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Abstract 
 
The role and specific characteristics of knowledge transfer are proven to be an important factor in 
regional economic growth and continuous innovativeness. One the other hand, the role of personal 
interactions in this knowledge transfer is also emphasized by several studies, which draws the 
attention on the network of these interactions. At the same time this focus of interest got an impulse 
from the advances in network theory which achieved interesting and important results in the last 
decades. The integration of the two fields is starting to gain increasing interest among researchers of 
innovation, especially among those concerned with regional aspects. In this paper I follow this line of 
thinking by linking the network of patent inventors to the productivity of regions. The paper builds on 
a database of patent co-inventorship in the high-tech sector of three European countries and analyzes 
the effect of knowledge transfer, happening through these networks, on regional productivity. The 
results reveal a special role for the structure of networks in the analysis while showing that knowledge 
transfer through these networks indeed has a positive effect on regional productivity. The role for 
network structure is shown by the fact that the positive effect is observed if the specific scale-free 
structure of the underlying network is accounted for. 
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1. Introduction 
 
In recent years network-based approach to natural and social phenomena has become more 
popular. The distinguished attention can be devoted partly to the fact that quite a lot of 
phenomena can be described by the abstract concept of networks and partly to the research 
results showing that observed network structures display substantive similarities. (Barabási 
[2003], Barabási et al. [2000], Csermely [2005]). In the field of economics literature on 
innovation started to use network approaches in the first place. Studies on innovation 
diffusion rely on explicit modeling of networks more widely in contrast to previous 
approaches which were based either on a macro-scale or micro-based perspective (Jackson 
and Wolinsky [1996], Abrahamson and Rosenkopf [1997], Bala and Goyal [2000], Cowan 
and Jonard [2004], Cowan et al. [2006], Carayol and Roux [2009], Sebestyén [2010]). 
 
Besides diffusion theory network analysis is found in empirical approaches to innovation. 
This line of research derives basically from the literature on knowledge spillovers (Griliches 
[1979], Jaffe [1986], Griliches [1992], Jaffe et al. [1993], Feldman [1994], Anselin et al. 
[1997]). These studies emphasize the role of geography in the diffusion of knowledge 
fertilizing a whole branch of literature on the relationship between locality and innovation. 
However, Breschi and Lissoni [2003] draw the attention on the fact that personal contacts 
have an important role in knowledge transfer and thus locality requires a more detailed 
approach for the analysis of knowledge spillovers and agglomeration effects. They emphasize 
that spatial proximity can be regarded as a proxy for social proximity: the former is important 
as long as it contributes to the establishment of social relationships and the development of 
trust embedded in these relationships. As spatial proximity largely eases the formation of 
these connections, social relationships will be locally dense and the agglomeration of 
innovative (or in a wider sense economic) activity will appear as an important medium for 
knowledge transfer. This hides the real situation where spillovers expound their effects 
through personal contacts and social networks and are local to the extent to which these 
networks themselves are local. On this line of thought several studies show that local effects 
of knowledge spillovers are based solely on labor mobility (Zucker et al. [1994], Almeida and 
Kogut [1999], Balconi et al. [2004]). 
 
The role for social contact drew the attention of innovation researchers on the importance of 
social networks. In this sense mapping innovation-related networks proves to be a nontrivial 
task. Applications primarily rely on patent citations and patent cooperation to unfold these 
networks (Ellis et al. [1993], Jaffe and Trajtenberg [2002], Verspagen [2005], Maggioni and 
Uberti [2006], Li et al. [2007], Maggioni et al. [2010], Gress [2010], Maggioni and Uberti 
[2010], Sebestyén and Parag [2010]). However, these network based analyses do not pay 
much attention on the global structure of the networks, but concentrate on spatial dimensions. 
On the other hand, network theory emphasize that the global structure of the networks are an 
important aspect for explaining the overall performance of the network (Jackson and 
Wolinsky [1996], Barabási [2003], Cowan et al. [2006]). 
 
In this paper the role of network structure is analyzed from a special perspective. Primarily, 
the role of network connections is examined in regional productivity: to what extent does the 
knowledge stock of other regions, available through network connections, contribute to the 
productivity of regions in addition to the own knowledge stocks of the regions. In order to do 
this, a database is presented which is available for the representation of interregional 
knowledge networks through patent co-inventorship data then the effect of these connections 
on regional productivity is analyzed. On the other hand, contradictory results on the role of 



network connections are resolved with the consideration of the role of global network 
structure: I show that it is the special scale-free structure of the network which accounts for 
the counter-intuitive results. 
 
