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Abstract

This paper considers forecast averaging when the same model is used
but estimation is carried out over different estimation windows. It
develops theoretical results for random walks when their drift and/or
volatility are subject to one or more structural breaks. It is shown
that compared to using forecasts based on a single estimation win-
dow, averaging over estimation windows leads to a lower bias and to
a lower root mean square forecast error for all but the smallest of
breaks. Similar results are also obtained when observations are ex-
ponentially down-weighted, although in this case the performance of
forecasts based on exponential down-weighting critically depends on
the choice of the weighting coefficient. The forecasting techniques are
applied to 20 weekly series of stock market futures and it is found that
average forecasting methods in general perform better than using fore-
casts based on a single estimation window.
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1 Introduction

There now exists a sizeable literature on the possible merits of combining
forecasts obtained from different models, reviewed by Clemen (1989), Stock
and Watson (2004), and more recently by Timmermann (2006). Bayesian
and equal weighted forecast combinations are being used increasingly in
macroeconomics and finance to good effects. In this literature, the different
forecasts are typically obtained by estimating a number of alternative models
over the same sample period. Pesaran and Timmermann (2007) argue that
the forecast averaging procedure can be extended to deal with other types
of model uncertainty, such as the uncertainty over the size of the estimation
window, and propose the idea of averaging forecasts from the same model but
obtained over different estimation windows. Using Monte Carlo experiments
these authors show that this type of forecast averaging reduces the mean
square forecast error (MSFE) in many cases when the underlying economic
relations are subject to structural breaks.

The idea of forecast averaging over estimation windows has been fruit-
fully applied in macro economic forecasting. Assenmacher-Wesche and Pe-
saran (2008) average forecasts based on different VARX* models of the Swiss
economy estimated over different estimation windows and observe that av-
eraging forecasts across windows result in further improvements over aver-
aging of forecasts across models. Similar results are obtained by Pesaran,
Schuermann and Smith (2009) who apply the forecast averaging ideas to
global VARs composed of 26 individual country/region VARX* models. It
is therefore of interest to see if some theoretical insights can be gained in
support of these empirical findings.

In this paper we begin by deriving theoretical results for the average
windows (AveW) forecast procedure in the case of random walk models
subject to breaks. The most interesting case is when the break occurs in
the drift term, but we shall also consider other cases when the volatility of
the random walk undergoes changes, and when the breaks in the drift and
the volatility of the random walk model occur simultaneously. We consider
both the case of a single break as well as when there are a multiplicity of
breaks.

We also compare the AveW forecasting procedure with an alternative
method sometimes employed in the literature where the past observations
are down-weighted exponentially such that the most recent observations
carry the largest weight in the estimation and forecasting, see Gardner
(2006) for a review. We refer to this as the exponential down-weighted
(ExpW) forecast. This approach is related to the random coefficient model
and its performance in practice crucially depends on the parameter, v, used
to down-weight the past observations.

Restricting attention to random walk models allows us to simplify the
problem and attain exact theoretical results that shed light on the properties



of these forecasting methods. In particular, we show that in the presence of
breaks AveW and ExpW forecasts always have a lower bias than forecasts
based on a single estimation window. The forecast variance depends on the
size and the time of the break. For all but the smallest break sizes, however,
the MSFE of the AveW and ExpW forecasts are also smaller than those of
the single window forecasts.

An attractive feature of these methods is that no exact information about
the structural break is necessary. This contrasts with the conventional ap-
proach of estimating the break point using methods such as those of Bai
and Perron (1998, 2003) before incorporating them into the modeling pro-
cess or incorporate the break process into the estimation procedure using
methods such as that of Hamilton (1989); see Clements and Hendry (2006)
for a review of the recent literature. As argued in Pesaran and Timmermann
(2007), to optimally exploit break information in forecasting one needs to
know the point as well as the size of the break(s). Even if the point of the
break can be estimated with some degree of confidence, it is unlikely that
the size of the break can be estimated accurately, since it involves estimating
the model over the pre- as well as the post-break periods. If the distance
to break (measured from the date at which forecasts are made) is short the
post-break parameters are likely to be rather poorly estimated relative to
the ones obtained using pre-break data. If the pre- and post-break samples
are both relatively large, it might be possible to estimate the size of the
break reasonably accurately, but in such cases the break information might
not be all that important.

Clark and McCracken (2006) argue that averaging over different models
can improve forecasts in the presence of model instability, and our approach
is complementary to this. More closely related to our approach is the sugges-
tion by Clark and McCracken (2004) that averaging expanding and rolling
windows can be useful for forecasting when faced with structural breaks.
This can be seen as a limited version of AveW forecasts where only two
different windows are combined.

A further reason for considering the random walk model with drift and
volatility instability is that it is generally thought to describe the stochastic
properties of many macroeconomic and financial time series. In this paper
we apply the AveW and the ExpW procedures to forecasting weekly returns
on futures contracts in twenty world equity markets. We find that the AveW
forecasts outperform the single window forecasts in the root mean squared
sense in 18 out of the 20 equity markets. Although, the results did not prove
to be statistically significant in the case of individual equity returns, which
could be due to the high volatility of equity returns, particularly over the
past two years. The sample period being considered differs across equity
indices due to differences in the start dates of the equity futures markets.
But the forecasts for all the 20 equity futures cover the past two years and
end on November 24, 2008.



The rest of the paper is organized as follows: Section 2 sets out the model
and Section 3 develops the AveW forecasting procedure and its properties.
Section 4 considers the ExpW forecast procedure. Section 5 reports the
results of the applications to stock market futures and, finally, Section 6
draws some conclusions.

2 Basic model and notations
Consider the following random walk model with drift

Ty = Ty—1 + s + €1, €~ i.i.d.((),af) .
Define y; = 2y — x¢_1, then we have the model

Y = Mt + Eg,s (1)

which is defined over the sample period ¢ = 1,2,...,T, and where it is
believed that its drift coefficient, i, and its volatility, o, have been subject
to a single break at time t =13, (1 <1} < T)

_fop, VELZT,
PEZ e, VST,

o) — o1, V< T,
= o9, Vi >1Ty

The aim is to forecast z71, or yry1 based on the observations, y1, o, ...., y7.
In the case where it is known with certainty that the random walk model has
not been subject to any breaks, the sample mean, yr = T_lEleyt yields
the most efficient forecast in the mean squared error sense. However, when
the process is subject to break(s) more efficient forecasts could be obtained.
As shown in Pesaran and Timmermann (2007) there is typically a trade off
between bias and variance of forecasts. For example, when there is a break
in the drift term the use of the full sample will yield a biased forecast but
will continue to have the least variance. On the other hand a forecast based
on the sub-sample {y7,, y7,+1, ..., yr}, where T; > 1 is likely to have a lower
bias but could be inefficient due to a higher variance as compared to yr.
Knowing the point of the break helps but cannot be exploited optimally
unless a reliable estimate of the size of the break, |us — p1| /o, can also be
obtained. Often this is not possible since in most applications of interest
breaks might be quite recent and T' — Tj too small for a reliable estimation
of po.

In the absence of reliable information on the point and the size of the
break(s) in u; and oy, a forecasting procedure which is reasonably robust
to such breaks will be of interest. One approach considered in Pesaran



and Timmermann (2007) is to use different sub-windows to forecast and
then average the outcomes, either by means of cross-validated weights or by
simply using equal weights.

