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Abstract

The paper revolves around the interaction of three ideas: (1) Because of the nature
of some workplace technologies, “critical workers” can have a disproportionately
negative effect on a firm’s value added. (2) In many firms managers have little
verifiable information about performance. (3) There are unobservable productiv-
ity differences among individuals. In this context we study the properties of low-
powered incentives, in which compensation is not directly tied to performance and
all but clearly unsatisfactory employees are retained. Low-powered incentives are
compared to a potentially viable high-powered alternative, a rank-order tournament
with pre-announced prizes. Low-powered incentives are found to be effective in mo-
tivating critical workers, while tournaments can be dysfunctional in that regard.
The latter result stems from an “uneven playing field effect” in the tournament: By
encouraging high-productivity workers, tournaments disadvantage and discourage
low-productivity workers.



If a second violinist in a symphony orchestra plays out of tune, the Mahler is

ruined. Economic intuition suggests that strong and direct incentives are appro-

priate here, yet symphony orchestras typically use only low-powered incentives—

compensation is not directly tied to performance and all but clearly unsatisfactory

employees are retained. This paper suggests one reason why organizations with

critical employees often use primarily low-powered incentives.

The paper revolves around the interaction of three ideas: (1) Certain workers

can have a disproportionately negative effect on a firm’s value added. We call these

critical workers. (2) In many firms managers have little or no contractible, or even

common-knowledge, information about performance. Instead they rely on private

impressions, either well or badly informed. (3) There are unobservable productivity

differences among individuals. We discuss these observations in turn.

The idea that technology makes certain workers critical draws heavily on Kre-

mer’s (1993) theory of o-ring production. Critical workers are an important feature

of some specialized settings, such as symphony orchestras, but workers can be be

critical in more mundane workplaces as well: Sub-par work performance in one

step of a manufacturing process can lead to costly recalls or destroy a product’s

reputation. Poor hygiene by a cook’s assistant can lead to food poisoning and ex-

pensive lawsuits. In cases like these, minimum performance is most important to

the firm. A technology like berry picking, by contrast, makes average performance

more important.

A pivotal feature of any model of an agency problem is the nature of the

information available to the players. We posit an environment that is reminiscent of

the symphony orchestra, and which we believe to be a common one. We assume that

managers do observe worker performance and form opinions about this performance,

but these impressions are private and imperfect; the only contractible information is

the worker’s presence and the level of compensation. Thus any variation from fixed
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compensation must be at the discretion of the firm, not a feature of a contract.

This greatly restricts choice of high-powered incentives; our attention centers on

rank-order tournaments with pre-announced, verifiable prizes (Lazear and Rosen,

1981; Malcomson, 1984).

We establish a number of baseline results about how low-powered incentives

function when workers are homogeneous. Then, following Baker, Gibbons, and

Murphy (1994), we allow workers’ productivity to vary unobservably, leading to

imperfectly observable performance variation. Consequently, it is more costly to

motivate a low-productivity worker to reach any given performance level than to

motivate a high-productivity worker, but the former case is disproportionately im-

portant for a critical worker.

Our main results contrast low- and high-powered incentives as workers become,

in a precise sense, “more critical.” If workers become more critical, firms that use

low-powered incentives can adjust their wages and retention policy to improve per-

formance of low-productivity workers relative to high-productivity workers. Our

key results about tournaments, however, are almost the reverse: High-productivity

workers respond more vigorously than low-productivity workers to a larger prize;

average performance increases more rapidly than minimum performance. In some

circumstances, increasing the size of the prize can even de-motivate low-productivity

workers. Theese results stem from an “uneven playing field effect” in the tourna-

ment, which offsets the direct motivation of competition: By encouraging high-

productivity workers, increasing the size of the prize progressively disadvantages

and discourages low-productivity workers.

The relationship between low-powered incentives and tournaments in our model

is somewhat subtle. Low-powered incentives address an agency problem by giving

the job positive value. Our particular version of low-powered incentives is similar

to efficiency wage models in that the job’s value comes from a wage premium,

2



which makes resolution of the agency problem costly to the firm.1 The theoretical

appeal of rank-order tournaments (and other high-powered incentives) is that they

can motivate workers without lowering profits by changing how a given level of

compensation is distributed. We show, in fact, that a firm can always increase profits

in our model by supplementing low-powered incentives with a small tournament.2 It

does not follow, however, that the firm will want to replace low-powered incentives

with prizes based on internal competition. Besides the possibility that the size of

prizes in a zero-cost tournament may be limited by various considerations, tipping

compensation more heavily toward the use of prizes can be de-motivating to low-

productivity workers, a problem that is clearly germane for critical workers.

The paper proceeds as follows. Section I poses the incentive problem and a

model of low-powered incentives. Section II establishes some baseline results about

low-powered incentives with homogeneous workers. Section III introduces unob-

servable heterogeneity, gives a precise meaning to “more critical,” and shows how

low-powered incentives adapt to this aspect of the production technology. Section

IV generalizes the model, allowing compensation policies that mix low-powered in-

centives and a rank-order tournament. Section V concludes.

I. The Model

The performance levels of N workers determine the output of a profit-maximizing

firm:

Y = G(p1, p2, . . . , pN )

1 This is not a characteristic of low-powered incentives, per se. Lazear’s (1979) model of
upward-sloping earnings profiles does not tie compensation directly to performance,
but at least partly resolves the agency problem without lowering profits.

2 We do not address problems with implementing tournaments that others have raised:
Prendergast and Topel (1996) have argued that influence activity discourages the use
of this form of incentive pay. Also, Lazear (1989) has noted that when cooperation
among workers is important, salary compression (that is, movement toward lower-
powered incentives) is optimal.
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with ∂G/∂pi > 0. We assume that Y provides no usable information about pi.

Formally, our assumption about the information content of Y means that we simply

do not consider compensation schemes that condition pay on Y . Informally, we

interpret this assumption to mean that either there are no variables related to a

worker’s contribution to firm value on which either an explicit or implicit contract

can be based or, in any event, that the firm should not use them because they

would provide dysfunctional incentives for any of the various reasons discussed in

the literature.3 Initially, we rule out strategic interactions among workers—they do

not condition their behavior on the behavior of other workers. (In Section IV, we

introduce internal competition.)

Since workers appear identical to the firm, we assume they are treated alike,

and we work with the function

g(pi) = G(pi, p(−i)),

where p(−i) denotes the performance levels of workers other than i. We assume that

g(p) has continuous first and second derivatives and is concave. Also g′(∞) = 0.

