 at some date is the
technological follower while it’s rival in the same industry, which is in the
state n = 1; is the technological leader. The corresponding unleveled industry
is characterized as being of the follower-leader type. When a …rm is in
the state n = 0; both …rms are at the same technological level and the
corresponding leveled industry is of the head-to-head type. An industry can
be, at any time, in just one of these two types. But, as time elapses, the type
of an industry changes permanently. We suppose indeed that there exists an
innovation process that leads to an increase of the labour productivity by a
parameter ' (' > 1) (equivalent to a reduction of unit cost). We suppose
that, by employing °(p) units of labour in R&D, a …rm moves one step ahead
with Poisson hazard rate p: The R&D cost function °(p) is supposed to be
increasing, continuous and convex. We also assume that °(0) = 0.

We are now in position to describe how an industry evolves in time.
Consider a period [t; t+ dt] : Two cases must be considered according to the
type of the industry at the beginning of the period.

1. If an industry starts at date t in the head-to-head state, neither …rm has
a gap over the other, and both are at the existing cutting edge of technology.
Three situations can occur during the period [t; t+ dt]. First, if both …rms
innovate during the period, neither will create a gap over the other and the
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industry will end the period as it began it in the head-to-head state. Second,
the same is true if neither innovates. Third, if only one …rm innovates, it
will open a unit gap over its rival and the industry ends the period in the
leader-follower type.

2. If an industry starts at date t in the leader-follower type, then one
…rm (the leader) has a unit gap over its rival (the follower) and is at the
cutting edge of technology. Because the leader is at the cutting edge, if it
succeeds in innovating, it can only lower its cost by the speci…ed amount: For
the follower, the situation is slightly di¤erent. We assume that with proba-
bility µ, 0 6 µ 6 1, the follower, if it succeeds in innovating, will be able to
acquire an understanding of the technology at the cutting edge, and so will
be able to achieve exactly the same technology as the leader would acquire
if it innovated. Thus, when its innovation succeeds, the follower can leapfrog
the preceding leader with probability µ. However, with probability 1¡ µ, the
follower will not acquire the understanding of the technology at the cutting
edge, and so, if it succeeds in innovating, it will acquire only the technol-
ogy currently used by the leader. In this case, there is only a catching-up
of the current leader’s technology by the follower. The model captures thus
the two polar cases corresponding respectively to weak leapfrogging (µ = 1)
and to step-by-step innovation (µ = 0). It captures also all the intermediate
cases where leapfrogging occurs with probability µ and catching-up occurs
with probability 1 ¡ µ: Moreover, note that contrary to the Schumpete-
rian leapfrogging models where monopoly is typically a universal market
structure, our assumptions allow the possibility of a richer market structure.
When its innovation succeeds, a technological laggard can advance either by
leapfrogging the previous leader or by catching-up it. The possibilities for
industry evolution, when starting from a leader-follower type, are thus more
complex.

Suppose the follower does not succeed in innovating. If the leader in-
novates, it will open up a gap of 2, but according to our assumption of a
maximal gap of 1, the follower gets access to the previous leader’s technol-
ogy and the industry ends the period in the follower-leader position. If the
leader does not succeed in innovating, the industry ends the period as it
began it, namely in a follower-leader position.

Suppose the follower succeeds in innovating from the existing cutting
edge. If the leader also innovates, the gap between them will be reduced
to zero during the period and the industry will end the period in the head-
to-head position. However, if the leader fails to innovate, then the previous

8



follower will have become the new leader and the industry will end the period
in the leader-follower type (but with the identity of …rms being reversed).

Suppose the follower succeeds in innovating, but not from the cutting
edge. Then if the leader also innovates, it will maintain its gap of 1, and
the industry ends the period as it began it, namely in the leader-follower
type. However, if the leader fails to innovate, then its technological lead
will be eliminated, and the industry will end the period in the head-to-head
position.