To this end consider the sample {yr,yr,+1,...,yr} with 7; > 1, which
yields an observation window of size T'— T; + 1. It proves convenient to
denote this observation window by w; = (T' — T; + 1)/T', which represents
the fraction w; of the single window (from the point of the forecast) used
in estimation. The estimation process could start with a minimum window
{yrs YTty - - - yr} Of size wmin = (T' — Tmin + 1)/T. From wmin other
larger windows can be considered with T; = Tiin, Tmin — 1, - -+, Tinin — M,
where m = T,y — 1, thus yielding m + 1 separate estimation windows. More
specifically

W; = Wipin —|— , fori=0,1,. (2)
with
Wo = Wmin, and wy, =1,

so that
m =T (1 — Wnin)- (3)

Clearly, w,,, = 1 corresponds to the full sample.
The one-step ahead forecast based on a given window w, is

Jr+1(wa) = firt1(wa), (4)

where
T

T
HT+1 wa = TL Z Z Yt-

t=T(1—wg)+1

3 Average window forecast

The AveW forecast is defined by the simple forecast combination rule

1 m T

1
N A _
yT+1( VeW) m 1 T’LU,L § Yt | > (5)
=0 t:T(l—’wi)-f—l

where forecasts from all windows are given equal weights.

The first object of interest in this paper is to compare the single-window
and the AveW forecasts, §r11(w;) and g1 (AveW), in the mean squared
error sense. In the case of the single window forecast we focus on the most
frequently encountered case where all observations in a given sample is used,
namely we consider fip41(1) = gp. In recursive estimation these alternative
forecasts can be considered both under expanding and rolling windows. The
AveW procedure is therefore not an alternative to rolling forecasts and can
be used irrespective of whether a rolling or an expanding window is used in
recursive forecasting.



3.1 Break in drift only

In the first instance assume that a single break occurs in the drift of the
process at date 1 < T, < T, whereas the error variance is constant, that
is, w1 # e but o1 = o9 = 0. The distance to the break is defined by
d = (T —Tp)/T. In this case the one-step ahead forecast of yr;1 based on
a given window of size wT (from ¢ = T') is given by

T
R dps + (w —d 1
Jra1 (w) = iz [~ T (w — d)+1 (w — d) | 42 (w ”“}Tw > e
t=T(1—w)+1

where I(c) is an indicator function which is unity if ¢ > 0 and zero otherwise.
It is clear that if w < d the forecast will have mean ps and will be unbiased.
There is, however, a bias when w > d > 0. The associated forecast error,
ert1(w) = yri1 — yr+1(w), can then be written as

w—d 1 T

ratw) = n-w) (o) 1w e Y a ©
t=T(1—w)+1

Hence, the forecast bias is

B feri (w)] = (22 — 1) (“’;d) Lw—d), )

and since (w — d) I (w — d) > 0, the direction of the bias depends on the sign

of (u2 — pu1).
Scaling the forecast error by o, we have the decomposition

T

_ 1
o terii(w) = uri1 + Brii(w) — T >, (8)
t=T(1-w)+1

e Y e )

A= (p2 — p1)/o, and uy = e¢/o. The first term, w41 represents the future
uncertainty which is given and unavoidable, the second term is the ‘bias’
that depends on the size of the break, A, and the distance to break, d, and
the last term represents the estimation uncertainty that depends on Tw.
The (scaled) mean squared forecast error (MSFE) for a window of size w is
given
1
T
Consider now the AveW forecast based on m + 1 successive windows of
sizes from the smallest window fraction wmni, to the largest possible one,

MSFE(w) = 1 + B} (w) + (10)



wy, = 1. While we need enough observations in the first window, wyi, > 0,
we will assume that wpi, is chosen to be sufficiently small so that wpin < d.
The AveW forecast constructed from these windows is then given by

1 m
o1 (AveW) = —— 3 iy (wy).
Ur+1(AveW) m+1i:0yT+1(w)

The (scaled) one step ahead forecast error associated with the above average
forecast is

0'_16T+1(AV6W) = wupi1+ A Z <wi — d) I(w; —d)

m—+ 1 4 w;
=0
T
I «— 1
m +1 Z Tw; Z b
=0 t=T(1—w;)+1

Hence, the bias of the AveW forecast is given by

A= (wi—d
BT+]_(AVGW) = m <
1=0

)iwi—a). (11)

Wy

and as before the sign of the bias depends on the sign of (ug — p1). In this
case the computation of the variance of the forecast error is complicated due
to the cross correlation of forecasts from the different windows. Let

T

1
vr(w;i) = Tw: Z Ut,
K3

t:T(lfwi)+1

then

min(wi, wj)

Cov [vp(w;), vr(wj)] = ,foralli,7 =0,1,...,m.

Tw;w;
As a result it is easily verified that
1 1\ |1 SO
Var [§741 (AveW)] = 1 + <T> <m+1> [ZO s 2; W] . (12)
Therefore, the scaled MSFE in this case is given by
MSFE(AveW) = 1+ BF, {(AveW) + Var [§r41(AveW)], (13)

with Bry1(AveW) and Var [y741(AveW)]| as defined above.



The difference between the scaled MSFE of the single window forecast
(10) and that of the AveW Forecast (13) is

MSFE (w,; A, d) — MSFE (1, wmin; A, d) =

22 <“’“_d>21(wa —d) + Ti)a (14)

m

2
A w; —d 1+ 2
I(w: —d)| —
m—l—lg w; (s )] m—|—122 Tw; ’

Since m = T'(1 — wmin), for fixed values of wy, and d, as T' becomes
sufficiently large the bias and variance terms of the AveW forecast can be

approximated by means of the Riemann integral. Using (2) and (3) we first
note that

T = m/(1— wnin),

T = T(wz - wmin) = m(wz - wmin)/(l - wmin)-

The bias term in (11) can be approximated using

m 1 o
Z <UJZ ) _ d) T1>>o (fE d) d;L‘7
ws d x

=  (1-d)+dn(d) >0,

where the lower boundary of the integral, d, is due to the fact that the

indicator function I(w; — d) implies that values of the expression below d
are zero.

Using the results in (12) we have

1 i 1+2i 1 il—FQT(wi—wmin)
T ¢ w; T w; ’

=0 =0

11 2T & — Wnin)
= 72 ut 20y s ) o
=0 =0
which can be approximated using
1 &1 7o [P0
f ; EZ _> /”LUmm ;daj T ln(wmln)’

and

X

m 1

1 2 : (wz - wmin) T—o0 L — Wmin

f - — 7(1%‘,
; Wmin

= 1 — Wmin + Wmin In Wiin.



Therefore, using the above results as T' — oo and m — oo for a fixed
Wmin < d < 1 and recalling that T'= m/(1 — wyin) we have
A2 9
MSFE(m, wmin; A, d) ~ ———5[(1—d)+dn(d)]"+1. (15)
(1 - wmin)
The first term is asymptotic bias due to the break, and the second term is

the error variance of the forecast period.
Comparing the two scaled MSFEs (10) and (15) we have

MSFE(w; A\, d) — MSFE(m, win; A, d) (16)
~a2 (W d z@;—@—g—Af——ul—@+dmmW
- Wq “ (1 - wmin)2

The difference depends on the length of the single window forecast, w,, and
the minimum window (fraction), wmpyn, which are chosen by the forecaster,
and the properties of the DGP, which are the size and the distance to the
break, A and d.