We abstract from life-cycle effects by assuming that workers are infinitely-lived

(or, equivalently, face a Poisson probability of death). In each period workers choose

a scalar performance level p, known only to the employee. A worker’s utility in

each period is the wage less her performance level: w− p. (In Section III we induce

productivity differentials by adding variation in the disutility (“effort”) required to

achieve a given performance level.)

Employees are paid for one unit of labor per period. They have a discount rate

ρ and discount factor β = 1/(1 + ρ).4 The expected value of a worker’s alternative

3 Gibbons (1998) includes a survey of these reasons. Prendergast (1999) summarizes:
“Perhaps the most striking aspect of observed contracts is that the Informativeness
Principle, i.e., that all factors correlated with performance should be included in a
compensation contract, seems to be violated in many occupations.”

4 A constant exogenous probability of separation would enter the model in a fashion
almost identical to β.
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activities is V a. Since we model only the behavior of a single firm, there is no

reason to be more specific about these alternate activities. Hiring and termination

are costless to the firm. Each employee is supervised by a single manager. We

assume the manager behaves in the firm’s interests (though this is a subject of

considerable independent interest).

The firm’s information about the performance level of a particular worker is

minimal: The manager receives a noisy signal of the worker’s performance,

x = p + ε.

We assume that ε has zero mean, and that its distribution has a differentiable,

symmetric single-peaked density f . We denote its cumulative density by F . We

interpret x as a manager’s impression or opinion of how well the worker is perform-

ing. The realization of x is private information and, therefore, cannot reasonably

form the explicit basis for any compensation policy.5

We base our model on subjective assessments because many important compo-

nents of performance—politeness, enthusiasm, or cooperativeness—are difficult to

define explicitly, or even to articulate, but can nonetheless be assessed by an obser-

vant manager. Thus, a manager can often reasonably determine whether a worker

is performing well in a multi-tasking environment or where output is intangible.6

Although x is private information, the density f summarizes characteristics of

the manager and production environment that are common knowledge. For exam-

ple, a clueless manager has a relatively diffuse distribution for ε. Similarly, differ-

ences among firms’ production processes also generate cross-sectional variation in

5 Baker, Gibbons, and Murphy (1994) model subjective assessments as common knowl-
edge rather than private information.

6 With respect to multi-tasking, MacLeod and Parent (1999) argue that even where
explicit performance measurements are available for each task, the combinatorial
demands of optimally balancing them in an explicit agreement quickly become over-
whelming.
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f . If workers are physically separated from managers, for example, managers’ im-

pressions would tend to be more diffuse. The span of a manager’s control, explicitly

modeled by Mehta (1998), would also affect f .

Simpler models of low-powered incentives have been studied under the headings

of efficiency wages and deferred compensation (for example, Shapiro and Stiglitz,

1984, and Lazear, 1979). The model just outlined is distinctive in two ways. First,

employee’s choice of performance level is not restricted. In most earlier models

“effort” is taken to be a discrete variable with only one economically viable value

(i.e., agency problems must be fully resolved). Second, the “monitoring” technol-

ogy, though exogenously determined, is continuous, while previous models generally

assume an exogenous binary signal.

II. Employment Policy with Identical Workers

Since workers do not interact strategically with one another, the model is a

repeated game between the firm and a single worker with the following order of

play in each round: (1) The firm offers a wage w. (2) The worker responds with

a performance level p ≥ 0. (3) Nature plays x using the distribution F . (4) The

firm pays w. (5) The firm decides whether to retain the worker or end the game.

We focus on repeated play of the Bayesian Nash equilibrium of this stage game in

which the worker is retained if and only if x exceeds an endogenous threshold x̄.

We assume that x̄ is common knowledge. (Workers could infer x̄ by observing the

frequency of terminations.)

A. The Employee’s Problem

Let p̂ be a worker’s best response to an employment policy ψ = {w, x̄} that

satisfies the worker’s participation constraint: V (p̂; ψ) ≥ V a, where V (p̂;ψ) is the

maximum utility that can be achieved by accepting ψ. (To simplify notation, we

forthwith suppress ψ as an argument in V .) The lifetime utility of an employee who
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chooses performance level p today and reverts to p̂ tomorrow is given by

V (p) = w − p + β
[
F (x̄− p)V a +

(
1− F (x̄− p)

)
V (p̂)

]
. (1)

The employee maximizes V (p) by choosing p ≥ 0. The worker’s best response is

well-behaved:

Proposition 1: An employment policy ψ = {w, x̄} that satisfies the participation
constraint implies a unique best response p̂. Further, p̂ exceeds the termination
threshold x̄ if V (p̂) > V a.

Proof: First note that V (p̂) = V a implies that p̂ = 0. Assume now that V (p̂) > V a.

Then V (p) is continuous in p, and limp→∞ V (p) = −∞, so V (p) must have a

maximum for p > 0.7 Thus for today’s best action to be p̂, we must have V ′(p̂) = 0,

which reduces to

βf(x̄− p̂)[V (p̂)− V a] = 1. (2)

We also have

V ′′(p) = βf ′(x̄− p)[V a − V (p̂)],

which is negative long as f ′(x̄ − p) > 0. Thus V (p) is concave where x̄ − p < 0.

Therefore, any solution to equation (2) is a maximum if x̄ − p̂ < 0. To see that

the solution is unique, note that two maxima would bracket a minimum, where

V ′′(p) > 0, implying that f ′(x̄ − p) switches sign twice. But this contradicts the

assumption that f(ε) is single-peaked.

According to Proposition 1, workers are terminated only when their perceived

performance is strictly less than their actual performance. The economic intuition is

that the worker, recognizing the imperfection of the signal, establishes a buffer (p̂−x̄)

between her actual performance the perceived performance level that results in

7 An arbitrary ψ might imply the corner solution p = 0. But obviously we have assumed
the firm wants to address its agency problem rather than ignore it. Therefore we
ignore this detail.
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termination. An outsider, somehow able to observe both p̂ and x̄, might misinterpret

this outcome in two ways. The observer might conclude that managers tolerate

substandard performance, firing workers only when they see performance well below

the norm. Alternatively, the observer might interpret p̂−x̄ as a “gift” of performance

exceeding some standard or required level, but in fact there is no reciprocity in this

model.

