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1. INTRODUCTION

 

This paper is originally motivated by a topical issue in the television market. We analyze the issue 

using a bargaining model that has elements not considered before. The theoretical framework we 

develop here is useful in addressing similar issues in other markets such as the movie and pharma-

ceutical markets. 

The Cable Television Consumer Protection and Competition Act of 1992 (Cable Act of 1992 

hereinafter) allowed a broadcaster to demand compensation from the cable operator that carries 

the broadcaster’s signal.
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 Before this legislation, a cable operator could freely retransmit pro-

grams which were initially broadcast over the air. 

One interesting issue is whether there are gains from forming coalitions among cable system 

operators across local markets. Conventional wisdom in the industry’s trade press is that large 

downstream buyers have a bargaining advantage over smaller ones. Furthermore, there is empiri-

cal support for the claim that downstream concentration is negatively correlated to upstream prof-

itability.
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 In the same vein, authors such as Waterman (1996) and Chipty (1994) have argued, 

without proving it, that multiple cable system operators (or MSOs) have an advantage over unin-

tegrated cable system operators in negotiations with broadcasters. Policy makers also seem to be 

concerned about the “market power” of integrated cable systems. For instance, the Cable Act of 

1992 orders the Federal Communications Commission to establish a reasonable limit on the num-

ber of subscribers an MSO can reach.
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 Similar concerns led to some antitrust cases regarding the 

 

1. Chae (1996) analyzes the consequences of this legislation using a bargaining model. 
2. See, for instance, the business press and empirical literature cited in Chipty and Snyder (1999). 
3. Congress of the United States (1992), Section 11(c).
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across-local-market integration of local distributors in other industries, such as movie theater 

chains.

It is not clear, however, that MSOs have any advantage. Even though some bargaining models 

generate gains from forming coalitions in certain environments,
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 there is no bargaining theory we 

are aware of that explains the advantage of integration across 

 

independent

 

 markets. In this paper, 

we consider two initially separate local markets and investigate the effect of integration between 

two players on the same side of the two markets, say the cable operators. 

The integrated cable operator or the MSO bargains with the broadcasters in the two markets 

simultaneously. We adapt the Nash bargaining solution to this “parallel” bargaining problem. In 

effect, we generalize the Nash solution in two separate directions. First, we generalize it to a situ-

ation where one party is a coalition of two players. Second, we generalize it to a situation where 

one party bargains with opponents on two fronts. 

Regarding the generalization of the Nash solution to a situation where one party is a coali-

tion, our approach differs from existing models. Existing models either assume that the coalition’s 

preferences are the same as those of an agent to whom the negotiation is delegated
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 or assume that 

the coalition’s preferences are the same as those of a representative player (assuming that all play-

ers in the coalition have the same preferences).
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 By contrast, we assume that the coalition’s pref-

erences are aggregated from its members’ preferences. One consequence of adopting this 

approach is that we cannot in general employ the standard method of obtaining the Nash bargain-

 

4. See, for example, Horn and Wolinsky (1988a, 1988b) and Jun (1989).
5. See the literature on strategic delegation referenced, for instance, in Segendorff (1998). 
6. See, for example, Jun (1989).
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ing solution as the maximum of the product of utility functions. Thus we need to keep track of 

underlying preferences in order to arrive at plausible solutions. 

The solution depends on the contract within the coalition of cable operators. We consider two 

types of the internal contract, one where they can costlessly write a binding contract and the other 

where no commitment on how to split future payoffs between the members of the coalition is pos-

sible. We show, for each type of contract, that the across-market integration is profitable under 

certain conditions. 

There are two intuitive explanations for the results. First, when the integrated party negotiates 

with each of the other parties, it takes the outcome of the bargaining with the other party as given. 

This increases the integrated party’s fall-back position. To the extent that this makes the integrated 

party bolder in bargaining, it increases its share. This explanation can be called the 

 

fall-back posi-

tion effect

 

. Second, splitting the risk of a breakdown between two members of a coalition can 

make both of them bolder. This increases the coalition’s share. This explanation can be called the 

 

risk-sharing effect

 

. 

If we define 

 

bargaining power

 

 as the relative advantage of a player due to certain characteris-

tics of the player or bargaining environments, we may say that forming a coalition increases bar-

gaining power. If we define 

 

market power 

 

as one’s ability to affect market prices to one’s 

advantage, the results of this paper support the view that across-local-market integration increases 

market power. In our model, the increase in the market power is due to an increase in bargaining 

power. 
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The model and results of this paper are useful in analyzing similar problems in other indus-

tries: Can movie theaters increase their bargaining power against movie producers by forming 

movie theater chains? Can hospitals increase their bargaining power against pharmaceutical com-

panies by forming hospital alliances? 

In  Section 2, we introduce the concept of 

 

risk concession

 

 based on Zeuthen (1930)’s pioneer-

ing work. We then define the Zeuthen-Nash solution in terms of marginal risk concessions. Sub-

section 3.1 then extends the framework to the case of an integrated player bargaining in two 

markets. In Subsection 3.2, we solve this parallel bargaining problem for the case where no-com-

mitment is possible in the within-coalition contract. Then we identify conditions under which the 

members of the coalition gain from integration. In Subsection 3.3, we solve the parallel bargain-

ing problem for the case where the members of the coalition can write a binding within-coalition 

contract. Under the additional assumption that agents are risk averse, we show that integration is 

profitable if certain aggregation conditions are met. Section 4 provides the conclusion.
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2. PRELIMINARIES ON THE BARGAINING SOLUTION

 

 In order to be able to generalize the Nash solution to a bargaining situation involving a coali-

tion, we need to identify the defining characteristic of the solution which is generalizable. In the 

risk-preference framework, the Nash solution is equivalent to the solution proposed by Zeuthen 

(1930). The latter is defined as follows: If there are two different positions currently maintained 

by two negotiating parties, each party has a maximum probability such that the party is willing to 

risk the probability of a breakdown by insisting on her current position rather than accepting the 

other party’s position. A party whose maximum such probability is not greater than the other’s has 

to make some concession. Thus, the negotiation stops at a single point where the two probabilities 

are both equal to zero. Even though Nash introduced his solution by certain axioms requiring 

some desirable properties of the solution in the utility space, it turns out that Zeuthen’s solution 

yields the Nash solution in the utility space if the preferences of the negotiating parties are repre-

sented by expected utility functions.

 

7

 

 

In this paper, we will use Zeuthen’s idea to generalize the Zeuthen-Nash solution to situations 

involving a coalition. In a pie-splitting problem, the Zeuthen-Nash solution equalizes what we call 

the “marginal risk concessions” of two players. Thus we will need to define the marginal risk con-

cession of a coalition in order to prescribe a solution for a situation where at least one of the nego-

tiating parties is a coalition of players. This will be done in the next section.

We will introduce preferences over lotteries in Subsection 2.1. Using the preferences rather 

than utilitities, we will briefly (but carefully) look at a standard two-person bargaining problem 

 

7.  This was shown by Harsanyi (1956).
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and its Zeuthen-Nash solution in Subsection 2.2. Even though this section does not contain any 

significant new result, it cannot be dispensed with, for it provides the framework, terminology, 

and notation to be used in the next section. Note that a bargaining problem where one party is a 

coalition cannot in general be analyzed using utility functions because a coalition’s behavior can-

not be attributed to a utility function. One useful analogy would be the aggregation problem in 

demand theory: aggregate demand may not be generated by a utility function. Thus the Nash solu-

tion in the utility framework, which is equivalent, in the standard case, to the Zeuthen-Nash solu-

tion in the preference framework presented in this section, cannot be used in general to study the 

behavior of a coalition.

There is another direction in which we need to generalize the Zeuthen-Nash solution in order 

to be able to analyze a bargaining situation involving a coalition. In certain situations, a coalition 

may be able to write an internal contract to divide up the spoil from bargaining with another party. 