In the absence of any reliable knowledge of the break it would be of inter-
est to compare the AveW forecast with the one based on the full estimation
window, namely when w is set to unity. For this comparison it is readily
seen that the AveW forecast is the one with the lower MSFE, since for large
m
[(1—d)+ dIn(d)]

1 — Wmin

(1-d)— >0

implies that
—dIn(d)

Wiy < —————=
min = 1 _ d 9
and since wmin < d this condition can be rewritten as
1 <d—1n(a),

which is true for any d > 0. The two forecasts have the same MSFE only if
d = 1, namely if there has not been a break.

While the AveW forecast asymptotically always has a lower MSFE, a
trade-off exists between the lower bias and the higher variance of the AveW
forecast relative to the singe window forecast in finite samples. When A = 0,
that is, there is no break in the sample, using the entire sample is most
efficient estimator. As A increases the smaller bias of the AveW forecast
will start to dominate the lower variance of the single window forecast. The
degree of trade-off depends on the magnitudes of A, d, T' and wuyi,. The
figures below shed light on the extent of these trade-offs.

Figure 1 plots the exact and the asymptotic differences in MSFE of the
two forecast procedures in (14) and (16) for 7' = 2000, where the triangular
shape of the surface is due to the fact that w; < d. It can be seen that



Figure 1: Exact and asymptotic difference in MSFE with T' = 2000

A=10.08 A=10.08

The two plots on the left show the exact difference in MSFE in (14)
and the two plots on the right show the asymptotic difference in MSFE
in (16). The arrows in the top plots point to the zero-isoquant; the
surfaces in the plots in the second row are always positive.

the asymptotic MSFE in the right column of Figure 1 and the exact MSFE
in the left column of Figure 1 are fairly similar, in particular for A = 0.1.
However, even for a data set as large as T' = 2000 the exact difference in
MSFE can be negative for very small breaks.

Figure 2 plots the differences in the exact MSFE (14) for ' = 100. It
is clear that even for this smaller sample size the difference between the
RMFEs of the two procedures becomes positive even for relatively small
values of A\, and the difference rises rapidly with .

10



Figure 2: Exact difference in MSFE with 7' = 100
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The plots show the exact difference in MSFE in (14). The arrow in the
left upper plot points to the zero-isoquant; the surfaces in the other
plots are always positive.

3.2 Multiple breaks in drift

Consider a random walk model where the drift term is subject to n different
breaks. Denote the break points by d;, i« = 1,2,...,n, such that d; >
dy > ... > d,, and let the means of the process over these segments be

K, 2, - -5 nt1- SpeCiﬁcaHYa
Y= g + &, fort =1,2,...,T,

such that if the sample period is mapped to the unit interval the mean from
t=1tot=diT is given by 1, and the mean from t = diT + 1 to t = doT

11



is po, and so forth.

To simplify the analysis to begin with assume that n = 2, and note that
the one step ahead forecast of yr41 based on the window of size wT (from
t =T) is given by

Jre1(w) = [1—Lw—di)]ps+
d —d
I(w — dy)[1 — I(w — dy)] [ 2 T (Zj 2)“2}
T
dipz + (di — d2)p2 + (w — di) 1
+I(U} — dQ) |: w + w7T Z Et.
t=T—wT+1
The one-step ahead forecast error is
ert1(w) = yri1 — gr+1(w)

= pu3+ers1 — Jre(w),

which after some algebra, and noting that I(w — dp)I(w — d2) = I(w — dy),
can be written as

T
1
ery1(w)/o = Brii(w) +erq1/o — wT Z &/,
t=T—wT+1
where
w—d w —d
Bri(w) = All(w—d1)< 1) +/\21(w—d2)< 2),
w w
with

A= (p2 — ) Jo, do = (3 — p2) /o

From the above results, it is clear that for the case of n breaks we have

d;
B (w Z)\Iw d;) (w )

where
Ai = (g1 —pi) /o, i=1,2,..,n
n
n! Z Ai = (g1 —p1)/no.
i=1

For a single window estimation with w = 1, the forecast bias per break will
be

Br(n) = Br1(1 n—n_IZ)\I1_ (1-d;) = —12)\ (1—d

12



For AveW forecast the bias per break will be
. —1 i m AZ
Bavew(n) =n ;m+11—
1=

Wmin
The variance term is unaffected by the possibility of multiple breaks in the
mean.
In the case where A1, A\o,..., A, are distributed independently of the
break points, dy,ds,...,d,, the bias terms can be approximated for n large
as

lim Bp(n) = Bp=E\)(1-E(d))

n—oo
m—+ 11— Wnin

nILIEO BAvew(n) = BAveW = {1 — E(dz) + E [dz ln(dz)]} y

and

lim [BE(n) — B} ew(n)] =

n—oo

— [EO)2 {(1 — E(d;))? [1 - <m?1 1>2 (1 - 1Umin>2

_( m )2< 1 >2E[diln(di)]{2—2E(di)+E[diln(di)]}}.

m+1 1 — wmin
Since as n — oo then wyi, — 0, for large m we have
lim [B3(n) — Biye(n)] = —E[d: In(d;)] {2 — 2B(d;) + E [d; In(d;)]}

Furthermore, as d;In(d;) < 0 for all d; € (0,1), then —E[d; In(d;)] > 0.1
Also it is easily established that

f(d;) = 2 — 2d; + d; In(d;) > 0 for all d; € (0,1),

and hence for all distributions of break points over the unit interval it must
be that

Hence,
lim [Bl%’(n) - B%AveW(n)] > 0.

n—oo
The strict equality holds only if E()\;) = 0.
The magnitude of lim,, . [B%(n) — B3,y (n)] depends on the distribu-
tion of the break points d;. For example, if we assume that d; is distributed
uniformly over d; € (0,1), then E(d;) = 1/2,

1

1
E[d;In(d;)] = /azln(az)dm = [—imj + %xQ In(x) ; =-1/4,

1d; = 0 is ruled out by assumption, and d; = 1 refers to the case of no breaks.

13



and
2 —2E(d;) +Eld;In(d;)] =1—-1/4=3/4> 0.
Hence, we have
tim [B3(n) ~ Blow(n)] = 15 [EA)P > 0.

Strict equality holds only if E(\;) = 0.

3.3 Breaks in drift and volatility

For simplicity assume that there is only one break point but that the volatil-
ity also changes, that is, in model (1) o1 # o9 and p; # pe. We initially
proceed by analysing the effect of a structural break in volatility only, and
in a second step combine the result with that of the break in drift analysed
above. For simplicity of exposition assume that the drift and the volatility
break at the same time—the extension to different break dates is however
straightforward.