Evaluating equation (1) at p = p̂ and solving for V (p̂), then substituting into

equation (2) produces

w = p̂ + (1− β)V a +
ρ + F (x̄− p̂)

f(x̄− p̂)
, (3)

which implicitly defines the worker’s best response p̂(ψ). Since w − p̂ is the flow

of utility from the job and (1 − β)V a is the flow value of alternative activities,

equation (3) guarantees that any ψ for which p̂ > 0 also satisfies the participation

constraint.

In contrast to models that assume 0/1 effort decisions, here p̂ is continuous in

ψ. The former models create artificial nonconvexities so that slight deviations from

optimal compensation can result in a discrete jump to p = 0.

B. Profit Maximization

The firm’s objective is to maximize profits, which it must do subject to the

constraint imposed by the worker’s best response function p̂(ψ):

max
ψ

g(p̂(ψ))− w.

We assume positive profits are possible. Profits are bounded since we have assumed

g′(∞) = 0. This problem is easier to handle if we observe that equation (3) has a

dual interpretation as specifying the minimum w required to induce performance p̂

for a given x̄.8 We thus write equation (3) as w = w(p̂, x̄) and use it to formulate

8 That is,
w(p̂, x̄) = min

w
{w subject to (3)}.
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an equivalent profit maximization:

max
x̄,p̂

g(p̂)− w(p̂, x̄). (4)

We will continue to use p̂ to denote the worker’s best response, while using p∗ to

denote the performance induced by the firm’s optimal choice of ψ.

We now turn to the question of how efficiency and distribution of surplus are

affected by the agency problem. With regard to efficiency, the following result

follows easily from the modified profit-maximization problem (4):

Proposition 2: The optimal employment policy ψ∗ induces the first-best perfor-
mance level:

g′(p∗) = 1.

Proof: The first-order conditions for (4) are

0 = g′(p∗) +
∂w(p∗, x̄∗)

∂p∗

0 =
∂w(p∗, x̄∗)

∂x̄
.

Since both p̂ and x̄ are parameters in the minimization implied by the dual inter-

pretation of (3), we can apply the envelope theorem to w(p̂, x̄) (differentiate the

right-hand side of (3)). By inspection,

∂w(p̂, x̄)
∂p̂

= 1− ∂w(p̂, x̄)
∂x̄

,

and thus g′(p∗) = 1.

Proposition 3 describes the distribution of surplus and retention policy.

Proposition 3: Suppose that the density f depends on a parameter σ, with σ2

linearly related to the variance, and that f can be written

f(ε;σ) =
1
σ

h
( ε

σ

)
(5)
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where h does not depend on σ except via ε/σ. Then:

i. The probability of retention does not depend on σ.

ii. Compensation is linearly increasing in σ:

w∗ = p∗ + (1− β)V a +
h(b∗)
h′(b∗)

σ. (6)

Proof: Make the change of variables b = y/σ, so that

f(σb) =
h(b)
σ

.

It is easy to show that

f ′(σb) =
h′(b)
σ2

.

From profit maximization we have

0 =
∂w(p∗, x̄∗)

∂x̄
= 1−

[
ρ + F (x̄∗ − p∗)

]
f ′(x̄∗ − p∗)

f(x̄∗ − p∗)2

Solving for F (x̄− p̂) and substituting for f and f ′ makes it clear that the retention

probability is independent of σ:

F (x̄∗ − p∗) =
h(b∗)2

h′(b∗)
− ρ

Substitution into equation (3) produces equation (6).

Condition (5) is met by a wide range of distributions including normal, logistic,

and nonstandard t variables, as well any mixture of them (though some mixture

distributions violate the assumption that f is single-peaked).

Combined with Proposition 2, this result demonstrates that in the simple set-

ting we model, bad managers or difficult environments make it costly to achieve

efficient performance. One might expect that in an increasingly noisy environment

the firm would respond by trading off lower expected performance for lower com-

pensation. Instead, an increase in σ only moves the worker farther away from her

participation constraint (while σ = 0 makes the participation constraint bind).
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III. Critical Workers, Heterogeneity, and Low-Powered Incentives

Whether a worker is critical makes no difference in the baseline model described

in the previous section. In this section we show that when workers’ productivity

varies unobservably, the form of the production technology influences the design of

optimal low-powered incentives.

Following Baker, Gibbons, and Murphy (1994), the form of heterogeneity we

introduce is transitory variation in the work environment. If workers are better

positioned than supervisors to observe certain stochastic elements in the produc-

tion process, then the motivational effect of any incentive scheme that relies on

the supervisor’s assessment (e.g., low-powered incentives) varies unobservably with

circumstances. Employers with different production technologies therefore differ in

their tolerance for heterogeneous performance. Thus they must concern themselves

with the effect of their employment policy on more than one “type” of worker.

Specifically, suppose that the effort required to achieve a given level of perfor-

mance is random. The variation can come from either the supply side (the worker

is not feeling healthy) or the demand side (unusual problems must be solved). The

disutility incurred in supplying performance p is ηp. The random variable η is

binary with η1 > η2, Pr {η = η1} = θ, and E{η} = 1. Each realization of η is

independent of past realizations and those of other workers. We assume that the

realization of η is private information, known only to the worker. We continue to

assume that x = p + ε and output is g(p).

As in Section II, the problem we solve is how to design the employment policy

ψ that should be offered to worker i holding other workers’ performance choices

fixed. We first consider the worker’s best response to employment conditions ψ.

The expected lifetime utility of a worker whose current type is j is

V (pj) = w − ηjpj + F (x̄− pj)βV a +
(
1− F (x̄− pj)

)
βEη{V }, (7)
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where Eη{V } = θV (p̂1) + (1 − θ)V (p̂2). The first-order conditions for maximizing

V with respect to pj are

ηj = β[Eη{V } − V a]f(x̄− p̂j), j = 1, 2. (8)

The structure of the employee’s maximization is much the same as in the simpler

model, and thus Proposition 1 applies to both p̂1 and p̂2. Note that equations (8)

imply
f(x̄− p̂1)
f(x̄− p̂2)

=
η1

η2
. (9)

Since second-order conditions imply f ′(x̄− pj) > 0, equation (9) implies that p̂1 <

p̂2.