The second section of the paper the database is described with special interest on the data 
describing the knowledge networks. Then the third section shortly present the results obtained 
by the inferential analysis of the database and the seemingly paradoxical results are explained 
by a simple network model. In section four the empirical analysis of the intuitive explanation 
is given while the last section draws some conclusions. 
 
The data 
 
In this paper two data sources are exploited. The first is the regional database of the Eurostat 
which contains information (among other things) on GDP, employment and patenting activity. 
The other data source is a database developed at the University of Pécs which contains 
information on patent co-inventorship between NUTS2 regions of three European Countries 
(Germany, France and the United Kingdom). Some methodological issues are discussed 
below with respect the network data. 
 
Network database 
 
In contrast to economic indicators there are no directly available data on knowledge network 
thus such a database must be developed on the basis of other data sources. Using patent 
citations for this purpose is widely accepted as these citations show the trace of knowledge 
transfer to a certain extent (Karki [1997], Oppenheim [2000], Chakrabarti et al. [1993], Chen 
and Hicks [2004], Singh [2003]). Some studies examine networks of patent citations. Gress 
[2010] analyze relationships between technological fields in US patents with this 
methodology. The study draws conclusions on the originality and effectiveness of several 
patents and technological categories. Li et al. [2007] examine networks of patents, 
organizations, technological fields and countries in the nanotechnology sector. Their 
interesting result is that a central cluster can be shown for all types of these networks covering 
the majority of the connections and the scale-free structures can unambiguously detected. 
 
Ejermo and Karlsson [2004] suggest that cooperation between patent inventors should be 
used instead of citations as these connections serve as a more robust proxy for knowledge 
transfer. The authors examine the role of inventor networks in spatiality for Sweden. Further 
studies based on inventorship networks can be found in Maggioni and Uberti [2006] or in 
Maggioni et al. [2010]. Griliches [1990] gives an overview on the advantages and drawbacks 
of using patent databases in spillover analysis. 
 
In this study knowledge networks are built on a regional basis that is, the nodes of the 
networks are regions while the edges represent the intensity of knowledge transfer between 
regions. On the other hand, the network is developed on the basis of information on inventor 
cooperation meaning that two regions are said to be connected if inventors from these regions 
have cooperated on a patent. The more such cooperation is observed, the higher intensity of 
the connections is assumed. 
 
According to these considerations a co-inventorship based regional network database was 
started to be developed at the University of Pécs in order to gain a representation on 



knowledge networks.1 The database, at its present state, allows for the analysis of knowledge 
transfer between NUTS2 regions of three European countries (Germany, France and the 
United Kingdom). The data covers patents applied for at the European Patent Office and are 
also filtered on a sectoral basis: the database used here contains information on patents related 
to the high-tech sector. This means six areas in the sector: aviation, computer and automated 
business equipments, communication technology, laser, semiconductors, micro-organisms and 
genetic engineering.2 
 
The network obtained is a weighted one as the intensity of cooperation may vary over time 
and across connections but the weighting can be done according to different criteria. The 
difference is the method how the intensity of knowledge transfer is derived (computed) from 
inventor cooperation. In this paper the intensity of knowledge transfer is determined such a 
way that the weight of a given connection is increased by one if inventors from the two 
regions connected by this link cooperated on one patent. 
 
It is assumed that co-inventing means connection and knowledge transfer among all inventors 
or in other words the sub-network of the inventors of one specific patent is meant to be fully 
connected. Of course it may happen that the links between inventors are structured in a 
different way but the data source (patent statistics) does not provide information for the 
derivation of these ‘internal’ structures. At the same time the assumption of fully connected 
sub-networks does not mean any significant bias as typically a small number of inventors are 
matched to a patent, so the fully connected sub-network can not be very far from reality 
(assumption of a specific structure would be relevant for a larger number of co-inventors). 
The resulting network can contain loops so intra-regional patenting activity (knowledge 
transfer) can also be taken into account. However, this opportunity is only partially exploited 
in this paper. 
 