Initially ignoring the effect of a break in drift, the one-step ahead forecast
error for a window of size w, is given by

1 T
€T+1(wa) =E&T+1 — Tw, Z Et-
t=T(1—wq)+1

The scaled MSFE for the single window forecast when the variance breaks
at time T} is

MSFE(wg; k,d) = E[0526T+1|T(wa)2]

(wg — d) 5 min(wg,d)
R | —d — 2 +1 17
Tw? (wa JE Tw? + (17)
where k = 01 /09.
The forecast error for the AveW forecast is
N | T
6T+1(AV€W) =E&T+1 — mi—k]_ : T’LU,L Z IEt 5
=0 t=T"Wmin—1

and the scaled MSFE of the AveW forecast is
MSFE(m, win; k,d) = E(U;2[6T+1(AV6W)]2)

1 5 e Wy — d " min(w;, d)
- T(w; — d s, @)
(m +1)? (”’ Z; Tow? 1 )J’; Tw?

m—1 wi —d m 1
262 Y ——T(wi —d) > ——
i i S Twi

+2mzmmg‘”’d) i L 41 (18)



The derivation in Appendix A show that the asymptotic MSFE for the
AveW forecast in (18) is zero, and the same is true for the single window
MSFE as can readily be seen in (17).

Combining these results with those of the break in drift yields the scaled
MSFE for the single window forecast

_ Wq — d 2
E(oy%ers1(w,)?) = <w ) N (w, — d)
Wy —d 5 min(wg,d)
Tu? H(wg — d) k= + Tw? +1, (19)

where \ = |u2 — p1| /o2. For the AveW forecasts over m + 1 windows, the
scaled MSFE is

m 2
E(U;26T+1(AV6W)2) S [Z (wi _ d> M(w; — d)]
=0

— Tw; ‘ Tw
m—1 m
w; —d 1
+252 I(w; — d) Z —
=0 Wi Jj=i+1 ij
— min(w;, d) 1
2 — 1 20
2y = Y gt @
=0 Jj=i+1

Figure 3 plots the exact differences between (19) and (20) in scaled MS-
FEs of the forecast procedures. When comparing the plots to those for the
break in drift only in Figure 2, it becomes obvious that the break in volatil-
ity tilts the surface downwards as d is increased and wp;, remains small.
However, when the break in drift increases it quickly dominates the break
in volatility and the difference in scaled MSFEs become positive over the
whole range of d and wmjin.

4 Recursive forecasts for time-varying parameter
models

As an alternative to averaging forecasts over estimation windows we consider
time varying parameter models. A number of time-varying parameter mod-
els have been considered in the forecasting literature in which the unknown
parameters are assumed to follow random walks, see, for example, Harvey
(1989). Recently, Branch and Evans (2006) consider a number of variations
on this class of models and show that a particularly simple form, known as

15



Figure 3: Exact difference in MSFE for a break in drift and volatility with
T =100

A=01x=04 A=02wv=04

The plots show the difference of the MSFE in (19) and that in (20).
The arrows point to the zero-isoquants.

the ‘constant gain least squares’, works reasonably well in forecasting US
inflation and GDP growth.
The time varying parameter regression model is defined by

vy = Bxi1+ern e ~iid(0,07),
Be = Bi—1+ Vi,

where it is assumed that ¢; and v; are mutually and serially independent
with zero means and variances, o7 and ), respectively. For given values of
these variances the optimal one-step ahead forecast of yr 1, formed at time

16



T using Kalman Filters is given by

Jr1(KF) = Brxr,

where
Br = Pr-1+ Gr(yr — Br—1xr-1),
Gr = (U% + X,T_1PTXT,1)_1PTXT,1,
and

Pr=Pr_ i — (07 +xp_Proaxr_1) ' (Pr_ixr_1%p_ Pr_1) + Qr.

Many different estimators proposed in the literature are special cases of
the above recursive expressions for different choices of 02 and Qr, and the
initialization of Py, t =1,2,...,T.

In what follows we focus on a very simple application where x; = 1,
and only consider the constant gain least squares, which is equivalent to
discounting past observations at a geometric rate, v, see Branch and Evans
(2006, p.160). We denote this forecast by

T
N . L—7 —j
Jr+1(ExpW,7) = gr41(y) = ( T> Z’YT y;-

It is clear that for v = 1, gy 1(1) = T 1 Z;F:l yj = r-

Consider now the case where the mean of y; is subject to a single break
in mean at date 1 < T < T, with 1 # po but 01 = 092 = 0. The error of
the one-step ahead forecast in this case is given by

T
1—7 .
er+1(7) = yr41— <1_7T> Z’YT 7y
j=1

11— =
1— Tp—1 1— T
—<1 T) Y — <1 T) > A"
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and hence

AT=Tot1 T
Bias [§74+1(ExpW,7)] = (p2 — p1) <1_7T> :
Since, 0 < v < 1, the sign of the forecast bias is the same as the sign of
(12 — p1). The forecast error variance is given by

(=) (7))

1—+T 1—~2

It is interesting to note that for all values of 0 < v < 1 the sampling
variance of the forecast - the second part in the [ ], does not vanish even
for T sufficiently large. Therefore, the exponential decay-weighting of the
past observations would work only through bias reduction. As before, let

d = (T —Ty)/T denote the distance to the beak, and note that the scaled
one-step ahead MSFE in this case is given by

Var [ery1(y)] = o

MSFE [§r+1(ExpW,v)] = f(7) (21)

2
1+)\2 (,yl—i-Td_,yT)
1—+T

n 1—7 2 1—72T
1—AT 1—+2 )7
and as before, A = |ug — p1| /o.

Figure 4 compares the MSFE of the single window forecast with w =1
to that of the ExpW forecast given in (21) for different values of ~. It can
be seen that for small values of A the ExpW forecast has a higher MSFE
but that as the size of the break increases the MSFE of single w = 1 window
forecast increases above that of the ExpW forecast. The ExpW procedure
begins to dominate the single window forecasts when A is increased to 0.4
for all values of d and ~.

For large T and small d, f() can be approximated by

1 _
Fiy) = 1422202 d L 2= 0 4 047,

1+~
It is easily seen that
3/0) = ML+ Tay 2 — s 06,
and
Loy 2 2Td 2 T
if (v) =XM1 +Td)(1+2Td)~ +W+O(7)>O
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Figure 4: Exact difference of MSFEs of single window and ExpW for T' = 100

The graphs plot the exact difference between the single win-
dow and ExpW forecasts, that is, [MSFE(Single window) —
MSFE(ExpW (v; A, d))]/o>.

for all 0 < < 1. Hence, f(v) = 0 has a unique solution in terms of d and
A for a sufficiently large 7.

Figures 5-7 compare the AveW forecast with the ExpW forecasts for
different values of T',d, and A, and for different choices of v. Figure 5 plots
the difference in MSFE between the AveW and the ExpW forecasts for
T = 100 for different values of A and d. The difference across values of A
dominates that of different values of d and depends crucially on the choice
of v. While the ExpW forecasts have a smaller MSFE for v = 0.95 except
for small A, this is reversed for v = 0.99, where the AveW forecasts have a
smaller MSFE for most values of .

In the case of T' = 1000, which is plotted in Figure 6, the choice of v
is less important. The ExpW forecasts have a smaller MSFE except for
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Figure 5: Exact difference of MSFEs of AveW and ExpW for 7' = 100
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The graphs plot the exact difference between the AveW and ExpW fore-
casts, that is, [MSFE(AveW (Wmin; A, d)) — MSFE(ExpW (v; ), d))]/o?.
The arrows point to the zero-isoquant.

relatively small values of A and large values of d.