Taking expectations of both sides of equation (7) with respect to η gives an

expression for Eη{V } that can be used in equation (8). After rearranging

w = θη1p̂1 + (1− θ)η2p̂2 + (1− β)V a + Q(w, x̄)
(

ηj

f(x̄− p̂j)

)
, j = 1, 2 (10)

where Q(w, x̄) = ρ+θF (x̄− p̂1)+(1−θ)F (x̄− p̂2). Equations (10) implicitly define

the worker’s best responses p̂1 and p̂2 to employment policy ψ.

We list several useful characteristics of the best responses in Proposition 4,

which we prove in the appendix.

Proposition 4: Suppose f(x̄−p2)/f(x̄−p1) is increasing in x̄ (that is, f possesses
the monotone likelihood ratio property), then the worker’s best responses have the
following properties:

∂p̂j

∂w
> 0 and

∂p̂j

∂w
+

∂p̂j

∂x̄
= 1.

Additionally, at ψ∗,

∂p̂∗1
∂w

> 1,
∂p̂∗1
∂x̄

< 0, and
∂p̂∗2
∂x̄

> 0.

Although it is not surprising that the derivatives of p̂j with respect to the wage

are both positive, it is important that an increase in wage has a larger marginal effect
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on performance of the low-productivity workers (p̂1) than on the high-productivity

workers (p̂2). The derivatives with respect to dismissal threshold x̄ are more inter-

esting. With homogenous performance, the firm, for any given w, adjusts x̄ so as

to maximize performance: ∂p̂/∂x̄ = 0. With heterogeneous performance the firm

chooses a compromise x̄, which is “too high” from the perspective of achieving the

highest possible p̂1 and “too low” from the perspective of achieving maximum p̂2.

As a consequence, for a given wage, the firm can alter the variability in perfor-

mance by adjusting retention policies; if the firm reduces x̄ (i.e., retains a higher

fraction of the work force), p̂1 increases while p̂2 declines, reducing variation in

worker performance.

The claims of Proposition 4 suggest that a high-wage, low-turnover policy might

be optimal for a firm that is concerned with maintaining a relatively high minimal

level of performance (i.e., motivating p1). Thus an orchestra might use a high-

retention policy, using dismissals only for extremely poor performance.9 We proceed

by investigating this conjecture.

The contribution of a single worker is now g(p̂1) with probability θ and g(p̂2)

with probability 1 − θ.10 It is relatively easy to establish (using the first part

of Proposition 4) that when ψ∗ maximizes θg(p̂1) + (1 − θ)g(p̂2) − w subject to

equations (10),

θg′(p∗1) + (1− θ)g′(p∗2) = 1. (11)

Since p̂1 < p̂2 and, by assumption, g′(1) = 1, it follows from equation (11) that

p∗1 < 1 < p∗2.

9 In fact, elite symphony orchestras take considerable care to hire strong musicians,
but then adopt high-retention policies for these musicians. Though we do not model
it here, there is an additional reason why the the low-powered incentive structure
will be effective in dealing with heterogeneity: the turnover acts as a device to filter
permanent, but difficult-to-observe heterogeneity.

10 The definition of g is slightly more complex now as it involves an expectation over
types of all other workers, but we assume it has the same properties.
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Evidently, ψ∗ depends on the nature of the production function, as represented

by g(·). When the key to profitable production is that performance of the worker

does not fall significantly below a particular threshold (i.e., the work is critical to

production), g(·) will be a function that drops off very rapidly when performance is

below the desired threshold. We provide a more precise definition of “more critical,”

and then consider how this aspect of technology shapes the optimal low-powered

incentive contract.

Definition: Let a be a parameter that alters the shape of g (while maintaining
its differentiability and concavity). Let p∗1 and p∗2 be the equilibrium levels of per-
formance for type 1 and type 2 workers when a = a0. Then increasing a from a0

makes performance more critical if

ga(p) is





= 0, for p = p∗1 or p = p∗2
> 0, for p ∈ (p∗1, p

∗
2)

< 0, for p /∈ [p∗1, p
∗
2]

and

θgap(p∗1) > −(1− θ)gap(p∗2) > 0. (12)

The idea behind this definition is to generate changes in the production function

like that shown in Figure 1, with marginal product rising at p∗1 and falling at p∗2,

making it more and more critical that the worker supply performance close to

1.11,12 In Figure 1, a firm with technology g̃ is more averse to downward variation

in performance, while upward variation confers less advantage.

<< Insert Figure 1 about here >>

11 We hold scale fixed in order to isolate the effects of changing the shape of the produc-
tion function, although the exact way in which we do so is somewhat arbitrary. The
same results can be obtained using a definition that bends the production function
down around g(1) rather than forcing it through p∗1 and p∗2.

12 The critical worker concept is related to, but not identical to, complementarity. As
an illustration, suppose that G(·) is a constant-elasticity-of-substitution function.
Consider a firm seeking to motivate a worker, given that all other workers provide

p̄ = 1. Then g(p) = G(p, p̄, . . . , p̄) = A[p−a + (n − 1)]−
1
a , with A chosen so that

g′(1) = 1. The shape of g(p) can be changed in the way specified above by moving the
elasticity parameter a toward ∞, while changing A to keep the scale from changing.
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Condition (12) is less restrictive than it first appears. If g changes only slightly

near p∗1 and θ is tiny, the problem of motivating type 1 workers takes a back seat

to motivating type 2 workers. Thus for small changes in the technology something

like condition (12) is needed for our subsequent results. But large enough changes

in the technology automatically satisfy the condition, essentially because g′(p) is

bounded below by 0 for p > p∗2, while there is no such bound for p < p∗1. Our key

result concerning critical workers and low-powered incentives is Proposition 5.

Proposition 5: Suppose that f obeys the monotone likelihood ratio property.
Then making performance more critical (increasing a) has the following conse-
quences.

i. p∗1 increases (dp∗1/da > 0).

ii. p∗2 either falls or rises by less than p∗1 (dp∗2/da < dp∗1/da).

iii. If θgap(p∗1) is sufficiently large relative to |(1 − θ)gap(p∗2)|, then w∗ rises
(dw∗/da > 0).

iv. If θgap(p∗1) is sufficiently close to |(1−θ)gap(p∗2)|, then x̄∗ falls (dx̄∗/da > 0).

v. The probability of termination falls for both types.

A proof of Proposition 5 can be found in the appendix. Under low-powered

incentives, performance is motivated solely by the possibility of losing a valuable

job. Intuition might suggest that when performance is critical—when a production-

line worker can ruin a high-value product with poor performance, for instance—the

firm is likely to experience higher turnover as a byproduct of its attempt to ensure

adequate performance. In fact, the present model of low-powered incentives predicts

the opposite outcome: When performance is critical, firms adopt policies that result

in a high retention rate.