Innovative advance and hence economic growth occur at a rate determined
by R&D e¤orts. By allocating °(p0) units of labour to the R&D activity, a
…rm at the technological frontier which is level with its rival, moves one step
ahead with Poisson hazard rate p0: Similarly, by allocating °(p¡1) units of
labour in R&D, a follower succeeds in innovating with Poisson hazard rate
p¡1. Conditional to its success, it leapfrogs the leader with Poisson hazard
rate p¡1µ and it catches-up with Poisson hazard rate p¡1(1¡ µ): Finally, by
employing °(p1) units of labour in R&D, a leader succeeds in innovating with
Poisson hazard rate p1:

We can now determine the system of equations whose solutions are the
R&D e¤orts p¡1; p0, p1.

3 The stationary state equilibrium

3.1 The value functions of the markovian game at the
steady state

We focus on the determination of equilibrium in Markov strategies at the
stationary state of the economy. A Markov strategy speci…es a …rm’s choice
of its R&D e¤ort as a function of the current gap1 in the corresponding
industry, leading thus to the symmetric equilibrium values of p¡1; p0 and p1
in terms of the parameters ¼¡1; ¼0; ¼1; r; µ; for a given R&D cost function
°(p):

Consider the value functions for a …rm whose rival’s strategy is given by
(p¡1; p0; p1): Let Vn denote the value function of a …rm stating from state n:

1Note that a …rm which is ahead (n = 1) has no incentive do undertake R&D due to
our assumption of a maximal gap of 1. Thus, we will …nd that at equilibrium, p1 = 0:
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This value gives the …rm’s expected discounted payo¤ in the game starting
from the state in which it is n steps ahead (or behind if n < 0) of its rival
(n = ¡1; 0; 1):

In order to obtain the Bellman equations satis…ed by the value functions,
consider for instance the situation of a technological follower which is in the
state n = ¡1 at the beginning date of a period [t; t+ dt]. By spending °(p¡1)
in R&D, it obtains an innovation during this period with Poisson hazard rate
p¡1dt. As it has been explained, we suppose that this innovation may lead
the follower either to the cutting edge of the technology, leapfrogging thus
the leader with probability p¡1µdt or to the technology currently used by
the leader, catching-up it with the probability p¡1(1-µ)dt): With the comple-
mentary probability 1¡ p¡1dt; the follower does not obtain any innovation
during the period [t; t+ dt] :

During the same period, the leader’s innovation occurs with the prob-
ability p1dt. Figure 1 describes the corresponding game during the period
[t; t+ dt] : It also gives the discounted payo¤s (net of R&D costs) of the
follower at the end of this period.

The value function V¡1 of a follower satis…es thus the following Bellman
equation :

V¡1 =Max
p¡1¸0

f(¼¡1 ¡ °(p¡1))dt+ e¡rdt[V1p¡1µdt+ V0p¡1(1¡ µ)dt

+ V¡1p1dt+ V¡1 ¡ V¡1(p¡1 + p1)dt]g (7)

By using the …rst order approximation e¡½dt ' 1 ¡ ½dt; and by keeping
only the …rst order terms in dt; one obtains the equivalent Bellman equation:

rV¡1 =Max
p¡1¸0

f¼¡1 ¡ °(p¡1) + p¡1µV1 + p¡1(1¡ µ)V0 ¡ p¡1V¡1g (8)

The corresponding …rst order condition leads to (if p0 is strictly positive):

°0(p¡1) = µ(V1 ¡ V0) + (V0 ¡ V¡1) (9)
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Figure 1: Determination of the follower’s value function

The interpretation of condition (9) is straightforward. The LHS is the
R&D marginal cost of the follower. The RHS gives the expected marginal
revenue which is equal to µ(V1 ¡ V¡1) + (1¡ µ)(V0 ¡ V¡1):

In the same way, one obtains the Bellman equations giving the the values
of a …rm starting the period [t; t+ dt] at the respective states n=1 and n=0,
and the corresponding …rst order conditions:

rV1 =Max
p1¸0

©
¼1 ¡ °(p1)¡

_
p¡1(V1 ¡ V0)¡

_
p¡1µ(V0 ¡ V¡1)

ª
(10)