Figure 7 plots the difference in MSFE between the AveW and ExpW
forecasts for fixed break points D = dT" and fixed minimum windows T wmin.
The region where ExpW has a smaller MSFE depends on T', the size of the
break, A, and the decay parameter v. While for 7' = 100 and large values of
~ the difference becomes increasingly negative with A, the difference grows
in A for values of 0.96 or less. For T' = 1000 the difference is negative only
for small values of A.

In order to gain additional insight into the differences between the AveW
and ExpW procedures, we plot the weights attached to the observations in
a sample of T = 100 observations in Figure 8. It can be seen that AveW
gives equal weights to the observations in the minimum window whereas
the weights of these observations decline in the ExpW forecasts. Another
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Figure 6: Exact difference of MSFEs of AveW and ExpW for 7' = 1000
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See footnote to Figure 5

interesting observation is that the AveW weights do not differ as much as
those of ExpW between the different weighting schemes. This suggests that
ExpW forecasts will depend considerably more on the choice of v than AveW
forecasts depend on the choice of wpyiy.

5 Applications to financial time series

In this section we will apply the AveW and the ExpW procedures to weekly
returns on futures contracts in the case of twenty stock market indices.
Details of the price indices and the periods over which they are observed are
given in Appendix B. Note that S&P and FTSE futures go back to 1985,
whilst the start dates for other futures markets are much more recent. Our
sample ends on November 24, 2008 and thus covers the recent highly volatile
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Figure 7: Difference in MSFEs between AveW and ExpW forecasts with
fixed break point

D=10;T=100; Tw =10 D=20;T=100;Tw =10
min min

See footnote to Figure 5. Here, however, the break point D = dT and
the minimum window Twmin are fixed and not fractions of T'.

episodes associated with the credit crunch.

We recursively compute one-week ahead forecasts using rolling windows.
The baseline fixed window forecasts are obtained using 156 and 260 weeks
rolling regressions. We compare these forecasts with AveW rolling forecasts
based on the same samples. We compute AveW forecasts for two choices
of the minimum window, wnin = 16 weeks and 32 weeks for the 156 week
rolling window and wpi, = 26 weeks and 52 weeks for the 260 weeks rolling
window, which correspond to about 10% and 20% percent of the observa-
tions. For example, in the case of the sample with 156 weeks the AveW
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Figure 8: Weights attached to the observations in the AveW and ExpW
forecasts for 7' = 100
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Plotted are the weights attached to each observation in a sample of
T = 100 observations. The number in brackets are the minimum win-
dow, wWmin, in the case of the AveW weights and the down-weighting
parameter, -, in the case of the ExpW weights.

forecast is computed as the simple average of 141 forecasts computed based
on past 156,155, ...,16 weeks. Finally, we computed ExpW forecasts using
the decay parameters v = 0.95 and 0.98.

We report the bias and the root mean square forecast error (RMSFE) and
tests for predictive performance proposed by Diebold and Mariano (1995)
(DM). More precisely,

where €; = Y141 — Gsq1), the one-week ahead forecast, 41y, is based on
the observations up to ¢, and n is the number of forecasts under considera-
tion. The DM test statistic for predictive ability are calculated for the loss
differential

lt(A7B) = e?A - eng
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where e;4 and e;g are the forecast error for forecast methods A and B.

The bias and RMSFE for each time series is reported in Tables 1 and 2
and the DM statistics in Tables 3 to 6. When considering the 156 week
rolling window, the AveW forecasts have a lower RMSFE in 18 out of the
20 series for the shorter minimum window and in 19 out of 20 series for
the longer minimum window. While the difference in RMSFEs is relatively
small—the average ratio of the RMSFE of the AveW forecasts to that of the
single window is 0.9965 for both minimum windows. It is clear that in terms
of RMSFE the AveW forecasts systematically outperform forecasts based on
a single window, although the outperformance of the AveW is statistically
significant only in one case. But it is interesting to note, that in no case is
the AveW forecast significantly worse.

The improvement of the ExpW forecasts over the single window fore-
casts crucially depends on the down-weighting parameter. For v = 0.95
the RMSFE is lower than that of the single window in only 7 out of the
20 series, and in one case the Diebold-Mariano statistic suggests that the
ExpW(0.95) forecast is significantly worse than the single window forecast.
Using v = 0.98 changes the results and the ExpW (0.98) forecast has a lower
RMSFE in 17 out of 20 cases, although none of the improvements are sta-
tistically significant as the forecast RMSFEs are again similar to that of the
single window with average ratios of 1.007 (v = 0.95) and 0.9966 (y = 0.98).

When using a longer rolling window of 260 weeks, the AveW forecasts
have a lower RMSFE than the single window in 19 out of the 20 series with
an average ratio of the AveW RMSFE over the single window RMSFE of
0.9952 and 0.9960 for the shorter and the longer minimum window. Again,
in no individual series is the improvement statistically significant.

For the ExpW forecasts the improvement again depends strongly on the
down-weighting parameter, with a lower RMSFE in 9 out of 20 series when
v is set to 0.95 against 17 out of 20 when ~ is set to 0.98. The average ratio
of RMSFEs is 0.9984 and 0.9940 for v = 0.95 and 0.98.

6 Conclusion

In this paper we have shown that AveW and ExpW forecasts always have
a lower bias than full sample forecasts. The forecast variance of the AveW
and ExpW forecasts depends, however, on the size and time of the break
in the sample. For all but the smallest breaks, however, also the MSFE of
the AveW and ExpW forecasts are smaller than those of the single window
forecasts.

A comparison of the AveW and ExpW forecasts suggest that their rel-
ative performances depend on the size and timing of the break as well as
the size of the sample. It emerges that when the break is relatively small—
roughly less than a quarter of the variance of the disturbance term—the
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AveW forecast has a lower MSFE. Otherwise ExpW will dominate if the
sample size is small and the downweighting parameter, v, is set below ap-
proximately 0.96, or when the sample size is large.

Extensions of the results in the paper to more general set ups is possible
but analytical derivations might not be easy to achieve. This is particularly
the case if we consider dynamic models with breaks. However, Monte Carlo
simulations for AveW forecasts for AR(1) models, not reported here but
available from the authors, suggest that the main findings of this paper are
likely to hold more generally.
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Table 1: Forecasting performance for stock market indices, w = 156 weeks
rolling window

Name SW AveW AveW ExpW ExpW
(16 weeks) (32 weeks) (0.95) (0.98)

AEX  Bias 0.0130 0.0121 0.0128 0.0086 0.0118
RMSFE 0.6131 0.6123 0.6119 0.6164 0.6125

ASX Bias 0.0211 0.0248 0.0251 0.0229 0.0242
RMSFE 0.5116 0.5086 0.5088 0.5102 0.5088

BEL Bias 0.0286 0.0244 0.0258 0.0167 0.0236
RMSFE 0.6207 0.6182 0.6181 0.6216 0.6185

CAC Bias 0.0100 0.0086 0.0091 0.0062 0.0084
RMSFE 0.5994 0.5983 0.5979 0.6032 0.5987

DAX  Bias 0.0144 0.0141 0.0148 0.0102 0.0136
RMSFE 0.6791 0.6787 0.6784 0.6836 0.6790

DJE Bias 0.0202 0.0132 0.0140 0.0078 0.0129
RMSFE 0.6044 0.6014 0.6011 0.6052 0.6016