Proposition 4 provides the appropriate intuition for this result. When response

to incentives is heterogenous, the optimal dismissal threshold x̄ results in termi-

nation probabilities F (x̄∗ − p∗j ) that are “too low” to optimize the performance

of a high-productivity worker, and “too high” to optimize performance of a low-

15



productivity worker. If the job were more critical, the firm would prefer an em-

ployment policy tilted more toward optimizing performance of the low-productivity

worker. (Note that the key quantity here is the termination probability, not the

dismissal threshold; the firm’s goal in manipulating x̄ is to change the termination

probabilities.)

To accomplish an increase in p̂1, the firm must lower x̄ and/or raise w. The firm

would like to accomplish its adjustment solely through x̄, as this is costless. That

would raise p̂1 and lower p̂2. Holding all else fixed, p̂1 increases for low values of x̄

(as the threat of termination becomes large enough to matter), but then reaches a

maximum and declines. Proposition 4 says that p∗1 is to the right of its maximum,

and this maximum bounds the firm’s willingness to increase p∗1 by adjusting on only

the x̄ margin: As ∂p̂1/∂x̄ nears zero, ∂p̂2/∂x̄ does not. Therefore, w∗ must increase

if the movement toward critical performance is rapid enough, i.e., gap(p1) is large

relative to |gap(p2)|.

IV. Internal Competition and Low-Powered Incentives

It is tempting to view low-powered incentives as a fall-back strategy used when

high-powered incentives are not available or are restricted in some way. In fact, in

this section we show that the interaction between the two is more complex than

this portrayal; in some circumstances low-powered incentives can be an important

mechanism for dealing with problems that arise from the use of higher-powered in-

centives. This section studies these issues by supplementing low-powered incentives

with a rank-order tournament similar to that of Lazear and Rosen (1981).

As mentioned earlier, a compensation scheme based directly on x (which is

private and subjective) would be easily manipulated by the employer. However,

Malcomson (1984) and others have observed that if the size of the prize pool is

contractible, rank-order tournaments with preannounced prizes can circumvent this
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form of moral hazard.

The tournament is structured as follows. Two employees, who are observed by

the same manager, compete to win a prize z. Each period’s compensation consists

of the prize and a base wage w. The prize is awarded to the employee observed to

have the highest value of x. The manager is honest in awarding the prize.

The functioning of rank-order tournaments in the case of homogenous workers

has been extensively studied.13 One way to tell the story is this: Suppose the firm

offers employees fixed expected compensation, at a level high enough that workers

are willing to take the job for some anticipated positive level of performance (i.e.,

E{V } ≥ V a when performance is 0). If the firm sets z = 0 there is no incentive,

and employees supply p = 0. As a thought experiment, let the firm increase z,

keeping overall compensation fixed. The competition for z provides an incentive to

increase performance. Thus workers move closer to their participation constraints.

If the firm has chosen the level of expected compensation optimally, when the firm

has increased the prize to a point that induces the efficient level of performance,

workers’ participation constraints also bind.

A. The model augmented by a rank-order tournament

It is not difficult to generalize the low-powered incentives model to incorporate

a rank-order tournament between two workers. So that the model has an equilib-

rium in the special case (only) where the firm uses no low-powered incentives, it is

necessary to complicate the model by assuming that disutility is a convex function

of performance, ηjc(p). We continue to assume η1 > η2, E{η} = 1, and Pr {η1} = θ.

The employment policy is ψ = {w, z, x̄}, where w is the base wage.

Let P (p; p′1, p
′
2) be the probability of winning the prize by supplying perfor-

mance p conditional on one’s opponent supplying either p′1 or p′2, depending on her

13 Textbook treatments include Lazear (1998) and Gibbons (1992).
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type. Then

P (p; p′1, p
′
2) = 1− θ

∫ ∞

−∞
F (ε + p′1 − p)f(ε) dε− (1− θ)

∫ ∞

−∞
F (ε + p′2 − p)f(ε) dε.

We will restrict attention to symmetric Bayesian Nash equilibria, with equilibrium

performance levels denoted {p̂1, p̂2}.
Suppose that both the employee and her opponent supply p̂1 and p̂2 in the

future and that the opponent supplies p̂1 or p̂2 now. If the employee’s current type

is j, she chooses pj to maximize

V (pj) = w+P (pj ; p̂1, p̂2)z−ηjc(pj)+F (x̄−pj)βV a +[1−F (x̄−pj)]βEη{V }. (13)

The first-order condition for (13) is

0 = P1(pj ; p̂1, p̂2)z − ηjc
′(pj) + f(x̄− pj)β[Eη{V } − V a]. (14)

As noted above, in standard tournament models (with a homogenous work-

force), increasing z always increases equilibrium performance (as long as the par-

ticipation constraint does not bind). The key to understanding the relationship

between low- and high-powered incentives is to ask whether the same is true here:

Does an increase in z always increase performance when worker productivity is

heterogeneous?

We analyze the same thought experiment described above: changing z, while

holding overall compensation constant. Let overall compensation for both employees

be 2W . Since the tournament is fair, the base wage is w(z) = W − z/2. Differen-

tiating equation (14) with respect to z, then imposing the equilibrium conditions,

dpj/dz = dp̂j/dz for j = 1, 2, yields

dp̂1

dz
=

P1(p̂1; p̂1, p̂2)− z(1− θ)Adp̂2
dz + f(x̄− p̂1)β

dEη{V }
dz

−z(1− θ)A + η1c′′(p̂1) + f ′(x̄− p̂1)β[Eη{V } − V a]
, (15)

dp̂2

dz
=

P1(p̂2; p̂1, p̂2) + zθAdp̂1
dz + f(x̄− p̂2)β

dEη{V }
dz

zθA + η2c′′(p̂2) + f ′(x̄− p2)β[Eη{V } − V a]
, (16)
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where A =
∫∞
−∞ f ′(ε + p̂1 − p̂2)f(ε) dε > 0.14

Second-order conditions imply that the denominators are positive. The equi-

librium impact of an increase in the power of the incentive (an increase in z), for

performance in both the low-productivity state (p̂1) and high-productivity state

(p̂2), is determined by the three terms in the numerator.