Since this external bargaining can result in an agreement or a breakdown, the internal contract has 

to specify how the spoil is divided for each contingency. Thus, during the internal bargaining pro-

cess, the members of a coalition face the problem of bargaining over a contingent pie. We will 

generalize the Zeuthen-Nash solution to this contingent-pie problem by requiring that the players 

optimally share risks across different states of nature. This will be done in Subsection 2.3.

 

 2.1.

 

 Preferences over lotteries

 

A lottery , where  is the set of nonnegative real numbers, is a discrete 

probability function: there exist  such that  and  

if . The lottery space, denoted 

 

L

 

(

 

R

 

+

 

), is the set of all lotteries equipped with the 

l : R+ 0 1,[ ]→ R+

x1 … xn R+∈, , l x1( ) … l xn( )+ + 1= l x( ) 0=

x x1 … xn, ,{ }∉
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following operation: for any  and , the lottery 

:  is defined by 

 for any . 

As is well known, the lottery space is a convex linear space, that is, satisfies the following 

properties
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:

 

L1. 
L. 
L3.

 

 

We will identify a number  with a sure lottery  such that .

 

9

 

 A 

player has a complete and transitive preference relation 

 

Ý

 

 on the lottery space that satisfies the 

following three axioms:

 

Assumption 1 (Smoothness).   

 

 If 

 

m

 

 

 

Þ

 

 

 

l

 

 

 

Þ

 

 

 

n

 

, where 

 

m

 

 

 

B

 

 

 

n

 

, there exists a unique number

 

 

 

 

such that

 

(i) ,

(ii) Let  

 

for 

 

. 

 

Then 

 

 

 

is a smooth function of 

 

x

 

 such 

that . 

 

Assumption 2 (Independence).       

 

If , then for any 

 

m

 

 and any ,

 

 

 

8. See Herstein and Milnor (1953).
9.  We will use the notation  only if it is necessary to make the conceptual distinction between 

 

x

 

 and .

l m, L R+( )∈ p 0 1,[ ]∈

p l• 1 p–( ) m•⊕ R+ 0 1,[ ]→

p l• 1 p–( ) m•⊕( ) x( ) p l x( )⋅ 1 p–( ) m x( )⋅+= x R+∈

1 l• 0 m•⊕ l=

p l• 1 p–( ) m•⊕ 1 p–( ) m• p l•⊕=

q p l• 1 p–( ) m•⊕( )• 1 q–( ) m•⊕ qp( ) l• 1 qp–( ) m•⊕=

x R+∈ x̃ L R+( )∈ x̃ x( ) 1=

x̃ x̃

h l m n, ,( ) 0 1,[ ]∈

l h l m n, ,( ) m 1 h l m n, ,( )–{ }⊕• n•∼

ĥ x m n, ,( ) h x̃ m n, ,( )= x R+∈ ĥ x m n, ,( )

∂ĥ
∂x
------ x m n, ,( ) 0>

l l ′∼ p 0 1,[ ]∈
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.

Assumption 3 (Monotonicity).       If  (where ), then  B .

It is well known that an expected utility function exists under the assumptions of continuity 

and independence. Replacing continuity with smoothness yields a stronger set of axioms, and thus 

an expected utility function exists under our assumptions. We introduce the smoothness assump-

tion because we need it to define the concept of marginal risk concession.10 A la Herstein and Mil-

nor (1953), we can represent a player’s preferences by a utility function.

 Proposition 1.    There exists a unique function V:  that satisfies 

, and 

(i) l B m if and only if V(l) > V(m),

(ii) ,

(iii) Put  for . Then  is a smooth function of x such that  

for x > 0.

The proof of the proposition is similar to Herstein and Milnor’s (1953) and thus will be omit-

ted here. One may call the function V the von Neumann-Morgenstern utility function over lotter-

ies and the function v the von Neumann-Morgenstern utility function over prizes. It is obvious that 

if lÝ 1 then , and if l B 1 then .

10. A smooth function is one that is differentiable as many times as one wants. For the results of this paper, 

it is sufficient that the function  is three times differentiable with respect to .

p l• 1 p–( ) m•⊕ p l ′• 1 p–( ) m•⊕∼

x y> x y R+∈, x̃ ỹ

ĥ x m n, ,( ) x

L R+( ) R→

V 0( ) 0 V 1( ), 1= =

V p l• 1 p–( ) m•⊕( ) pV l( ) 1 p–( )V m( )+=

v x( ) V x̃( )= x R+∈ v x( ) v′ x( ) 0>

V l( ) h l 1 0, ,( )= V l( ) 1 h 1 l 0, ,( )⁄=
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In order to understand the concept of risk concession, which will be introduced in the next 

subsection, it is necessary to study the certainty equivalent of a lottery. 

 Definition 1.    The certainty equivalent of a lottery  is a sure payoff 

 that satisfies .

The proofs of propositions in this section that are not trivial and not provided in the text, 

including the proof of the proposition below, can be found in Appendix A.

 Proposition 2.    Let y B z. Then  is a smooth function of p such that 

.

 2.2. Two-person bargaining problem

 Definition 2.    A bargaining problem , where  and , 

is a situation where two players  split a pie of size  if they can agree on their shares, and 

receive the breakdown payoffs  otherwise.

In order to introduce the solution to the bargaining problem, we first need to focus on some 

properties of preferences. For simplicity, we will drop the subscripts for players until we need 

them. 

During the process of bargaining, a player typically faces a gamble 

, where x + d ( ) is her payoff in the event of an agreement, d ( ) 

p y• 1 p–( ) z•⊕

s p y z, ,( ) R+∈ s p y z, ,( ) p y• 1 p–( ) z•⊕∼

s p y z, ,( )

p∂
∂s

p y z, ,( ) 0>

i( j ), π di d j,( ), ,〈 〉 di d j, 0≥ π di d j+>

i( j ), π

di d j,( )

p x d+( )• 1 p–( ) d•⊕ d≥ 0≥
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is her payoff in the event of a breakdown, and  the breakdown probability.11 We will denote 

such a gamble simply by . 

 Definition 3.    The risk concession of a player facing a gamble  is the amount 

the player is willing to pay to avoid the chance of a breakdown. It will be denoted and defined as 

. 

 Definition 4.    The marginal risk concession of a player facing a pair of payoffs  is 

the rate of change in risk concession as the breakdown probability approaches zero:

.

It will be denoted .

 Proposition 3.   One has 

. 

Note that  is a smooth function of x and d. In addition to Assumptions 1-3, we 

make the following assumption throughout this paper:

Assumption 4.     is increasing in x for all x > 0.

11. Throughout this paper, we will use the term “gamble” for a lottery which is a probability mix of an 
agreement payoff and a breakdown payoff. 

1 p–

p x d+ d ), ,(

p x d+ d ), ,(

c p x d+ d, ,( ) x d s p x d+ d,,( )–+=

x d d,+( )

c p x d+ d ), ,(
1 p)–(

---------------------------------
p 1→
lim

µ x d d,+( )

µ x( d d,+ ) v x d+( ) v d( )–
v′ x d+( )

-------------------------------------=

µ x d+( d, )

µ x d d,+( )
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 Assumption 4 holds for a very general class of preferences. The class includes all preferences 

exhibiting risk aversion or risk neutrality. It also includes preferences that can be represented by 

utility functions with constant relative risk aversion.

 Proposition 4.    The marginal risk concession  is increasing in x > 0 if and only 

if  decreases in x > 0. 

That  Assumption 4 holds for all risk averse or risk neutral preferences, that is, those with 

, can be easily seen from Proposition 4, for 

.

That  Assumption 4 is also satisfied by all utility functions v with constant relative risk aversion is 

shown in  Appendix B. In particular, the concavity of the function  is not a necessary condi-

tion for  Assumption 4.

We will now define the Zeuthen-Nash bargaining solution in terms of players’ marginal risk 

concessions and state two properties of the Zeuthen-Nash solution that will be used in  Section 3.

 Definition 5.    The Zeuthen-Nash solution of a bargaining problem  is a 

vector  such that  and 

.