FOX  Bias 0.0181 0.0293 0.0297 0.0260 0.0279
RMSFE  0.5909 0.5831 0.5841 0.5821 0.5830
FTSE Bias 0.0073 0.0049 0.0052 0.0029 0.0048
RMSFE 0.4711 0.4719 0.4714 0.4766 0.4723

IBE Bias 0.0107 0.0096 0.0100 0.0074 0.0094
RMSFE 0.6133 0.6126 0.6121 0.6169 0.6127

KFX  Bias 0.0521 0.0548 0.0573 0.0409 0.0527
RMSFE 0.6694 0.6659 0.6660 0.6688 0.6663

MIB Bias 0.0361 0.0297 0.0315 0.0197 0.0288
RMSFE 0.6238 0.6221 0.6219 0.6252 0.6221

ND Bias 0.0484 0.0377 0.0399 0.0254 0.0369
RMSFE 0.8994 0.8962 0.8966 0.8992 0.8959

NK Bias 0.0188 0.0142 0.0148 0.0098 0.0139
RMSFE 0.6549 0.6540 0.6539 0.6579 0.6542

OBX  Bias 0.0331 0.0347 0.0348 0.0318 0.0340
RMSFE 0.7572 0.7498 0.7508 0.7476 0.7492

OMX Bias 0.0133 0.0131 0.0136 0.0101 0.0127
RMSFE 0.7185 0.7167 0.7167 0.7208 0.7169

PSI  Bias  0.0299 0.0196 0.0210 00114  0.0193
RMSFE 0.5309 0.5262 0.5270 0.5257 0.5259

SMI Bias 0.0183 0.0144 0.0152 0.0094 0.0140
RMSFE 0.5528 0.5524 0.5521 0.5566 0.5527

SP Bias 0.0118 0.0090 0.0094 0.0065 0.0089
RMSFE  0.4562 0.4564 0.4560 0.4600 0.4566

TPX  Bias 0.0044 0.0058 0.0058 0.0053 0.0056
RMSFE 0.6755 0.6752 0.6751 0.6808 0.6757

TSX Bias 0.0013 0.0095 0.0089 0.0132 0.0095
RMSFE 0.4993 0.4965 0.4971 0.4945 0.4960

The column with heading SW gives the results for the single window of length w
specified above, the columns with headings AveW (16 weeks) and AveW (32 weeks)
those for the AveW forecasts with minimum window size of 16 and 32 weeks, the
columns with headings ExpW(0.95) and ExpW(0.98) give those for the ExpW
forecasts with downweighting parameters 0.95 and 0.98. The details of the series
including the forecast periods are given in Appendix B.
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Table 2: Forecasting performance for stock market indices, w = 260 weeks
rolling window

Name SW AveW AveW ExpW  ExpW
(26 weeks) (52 weeks) (0.95) (0.98)

AEX  Bias 0.0191 0.0201 0.0207 0.0136  0.0184
RMSFE 0.6421 0.6401 0.6403 0.6447 0.6404

ASX  Bias 0.0505 0.0610 0.0628 0.0439  0.0574
RMSFE 0.6159 0.6128 0.6136 0.6128 0.6114

BEL  Bias 0.0442 0.0381 0.0402 0.0201  0.0316
RMSFE 0.6319 0.6279 0.6286 0.6295  0.6268

CAC Bias 0.0082 0.0101 0.0104 0.0067 0.0095
RMSFE 0.6096 0.6075 0.6078 0.6123  0.6078

DAX  Bias 0.0113 0.0139 0.0141 0.0105 0.0134
RMSFE 0.7091 0.7073 0.7075 0.7123 0.7077

DJE Bias 0.0017 0.0158 0.0143 0.0228  0.0213
RMSFE 0.5140 0.5104 0.5113 0.5115 0.5092

FOX  Bias 0.0676 0.0813 0.0844 0.0507  0.0729
RMSFE 0.6526 0.6444 0.6458 0.6391  0.6407
FTSE Bias 0.0087 0.0081 0.0085 0.0048 0.0072
RMSFE 0.4779 0.4773 0.4772 0.4825  0.4782

IBE Bias 0.0267 0.0265 0.0277 0.0149 0.0233
RMSFE 0.6401 0.6384 0.6385 0.6433 0.6387

KFX  Bias 0.1158 0.1158 0.1207 0.0706  0.1009
RMSFE 0.8431 0.8384 0.8392 0.8385 0.8367

MIB Bias 0.0511 0.0411 0.0431 0.0233 0.0341
RMSFE 0.5872 0.5829 0.5837 0.5841  0.5816

ND  Bias 0.0374 0.0181 0.0191  0.0114  0.0128
RMSFE 0.7398 0.7373 0.7380 0.7402  0.7371

NK Bias 0.0023 0.0046 0.0044 0.0057 0.0056
RMSFE 0.6467 0.6464 0.6464 0.6509 0.6468

OBX Bias 0.0418 0.0681 0.0686 0.0572  0.0703
RMSFE 0.8124 0.8048 0.8058 0.8013 0.8016

OMX Bias 0.0177 0.0170 0.0179 0.0097  0.0145
RMSFE 0.7458 0.7433 0.7437 0.7475  0.7433

PSI Bias 0.0065 0.0049 0.0049 0.0045  0.0053
RMSFE 0.5161 0.5107 0.5118 0.5089  0.5088

SMI Bias 0.0178 0.0164 0.0170 0.0107 0.0146
RMSFE 0.5752 0.5738 0.5739 0.5787  0.5743

SP Bias 0.0135 0.0112 0.0117 0.0066 0.0096
RMSFE 0.4637 0.4628 0.4628 0.4665 0.4632

TPX  Bias 0.0008 0.0084 0.0085 0.0065  0.0091
RMSFE 0.6585 0.6585 0.6585 0.6647  0.6595

TSX  Bias 0.0361 0.0528 0.0531 0.0476  0.0536
RMSFE  0.5430 0.5384 0.5391 0.5307  0.5351

See Table 1 for details.
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Table 3: Tests of forecasting performance for stock market indices, w = 156
weeks rolling window

Name AveW AveW ExpW ExpW
(16 weeks) (32 weeks) (0.95) (0.98)

AEX SW 0.3950 0.7312  —0.5933 0.2481
AveW(0.1) 0.6673 —1.1622 —0.6185
AveW(0.2) ~1.1054  —0.6958

ExpW (0.95) 1.2180

ASX SW 0.9285 1.1187 0.1809 0.7633
AveW(0.1) —0.2035 —0.3155 —0.3942
AveW(0.2) —0.2485  —0.0437
ExpW(0.95) 0.3049

BEL SW 0.9532 1.2483 —0.1315 0.7415
AveW(0.1) 0.0950 —0.8022 —0.6457
AveW(0.2) —0.7131  —0.3360
ExpW(0.95) 0.8161

CAC SW 0.5412 0.9134 —0.8217 0.3237
AveW(0.1) 0.9911 —1.7585 —1.2633
AveW(0.2) ~1.6689 —1.2043
ExpW(0.95) 1.7899

DAX SW 0.1623 0.3441 —0.7404 0.0398
AveW(0.1) 0.4429 —1.2659 —0.6622
AveW(0.2) —1.1640 —0.5760
ExpW(0.95) 1.3256

DJE SW 0.7985 1.0380 —0.1023 0.6678
AveW(0.1) 0.2839 —0.7910 —0.5426
AveW(0.2) —0.7282  —0.4179

ExpW (0.95) 0.8085

FOX SW 1.8463 1.9936 0.9557 1.7304
AveW(0.1) —1.0683 0.1854 0.2053
AveW(0.2) 0.3191  0.8048
ExpW(0.95) —0.1818

FTSE SW —0.8485 —0.4669 —2.2743 —1.1564
AveW(0.1) 1.7345 —2.9807 —2.3531
AveW(0.2) —2.8343 —2.1484
ExpW(0.95) 3.0210

IBE SW 0.3426 0.7059 —0.6805 0.2476
AveW(0.1) 0.8736 —1.2781 —0.3861
AveW(0.2) —1.2307 —0.7152
ExpW(0.95) 1.3763

See the footnote of Table 1 for details on the forecast methods and time
series. This table reports the test statistics for predictive ability of Diebold
and Mariano (1995) against the single window forecast, where a positive
value indicates that the method given in the top row has better predictive
ability.