°0(p1) � 0 and p1°0(p1) = 0 (11)

rV0 =Max
p0¸0

f¼0 ¡ °(p0)¡ p0(V0 ¡ V1)¡ p0(V0 ¡ V¡1)g (12)
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°0(p0) = V1 ¡ V0 (13)

The symmetric-equilibrium conditions p¡1 = p¡1; p0 = p0, p1 = p1 are
added to the preceding system of six equations ((8)-(13)). The unknowns of
this system as the three value functions V¡1; V0; V1 and the three intensity
R&D e¤orts p¡1; p0; p1: They depend of the following parameters:
r = the interest rate,
µ = the probability of leapfrogging by the follower,
¼¡1 = the current pro…t of a technological follower,
¼0 = the current pro…t of a neck by neck technological …rm,
¼1 = the current pro…t of a technological leader,
°(p) = the R&D cost (in units of labor) of a …rm moving one technological

step ahead with Poisson hazard rate p:
Note that, according to the …rst order condition (11), if °0(p1) 6= 0, then,

p1 = 0: This results from the assumption of a maximal gap of 1.

3.2 The determination of industry structures and rate
of growth

The steady-state distribution of industry structures between leveled and un-
leveled industries is endogenous. Let denote ® the proportion of industries
that are of the head-to-head type in the steady state. In order to determine
the value of ®, consider a period [t; t+ dt] : During this time interval, two
types of evolutions do occur.

In industries which are of the head-to-head type (proportion ®), successful
innovation made by only one of the two neck by neck …rms leads to an
evolution towards industries of the leader-follower type. This occurs with
the probability 2p0dt(1¡ p0dt) ' 2p0dt:

In industries which are of the leader-follower type (proportion 1 ¡ ®),
successful innovations made either by both the leader and a follower who
reaches the cutting edge of technology or by only the follower who just happen
to catch-up the leader’s technology leads to an evolution towards industries
of the head-to-head type. This occurs with the probability (p¡1µdtp1dt) +
(p¡1(1¡ µ)dt(1¡ p1dt)) ' p¡1(1¡ µ)dt:

Since the distribution of industries remains stationary over time in the
steady state, we must have:
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2p0®dt = p¡1(1¡ µ)(1¡ ®)dt: (14)

This last equation leads to the value of the proportion of industries that
are of the head-to-head type in the steady state. Note that his value depends
directly and indirectly on the parameter µ since the values of p0 and p¡1
depend themselves on µ :

®(µ) =
(1¡ µ)p¡1(µ)

2p0(µ) + (1¡ µ)p¡1(µ)
(15)

We thus have the following lemma:

Lemma 1 In the steady state of the economy, the proportion of industries
that are head-to-head is given by
®(µ) = (1¡µ)p¡1(µ)

2p0(µ)+(1¡µ)p¡1(µ) ; where µ is the probability to leapfrog the leader,
conditional to the success of innovation by the follower, p0(µ) is the R&D
e¤ort by a neck-by neck …rm and p¡1(µ) is the R&D e¤ort by a follower. For
a given µ in (0; 1) the proportion of industries that are head to head in the
steady state is an increasing function of p¡1(µ) and a decreasing function of
p0(µ):

Note that for µ = 0; we obtain the same result as in A.H.V. (1997). For
µ = 1;we have ® (1) = 0; since, as we will check later p0(1) 6= 0: This means
that in a weak leapfrogging situation, where a successful innovation by the
follower gives it a leadership position, there are no industries that are of the
head-to-head type.

Let us now determine the rate of growth of the economy in the steady
state. Consider again a period [t; t+ dt] : The growth rate g is de…ned by

g =
d

dt
lnQ(t) =

d

dt
lnC(t): (16)

The rate of growth of an industry in a complete cycle is given by ln',
which is the amount by which is increased the log of it’s output. A complete
cycle occurs in two ways.