The Zeuthen-Nash solution will be denoted 

µ x d d,+( )

xd
d

v x d+( ) v d( )–( )log

v″( ) 0≤

x
2

2

d

d
v x d+( ) v d( )–( )log v′ ′ x d+( ) v x d+( ) v d( )–[ ] v′ x d+( )[ ] 2

–

v x d+( ) v d( )–[ ] 2
-----------------------------------------------------------------------------------------------------=

v x( )

i( j ), π di d j,( ), ,〈 〉

xi di xj d j )+,+( xi di xj d j π=+ + +

µi xi di di, ) µ j x j d j d j, )+(=+(
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.

 Proposition 5.    There exists a unique Zeuthen-Nash solution to the bargaining problem 

.

 Proposition 6.     is an increasing and smooth function of  for 

.

In the time-preference framework, Chae (1993) defines a Nash solution as a payoff vector 

equalizing “marginal impatience” among all players and establishes propositions analogous to the 

above two propositions. 

 2.3. Bargaining over a contingent pie

In Subsection 3.3, we need to deal with a bargaining situation where players bargain over a 

contingent pie whose size depends on the realized state of nature. Thus in this subsection, we will 

extend the analysis of the previous subsection to cover such a situation. For the analyses of 

Subsection 3.3, we will assume that players are risk averse, that is, they prefer the expected value 

of a gamble to the gamble itself. Thus we will make the same assumption in this subsection. 

Suppose that there are two states of nature,  and , which occur with probabilities  and 

, respectively. Two players have to agree on how to split the pie  in each state  

in order to avoid the chance of a breakdown. The contingent pie  is equivalent to the 

lottery , where we assume that there exists some division of  

N i( j ), π di d j,( ), ,〈 〉 Ni i( j ), π di d j,( ), ,〈 〉 N j i( j ), π di d j,( ), ,〈 〉( , )=

i( j ), π di d j,( ), ,〈 〉

Ni i( j ), π di d j,( ), ,〈 〉 π

i 1 2,=

σ τ q

1 q– πs
s σ τ,{ }∈

π πσ πτ,( )=

q πσ• 1 q–( ) πτ•⊕ π π σ πτ,( )=
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that both players prefer to their break-down payoffs. We define the bargaining problem over this 

contingent pie as follows:

 Definition 6.    A contingent-pie bargaining problem , where  

and there exist some contingent payoffs  such that Bi , Bj , and , is a 

situation where two players have to agree on how to split a contingent pie  in order to avoid a 

breakdown.

 Note that the breakdown position of each player is a non-contingent payoff. Without much 

loss of generality, we assume that players bargain over Pareto efficient splits of the contingent pie. 

That is, we require that in each state of nature the entire pie is split between the two players and 

that players share risks optimally across different states of nature. When players are risk averse, 

this entails that the marginal rates of substitution between different states of nature, as formally 

defined below, are equalized across players. 

For any  such that , define  for sufficiently small  by the follow-

ing indifference relation:

.

 The marginal rate of substitution for a fair gamble between x and y is defined and denoted by 

. It is obvious that . 

i( j ), π di d j,( ), ,〈 〉 di d j R+∈,

yi yj, yi di yj d j yi yj+ π=

π

x y R+∈, x y 0> > ξq δ( ) δ

q x• 1 q–( ) y•⊕ q x δ–( )• 1 q–( ) y ξq δ( )+( )•⊕∼

m x y,( ) ξ′ 1
2
---

0( )= m x y,( ) v′ x( ) v′ y( )⁄=
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Under the assumption of risk aversion, one can denote and characterize the set of Pareto effi-

cient splits of the contingent pie  as 

using player i ‘s contingent payoff to denote the split of the contingent pie. The set is a one-

dimensional manifold, that is, a smooth curve. Since the bargaining will break down if either 

player is not given a contingent payoff that will make her at least as well off as at the breakdown 

point, the relevant part of PE is the core 

C = { ;  Þi  and  Þj }.

In the Edgeworth Box of Figure 1, PE is the solid curve from the south-west corner to the north-

east corner, and C is the thick part. 

FIGURE 1

π πσ πτ,( )=

PE yi
σ

yi
τ,( );  q

1 q–
------------mi yi

σ
yi

τ,( ) q
1 q–
------------mj πσ

y– i
σ

πτ
y– i

τ
,( )=

 
 
 

=

yi
σ

yi
τ,( );  mi yi

σ
yi

τ,( ) mj πσ
y– i

σ
πτ

y– i
τ

,( )=
 
 
 

,=

yi PE∈ yi di π yi– dj

πτ

yi
σ

yi
τ

πσ
di

di

d j

d j
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 Proposition 7.   Suppose . If  then .

During the process of bargaining over a contingent pie , a player typically faces 

a gamble , where  is her contingent payoff in the 

event of an agreement, di ( ) her payoff in the event of a breakdown, and  the breakdown 

probability. For simplicity, we will denote such a gamble by . Note here that the contin-

gent payoff  is equivalent to the lottery . 

As was the case in the bargaining problem over a non-contingent pie, the extent to which a 

player is willing to concede in order to avoid the chance of a breakdown plays an important role in 

finding the solution for a bargaining problem over a contingent pie. In order to formalize this 

notion, we have to first introduce the analogue of certainty equivalent. 

 Definition 7.    For any gamble  where , the break-

down-free contingent payoff is defined as a contingent lottery 

 that satisfies

,

i.e.,

yi yi
ˆ, C∈ yi

σ
ŷi

σ> yi
τ

ŷi
τ>

π πσ πτ,( )=

p yi• 1 p–( ) di•⊕ yi xi
σ

di+ xi
τ

di+,( )=

0≥ 1 p–

p yi di ), ,(

yi q xi
σ

di+( )• 1 q–( ) xi
τ

di+( )•⊕

p yi di ), ,( yi xi
σ

di+ xi
τ

di+,( )= C∈

si p yi di ), ,( si
σ

p yi di ) si
τ

p yi di ), ,(,, ,(( )= C∈

si p yi di ), ,( p yi• 1 p–( ) di•⊕∼

q si
σ

p yi di ), ,(• 1 q–( ) si
τ

p yi di ), ,(•⊕
p q xi

σ
di+( )• 1 q–( ) xi

τ
di+( )•⊕{ }• 1 p–( ) di• .⊕

∼
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 Definition 8.    The risk concession of a player facing a gamble , where , is 

the amount, along the core, of contingent payoff the player is willing to pay to avoid the chance of 

a breakdown. It will be denoted and defined as 

. 

 Definition 9.    The marginal risk concession along the core, of a player facing a pair , 

where , is the rate of change of the risk concession as the breakdown probability 

approaches zero:

.

It will be denoted . 

The marginal risk concession is well defined because, under the assumption of risk aversion, 

C is a smooth curve. 

 Proposition 8.   One has

,

,

p yi di ), ,( yi C∈

ci p yi di ), ,( yi si p yi di ), ,(–=

yi di,( )

yi C∈

ci p yi di ), ,(
1 p)–(

----------------------------
p 1→
lim

ci
σ

p yi di ), ,(
1 p)–(

------------------------------
p 1→
lim

ci
τ

p yi di ), ,(
1 p)–(

-----------------------------
p 1→
lim,

 
 
 

=

µi yi di,( ) µi
σ

yi di,( ) µi
τ

yi di,( ),( )=

µi
σ

yi di,( )
qvi yi

σ( ) 1 q–( )vi yi
τ( ) v–+ i di( )

vi ′ yi
σ( ) q 1 q–( )

vi ′ yi
τ( )

vi ′ yi
σ( )

----------------
dyi

τ

dyi
σ---------⋅+

 
 
 

---------------------------------------------------------------------------------=

µi
τ

yi di,( )
qvi yi

σ( ) 1 q–( )vi yi
τ( ) v–+ i di( )

vi ′ yi
τ( ) q

vi ′ yi
σ( )

vi ′ yi
τ( )

----------------
dyi

σ

dyi
τ--------⋅ 1 q–( )+

 
 
 

--------------------------------------------------------------------------------=
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 where  is the slope (and  its inverse) of the C curve at .