The first term corresponds to the “direct effect” on performance of increasing

the prize—the effect of changing one’s own performance on the probability of win-

ning. When a worker provides higher performance, the prospects of winning the

prize improve, so this term is positive.

The second term can be thought of as an “indirect effect” created by the changes

in the performance of competitors whose productivity state is different from one’s

own. (The term corresponding to competitors of one’s own type is always zero.)

This term is central to our subsequent analysis, especially of performance in the

low-productivity state p̂1. The term has opposite signs in (15) and (16); increased

performance by a type 1 competitor motivates more effort from a type 2 worker, but

increased performance by a type 2 competitor discourages a type 1 employee. This

effect, which we term the uneven playing field effect, is based on appealing intuition:

When a more able competitor decides to work harder, the marginal expected value

of one’s own performance deteriorates.

The third term reflects the changed value of the job induced by changes in

future performance. By construction, expected compensation has not changed, but

because performance levels change, there is an indirect effect on the value of the

job. Any change that reduces the value of the job in turn reduces the impact of

incentives from competition if the threat of dismissal is part of the firm’s personnel

practice.

14 Derivation of these equations is quite tedious. Details are available from the authors.
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B. The tournament alone

With these observations in mind, we first explore how the tournament functions

in the absence of low-powered incentives. That is, we ask how the tournament

operates when the firm relies only on internal competition, not on the threat of

dismissal. Proposition 6 follows from setting x̄ = −∞ in equations (15) and (16)

(making the model comparable to Lazear and Rosen’s, but with heterogeneity):

Proposition 6: Suppose the firm uses exclusively a rank-order tournament and
the participation constraint Eη{V } ≥ V a does not bind. Then changes to the size
of the prize z, holding overall compensation fixed, have the following consequences.

(i) High-productivity workers always respond positively to increasing the size of
the tournament, that is, dp̂2/dz > 0 for all values of z.

(ii) For a sufficiently small prize, low-productivity workers also respond positively:
dp̂1/dz > 0. Starting from larger prizes, increasing z can de-motivate low-
productivity workers, that is, dp̂1/dz ≤ 0 is possible.

(iii) If the prize is sufficiently small and θ ≤ 1/2, type 1 workers respond less
vigorously to the tournament: dp̂1/dz < dp̂2/dz.

Proof: Setting x̄ = −∞ eliminates the terms involving f and f ′. Part (i): The

signs of the remaining terms in the numerators imply that dp̂2/dz > 0. Part (ii):

If z is sufficiently small, the first term in the numerator of dp̂1/dz dominates.

The possibility of dp̂1/dz ≤ 0 we demonstrate by example below. Part (iii):

P1(p̂1; p̂1, p̂2) ≤ P1(p̂2; p̂1, p̂2) if and only if θ ≤ 1/2. If z is sufficiently small,

p̂1 and p̂2 are near enough to zero to ensure that η1c
′′(p̂1) ≥ η2c

′′(p̂2).

Figure 2 illustrates the claims of Proposition 6 using a simple simulation of the

thought experiment discussed earlier—increasing the prize z while holding overall

compensation fixed. As indicated by the proposition, p̂2 increases with the prize up

to the point where the participation constraint binds (at z = 9.94). For relatively

small tournaments, p̂1 is also increasing in z, but it rises more slowly than does

p̂2. More importantly, p̂1 declines as the prize grows large, a consequence of the

uneven playing field effect. Therefore, if the compensation scheme is being designed
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to motivate critical workers, it may not be optimal to push the workers to their

participation constraint.

< Insert Figure 2 about here. >

A final observation is in order. In this example, the base wage is negative for

z > 9. This will restrict the scope of the tournament if the firm cannot implement

contracts that call for upfront transfers from workers to the firm.

C. Tournaments with low-powered incentives

Figure 3 illustrates how low-powered incentives change the picture. Figure 3

combines the simulation shown in Figure 2 with a parallel solution that uses the

hybrid model (low-powered incentives and a tournament) for an arbitrary value of

x̄.15 The two sets of solutions necessarily converge as they approach the partici-

pation constraint. The mechanism that creates this convergence is intuitive: the

low-powered incentives model differs from the pure tournament model in that the

asset value of the job is put at risk. Just as in the pure tournament model, that

value declines toward 0 as z increases.

< Insert Figure 3 about here. >

Three features of Figure 3 stand out. First, this example dramatically illus-

trates the uneven playing field effect and its importance when the job is critical.

The performance of a low-productivity worker is higher under an employment pol-

icy that uses only low-powered incentives (z = 0) than for a policy that uses only a

tournament of any size.

A second, not surprising, but nevertheless important, feature of Figure 3 is that

the use of terminations increases both p̂1 and p̂2 for every value of z. For most values

of z, workers of both types respond less vigorously to changes in z when low-powered

15 The optimal value of x̄ depends on g and z, but our suboptimal choice of x̄ adequately
illustrates the features of low-powered incentives.
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incentives are in place. This is simply a consequence of the fact that the asset value

of the job—which low-powered incentives exploit—declines as z increases, offsetting

the direct effect of competition. On the downward-sloping part of the low-powered

incentives curve for p̂1, this effect reinforces the uneven playing field effect, causing

a steeper drop-off in performance than when low-powered incentives are not used.

Third, the firm using exclusively low-powered incentives (z = 0) benefits by

introducing a tournament (this is easy to see from equations (15) and (16) as well).

How far should the low-powered incentives firm push the tournament? For some

parameter values, both of the “tournament + LPI” lines in Figure 3 would be strictly

increasing until the participation constraint is reached. In that case, assuming the

tournament faced none of the impediments mentioned in the literature, the optimal

employment policy with low-powered incentives would be equivalent to the pure

tournament model—raise z until the participation constraint is satisfied (at which

point x̄ is irrelevant). With the parameters used in Figure 3, however, the low-

powered incentives curve has a downward-sloping segment. In such a case, the

answer depends on the shape of g(p). If performance is sufficiently critical, it is

optimal to stop short of the participation constraint. In other words, if performance

is sufficiently critical, for some z at which the participation constraint does not bind,

an increase in the high-powered component of compensation serves only to reduce

expected contribution to firm value, that is,16

θg′(p̂1)
dp̂1

dz
+ (1− θ)g′(p̂2)

dp̂2

dz
< 0.

Further increases in z elicit higher p2 at the expense of lower p1.