13



Firstly, by the evolution from a head-to head type towards the next head-
to head type, where each …rm has access to the new cutting edge of the
technology. The complete cycle can be decomposed in this case into a two-
stage cycle. The …rst stage corresponds to an evolution from a head-to head
type to a leader follower type. Let denote ln'1 the rate of growth of an
industry in this …rst stage. The probability that an industry of the head-to
head type (proportion ®) moves to an industry of the leader-follower type
during the period [t; t+ dt] (…rst stage of the complete cycle) is given by
2p0dt(1¡ p0dt) ' 2p0dt: The second stage corresponds to an evolution from
a leader follower type to a head-to head type. Let denote ln'2 the rate of
growth of an industry in this second stage. The probability that an industry
of the leader-follower type (proportion 1 ¡ ®) moves to an industry of the
head-to head type during the same period (second stage of the complete cycle)
is given by p¡1(1¡µ)dt(1¡p1dt)' p¡1(1¡µ)dt:Of course, ln' = ln'1+ln'2,
since the industry output increases by a factor of ' after a complete cycle.

Secondly, a complete cycle occurs also during the evolution from a leader-
follower type to the next leader-follower type, where the follower succeeds
in leapfrogging the leader and the previous leader does not succeed in inno-
vating. This evolution, which reverses the identity roles of the leader and
follower, gives rise to a rate of growth of ' since one of the two …rms (the
follower) has increased its technological level by 2 steps. The probability
that an industry of the leader-follower type (proportion 1¡ ®) moves to an
industry of the next follower-leader type during the same period (complete
cycle) is given by p¡1µdt(1¡ p1dt) ' p¡1µdt:

The average growth rate of …nal output is thus given by:

gdt = 2®p0dt ln'1 + p¡1(1¡ µ)(1¡ ®)dt ln'2 + p¡1µ(1¡ ®)dt ln' (17)

Note that g depends again directly and indirectly (via the variables ®; p0 and
p¡1) on the parameter µ: By using the relationship ln' = ln'1 + ln'2; we
obtain …nally the following expression of the rate of growth of the economy:

g(µ) = (2®(µ)p0(µ) + µp¡1(µ)(1¡ ®(µ))) ln' (18)

By substituting the value of ®(µ) given in the previous lemma, one ob-
tains:

g(µ) =

�
2p0(µ)p¡1(µ)

2p0(µ) + (1¡ µ)p¡1(µ)

¸
ln' (19)
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We have thus proved the following lemma:

Lemma 2 For any µ 2 [0; 1] the growth rate at the the steady state of the
economy g(µ) is given by (19). It is an increasing function of both the R&D
e¤ort p¡1(µ) of a follower in an unleveled industry and the R&D e¤ort p0(µ)
of a neck-by-neck …rm in a leveled industry.

Note that for µ = 0; which corresponds to the step by step technological
progress situation where a follower must catch-up the leader before becom-
ing a leader itself, we obtain the same expression for the rate of growth as
in A.H.V.(1997) : g(0) = 2®(0)p0(0) ln' =

2p¡1(0)
2p0(0)+p¡1(0)

ln': So, g(0) is an
increasing function of p¡1(0) and a decreasing function of p0(0): Intuitively,
one expects that p¡1(0) decreases and p0(0) increases with the degree of
competititive pressure, so that the e¤ect of competition on g(0) is a-priori
ambiguous. For µ = 1; which corresponds to the weak leapfrogging situa-
tion, where a successful follower obtains a technological leadership, we have
®(1) = 0 and thus g(1) = p¡1(1) ln': In this case, the rate of growth is
directly proportional to the follower e¤ort in R&D. Intuitively, one expects
that p¡1(1) is an increasing function of the degree of competitive pressure.We
return to these two points later.

We have now to compute the solution of the non linear system (8¡13): 2

In what follows, we solve this system for a quadratic speci…cation of the
R&D cost function °(p); having in mind the two following questions:

1. How the rate of growth of the economy is a¤ected by the parameter µ
which de…nes the degree of leapfrogging ?

2. How the innovative process and the growth of the economy are a¤ected
by the degree of competitive pressure between the two …rms, given that
rivalry occurs both on the product market and on the innovation side?