Now we can introduce the Zeuthen-Nash solution for a contingent-pie bargaining problem.

 Definition 10.    The Zeuthen-Nash solution to a contingent-pie bargaining problem 

 is a vector , where , that satisfies the following equation:

.

To prove existence and uniqueness of the Zeuthen-Nash solution for a contingent-pie bar-

gaining problem, the following definition is useful:

 Definition 11.   The marginal risk concession in terms of sure payoff in state  of a player 

facing a pair  is defined and denoted as

.

 measures the rate of change of the amount, measured in terms of sure payoff in 

state , player i is willing to give up in order to avoid the chance of a breakdown as the break-

down probability approaches zero. 

 Proposition 9.    if and only if .

dyi
τ

dyi
σ⁄ dyi

σ
dyi

τ⁄ yi
σ

yi
τ

( , )

i( j ), π di d j,( ), ,〈 〉 yi π yi–,( ) yi C∈

µi yi di, )( µ j π yi– dj, )(=

σ

yi di,( )

µ̂i
σ

yi di, )(
qvi yi

σ( ) 1 q–( )vi yi
τ( ) v–+ i di( )

vi ′ yi
σ( )

----------------------------------------------------------------------------=

µ̂i
σ

yi di, )(

σ

µi yi di, )( µ j π yi– dj, )(= µ̂i
σ

yi di, )( µ̂ j
σ π yi– dj, )(=
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 Proposition 10.    is increasing in  along the C curve.

 Proposition 11.    If both players are risk averse, there exists a unique Zeuthen-Nash solu-

tion for the contingent-pie bargaining problem .

In the non-contingent pie case, the Zeuthen-Nash solution is often motivated as the limit of 

the Rubinstein solution, which is the unique subgame perfect equilibrium outcome of a strategic 

bargaining model.12 Since we introduced the contingent-pie bargaining problem in this subsec-

tion, it is perhaps our duty to provide a similar motivation for the Zeuthen-Nash solution for this 

case. In  Appendix C, we will introduce the Rubinstein solution for our contingent-pie bargaining 

problem and show that the Rubinstein solution equalizes the risk concessions of the two players. 

Since the Zeuthen-Nash solution equalizes the marginal risk concessions of the two players, one 

can see easily that the Zeuthen-Nash solution is the limit of the Rubinstein solution as the break-

down probability goes to zero. 

In  Appendix D, we relate the above definition of the Zeuthen-Nash solution for a contingent-

pie bargaining problem to the standard definition representing players’ preferences by von Neu-

mann-Morgenstern utility functions as in Nash (1950). 

12. Rubinstein’s alternating-offer model in the time-preference framework can be converted to a similar 
model where after every offer there is an exogenous probability that the game ends. This setup replaces 
the time cost of rejecting an offer by the risk that the game may terminate. See Binmore, Rubinstein, and 
Wolinsky (1986). 

µ̂i
σ

yi di, )( yi

i( j ), π di d j,( ), ,〈 〉
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3. PARALLEL BARGAINING

In this section, we will investigate the consequences of integrating one type of players across 

different markets. Consider two separate bilateral monopoly markets A and B. As a leading exam-

ple, we will consider markets where broadcasters and cable operators negotiate over the terms of 

carrying broadcast channels on cable systems. In market A, cable TV operator a and broadcaster 

 bargain over the split of , their net gain from carrying the broadcast channel on the cable 

system. In market B, cable TV operator b and broadcaster  bargain over the split of their surplus 

. In the event of a breakdown of bargaining, the profit position of player i (= a, , b, ) is . 

Formally, we have two parallel bargaining problems  and 

. 

In the benchmark case where players in markets A and B are independent firms, we posit that 

the solutions to the bargaining problems in markets A and B are the Zeuthen-Nash solutions 

 and , where we have, without loss of generality, nor-

malized the initial fall back positions to be zero. 

In what follows, we will investigate how the integration of cable operators across the two 

markets affects their and the broadcasters’ payoffs. The integration pits the coalition of cable 

operators against the broadcasters of markets A and B as illustrated in Table I. 

â πA

b̂

πB
â b̂ di

a â,( ) πA
da dâ,( ), ,〈 〉

b( b̂), πB
db d

b̂
,( ), ,〈 〉

N a( â) πA
0 0,( ), , ,〈 〉 N b( b̂) πB

0 0,( ), , ,〈 〉
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In order to analyze bargaining between a coalition and its opponents on two fronts, we need 

to modify the above solution in two different directions. First, we need to specify how the bargain-

ing in one market affects the bargaining in another market. In this regard, we imagine a situation 

where the two bargaining problems are settled simultaneously rather than sequentially and assume 

that when players bargain in one market, they take the outcome of bargaining in the other market 

as given. Second, we need to extend the definition of the Zeuthen-Nash solution to a bargaining 

problem between a coalition and a player. Since the Zeuthen-Nash solution is one where the mar-

ginal risk concessions of two players are equalized, we will have to define the marginal risk con-

cession of a coalition. This will be defined essentially as the sum of the marginal risk concessions 

of the two members of the coalition. This makes sense because the risk concession of the coalition 

measures how much the coalition is willing to give up to avoid the chance of a breakdown, and the 

amount the coalition is willing to concede will be quite naturally the sum of the amounts the 

members of the coalition are willing to concede. We emphasize here that our notion of risk con-

cession is a natural extension of Zeuthen’s idea. 

TABLE I

before inte-
gration

after inte-
gration

market A

market B

a â↔ a b,{ } â↔

b b̂↔ a b,{ } b̂↔
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 3.1. Simultaneous Zeuthen-Nash solution

We will denote the coalition of cable operators {a, b} simply by c. If the bargaining between 

the coalition and an opponent breaks down, the coalition receives a payoff . If the bargaining 

ends in an agreement, the coalition receives a payoff .

In general, the marginal risk concession of a coalition will be defined as the sum of the mar-

ginal risk concessions of the two members of the coalition. In order to measure the marginal risk 

concession of each member of the coalition, however, one needs to know how both  and 

 are split between a and b. 

Regarding the mechanism to divide a given pie between the two members of the coalition, we 

will consider two alternative scenarios. In the first scenario, we assume that the cable operators, 

when they are contemplating whether to form a coalition, cannot commit themselves to any divi-

sion of the coalition’s share of the pie. In this scenario, we are assuming in effect that it is either 

impossible or prohibitively costly to write a binding contract between the cable operators. In the 

second scenario, we assume that the cable operators, when they are contemplating whether to 

form a coalition, can make a binding agreement on how to split the coalition’s share. 

Denote the division scheme under either scenario by . The scheme has to spec-

ify the shares of a and b in both the agreement and breakdown states. Denote the agreement and 

breakdown states by  and , respectively. Then 

,

where 

dc

xc dc+

xc dc+

dc

S xc dc dc,+( )

σ τ

S xc dc dc,+( ) Sa xc dc dc,+( ) Sb xc dc dc,+( ),( )=



22

 for .

Obviously, one has 

 for i = a, b,

.

We assume that

 and  are smooth for i = a, b,

 for i = a, b.

The precise form of the division scheme  under each scenario will be introduced in 

Subsections 3.2 and 3.3. 

 Definition 12.    Given a division scheme , the marginal risk concession of a 

coalition is defined as

The rationale behind the definition is as follows: The marginal risk concession of the coali-

tion measures how much the coalition is willing to give up to avoid an infinitesimal chance of a 

breakdown, and the amount the coalition is willing to concede will be quite naturally the sum of 

the amounts the members of the coalition are willing to concede. 
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There is another interesting way of interpreting the above definition. Suppose for the moment 

that bargaining is delegated to one member of the coalition, say player i (= a, b). In this case, the 

appropriate definition of the marginal risk concession of the coalition turns out to be

,

for this is what is equalized to the marginal risk concession of the coalition’s opponent, 

, in the natural extension of the Zeuthen-Nash solution to this case. Indeed, we 

show in  Appendix E that the Zeuthen-Nash solution thus defined is the limit of a subgame perfect 

equilibrium outcome of a standard Rubinstein-type alternating offer game. 