V. Conclusion

The arrangements employers typically reach with their workforce look quite dif-

ferent than incentive contracts derived by economic theorists. Many employees are

16 Recall that dp̂j/dz does not depend on g.
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hired with an understanding that they will be offered a fixed level of compensation,

along with continued employment, so long as their performance appears to exceed

some minimal threshold. Thus Prendergast (1999) argues, “A critical avenue for

future research should be to better understand the evaluation and compensation of

those with non-contracted output.”

In that spirit, this paper provides a parsimonious characterization of compen-

sation, performance, and turnover policy for firms that use low-powered incentives

to solve agency problems. Our analysis centers on workplaces that share two fea-

tures: First, managers rely on private subjective information in evaluating worker

performance. Second, there is unobservable productivity variation among work-

ers. For such settings we contrast the properties of low-powered incentives with

a potentially viable high-powered alternative—a rank-order tournament with pre-

announced, verifiable prizes.

We find that the effectiveness of any incentive scheme hinges crucially on the

workplace technology, in particular on the extent to which the firm can tolerate

downward variation in performance. When some workers are critical—a concept

closely related to Kremer’s o-ring technology—the value of the firm’s output varies

significantly with the poorest performance in the workforce. Low-powered incentives

are effective in this environment, because they can motivate workers who would

otherwise be most inclined to provide the lowest performance. In this model, a

firm that uses low-powered incentives to motivate workers responds to a change

in technology that makes workers “more critical” by shifting toward policies with

relatively low worker turnover and high compensation.

With low-powered incentives, workers perform well so as to avoid losing valu-

able jobs. Making jobs valuable is costly to firms. Although firms cannot base pay

directly on performance (because managers’ assessments of performance are sub-

jective and private), they may be able to implement incentives based on internal
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competition and thereby reduce costs. We show that in fact a firm that uses low-

powered incentives will reduce employment costs if it can introduce a rank-order

tournament with a small prize. We also show, however, that firms employing critical

workers will not generally abandon low-powered incentives in favor of alternative

tournament-based incentives. Internal competition interacts with heterogeneity in

productivity by inducing a de-motivating “uneven playing field” effect—since it is

harder for low-productivity workers to win the prize, they do not try as hard. The

uneven playing field effect partly or fully offsets the direct effect of competition, and

its importance is magnified if the worker’s performance is critical. In this situation,

a large prize can be counterproductive.

In many work environments, low-powered incentives appear to have a further

advantage, which we do not model here. If the heterogeneity in productivity is per-

sistent, the use of terminations for particularly poor observed performance tends

to weed out low-productivity workers, so the terminations do double duty as an

incentive device and a means of screening. Again, this feature is especially impor-

tant when performance is critical. Fully understanding this aspect of low-powered

incentives would require careful treatment of the process by which the firm learns

about workers’ types.
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Appendix

Proofs of Propositions 4 and 5

Proof of Proposition 4:

Step 1. Differentiation and simplification. Equations (10) implicitly define best

responses p̂1 and p̂2. Note that Q(x̄, w) does not depend on j, and

Qw(w, x̄) = −θf(x̄− p̂1)
∂p̂1

∂w
− (1− θ)f(x̄− p̂2)

∂p̂2

∂w

Qx̄(w, x̄) = θf(x̄− p̂1)
(

1− ∂p̂1

∂x̄

)
+ (1− θ)f(x̄− p̂2)

(
1− ∂p̂2

∂x̄

)
.

Now for j = 1, differentiate (10) with respect to w:

1 = θη1
∂p̂1

∂w
+ (1− θ)η2

∂p̂2

∂w
+ Qw(x̄, w)

(
η1

f(x̄− p̂1)

)

+ Q(x̄, w)
η1f

′(x̄− p̂1)
f(x̄− p̂1)2

∂p̂1

∂w
.

(A1)

And with respect to x̄,

0 = θη1
∂p̂1

∂x̄
+ (1− θ)η2

∂p̂2

∂x̄
+ Qx̄(x̄, w)

(
η1

f(x̄− p̂1)

)

−Q(x̄, w)
η1f

′(x̄− p̂1)
f(x̄− p̂1)2

(
1− ∂p̂1

∂x̄

)
.

(A2)

Substitute for Qw in (A1) and apply equation (9):

1 = θη1
∂p̂1

∂w
+ (1− θ)η2

∂p̂2

∂w
− η1

f(x̄− p̂1)

[
θf(x̄− p̂1)

∂p̂1

∂w
+ (1− θ)f(x̄− p̂2)

∂p̂2

∂w

]

+ Q(x̄, w)
η1f

′(x̄− p̂1)
f(x̄− p̂1)2

∂p̂1

∂w

= θη1
∂p̂1

∂w
+ (1− θ)η2

∂p̂2

∂w
− η1θ

∂p̂1

∂w
− (1− θ)η1

η2

η1

∂p̂2

∂w

+ Q(x̄, w)
η1f

′(x̄− p̂1)
f(x̄− p̂1)2

∂p̂1

∂w

= Q(x̄, w)
η1f

′(x̄− p̂1)
f(x̄− p̂1)2

∂p̂1

∂w
. (A3)
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Equation (A3) implies that ∂p̂j/∂w > 0. Applying essentially the same algebra to

equation (A2) yields:

1 = Q(x̄, w)
η1f

′(x̄− p̂1)
f(x̄− p̂1)2

(
1− ∂p̂1

∂x̄

)
. (A4)

Comparing (A3) and (A4) we have

∂p̂1

∂w
= 1− ∂p̂1

∂x̄
. (A5)

An analogue for j = 2 is derived in the same way.

Step 2. Application of MLRP. By strict MLRP,

0 <
∂

∂x

[
f(x− p̂2)
f(x− p̂1)

]
=

f(x− p̂1)f ′(x− p̂2)− f(x− p̂2)f ′(x− p̂1)
f(x− p̂1)2

so, therefore,
f(x− p̂1)
f(x− p̂2)

>
f ′(x− p̂1)
f ′(x− p̂2)

.

Differentiating (9) w.r.t. w gives

η2f
′(x− p̂1)

∂p̂1

∂w
= η1f

′(x− p̂2)
∂p̂2

∂w
.

Rearranging and applying the MLRP,

∂p̂2/∂w

∂p̂1/∂w
=

f ′(x− p̂1)
f ′(x− p̂2)

η2

η1
<

f(x− p̂1)
f(x− p̂2)

η2

η1
= 1.