2Note that a solution of this system exists if the R&D cost function is continuous
and convex. To get a sketch of the proof of this existence, consider the vector X =
(p¡1; p0; p1; V¡1; V0; V1) and write the system (8¡13) as F (X) = 0, where F is a continuous
and convex function from R6+ to R6: Choose a convex compact set B ½ R6+ su¢ciently
large to insure that F is de…ned in B and have values in B. Now, consider the function
G(X) = F (X) + X: By the Brouwer …xed point theorem, there exists a value of X such
that G(X) = X. Such a value of X is a solution of the system (8 ¡ 13).
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4 The solution for a quadratic R&D cost func-
tion

Suppose that the R&D cost function is given by: '(p) = 1
2
dp2: After tedious

but straightforward substitutions, the system (8 ¡ 13) leads to a system of
two equations having the variables p0(µ) and p¡1 (µ) as solutions:

2rp0 + (1 + 2µ)(p0)
2 + 2µ (p¡1)

2 ¡ 2µ2p0p¡1 ¡ 2a=d = 0 (20)

2r(p¡1 ¡ µp0)¡ (1 + 2µ)(p0)2 + (p¡1)2 + 2p0p¡1 ¡ 2b=d = 0 (21)

In order to simplify we consider the case r = 0: Let us introduce the
parameters a = ¼1 ¡ ¼0 and b = ¼0 ¡ ¼¡1 which play an important role in
what follows. These parameters measure the pro…t ‡ow increments associ-
ated, respectively, with gaining the lead and catching up. They are directly
associated to the short term determinants of the industry evolution (Budd,
Harris and Vickers (1993)). The values of these parameters depend on '
and on the nature of product market competition (for instance Cournot vs.
Bertrand competition). Any model of imperfect competition leads to the fol-
lowing relationships: a > b ¸ 0: Moreover and more important, these pro…t
‡ows increments are monotonic functions of the intensity of competition in
the product market, whatever one de…nes this intensity : a is increasing, b
is decreasing and a + b is increasing with the intensity of competition3. By
transforming the preceding system, one obtains:

p0 =
2(a+ b)=d¡ (p¡1)2(1 + 2µ)

2p¡1(1¡ µ2) (22)

3The comparison between Cournot and Bertrand competition illustrates these results.
With Cournot competition in the product market, one obtains aCournot = ( '

1+'
)2 ¡ 1

4

and bCournot = 1
4 ¡ 1

(1+')2 : With Bertrand competition, the corresponding values are

aBert rand = '¡1
' and bBert rand = 0: One can verify immediately the following implications:

' > 1 ) aCournot < aBert rand; bCournot > bBert rand, (a + b)Cournot < (a + b)Bert rand;
aBert rand > (a + b)Cournot > aCournot:
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p¡1 =
(1 + 2µ)2(p0)

2 ¡ 2(a¡ 2µb)=d
2µ(µ + 2)p0

(23)

Finally, after substituting the value of p¡1 in p0; we obtain a fourth order
polynomial whose p0 is the root. The corresponding equation has the form :

A(p0)
4 +B(p0)

2 + C = 0 (24)

where:

A = d2(¡1¡ 16µ ¡ 44µ2 ¡ 32µ3 + 4µ4 + 8µ5) (25)

B = d(4a+ 32aµ ¡ 8bµ + 24aµ2 ¡ 32bµ2 ¡ 16bµ3 + 8bµ4) (26)

C = ¡4a2 + 16abµ ¡ 16b2µ2 (27)

The fourth order equation (29) can be solved in p0. We keep only the
positive root p0 for which the value of p¡1, given by (28) is also positive. How-
ever, rather than work with complex analytic expressions, we use di¤erent
simulations for di¤erent values of the parameters.