We view a coalition as a bargaining party whose preferences are based on the preferences of 

the members of the coalition. In Definition 12, the marginal concession of the coalition is defined 

as the sum of the marginal concessions of the members of the coalition. This is equivalent to 

defining the marginal risk concession of a coalition as a weighted average of two things: the mar-

ginal risk concession of the coalition in the case where bargaining is delegated to player a and the 

marginal risk concession of the coalition in the case where bargaining is delegated to player b. The 

weights are given by the players’ incremental shares of the last dollar the coalition receives,

  and ,

which sum up to 1.

1
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Denote the coalition’s shares in markets A and B by  and , respectively. Then in market 

A, one has , for the coalition takes  as given. Similarly, in market 

B, one has .

 Definition 13.   A simultaneous Zeuthen-Nash solution to the parallel bargaining problem 

with a one-sided coalition is a vector  that satisfies the following equations:

, (1)

, (2)

, (3)

. (4)

In the absence of a coalition, the payoffs of cable operators a and b are 

 and , respectively. To simplify the notation, let

The coalition will actually form only if each member of the coalition gains from joining the coali-

tion. Thus one may consider a stronger solution to the parallel bargaining problem.
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xâ+ πA
=

xc
B

x
b̂

+ πB
=

Na a â) πA
0 0,( ), , ,(〈 〉 Nb b b̂) πB

0 0,( ), , ,(〈 〉

na Na a â) πA
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 Definition 14.   A bona fide solution to the parallel bargaining problem with a one-sided coa-

lition is a simultaneous Zeuthen-Nash solution  where each member of the coali-

tion gains from joining the coalition, i.e.,  for .

We will now consider some desirable properties of  that may or may not hold 

in particular environments as will be shown in the next two subsections. 

 Condition 1.    for .

 Condition 2.    is an increasing and smooth function of .

 Lemma 1.    If Conditions 1 and 2 are satisfied, there exists a simultaneous Zeuthen-Nash 

solution to the parallel bargaining problem with a one-sided coalition.

Proof. Taking  as given, equations (1) and (3) of Definition 13 define the Zeuthen-Nash 

solution to the bargaining problem in market A. Substituting (3) into (1), one has

. (5)

By Conditions 1 and 2, as  increases from 0 to , the left hand side of (5) increases from 0 to 

a positive number while the right hand side decreases from a positive number to 0. Thus there 

exists a unique solution to (5). That is, for a given breakdown point , this bargaining problem 

has a unique solution, which determines the payoff for the coalition in market A, . We can thus 
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define an implicit function . Since  and  are smooth, 

 is smooth and thus continuous in particular. 

Symmetrically, using equations (2) and (4), we can define a continuous function . 

Thus we have a continuous mapping  from  to itself. There-

fore, there exists a fixed point by Brower’s fixed point theorem.    2

 Condition 3.   The marginal risk concession of the coalition  is non-

increasing in .

 Lemma 2.    If Conditions 1, 2, and 3 are satisfied, the functions  and  in the 

proof of Lemma 1 are smooth and non-decreasing.

Proof. Functions  and  are well defined and smooth by Conditions 1 and 2 as 

shown in the proof of Lemma 1. Condition 3 guarantees that the functions  and  

are non-decreasing as can be seen from equation (5) in the proof of Lemma 1.    2

 3.2. No-commitment solution

Consider the case where the cable operators can make no commitment as to the division of 

the coalition’s share of the pie. In this case, they bargain over the division of the total payoff the 

coalition receives after either an agreement is reached or the bargaining ends in a breakdown.
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 Definition 15.   In the case where the members of a coalition can make no commitment as to 

the division of the coalition’s share of the pie, the division scheme is defined as

for .

Notice that the share each member of the coalition receives in each of the two states is deter-

mined through Zeuthen-Nash bargaining inside the coalition. This feature is due to the assump-

tion of no commitment. If the solution is different from the bargaining solution, one member of 

the coalition will have an incentive to renegotiate. One can combine Definitions 12 and 15 to 

obtain 

 Proposition 12.   In the case where the members of a coalition can make no commitment as 

to the division of the coalition’s share of the pie, the marginal risk concession can be written as

.

 Proposition 13.    If no commitment is possible regarding the division of the coalition’s share 

of the pie, Conditions 1 and 2 are satisfied. 

Proof. That Condition 1 is satisfied is obvious from Proposition 12. By Proposition 6, 

 is an increasing and smooth function of . Since the function 

 is an increasing and smooth function of its first argument, 
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 is an increasing and smooth function of  

for each . This in turn implies that , which is the sum of  and , 

is an increasing and smooth function of .     2

 Theorem 1.   If no commitment is possible regarding the division of the coalition’s share of 

the pie, there exists a simultaneous Zeuthen-Nash solution to the parallel bargaining problem 

with a one-sided coalition.

Proof. Follows from Lemma 1 and Proposition 13.    2

We now want to show that forming a coalition can be profitable under certain conditions. In 

order to establish this, we need to make two additional assumptions:

 Condition 4.     is decreasing in  for all .

 Condition 5.    .

Alternatively, one may require the following two assumptions, weakening Condition 4 and 

strengthening Condition 5. 

Condition 4´.    is non-increasing in  for all .

Condition 5´.    for all .
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Condition 4 says that the marginal risk concession of a player is decreasing in one’s fall-back 

position. Unlike  Assumption 4, Condition 4 is a relatively strong assumption and rules out, for 

instance, risk-neutral preferences. Condition 4´ relaxes Condition 4 to a weak inequality. 

Condition 5 says that when the breakdown point is equal to zero, doubling the amount of stake at 

least doubles the marginal risk concession of a player. Condition 5´ requires that doubling the 

amount of stake more than doubles the marginal risk concession of a player. 

Note that preferences that can be represented by von Neumann-Morgenstern utility functions 

with constant relative aversion, i.e.,  where , satisfy Conditions 4 and 5, while 

preferences that can be represented by von Neumann-Morgenstern utility functions with constant 

absolute risk aversion, i.e., , satisfy Conditions 4´ and 5´. In  

Appendix F, we will show Condition 4 is in fact satisfied by a broad class of utility functions that 

exhibit constant hyperbolic absolute risk aversion (HARA), which include the class of utility 

functions with constant relative aversion. 

The main issue of this paper is whether there are gains from forming a coalition. We will first 

show that forming a coalition is profitable under the above assumptions. 

 Theorem 2.    Suppose that either Conditions 4 -5 or Conditions 4´ -5´ are satisfied. A coali-

tion of players with identical preferences will gain as a whole in each market. Formally, if 

 is a simultaneous Zeuthen-Nash solution, then  and .

Proof. If cable operators have identical preferences, they will split any payoff of the coalition 

equally. Thus Proposition 12 implies that 
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. 

But, if Conditions 4 and 5 are satisfied, one has

, (6)

since . Therefore, no  can satisfy equations (1) and (3) in Definition 13, for in this 

case one would have

 which is absurd. A symmetric argument applies to market B, which completes the proof under 

Conditions 4 and 5. 

If Conditions 4´ and 5´ are satisfied instead, the weak and strict inequalities in (6) are 

exchanged. The proof is the same otherwise.    2

There are two intuitive explanations as to why forming a coalition is profitable. In fact, the 

proof of the above proposition is based on these two explanations. Depending on which pair of 

conditions, 4-5 or 4´-5´, is used, greater emphasis is placed on either of the two explanations. 

The first explanation, which is highlighted by Conditions 4 and 5, is as follows: When bar-

gaining in one market, the breakdown point of the coalition is the outcome of the other market. 
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Thus, if bargaining on one frontier breaks down, the coalition still receives some payoff from bar-

gaining on the other frontier. Due to Condition 4, this lowers the coalition’s marginal risk conces-

sion and thus the coalition can credibly demand a larger share of the pie. This phenomenon may 

be called the fall-back position effect.