Thus ∂p̂1/∂w > ∂p̂2/∂w.

Step 3. Implication of profit maximization. The first-order condition for x is

0 = θg′
(
p̂1(x∗, w∗)

)∂p̂∗1
∂x

+ (1− θ)g′
(
p̂2(x∗, w∗)

)∂p̂∗2
∂x

,

which implies that ∂p̂1/∂x and ∂p̂2/∂x have opposite signs or are both zero at

ψ∗. However, ∂p̂∗1/∂x = ∂p̂∗2/∂x = 0 together with equation (A5) implies that

∂p̂∗1/∂w = ∂p̂∗2/∂w = 1, which the MLRP rules out. Therefore, ∂p̂∗1/∂x and ∂p̂∗2/∂x

have opposite signs, and equation (A5) implies ∂p∗1/∂x̄ < 0 and ∂p̂∗1/∂w > 1.
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Proof of Proposition 5: Part (i): Prove that dp∗1/da > 0. Note that changing

a does not change the feasible combinations of p1, p2, w, and x̄. In particular,

as a increases, profits are unchanged at ψ∗, which still induces (p∗1, p
∗
2). Suppose

that dp∗1/da < 0. Then dp∗2/da > 0 is necessary to satisfy equation (11). Since

the hypothesized change was feasible, it must not have been profitable before; the

change in profits in the direction of dp∗1/da < 0 and dp∗2/da > 0 must not be positive:

θgp(p∗1)
dp∗1
da

+ (1− θ)gp(p∗2)
dp∗2
da

− dw∗

da
≤ 0.

But differentiating the left-hand side this inequality, holding the direction of change

fixed, shows that this direction is even less profitable as a increases:

θgap(p∗1)
dp∗1
da

+ (1− θ)gap(p∗2)
dp∗2
da

< 0.

Therefore it must be the case that dp∗1/da > 0.

Part (iii): Let Π∗ = θg(p∗1) + (1− θ)g(p∗2)− w∗. The first-order conditions for

profit maximization are 0 = Π∗w and 0 = Π∗x̄. Differentiating them with respect to

a produces the following comparative statics results:

dw∗

da
=

Π∗ax̄Π∗wx̄ −Π∗awΠ∗x̄x̄

Π∗wwΠ∗̄xx̄ − (Π∗wx̄)2
,

dx̄∗

da
=

Π∗awΠ∗wx̄ −Π∗ax̄Π∗ww

Π∗wwΠ∗̄xx̄ − (Π∗wx̄)2
,

Second-order conditions guarantee that the denominators are positive and that Πww

and Πx̄x̄ are negative. Therefore the numerator of dw∗/da is positive if Πaw is large

enough relative to |Πax̄|. However,

Π∗aw + Π∗ax̄ = Π∗aw − |Π∗ax̄| = θgap(p∗1) + (1− θ)gap(p∗2).

so the condition required by the proposition is equivalent to Π∗aw large relative to

|Π∗ax̄|. Note that the quantity on the right-hand side can be arbitrarily large without

affecting any terms in dw∗/da other than Π∗aw and Π∗ax̄.
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Part (iv): Under the stated condition, Π∗aw ≈ |Π∗ax̄|, so the numerator of dx̄∗/da

is approximately Π∗aw(Π∗wx̄ + Π∗ww). Some algebra shows that

Π∗wx̄ + Π∗ww = θgpp(p∗1)
∂p̂1

∂w
+ (1− θ)gpp(p∗2)

∂p̂2

∂w
< 0.

Therefore, dx̄∗/da < 0 under the stated condition.

Part (v): The probability of termination for type j is F (x̄∗ − p̂∗j ), and

d

da
F (x̄∗ − p∗j ) = f(x̄∗ − p̂∗j )

[
dx̄∗

da
− ∂p∗j

∂x̄

dx̄∗

da
− ∂p∗j

∂w

dw∗

da

]

= f(x̄∗ − p̂∗j )
∂p∗j
∂w

[
dx̄∗

da
− dw∗

da

]
.

The second equality follows from Proposition 4. Thus dF (x̄∗−p∗j )/da has the same

sign as dx∗/da− dw∗/da. Now

dx̄∗

da
− dw∗

da
=
−Π∗ax̄[Π∗ww + Π∗wx̄] + Π∗aw[Π∗x̄x̄ + Π∗wx̄]

Π∗wwΠ∗̄xx̄ − (Π∗wx̄)2

=
θ(1− θ)(gap

(
p∗1)gpp(p∗2)− gap(p∗2)gpp(p∗1)

) (
∂p̂∗1
∂w − ∂p̂∗1

∂w

)

Π∗wwΠ∗̄xx̄ − (Π∗wx̄)2
. (A6)

The second equality uses the fact that

∂2p̂j

∂w2
=

∂2p̂j

∂w2
=

∂2p̂j

∂w∂x̄
,

which follows from Proposition 4. The definition of “more critical” implies that

gap(p∗1) > 0 and gap(p∗2) < 0. Finally, ∂p̂∗1/∂w > ∂p̂∗2/∂w (Proposition 4). Thus the

numerator is negative, as required.

Part (ii): From the proof of part (v) and Proposition 4,

dx̄∗

da
− dp∗1

da
=

∂p∗1
∂w

[
dx̄∗

da
− dw∗

da

]
<

∂p∗2
∂w

[
dx̄∗

da
− dw∗

da

]
=

dx̄∗

da
− dp∗2

da

It follows that dp∗1/da > dp∗2/da.
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Figure 1

Performance is more critical with technology g̃(p)
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Figure 2

Performance under a rank-order tournament
with constant overall compensation
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Notes: A separate solution was found for each value of z using equations (14) for j = 1, 2 and an
analytical expression for Eη{V } based on equation (13), setting x̄ = −∞ in each equation. The
participation constraint is reached at z = 9.94. The distribution of ε was chosen to be normal with
σ = 0.7, and c(p) = p2. The other parameter values were β = 0.99, θ = 0.1, η1 = 1.1, η2 = 0.9,
V a = 50. W = 9/2 was chosen to generate average performance of 2 at the participation constraint,
given the value of V a.



Figure 3

Performance levels in tournament and
tournament augmented by low-powered incentives
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Notes: The pure tournament curves are replicated from Figure 2. The “tournament + LPI” curves
are derived in the same way using x̄ = 1 and the remainder of the specification unchanged.