In order to examine the e¤ects of µ, we take …rst the following values of
the parameters a = 3; b = 0:1; d = 2 and ' = e. Table 1 gives the values of
p0(µ); p¡1 (µ) ; ®(µ); and g (µ) for di¤erent values of µ in [0; 1] with a grid of
1/10.
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µ p0(µ) p¡1(µ) ® (µ) g(µ)
0 1:7321 0:7378 0:1756 0:6082
1=10 1:5558 0:7734 0:1828 0:6320
2=10 1:4225 0:8038 0:1844 0:6556
3=10 1:3188 0:8311 0:1807 0:6809
4=10 1:2365 0:8566 0:1721 0:7092
5=10 1:1703 0:8812 0:1584 0:7416
6=10 1:1168 0:9058 0:1396 0:7794
7=10 1:0735 0:9311 0:1151 0:8239
8=10 1:0389 0:9575 0:0844 0:8767
9=10 1:0118 0:9858 0:0464 0:9400
1 0:9915 1:0165 0 1:0165

Table 1: The values of p0(µ); p¡1 (µ) ; ®(µ); and g (µ)
for the following values of the parameters:

a = 3; b = 0:1; d = 2; ' = e; r = 0:

Di¤erent other values of the parameters have been tested and they all
give rise to the same qualitative results as those which appear in table 1.
They are summarized in the following proposition:

Proposition 3 Suppose that the R&D cost function is quadratic, °(p) =
1
2
dp2: For small values of the interest rate r; the R&D e¤ort p0 (µ) by a neck-

by-neck …rm decreases with µ; while the R&D e¤ort p¡1(µ) by a follower
increases with µ: The graph of p¡1(µ) intersects the graph of p0(µ) from below
and, as µ goes to 1; p¡1(µ) becomes higher to p0 (µ) : The proportion ® (µ) of
industries that are head-to head in the steady state has an inverted U-form. It
…rst increases with µ for small values of µ, then it decreases with µ; becoming
equal to 0 for µ = 1: The rate of growth g(µ) increases with µ:

Two messages emerge from this proposition. The main one is quite intu-
itive: an increase of the probability µ of leapfrogging by a laggard …rm leads
to an increase of the growth rate g (µ) of the economy. The importance of
this e¤ect is illustrated in table 1: the growth rate increases by more than
40% when µ increases from 0 to 1. The second message is that the R&D e¤ort
of a follower overruns the R&D e¤ort of a neck by neck …rm for su¢ciently
high values of µ: This illustrates the importance of the role of technological
followers in the innovation process.
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In order to analyze the e¤ect of competitive pressure on the intensity of in-
novation and on the rate of growth, we begin by examining what happens for

µ = 1: From (25) and (26), one obtains directly the values of p¡1(1) =
2

q
2(a+b)
3d

and p0(1) = 1
3

�
2

q
2(a+b)
3d

+ 2

q
2(a¡5b)
3d

¸
. These two R&D e¤orts increase with

the degree of competition on the product market, since a = ¼1 ¡ ¼0 is an in-
creasing function of of the intensity of competition, b = ¼0¡¼¡1 is a decreas-
ing function of competition and a+ b = ¼1¡¼¡1 increases with competition.
Thus, in the weak leapfrogging situation, the intensity of the innovation pro-
cess, measured by the values of the R&D e¤orts p0(1) and p¡1(1); increases
with the intensity of competition in the product market . Moreover, since
the rate of growth for µ = 1 is given by g(1) = p¡1(1) ln'; (see (19)); it
appears that the economy’s rate of growth in the weak leapfrogging situation
(µ = 1) is also an increasing function of the intensity of competition in the
product market4. The intuition is clear. By substituting to the usual strong
leapfrogging assumption, according to which an industry is always monopo-
lized by the last innovator, a more realistic one which allows both a laggard
and a lead-up …rm to coexist at any time, one opens the way for the analysis
of the link between competition in the product market and growth. In the
weak leapfrogging situation, more competition in the product market gives
to the follower more incentives to invest in R&D, in order to leapfrog the
leader, leading thus to a higher rate of growth.

What happens for other values of µ5? Let us introduce a parameter x
measuring the intensity of competition in the product market, with 0 � x �
1;such that higher values of x correspond to higher intensity of competition.
Let us take for instance as a parametrization of the pro…t ‡ow increments

4The same e¤ect is obtained with a linear R&D cost function, and this con…rms the
robustness of the result.