An important extension for the above considerations is the situation when the same inventor 
contributes to different patents. This situation could be handled easily if a unique identifier 
would be allocated to each inventor. However, the data source provides inventor names in 
strings thus the cleaning of this information would require further efforts especially for the 
present case with several million records. On the other hand, the resulting bias would be 
significant only in that situation when the inventor changes his residence. In the present case, 
however, this change can also be regarded as interregional knowledge transfer although not in 
that interpersonal perspective on which the development of the network is based. 
 
According to the methodology above, the annual network of inventor cooperation is available 
among the NUTS2 regions of the three countries considered. This is described by an tR  
adjacency matrix where the ijtr  general element represents the strength (intensity) of 

connection between regions i  and j  in year t . As the development of the network is based on 
the assumption of symmetry, the matrix is also symmetric ( jitijt rr  ). 

 

                                                 
1 For the technical details on the development of the database see Kruzslicz et al. [2010]. 
2 The IPC codes of these fields are the following. Aviation: B64B, B64C, B64D, B64F, B64G; computer and 
automated business equipments: B41J, G06C, G06D, G06E, G06F, G06G, G06J, G06K, G06M, G06N, G06T, 
G11C; communication technology: H04B, H04H, H04J, H04K, H04L, H04M, 
H04N, H04Q, H04R, H04S; laser: H01S; micro-organisms and genetic engineering: C12M, C12N, C12P, C12Q; 
semiconductors: H01L. 
 



The determination of regional productivity 
 
According to the aims formulated in the introduction the effect of external knowledge, 
available through network connections, on regional productivity is to be analyzed. For this the 
estimation of regional productivity and knowledge stocks is required in addition to the 
empirical assessment of network connections. The later part was tackled previously so the 
estimation of regional productivity and knowledge stocks is described in what follows. 
 
The explained variable in the analysis below is the labor productivity of the regions under 
consideration. This can be computed from the publicly available data from the Eurostat with 
some minor corrections. First, nominal GDP values must be transformed into real terms. This 
can be done by using the data on the growth rate of real gross value added also available from 
the Eurostat. As the focus of this analysis is on the high-tech sector, labor productivity must 
be estimated for this sector as well which requires some additional corrections.3 
 
High-tech GDP is computed with the help of two simple correction factors. In the first case 
the corrections factor is the ratio of patent related to the high-tech sector and the number of 
total patents. Patent data for the high-tech sector (and total patent number) are available from 
the regional database of the Eurostat. As the Eurostat classification was used for the 
development of inventor networks, the two different datasets are consistent. This kind of 
correction has the disadvantage that regional high-tech GDP values generated on the basis of 
patent number correlate with patent number per definition which can be problematic in what 
follows because patent number is used as an independent variable during the estimation of the 
relationship between productivity and knowledge transfer. For this reason, as a control factor, 
a second correction factor is also applied. In this second case it is employment rather than 
patent number which serves as the basis for the correction. The regional database of the 
Eurostat contains the employment of the high-tech sector so this information is used for the 
second correction factor which is simply the ration of high-tech employment and total 
employment in the regions. 
 
Employment data, required for the computation of productivity, is available from the public 
Eurostat database thus labor productivity can be calculated for the 96 NUTS2 regions of the 
three countries as the ratio of adjusted real GDP values and high-tech employment data. 
 
The determination of regional knowledge stock 
 
In addition to labor productivity the knowledge stock of the regions must also be estimated. 
The statistical measurement of knowledge faces a very important problem, namely that it can 
not be measured directly. Already Krugman [1991] emphasized this fact focusing specially on 
the measurement of knowledge transfer, stating that the process itself does not leave a paper 
trail. However, Jaffe et al. [1993] confuted this thesis referring to patent citations as a suitable 
proxy for measuring knowledge transfer. There are several possible indicators which can 
serve as a proxy for the knowledge stock of a country, a region or a smaller economic unit. 
The most important and widely used ones out of these are based on patent statistics. The 
patent-based approach assumes that patents are reliable paper trails of new knowledge thus for 
example a simple counting of them allows for a first approximation of this knowledge stock. 
Using patents naturally raises some problems. First, it is hardly certain that the results of 
innovation (and the new knowledge embedded in them) are patented. Moreover, it can be 
                                                 
3 Although Eurostat provides sectoral GDP values but for the widest NACE categories which is not suitable for 
the filtering of the high-tech fields. 



shown that the propensity to patenting shows sectoral differences.4 Another problem with 
simple counting is that it does not differentiate between patents according to their 
significance. This problem can be resolved using patent citations but then problems of 
citations arise (who adds the citation to the patent: does it reflect any real knowledge 
transfer?). A further drawback is that patents typically reflect technological knowledge thus 
patent-based indicators can not cover the whole spectrum of the knowledge base. This latter 
problem can be handled by using information from academic publication which represents a 
different (the academic) segment of the knowledge base. Another tool for measuring 
knowledge can be the estimation of human capital that is, knowledge embedded in people. 
 