The second explanation, which is highlighted by Conditions 4´ and 5´, is as follows: The two 

members of the coalition share the spoils from each market. Due to Condition 5´, dividing a given 

payment between two players leads to a lower marginal risk concession than giving the undivided 

payment to one player. This increases the bargaining power of the coalition. This phenomenon 

may be called the risk-sharing effect.

It is interesting to note that when players with constant relative aversion form a coalition, 

there is a positive fall-back position effect but zero risk sharing effect, while when players with 

constant absolute aversion form a coalition, there is a positive risk sharing but zero fall-back posi-

tion effect. 

Theorem 2 shows that forming a coalition is profitable. But a profitable coalition may not 

form if there is no mechanism to divide the gains of the coalition between its members so that 

each member will gain. If they could write a binding contract regarding the division of the gains, a 

profitable coalition will always form. This case will be studied in the next subsection. 

In the current subsection, we do not allow commitment by the members of a coalition regrad-

ing the internal division of a pie. Thus the amount an agent can receive when bargaining alone 

becomes irrelevant once he decides to join the coalition. Even in this no-commitment case, how-
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ever, there are some cases where profitable coalitions will actually form. For instance, if , 

cable operators with identical preferences will both benefit from forming a coalition.

 Theorem 3.   Suppose either Conditions 4 -5 or Conditions 4´ -5´ are satisfied. Suppose that 

two cable operators have identical preferences, two broadcasters have identical preferences, and 

. Then there exists a simultaneous Zeuthen-Nash solution. Furthermore, any simulta-

neous Zeuthen-Nash solution is a bona fide solution to the parallel bargaining problem.

Proof. By Proposition 13, Conditions 1 and 2 are satisfied. By Condition 4 or 4´, Condition 3 

is also satisfied. Thus, by Lemma 2, the functions  and  in the proof of Lemma 1 

are smooth and increasing. Furthermore, since the cable operators have identical preferences, the 

broadcasters have identical preferences, and , the functions  and  are 

identical. Therefore, there exists a simultaneous Zeuthen-Nash solution  such that 

.

Since  and  by Theorem 2 and  by the symmetry of preferences and 

market sizes, one has 

 for .

Therefore,  is a bona fide solution to the parallel bargaining problem.   2
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In the scenario we studied in this subsection, the members of a coalition split the spoil after it 

is realized because they cannot make a commitment regarding the split. In this case, it is relatively 

easy for the players to reach a simultaneous Zeuthen-Nash solution once a coalition forms. But it 

is more difficult to insure that each member of the coalition has an incentive to join a coalition. In 

the alternative scenario we will study in the next subsection, the members of a coalition can write 

a binding contract. In this case, it turns out that the opposite is true. It will be more difficult for the 

players to reach a simultaneous Zeuthen-Nash solution (in the sense that establishing its existence 

requires stronger conditions). But the solution insures that each member gains from joining the 

coalition. 

 3.3. Commitment solution

We now consider the solution for the case where the cable operators can write a binding con-

tract when they integrate. The contract between the members of a coalition specifies how they 

would split the total payoffs in two possible states of nature, one in which bargaining with an out-

sider, in our example a broadcaster, ends in an agreement and another in which the bargaining 

breaks down. The contract is written by the following process: A possible contingent payoff the 

coalition may receive as the result of bargaining with the outsider is put on the table as the pie to 

be split between the two members of the coalition. When they bargain over this contingent pie, 

their respective breakdown points are taken to be the payoffs they expect to receive when they do 

not join the coalition. This bargaining is repeated for each possible contingent pie.13 

Throughout this subsection, we will assume the following:

13. Here we do not allow the coalition to write a contract to strategically influence the amount it receives. 
Such a contract would not be credible to the outsider who will bargain with the coalition. 
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Assumption 5 (Risk Aversion).    Players prefer the expected value of a gamble to the gamble 

itself.

Recall that Assumption 4 introduced in Subsection 2.2 is satisfied for all risk averse players. 

Thus in this subsection, we do not need Assumption 4 as a separate assumption. 

As in Subsection 3.1, denote the agreement and breakdown states by  and , respectively. 

Let  and  be the probabilities of states by  and , respectively. Note that these probabili-

ties were irrelevant for the no-commitment solution of the previous subsection, for the within-coa-

lition bargaining occurs after either state is realized. If  and  are the coalition’s payoffs 

in the agreement and breakdown states, respectively, the contingent pie up for bargaining between 

the two members of the coalition is, by abuse of notation, 

.

When they bargain over this contingent pie, their respective breakdown points are the payoffs they 

expect to receive when they do not join the coalition. Since we are using the Zeuthen-Nash solu-

tion for any bargaining situation throughout this paper, the fall-back positions of cable operators a 

and b are  and , respectively. 

We will assume that the within-coalition contract specifies that the Zeuthen-Nash solution of 

the contingent-pie bargaining problem . Let
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0 0,( ), , ,(〈 〉= nb Nb b b̂) πB

0 0,( ), , ,(〈 〉=

a b,( ) πσ πτ,( ) na nb,( ), ,〈 〉

yi di,( ) q yi• 1 q–( ) di•⊕ Ni a b,( ) πσ πτ,( ) na nb,( ), ,〈 〉= =



35

 for . As explained in Subsection 2.3, the Zeuthen-Nash solution  is a pair 

of contingent shares such that the marginal risk concessions of the two members of the coalition 

are equalized and such that the allocation of the shares between the two members across the two 

states is Pareto efficient. That is, the Zeuthen-Nash solution satisfies the two equations

, (7)

(8)

in addition to the two feasibility constraints

(9)

(10)

In using equation (8) above as a necessary condition for Pareto efficiency, we have used the 

assumption ( Assumption 5) that the members of the coalition are risk averse. 

Note here that there was no analogue to equation (8) in the no-commitment case of the previ-

ous subsection. Since players could not write a contract, the pie was split according to the 

Zeuthen-Nash solution even in a breakdown state, for otherwise one of the players would have an 

incentive to renegotiate.

We are particularly interested in the Zeuthen-Nash solution of the within-coalition bargaining 

for the limiting case where , the probability of the agreement state, approaches 1. In this case, 

equation (7) above will become 

.

The left hand side can be rewritten in utility terms as 
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 .

Note that the expression on right hand side is the same as the marginal risk concession with non-

contingent pies introduced in Subsection 2.2. Thus one may write

.

Therefore, equation (7) can be replaced by

. (11)

This, together with equation (9) leads to

. (12)

Once  is determined this way,  can be determined from equations (8) and (10). 

 Definition 16.   In the case where the members of a coalition can make commitment as to the 

division of the coalition’s share of the pie, the division scheme is defined as

,

where  satisfies (12), (8), and (10).

One can combine Definitions 12 and 16.

 Proposition 14.   In the case where the members of a coalition can make commitment as to 

the division of the coalition’s share of the pie, the marginal risk concession of the coalition can be 

written as

µ̂a
σ

1 ya• 0 da•⊕ na,( )
vi ya( ) vi na( )–

vi ′ ya( )
-----------------------------------=

µ̂a
σ

1 ya• 0 da•⊕ na,( ) µa ya na,( )=

µa ya na,( ) µb yb nb,( )=

ya yb,( ) N a b,( ) xc dc+ na nb,( ), ,〈 〉=

ya yb,( ) da db,( )

S xc dc dc,+( ) ya da yb db, , ,( )=

ya da yb db, , ,( )
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,

 where  satisfies (12) and  satisfies equations (8) and (10).

We want to show that in the commitment case, there exists a bona fide solution, that is, a 

simultaneous Zeuthen-Nash solution where each member of the coalition gains from joining the 

coalition. In order to show this, it is necessary that  and  is well 

defined outside of the bona fide solution. In particular, it is necessary that 

 is defined even for the case where .

In order to define  for the case where , we imagine the 

players sharing a loss so that (11) is satisfied, i.e.,

,

where  and . In other words, the marginal risk concession, which is nega-

tive in a situation where players have to share a loss, has to be equalized across players. We want 

to emphasize here that this is only a technical convention. There are no losses at a bona fide solu-

tion, whose existence we are going to establish, because the cable operators would not form a coa-

lition if there are losses. 