28



Table 4: Tests of forecasting performance for stock market indices, w = 156
weeks rolling window

Name AveW AveW ExpW ExpW
(16 weeks) (32 weeks) (0.95) (0.98)

KFX SW 0.6723 0.8895 0.0370 0.4894
AveW(0.1) —0.06563 —0.2800 —0.3346
AveW(0.2) ~0.2387  —0.1180
ExpW(0.95) 0.2726

MIB SW 0.6892 0.8641 —0.2437 0.6343
AveW(0.1) 0.2165 —0.8844 —0.0734
AveW(0.2) —0.7960 —0.1708

ExpW (0.95) 0.9770

ND SW 0.5913 0.6341 0.0140 0.5934
AveW(0.1) ~0.3158 —0.4154  0.3782
AveW(0.2) ~0.3113  0.3578

ExpW (0.95) 0.5015

NK SW 0.5383 0.7121 —-0.8181 0.3927
AveW(0.1) 0.2741 —1.7605 —0.8069
AveW(0.2) ~1.5561 —0.5185
ExpW(0.95) 1.8471

OBX SW 1.4827 1.7202 0.7133 1.3860
AveW(0.1) —0.6938 0.2517 0.6199
AveW(0.2) 0.3145 0.6809
ExpW(0.95) ~0.2070

OMX SW 0.7402 0.8872 —0.4703 0.6102
AveW(0.1) —0.0261 —1.3788 —0.7418
AveW(0.2) ~1.1721  —0.2802
ExpW(0.95) 1.4210

PSI SW 1.3191 1.3483 0.6387 1.2859
AveW(0.1) —0.9847 0.0909 0.6084
AveW(0.2) 0.2211  0.8860
ExpW(0.95) ~0.0348

SMI SW 0.2202 0.4800 —0.8663 0.0415
AveW(0.1) 0.6243 —1.4161 —0.8187
AveW(0.2) ~1.3231  —0.7541
ExpW(0.95) 1.4827

SP SW —0.1080 0.2191 —-1.3024 —0.3052
AveW(0.1) 1.1253 —-1.9757 —1.3215
AveW(0.2) ~1.8761 —1.2806
ExpW(0.95) 2.0379

TPX SW 0.0909 0.2075 —0.9507 —0.1121
AveW(0.1) 0.3764 —1.6034 —1.4221
AveW(0.2) ~1.4583  —0.8417
ExpW(0.95) 1.6146

TSX SW 0.8669 0.9358 0.5712 0.8909
AveW(0.1) —0.6309 0.3677 0.8538
AveW(0.2) 04105  0.7259
ExpW(0.95) ~0.3150

See footnote of Table 3.
ee footnote of Table 929



Table 5: Tests of forecasting performance for stock market indices, w = 260
weeks rolling window

Name AveW AveW ExpW ExpW
(26 weeks) (52 weeks) (0.95) (0.98)

AEX SW 0.9299 1.0331 —0.3705 0.4701
AveW(0.1) —0.3447 —0.8630 —0.1380
AveW(0.2) —0.7764 —0.0393
ExpW(0.95) 1.1857

ASX SW 1.0323 1.0374 0.2680 0.7676
AveW(0.1) —0.9247 —0.0017 0.4594
AveW(0.2) 0.0781 0.5653
ExpW(0.95) 0.2239

BEL SW 1.5107 1.5451 0.2576 1.0644
AveW(0.1) ~1.2314 —0.2330  0.4891
AveW(0.2) —0.1196 0.6457
ExpW(0.95) 0.5707

CAC SW 0.9975 1.0292 —0.4419 0.5307
AveW(0.1) —0.6614 —1.0901 —0.1662
AveW(0.2) —0.9542  0.0060
ExpW(0.95) 1.5304

DAX SW 0.7366 0.8053 —0.4078 0.3474
AveW(0.1) —0.3458 —0.8563 —0.1839
AveW(0.2) —0.7624  —0.0683

ExpW (0.95) 1.1568

DJE SW 1.1235 1.0537 0.2160 0.8262
AveW(0.1) ~1.1189  —0.1182  0.4444
AveW(0.2) —0.0165  0.5936
ExpW(0.95) 0.3836

FOX SW 1.8285 1.8540 0.9584 1.5396
AveW(0.1) —1.4823 05167  1.0481
AveW(0.2) 0.6035 1.1470
ExpW(0.95) —0.2397

FTSE SW 0.6192 0.8829 —1.4901 —0.1931
AveW(0.1) 0.5338 —2.2519 —1.2354
AveW(0.2) —2.1249  —1.0909
ExpW(0.95) 2.6903

IBE SW 0.7889 0.8964 —0.4667 0.3956
AveW(0.1) —0.1689 —0.9658 —0.1755
AveW(0.2) —0.8813 —0.1026
ExpW(0.95) 1.3182

See footnote of Table 3.
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Table 6: Tests of forecasting performance for stock market indices, w = 260
weeks rolling window

Name AveW AveW ExpW ExpW
(26 weeks) (52 weeks) (0.95) (0.98)

KFX SW 0.7748 0.8455 0.1767 0.5342
AveW(0.1) —0.5232  —0.0037 0.2885
AveW(0.2) 0.0316 0.3338
ExpW(0.95) 0.1313

MIB SW 1.4544 1.3839 0.4029 1.2001
AveW(0.1) —-1.4976 —0.2115 0.7215
AveW(0.2) —0.0540 0.9013
ExpW(0.95) 0.7123

ND SW 0.5623 0.4801 —0.0343 0.3898
AveW(0.1) —0.7484 —0.3701 0.0847
AveW(0.2) —0.2637  0.2378
ExpW(0.95) 0.6152

NK SW 0.2709 0.2614 —1.0255 —0.0574
AveW(0.1) —0.2039 —1.4708 —0.4868
AveW(0.2) —1.3326  —0.3289
ExpW(0.95) 1.9018

OBX SW 1.4890 1.6069 0.5499 1.1021
AveW(0.1) —0.9013  0.2241  0.6446
AveW(0.2) 0.2701 0.6937
ExpW(0.95) —0.0328

OMX SW 1.1045 1.1465 —0.2660 0.6885
AveW(0.1) —0.7020 —0.8986 0.0498
AveW(0.2) —0.7524  0.2131
ExpW(0.95) 1.3531

PSI SW 1.5226 1.5181 0.6423 1.2087
AveW(0.1) —1.2425 0.2229 0.7125
AveW(0.2) 0.3183 0.8401
ExpW(0.95) 0.0196