In the present case only patent statistics are used as indicators of knowledge stocks. The main 
reason for this is that the Eurostat provides information only on this variable at the relevant 
level of detail. On the other hand, patent cooperation is used in the network database thus 
using patents as proxies for knowledge stock seems to be a reasonable choice. 
 
An important question is the very method of computation of knowledge stocks from the 
available information. The Eurostat database contains information both on the total number of 
patents and the number of patents related to the high-tech sector applied for at the EPO. This 
information reflects the growth in knowledge stock so these flow variables must be 
transformed into relevant stock variables. Knowledge stocks are derived two different ways 
from the flow variables. The first method defines knowledge stock as a simple cumulative 
sum of patent counts – the Eurostat database contains this information since 1978. The second 
method allows for the depreciation of knowledge. Of course the details of this amortization 
(its nature, extent and time span) could be the topic of another study, therefore an ad-hoc 
method is used here: knowledge stock in a given year is defined as the patent count of that 
year plus the patent counts of the four preceding years. Thus depreciation is implemented with 
a simple rule-of-thumb: the life-span of each patent is taken to be five years. Although this 
method has an ad-hoc character, the results show that there are no significant differences 
between the depreciated and the non-depreciated knowledge stock. 
 
Network connections and external knowledge 
 
Finally the external knowledge, available through network connections, must be estimated. 
For the computation of this element all relevant information is available: the estimation of 
regional knowledge stocks is described as well as the database reflecting network 
connections. Let us denote the vector of regional knowledge stocks in year t  by tk  and the 
adjacency matrix of network connections by tR . Disregarding intra-regional knowledge flows 
that is, setting the diagonal elements of tR  to zeros, the ts  vector of external knowledge 
available for regions can be computed simply by the ttt kRs   product. 
 
Regression results 
 
In the previous section those methodological issues were discussed which are necessary for 
the evaluation of the effect of internal and external knowledge stocks on regional 
productivity. Data on regional productivity, internal and external knowledge stocks is at hand 
according to the principles discussed so far, but there are several methods for the specific 
computation of data series. First, it was shown that regional knowledge stocks can be 

                                                 
4 This propensity is typically higher in high-tech sectors that is, in those areas which are the basis of this 
analysis. Thus these differences do not lead to unavoidable bias. 



calculated on the basis of simple cumulation and the depreciation method. Second, when 
computing external knowledge the original tR  matrix can be used on the one hand which 
weights interregional connections but the matrix can be rewritten in a binary form when the 
emphasis is on the existence of a connection and not on its weight.5 Thus there are altogether 
four different ways of constructing the data series: all of them are used for the analysis right 
below. 
 
It is also important to note that the time-span of the analysis is three years which stems from 
the fact that productivity data are available only from 2000 and the network and patent data 
can be used up to 2002 for the reasons already mentioned. According to all these, the 
following panel regression model is built and analyzed: 
 
(1) itiititit NETWORKSTOCKPATPROD   )ln()_ln()ln( 210  
 
where variable itPROD   shows the labor productivity of region i  in year t , variable 

itSTOCKPAT _  is the knowledge stock of region i  in year t  whereas itNETWORK  stands for 
externally available knowledge. Variable i  reflects region-specific but time-invariant effects 
and it  is the white noise. As it was emphasized before, the itSTOCKPAT _  and itNETWORK  
variables in the regression can be computed according to different methods and in different 
combinations. The results of the panel regression estimated with random effects are 
summarized in Table 1. The table contains only the most important results for sake better 
presentation: results for the regression coefficients and their significance level (asterisks 
indicate significance levels as usual). Detailed results can be found in the appendix. 
 