 Proposition 15.   If commitment is possible regarding the division of the coalition’s share of 

the pie, Condition 1 is satisfied. 

µc xc dc dc,+( ) µa ya da,( ) µb yb db,( )+=

ya yb,( ) da db,( )

µc xc
A

xc
B

xc
B,+( ) µc xc

B
xc

A
xc

A,+( )

N a b,( ) xc
A

xc
B

+ na nb,( ), ,〈 〉 xc
A

xc
B

+ na nb+<

N a b,( ) ya na nb,( ), ,〈 〉 ya na nb+<

v ya( ) v na( )–

v′ ya( )
--------------------------------

v yb( ) v nb( )–

v′ yb( )
--------------------------------=

0 ya na<≤ 0 yb nb<≤
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Proof. If , equations (8), (9), and (10) imply  by  Assumption 5. 

Therefore,  and thus .   2

For the commitment case we are analyzing in this subsection, Condition 2, which we needed 

for Lemma 1 may not hold in general. The reason is that as  increases, there are in general two 

effects. First, by Proposition 6, both players’ payoffs,  and , increase. This would increase 

their marginal risk concessions if  remained the same. But the change in  also 

affects the marginal rate of substitution between the agreement and breakdown states. That is, 

 is affected through equation (8). The direction of this effect on the marginal risk conces-

sion of the coalition is in general ambiguous.

 Theorem 4.   If commitment is possible regarding the division of the coalition’s share of the 

pie and Conditions 2 and 3 are satisfied, there exists a bona fide solution to the parallel bargain-

ing problem with a one-sided coalition.

Proof. That there exists a simultaneous Zeuthen-Nash solution follows from Lemma 1, Prop-

osition 15, and the assumption that Condition 2 is satisfied. With the additional assumption that 

Condition 3 is satisfied, we can further show that there actually exists a simultaneous Zeuthen-

Nash solution where each member of the coalition gains from joining the coalition. 

 Functions  and  are smooth and non-decreasing by Conditions 2, 3, and 

Lemma 2, and are, respectively, bounded between  and  and between  and . Thus, as can 

xc 0= ya yb,( ) da db,( )=
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xc

ya yb

da db,( ) ya yb,( )

da db,( )
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B
xc
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0 πA
0 πB
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be seen from Figure 2, there has to exist a simultaneous Zeuthen-Nash solution such that  

and  if one could establish  and . 

Thus we have only to show that 

. (13)

By Proposition 14, 

(14)

where  satisfy 

, (15)

, (16)

, (17)

. (18)

Note that equations (15) and (17) imply that  and . Thus

FIGURE 2
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.

Hence, equation (13) is satisfied if

which is equivalent to 

or in utility form,

But equation (16) implies that the above equation is equivalent to

But, by the concavity of , equation (18), and the concavity of , one has

    2

Theorem 2, which established the profitability of a coalition for the no-commitment case, 

relied on two effects, the fall-back position effect and the risk-sharing effect. The proof of the 

above Theorem 4 reveals that similar effects are at work for the commitment case. The use of 

Condition 3 in establishing the monotonicity of the functions  and  indicates the 

presence of the fall-back position effect. For Theorem 2, the risk-sharing effect worked through 

µc na nb nb,+( ) µa na da,( ) µb nb db,( )+=
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------------------------------------- nb db–( )< da
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-----------------.<=
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B
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Condition 5´. For Theorem 4, however, the risk-effect works through risk aversion as can be seen 

from the last part of the proof. 

 Overall, the ability to write a binding contract increases the opportunity to gain from forming 

a coalition. The coalition becomes a more effective bargainer than an individual if certain condi-

tions are met. Conditions 2 and 3 in Theorem 4 are aggregation conditions that require that the 

coalition’s aggregate preferences exhibit certain desirable properties.
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4. CONCLUSION

In this paper, we have provided theoretical explanations for bargaining power due to integration 

across local markets. We extended the Zeuthen-Nash solution to the case of parallel bargaining to 

illustrate why players might gain from integration in two alternative scenarios: one in which play-

ers who form a coalition cannot write a binding contract, and the other in which players can write 

a binding contract. One methodological innovation was to generate a coalition’s preferences by 

aggregating the preferences of its members. We showed that the integration can increase bargain-

ing power under certain conditions.

From the policy standpoint, the results support the view that across-local-market integration 

increases market power. Integration leads to a redistribution of some of the gains from coopera-

tion within the local market from the unintegrated to the integrated players. Since, however, ratio-

nal players will always exhaust all possible gains from cooperation within the local market, there 

is no justification, within our model, for restricting the national size of an MSO in the cable televi-

sion industry or restricting the size of a theater chain in the movie industry. Even though integra-

tion may increase their market power, it does not affect aggregate welfare. An interesting open 

problem is to find a model where policy makers should be concerned about the MSOs’ and theater 

chains’ market power on efficiency grounds. 
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 APPENDIX A: PROOFS OF PROPOSITIONS IN SECTION 2

Proof of Proposition 2.  is a smooth function of p such that  

because it is the inverse function of , which is a smooth function of x such that 

.    2

Proof of Proposition 3. By Definitions 3 and 4, 

. 

Using L’Hopital’s rule, we get 

. 

Thus we have only to show that 

.

Let y > z and . Then, by  Assumption 1, there exists some p such that

 . 

Furthermore, since , one has . In 

other words, one has 

. 

x s p y z, ,( )=
p∂

∂s
p y z, ,( ) 0>

p ĥ x y z, ,( )=

∂ĥ
∂x
------ x y z, ,( ) 0>

µ x( d d,+ ) x d s p x d+ d, ,( )–+
1 p)–(

---------------------------------------------------
p 1→
lim=

µ x d+( d, ) ∂s
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--------------------------=

y x z≥ ≥

x p y• 1 p–( ) z•⊕∼

v x( ) pv y( ) 1 p–( )v z( )+= p v x( ) v z( )–{ } v y( ) v z( )–{ }⁄=

x s
v x( ) v z( )–
v y( ) v z( )–
-------------------------- y z, , 

 =
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Differentiating both sides of this equality with respect to x, one obtains

.

Setting  yields 

,

from which the desired equality follows.   2

Proof of Proposition 4. For x > 0, one has 

, 

from which follows the desired result.   2

 Proof of Proposition 5. The Zeuthen-Nash solution satisfies the following equation

.

If one sets , the left hand side of the above equation is zero while the right hand side is 

positive. If one sets , the left hand side of the above equation is positive and the 

right hand side is equal to zero. Since, by Proposition 3 and Assumption 4, the left hand side is 

continuously increasing in  while the right hand side is continuously decreasing in , there 

exists a unique solution.    2

 Proof of Proposition 6. Follows from the proof of Proposition 5.   2

1
∂s
∂p
------ v x( ) v z( )–

v y( ) v z( )–
-------------------------- y z, , 

  v′ x( )
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 Proof of Proposition 7. Assume otherwise, that is  and . Then risk aversion 

implies

  and , 

which is impossible because both  and  are Pareto efficient.     2

Proof of Proposition 8. Define a function  such that . To derive 

, we will first establish that for any given Þi Þi , where  Bi , one has

. (A.1)

There exists some p such that

Rewriting this expression using the utility representation in Proposition 1, we obtain

,

i.e., 

.

Thus, by Definition 7, one obtains (A.1). 

Now, from Definitions 8, 9, and the L’Hospital’s rule, we have 
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. 

Totally differentiating both sides of (A.1) with respect to  yields

.

Setting  and rewriting gives the desired expression.  can be derived similarly.   2

Proof of Proposition 9. From Proposition 8 and Definition 11, one has

, 

.

Along the C curve, one has 

, 

which proves the proposition.    2

 Proof of Proposition 10. Differentiating  with respect to , gives
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which is positive because .   2

 Proof of Proposition 11. Using Proposition 9, we have only to show that there exist a unique 

 satisfying

. 