5For µ = 0; we obtain easily from (25) and (26) ; p0(0) = 2

q
2a
d

and p¡1(0) = 2

q
2(2a+b)

d
¡

2

q
2a
d : Thus, the rate of growth g(0) = 2p0(0)p¡1(0)

2p0(0)+p¡1(0) ln' (from (19)) is equal in this case to

g(0) =
2 2
p

4a(2a+b)¡4a
2p

d( 2p2a+b+ 2p2a)
ln': A.H.V.(1997) compare in this case the growth rates obtained

with Bertrand and Cournot competition in the product market. In order to do that, it is
su¢cient to replace a and b with their corresponding values (depending on ') obtained
in these two types of competition (see footnote 3). The …nding is that gBert rand (0) >
gCournot (0) if ' < 7:26: Thus, unless ' is large, the growth rate for µ = 0 is higher with
Bertrand than Cournot, which means that a higher degree of rivalry leads to a higher
growth rate.
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the two following linear functions a(x) = 3(x + 1) and b(x) = 2(1¡ x): For
a soft competition in the product market, as described for instance by the
Cournot behavior (x = 0); we have a(0) = 3 and b(0) = 2, while for a tough
competition as described for instance by the Bertrand behavior (x = 1),
we have a(1) = 6 and b(1) = 0: The following …gures give the graphs of
respectively p0 (µ), p¡1 (µ) ; ® (µ) ; and g(µ) where µ appears in the horizontal
axis. In each …gure, the graphs are plotted for the two extreme values x = 0
and x = 1: The value of the parameter d is normalized to 1:

The …rst graph (…gure 2) depicts p0 (µ). The upper curve corresponds to
x = 1 and the lower curve to x = 0: It appears clearly that a higher intensity
of competition in the product market leads to a higher R&D e¤ort of a neck
by neck …rm in a leveled industry. Moreover the gap between p0 (µ) for x = 1
and p0 (µ) for x = 0 increases with µ:

In the second graph (…gure 3), the curves of p¡1 (µ)corresponding to x = 1
and to x = 0 intersect for some value of µ in [0; 1] : For small values of µ;
the curve corresponding to x = 1 is below the curve corresponding to x = 0:
It appears that it is only for high values of µ that a higher intensity of
competition in the product market leads to a higher R&D e¤ort of a laggard
…rm. This result is important. It asserts that it is only when the probability
to leapfrog is su¢ciently high that the intensity of the competition in the
product market gives a higher incentive to innovate in order to escape from
competition.

In the third graph (…gure 4), the curve ® (µ) corresponding to x = 1 is
below the curve ® (µ) corresponding to x = 0 for all values of µ: Thus, a higher
intensity of competition in the product market leads to a lower proportion
of leveled industries in the stationary state. Equivalently, this means that
the proportion of industries of the leader-follower type increases with the
intensity of competition in the product market.

Finally, in the thourth graph giving g (µ) (…g 5), the curve corresponding
to x = 1 is above the curve corresponding to x = 0 for all values of µ. This
means that a higher intensity of competition in the product market leads
to a higher growth rate in the stationary state and the contribution of the
competition to the growth rate is all the more important since the probability
to leapfrog µ is high.

All these results are summarized in the following proposition
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Figure 2: The R&D e¤ort p0(µ) of a neck by neck …rm according to 2 values
of the competitive pressure x = 0 and x = 1
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Figure 3: The R&D e¤ort p¡1(µ) of a laggard …rm according to 2 values of
the competitive pressure x = 0 and x = 1
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Figure 4: The proportion ® (µ) of leveled industries according to 2 values of
the competitive pressure x = 0 and x = 1
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Figure 5: The growth rate g (µ) according to 2 values of the competitive
pressure x = 0 and x = 1
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Proposition 4 An increase in the intensity of competition leads to a higher
R&D e¤ort p0 (µ) by a neck-by-neck …rm for all values of µ, to a higher
R&D e¤ort p¡1(µ) by a follower only when µ:is su¢ciently high, to a lower
proportion ® (µ) of industries that are head-to head in the steady state, and
to a higher growth rate g(µ) of the economy.
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