Knowledge stock Depreciation Simple cumulation 

Adjacency matrix Weighted Weighted 

Constant 5,344 *** 5,597 *** 

PAT_STOCK 0,180 *** 0,163 *** 

NETWORK -0,178 *** -0,205 *** 

Knowledge stock Depreciation Simple cumulation 

Adjacency matrix Binary Binary 

Constant 3,514 *** 3,868 *** 

PAT_STOCK 0,160 *** 0,127 *** 

NETWORK 0,094  0,069  
Table 1 – Regression results for the relationship between regional productivity and internal and external 

knowledge, dependent variable: regional labor productivity 
 
There are several simple observations from the table. First, there is a strongly significant 
positive correlation between the internal knowledge stocks and the productivity of the NUTS2 
regions of the three countries under consideration. This positive relationship can be found 
irrespective of the method of computing patent stocks and the weighting of the adjacency 
matrix – also the values of the coefficients are close to each other. Second, the coefficients for 
variable itNETWORK  reflecting the role of external knowledge show a much more complex 
picture. The coefficient is significant and negative if the adjacency matrix is weighted and 

                                                 
5 Formally this means that the elements of the adjacency matrix is set to one if the given element of the original 

tR  matrix is higher than zero and to zero otherwise. 



non-significant positive if the matrix is binary. The difference between the two cases is that in 
the binary case the knowledge stocks of partner regions are meant to be completely available 
while in the weighted case the value of external knowledge also depends on the intensity of 
the connections. 
 
The negative effect obtained for the role of external knowledge seems contradictory: it would 
be expected that external knowledge available through network connections have a positive 
effect on regional productivity as well as internal knowledge stock. Although the direction of 
this effect is positive for the binary adjacency matrix, for the weighted (lit. the more relevant) 
case the direction is negative and the effect is highly significant. On the other hand this result 
does not refer to a casual relationship but only to a co-movement. The negative relationship 
reveals only that those regions which are characterized by higher productivity typically 
connect to regions with lower knowledge level and/or possess fewer connections. This 
hypothesis also casts some light on the question why the relationship is more significant for 
the weighted adjacency matrix. In this case also the weights differentiate in the sense that 
external knowledge reflects the differences in connections weights while for the binary matrix 
only the knowledge levels of the partner regions are relevant. 
 
There can be two specific ways to be sketched for the investigation of this hypothesis. 
According to the first one the data series used in the analysis must be adjusted so that these 
effects are accounted for. However, this method runs into the problem that data used for the 
adjustment are derived from the same information set as the variables which are to be adjusted 
and/or strongly correlate. Therefore, a suitable adjustment derives favorable results but the 
observed positive correlations stem from the definitional cointegration of the adjusted 
variables and the variables to be adjusted. However, a simple analysis is presented below 
showing that the hypothesis posed earlier really has an empirical relevance, namely the 
relationship between productivity and the role of external connections is examined. There are 
two suggested measures for the evaluation of the role of external connections for which the 
original adjacency matrix is used. The network database introduced previously contains 
information not only on the external connections of regions but on the intra-regional 
connections as well. Practically this means that the diagonal elements of the raw adjacency 
matrix tR  are not exclusively zeros but positive numbers with some of them being zeros. This 
additional information has not been used so far and the diagonal elements of tR  have been 
converted to zero. However, this additional information is used here in order to obtain two 
measures accounting for the role of external links in a region. The first measure simply shows 
the share of external connections in total connections: 
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The second measure relates the number of external connections to the number of internal 
connections: 
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With the two indicators (2) and (3) there is an opportunity to analyze the relationship between 
the role of external connections and productivity. The method of the analysis is again a panel-
regression on the basis of the following simple equation: 
 
(4) itiitit )INTERln()PRODln(   10  
 
where the variables itSHAREINTER _  and itLINKREL _  (calculated on the basis of equations 
(2) and (3) respectively) are to be substituted for itINTER . Table 2 contains the main results,6 
the details can be found in the Appendix. 
 