From Proposition 10,  is increasing in . By Proposition 7, as  increases along the C 

curve, player j receives less in both states, and thus  decreases. If  ~i , the left hand side 

of the above equation is zero, and if  ~i , the right hand side is equal to zero. Since the left 

hand side is continuously increasing in  and the right hand side continuously decreasing in , 

there exist a unique solution.   2

 APPENDIX B: CONSTANT RELATIVE RISK AVERSION IMPLIES 

ASSUMPTION 4

If , one has 
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,

and thus

.

It is easy to see that for all , the numerator, and hence the derivative, is positive. The follow-

ing manipulation shows that the numerator is also positive for all :

 APPENDIX C: RUBINSTEIN SOLUTION FOR A CONTINGENT-PIE BAR-

GAINING PROBLEM

 Definition A.1.   The Rubinstein solution to a contingent-pie bargaining problem 

 is a vector of payoffs, , where  such that 

, (A.2)

. (A.3)

The Rubinstein solution consists of two pairs of payoff vectors. The first pair is the outcome 

that is realized when player i is the proposer in an alternating offer model and the second pair is 

the outcome that is realized when player j is the proposer. Conditions (A.2) and (A.3) ensure that 

each player, when he is a responder, is indifferent between accepting an offer and rejecting it. If he 
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rejects, he can become a proposer but he also risks a breakdown. Here one can easily see that the 

Rubinstein solution is the equilibrium outcome of a strategic bargaining model similar to the one 

in Rubinstein (1982). 

 Proposition A.1.    The Rubinstein solution for a contingent pie equalizes the players’ risk 

concessions.

Proof. From conditions (A.2) and (A.3) in the definition of the Rubinstein solution and the 

fact that we work with elements of C only, it follows that

, 

.

Subtracting the second equation from the first one yields

.    2

 APPENDIX D: NASH SOLUTION IN UTILITIES WITH A CONTINGENT 

PIE

In this appendix, we will show that the Zeuthen-Nash solution for a contingent pie we defined 

in terms of preferences is equivalent to the Nash solution defined in terms of the von Neumann-

Morgenstern utilities. Consider the bargaining problem  as defined in the text. 

Assume that players’ preferences can be represented by concave von Neumann-Morgenstern util-

ity functions. Then the Nash solution can be found by the following optimization problem:

yi sj p yj d j, ,( )+ π=

si p yi di, ,( ) ŷ j+ π=

ci p yi di, ,( ) cj p yj di, ,( )=

i( j ), π di d j,( ), ,〈 〉
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 The first order conditions for this maximization problem can be rearranged to yield the fol-

lowing two equations:

.

Note that the second equation equalizes the marginal rates of substitution between different states 

of nature across agents. Thus the second equation ensures that the outcome is an element of the 

PE curve. The first equation defines an outcome at which . 

 APPENDIX E: ZEUTHEN-NASH SOLUTION WITH DELEGATION

Let i ( ) denote the member of the coalition to whom bargaining is delegated and let 

 be the coalition’s division scheme. Let h be the outsider that 

bargains with i over the coalition’s share . The game starts in period one with player i 

offering a division of the pie. If player h accepts the offer, he receives a payoff  and player 
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i receives . If player h rejects the offer, then with probability  the outside 

bargaining ends with player h receiving his breakdown payoff  and player i receiving 

. With probability p, the outside bargaining continues and player h becomes the 

proposer in period two. Player i thus becomes the responder and can either accept or reject h’s 

proposal. If he accepts it, he receives . If he rejects it, then with probability 

 the outside bargaining ends with player h receiving his breakdown payoff  and player i 

receiving . With probability p, bargaining continues and period three is reached. 

All odd period rules are identical to period one and all even period rules are identical to period 

two. The bargaining game is illustrated in Figure 3.
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It is easy to check that this game has a subgame perfect equilibrium outcome, which is best 

understood as one component of a Rubinstein solution, that is, a pair of payoff vectors such that 

the first pair is the outcome that is realized when player i is the proposer and the second pair the 

outcome that is realized when player h is the proposer. 

Let  be the amount such that player i is indifferent between accepting 

 or facing the risk of a breakdown to receive  in the next period, i.e., 

FIGURE 3
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. (19)

Then a Rubinstein solution is an array of payoffs 

 satisfying 

, (20)

. (21)

Subtracting equation (21) from (20) yields

. (22)

We are particularly interested in the limit solution as the breakdown probability approaches 

zero. Hence, we divide the above equation by  and take the limit as .

. (23)

By L’Hopital’s rule, the left hand side of equation (23) is equal to

. (24)

Equation (19) implies that

Hence, when bargaining is delegated to player i, the marginal risk concession of the coalition 
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.

Thus, the solution specified in equation (23) can be rewritten as

. 

 APPENDIX F: EXAMPLE OF PREFERENCES SATISFYING 

CONDITION 4

We will show that Condition 4 is satisfied by all preferences that can be represented by von 

Neumann-Morgenstern utility functions with constant hyperbolic absolute risk aversion (HARA), 

i.e.,

 where .

Here we have not normalized the function  so that  and  as we did in the 

text. The limiting case where  corresponds to the logarithmic utility function, i.e., 

. The restriction  ensure that agents are risk averse. This class of utility 

function is broad and, for example, includes all utility functions with constant relative risk aver-

sion, i.e. , where . 

We want to show  for . One has
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------------------------------ 0< x 0>
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and thus

First consider the case where . In this case, we have  if and only if 

This is equivalent to 

Note that for  the left hand side is equal to the right hand side. Furthermore,

µ x d d,+( )

1 γ–
γ

----------- a x d+( )
1 γ–

-------------------- b+ 
  γ ad

1 γ–
----------- b+ 

  γ
–

 
 
 

a
a x d+( )

1 γ–
-------------------- b+ 

  γ 1–
--------------------------------------------------------------------------------------------

1 γ–
aγ

----------- a x d+( )
1 γ–

-------------------- b+ 
  γ ad

1 γ–
----------- b+ 

  γ
–

 
 
  a x d+( )

1 γ–
-------------------- b+ 

  1 γ–

1 γ–
aγ

----------- a x d+( )
1 γ–

-------------------- b+ 
  ad

1 γ–
----------- b+ 

  γ a x d+( )
1 γ–

-------------------- b+ 
  1 γ–

–
 
 
 

,

=

=

=

µ x d d,+( )∂
d∂

------------------------------
1 γ–
aγ

----------- a
1 γ–
----------- a

a x d+( )
1 γ–

-------------------- b+ 
  γ– ad

1 γ–
----------- b+ 

  γ
–

γa
1 γ–
----------- a x d+( )

1 γ–
-------------------- b+ 

  1 γ– ad
1 γ–
----------- b+ 

  γ 1–
–












.

=

0 γ 1< < µ x d d,+( )∂
d∂

------------------------------ 0<

1 1 γ–( )

ad
1 γ–
----------- b+

a x d+( )
1 γ–

-------------------- b+
------------------------------

γ

– γ

ad
1 γ–
----------- b+

a x d+( )
1 γ–

-------------------- b+
------------------------------

γ 1–

0.<–

a x d+( )
1 γ–

-------------------- b+ 
  γ

γ ad
1 γ–
----------- b+ 

  γ ad
1 γ–
----------- b+ 

  γ
γ ad

1 γ–
----------- b+ 

  γ 1– a x d+( )
1 γ–

-------------------- b+ 
  .+<+

x 0=



56

, 

while

.

Thus we have , which establishes that  for . 

Similarly, one can show that Condition 4 is satisfied for the cases where  and .
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LHS∂
x∂

-------------- γ a x d+( )
1 γ–

-------------------- b+ 
  γ 1– a

1 γ–
-----------=

RHS∂
x∂

-------------- γ ad
1 γ–
----------- b+ 

  γ 1– a
1 γ–
-----------=

LHS∂
x∂

-------------- RHS∂
x∂

--------------< µ x d d,+( )∂
d∂

------------------------------ 0< x 0>

γ 0= γ 0<
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