SMI SW 0.8360 0.9315 —0.6343 0.3382
AveW(0.1) —-0.1997 —1.1441 —0.3429
AveW(0.2) —1.0558 —0.2335
ExpW(0.95) 1.4681

Sp SW 0.7681 0.8392 —0.7321 0.2547
AveW(0.1) —0.3114 —1.3585 —0.4707
AveW(0.2) —1.2385 —0.3142
ExpW(0.95) 1.7626

TPX SW 0.0151 0.0384 —0.9174 —0.2831
AveW(0.1) 0.0700 —1.1978 —0.5868
AveW(0.2) ~1.1238  —0.4904
ExpW(0.95) 1.4680

TSX SW 1.6726 1.8061 1.0127 1.3858
AveW(0.1) —1.1163 0.7973 1.0713
AveW(0.2) 0.8198  1.0810
ExpW(0.95) —0.6696

See footnote of Table 3.
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Appendix A: Mathematical details

This appendix gives the mathematical details for the AveW forecast with a

break in volatility.
We have that

1 & w; —d T—o0 Lo—d
TZ I(w; —d) =3 de = —In(d)+d—1,
=0

1 & min(w;,d) T—oo d La
p e [ e [

= In(d) — In(wmin) + 1 —d,

m—1 m 1 1
= Mwi—d)— Y — =2 1-= ~dyd
T < ; (w )TA: w; d( x)/gcyyx

= Wi j=i+1 7
1
d
= / ( - 1) In(z)dx
d T
d 2
= 1+dln(d)—d—§ln(d) ,
and, finally,
1 i mln(wi, d) l - 1
T ; wj
1=0 j =i+1

oo /w /x = dydz + / / ~dydz
:—/wmm n(z )dm—/d L in ()

= Wonin IN(Wmin) — Winin — d1n(d) + d + gln(d)2.

This results in the MSFE

MSFE(m, wagn: #,d) = (m+11)2 (K2[~In(d) +d— 1] (22)
+ In(d) — In(wmn) + 1 — d}
2m l‘iz n — — g n 2
T [ ) 4 g

d
+ Wnin In(Wmin) — Wiin — d1In(d) + d + B ln(d)Q} .

and as m increases the MSFE converges to zero.
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Appendix B: Equity Futures and Sample Periods

The equity series refer to futures contracts taken from Datastream and cover
the different periods as set out below. The start of the samples generally

coincide with the start dates of the futures markets in question.

AEX:

ASX:

BEL:

CAC:

DAX:

DJE:

Amsterdam Exchange Index, Netherlands

w = 156 — Number of forecasts
w = 260 — Number of forecasts

: 864 (01-Jun-1989 to 24-Nov-2008)
: 760 (25-Oct-1989 to 24-Nov-2008)

Australian Securities Exchange Index

w = 156 — Number of forecasts
w = 260 — Number of forecasts

BEL 20 Index, Belgium

w = 156 — Number of forecasts:
w = 260 — Number of forecasts:

CAC40 index, France

w = 156 — Number of forecasts:
w = 260 — Number of forecasts:

DAX 30 index, Germany

w = 156 — Number of forecasts:
w = 260 — Number of forecasts:

: 279 (06-Dec-2000 to 19-Nov-2008)
: 175 (02-May-2001 to 19-Nov-2008)

603 (07-Jun-1994 to 24-Nov-2008)
499 (31-Oct-1994 to 24-Nov-2008)

868 (24-Mar-1989 to 24-Nov-2008)
764 (17-Aug-1989 to 24-Nov-2008)

753 (02-Jul-1991 to 24-Nov-2008)
649 (25-Nov-1991 to 24-Nov-2008)

DJ EURO STOXX 50, DJ euro index

w = 156 — Number of forecasts
w = 260 — Number of forecasts

: 375 (27-Jan-1999 to 25-Nov-2008)
: 271 (22-Jun-1999 to 25-Nov-2008)

FTSE: FTSE 100, U.K.
w = 156 — Number of forecasts: 1054 (09-Aug-1985 to 19-Nov-2008)
w = 260 — Number of forecasts: 950 (06-Jan-1986 to 19-Nov-2008)
FOX: FOX Index, Finland
w = 156 — Number of forecasts: 283 (02-May-2000 to 19-Nov-2008)
w = 260 — Number of forecasts: 179 (25-Sep-2000 to 19-Nov-2008)
IBE: IBEX 35, Spain
w = 156 — Number of forecasts: 672 (25-Nov-1992 to 24-Nov-2008)
w = 260 — Number of forecasts: 568 (21-Apr-1993 to 24-Nov-2008)
KFX: KFX Index, Denmark
w = 156 — Number of forecasts: 233 (14-Aug-2001 to 25-Nov-2008)
w = 260 — Number of forecasts: 129 (08-Jan-2002 to 25-Nov-2008)
MIB: Milan index, Italy

w = 156 — Number of forecasts:

w = 260 — Number of forecasts

551 (04-Jul-1995 to 20-Nov-2008)
: 447 (27-Nov-1995 to 20-Nov-2008)
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: 480 (14-Nov-1996 to 21-Nov-2008)
: 376 (10-Apr-1997 to 21-Nov-2008)

: 938 (30-Apr-1987 to 20-Nov-2008)
: 834 (23-Sep-1987 to 20-Nov-2008)

: 326 (26-Aug-1999 to 24-Nov-2008)
: 222 (19-Jan-2000 to 24-Nov-2008)

: 783 (17-Sep-1990 to 19-Nov-2008)
: 679 (11-Feb-2002 to 19-Nov-2008)

: 463 (27-Jan-1997 to 24-Nov-2008)
: 359 (20-Jun-1997 to 24-Nov-2008)

: 1050 (09-Aug-1985 to 19-Nov-2008)
: 946 (06-Jan-1986 to 19-Nov-2008)

: 766 (18-Jun-1991 to 20-Nov-2008)
: 662 (11-Nov-1991 to 20-Nov-2008)

: 422 (18-Aug-1997 to 19-Nov-2008)
: 204 (12-Jan-1998 to 19-Nov-2008)

, Canada
: 308 (12-Apr-2000 to 20-Nov-2008)
: 204 (05-Sep-2000 to 20-Nov-2008)

ND: NASDAQ 100 index, U.S.A.
w = 156 — Number of forecasts
w = 260 — Number of forecasts
NK: NIKKEI 225, Japan
w = 156 — Number of forecasts
w = 260 — Number of forecasts
OBX: OBX index, Norway
w = 156 — Number of forecasts
w = 260 — Number of forecasts
OMX: OMX Index, Sweden
w = 156 — Number of forecasts
w = 260 — Number of forecasts
PSI: PSI 20 Index, Portugal
w = 156 — Number of forecasts
w = 260 — Number of forecasts
SP: S&P COMP index, U.S.A.
w = 156 — Number of forecasts
w = 260 — Number of forecasts
SMI: SWISS MI index, Switzerland
w = 156 — Number of forecasts
w = 260 — Number of forecasts
TPX: Topix Stock Price Index, Japan
w = 156 — Number of forecasts
w = 260 — Number of forecasts
TSX: Toronto Stock Exchange Index
w = 156 — Number of forecasts
w = 260 — Number of forecasts
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