Depreciation method and weighted matrix 

Constant 5,61587 *** Constant 5,3868 *** 

REL_LINK -0,0995 ** INTER_SHARE -0,327 ** 
Table 2 – Regression results for the role of external links, dependent 

variable: regional labor productivity  
 
As it can be seen from the table, there is a negative and significant relationship between 
productivity and external connections that is, regions with higher productivity tend to rely less 
on network (more precisely external) connections (note that the indicators used here are 
relative indicators). On the basis of these it can be concluded that regions with lower 
productivity typically rely more on external connections. It is important to note that the 
negative relationship revealed here does not reflect the available knowledge through networks 
but the number (intensity) of connections thus the negative results here are not the simple 
rediscovery of the negative relationship revealed in the previous section with alternative 
indicators. 
 
However, as noted above, using such corrections for the original variables and re-estimating 
regression (1) can be misleading as the adjustment variables such as (2) and (3) contain the 
same information as those to be adjusted (for example the indicators (2) and (3) rely on patent 
counts as well as knowledge stocks which are to be corrected). For these reasons the second 
method of testing the hypotheses for negative coefficients is discussed in more details in what 
follows. 
 
The hypothesis was that regions with higher productivity typically connect to regions with 
lower productivity and/or possess relatively fewer links. However, this hypothesis is based on 
the specific structure of the network: it is supposed to be scale-free meaning that some central 
actors possess a large number of connections while the majority has few links (Barabási 
[2002]). As a result of this, the simple adjustment of the data series can not be successful 
because this specific structure of the network is not accounted for as long as data are 
interpreted at the level of the nodes of the network. The second method for testing the 
hypothesis is based on this recognition and a simple network model is used in order to capture 
the role of global network characteristics. 
 
A simple model of network formation 
 

                                                 
6 Only the results for weighted adjacency matrix and amortization method are presented here. 



Adjacency matrix tR  used so far has been only one specific realization of possible adjacency 
matrices filled with empirical values. One realization represents one specific structure of the 
network thus differences between network structures can be dealt with only if different 
possible realizations of tR  are compared. However, it is obvious that the number of possible 
realizations is too large for individually handle these specific structure even for quite small 
networks. For this reason the literature on networks suggests different network-generating 
models with the help of which this large number of different structures can be classified 
according to some principles. For example the model of Watts and Strogatz [1998] is widely 
used for the identification of ‘small-world’ network structures. In what follows, a network 
model is used which is a modified version of the model of Barabási and Albert [1999] but has 
some features similar to the Watts-Strogatz model. 
 
The main principles of the model of Barabási and Albert [1999] are network growth and 
preferential attachment. The former means that new nodes are added to the network 
continuously while the latter refers to the way how these new nodes form their links in the 
network, precisely that links are formed with nodes of higher degree with higher probabilities. 
These two principles lead to the emergence of scale-free characteristics in the network. 
Preferential attachment provides more connections to nodes which already have more links 
while the very fact of growth also generates scale-free structures: the more links will be 
possessed by the ‘older’ nodes (Barabási [2003], Sebestyén and Parag [2010]). 
 
In the present paper a simple modification of the original model of Barabási and Albert is 
introduced which allows for the determination of different levels of scale-free characteristics 
with the change of a single parameter. Let us have an initial network with M  nodes and with 
average degree k . Then the size of the network is increased to N  in MN   steps in a way 
that a new node is added to the network in each step and the new node establishes k  number 
of links in that step. In contrast to the original version of the preferential attachment model, 
the formation of new links can happen according to different scenarios. The specific scenario 
can be selected with the determination of a parameter, denoted by r . The link formation 
algorithm is the following. The new link of the new node forms with the node with the highest 
degree with probability r , while with probability r1  the new link forms randomly with one 
potential partner. Thus such a model is obtained which results in a network with average 
degree k  and is more or less characterized by scale-free structures according to the value of 
r . It is clear that r  must take values between zero and one allowing for the two extremes. 
 
Stochastic features are implemented into the model through parameter r . If 1r  then an 
extremely centralized network is obtained where randomness is limited to the initial core 
network and the nodes of this core network possessing lots of links while newly added nodes 
have only k  connections. If 0r  then links are formed randomly thus randomness play a role 
outside the core network as well. The steps of the algorithm are summarized below. 
 

 First a random network is generated with M  nodes and k  average degree. Therefore 
the probability parameter of the internal algorithm generating the random graph is 

)1/( Mk  and the 1 Mk  condition must hold. 

 A new node is defined in the network which forms k  connections to already existing 
nodes. The following rule determines this link formation: 

o With probability r  the new node connects to the potential partner with the 
highest degree. Potential partners are those nodes with which no connection 



exists and loops are excluded. If more than one partner can be chosen 
according to this rule, a random choice decides among them. 

o With probability r1  the new link forms randomly with one of the potential 
partners. 

 The previous step is repeated until the number of nodes in the network reaches N . 
 
Two important notes must be made. First, the network can be the most extremely centralized 
(the star network) under very specific conditions as the randomness of the initial network 
allows for the star topology only for 2M  and 1k . For any other cases with 1r  a 
peripheral set of nodes with low link numbers emerges around a densely connected core. 
Second, the resulting network is not a pure random network even for 0r , because in spite of 
the maximum weight on randomness the fact of network growth inherent in the model leads to 
a scale-free structure where older nodes typically have more connections than younger ones. 
There could be several methods to correct for this bias but the network model in the present 
form is useful here as it really shows increasing degree of scale-freeness as r  increases. 
 

 
Figure 1 – Scale-freeness as measured with the power law exponent in the modified Barabási-Albert 

model 
 
Figure 1 nicely illustrates this tendency where parameter r  changes between 0 and 1 on the 
horizontal axis while the exponent of the power law distribution fitted to the degree 
distribution is depicted on the vertical axis. It can be easily seen that this exponent increases 
with r  increasing so the network structure really becomes more scale-free for higher values 
of r . 
 
Network structure and knowledge transfer – a simulation approach 
 
With the help of the network model presented above the former regression analysis on the 
relationship between internal and external knowledge and productivity can be rewritten for 
simulated networks with alternative structural characteristics. This is carried out in what 
follows according to the process discussed below. First, a simulated network is generated with 
the modified preferential attachment model, then several knowledge levels are assigned to the 
nodes of the networks (regions in the empirical counterpart). The productivity of the nodes is 
calculated according to the following rule: 
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where ik  is the (simulated) knowledge level of node (region) i , ija  is the general element of 

the adjacency matrix of the simulated network,7   is a spillover parameter which corresponds 
to the estimated coefficients for the itNETWORK  variable in regression (1), ip  stands for 
productivity in region i  and N  is the number of nodes. Equation (5) means that there is a 
positive relationship assumed between external knowledge and productivity. With the help of 
simulations the question is tried to be answered whether such a situation could exist when the 
observed relationship between external knowledge and productivity are negative. 
 
First of all, the parameters of the network are determined. In order that the simulations results 
to be comparable with the empirical results the size of the network is set to 96, and average 
degree to 15 (the latter value is obtained as the temporal average of the average degree of the 
(binary) empirical adjacency matrices. After setting these basic parameters for the network 
model, it is used to generate a specific network structure. Thus the A  adjacency matrix is at 
hand the elements of which are to be substituted into equation (5). 
 
In addition to the value of parameter   the ik  knowledge levels of the nodes must also be 
determined at the outset in order to compute the ip  values. These values are generated 
according to the following method, on an empirical basis. As the logarithm of the empirical 
knowledge stock of regions ( )ln( itPAT ) follows a normal distribution a vector with 96 element 
can simply generated in which the elements follow a normal distribution with the same 
parameters. Then a simple exponential transformation gives the ik  values necessary for the 
equation (5), thus the ip  productivity values can be computed. 
 
Then the relationship between these ip  values and the Ak  product must be analyzed. The 
analysis means a simple regression analysis similar to regression (1) but the time-dimension is 
disregarded for this case. The following regression is estimated on the simulated data for the 
network generated with the modified preferential attachment model, knowledge stocks given 
as above and productivity values calculated according to (5): 
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where Aks  . The estimated 2  coefficients are relevant from this regression. For each value 
of r  100 independent simulations runs were executed (with the given fixed network 
parameters) and the estimated 2  coefficients recorded, then the results were averaged over 
these 100 runs. These averages are presented in Figure 2. 
 

                                                 
7 Binary adjacency matrix is used during the simulations. Allowing for a weighted matrix ( 10  ija ) does not 

qualitatively alter the results but makes the observed tendencies more pronounced. 



 
Figure 1 – The effect of scale-free structures on the β2 regression coefficients 

 
There are three different cases shown in the figure, each corresponding to a different value of 
 . The results show that the positive relationship between external knowledge and 
productivity, observed for lower values of r , gets weaker as r  increases then at a certain 
point the relationship turns into negative. For high levels of r  that is, for strong scale-free 
structures there is a strong negative relationship between the two variables. These results 
strongly support our hypothesis that the knowledge networks of European regions (based on 
patent co-inventorship) show considerable scale-free characteristics and this is why negative 
relationship is observed between external knowledge and productivity. In other words the 
empirical relationship is found to be negative not because external knowledge affects 
productivity negatively but because the specific network structure hides the fundamental 
positive relationship between the two variables. 
 
Scale-free structures in patent cooperation networks 
 
In order to close the argumentation presented so far the very fact that the empirical regional 
network of patent inventors really shows scale-free characteristics. As already mentioned, the 
degree of scale-freeness can be approximated by the exponent of the power law function fitted 
on the degree distribution of a given network. However, in the presented model of modified 
preferential attachment the degree of scale-freeness can be determined by the value of 
parameter r . This parameter can not directly measured for an empirical network, but it can be 
derived indirectly. 
 
The power-law exponent of the given empirical network can be computed as described 
before. Then a network is simulated with all parameters corresponding to that of the empirical 
network (size, average degree) except for its degree of scale-freeness which is set to be 1r  
and the power-law exponent for the simulated network is also computed. The same is done for 
the other extreme that is, for 0r . Finally, the ratio of the power law exponents for the 
empirical and the simulated networks provides a simple approximation for the r  parameter of 
the model. However, the ratio is normalized to the interval between the 0r  and the 1r  
cases. If the empirical power law exponent is denoted by e , the exponent for the 0r  and 
the 1r  cases are denoted by 0  and 1  respectively, then the normalized network parameter 
for scale-freeness is written as 
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It is easy to see that the value of r  is one if 1 e  and zero if 0 e . In other words this 
ratio corresponds to that value of r  at which the modified preferential attachment model 
reproduces the empirically observed network structure. The empirical and simulated values of 
the power-law exponents are presented in Table 3. 
 

 2000 2001 2002 Average 

Empirical values 1.949 1.946 1.949 1.948 

Simulated values r  = 0 1.964 1.968 1.964 1.965 

Simulated values r = 1 1.753 1.767 1.721 1.747 

r  0.929 0.888 0.941 0.920 
Table 3 – Empirical and simulated values of the power-law exponents of 

degree distribution 
 
The results clearly show that the examined regional network of patent inventors is really 
scale-free. First, the power-law exponent itself is around 2 which indicates a considerable 
degree of scale-freeness. Second, the calculated r  coefficient is well over 0.9 which again 
shows that the structure is close to the extreme scale-freeness in the context of the modified 
preferential attachment model. The results from the table clearly confirm our hypothesis that 
the empirical network structure displays scale-free characteristics, moreover, to the extent for 
which negative coefficients for the regression between external knowledge and productivity 
are likely to arise. That is, the observed negative relationship between externally available 
network-mediated knowledge stocks and productivity can be a result of the strongly scale-free 
network structure and not a fundamentally negative relationship. 
 
Conclusion 
 
In the paper a simple question was posed which led to interesting fields: does the knowledge 
available through (patenting) network connections contribute to the productivity of regions? A 
regression analysis is conducted where regional productivity is the dependent variable 
whereas regional knowledge stock as approximated by the patent stock and knowledge 
transferred through the networks (also approximated by patent stocks of the partner regions) 
are among the independent variables. The analysis is conducted for several variants of these 
variables in the sense that both the weight of network relationships and knowledge stocks are 
calculated according to different principles. 
 
The results for these regressions seem contradictory at the first sight. Regional knowledge has 
an (obvious) positive significant effect on productivity but the effect of knowledge obtained 
through network connections is negative and significant for several variable combinations 
used. However the hypothesis is suggested that this negative effect is not the sign of a real 
negative relationship between the two variables but the result of the specific network 
structure. 
 
The structure of the analyzed co-inventorship network is shown to be scale-free that is, there 
are dominant central regions with many links but the majority of the regions have much less 
connections. However, central regions in the network tend to be those with high productivity 
and knowledge stocks. Thus the negative effect observed is a result of the tendency that 



peripheral regions with lower productivity tend to connect to central regions with high 
productivities and knowledge stocks. 
 
The hypothesis is tried to be proved two different ways: first by the plausible corrections of 
the empirical variables and second by simulations focusing on the consequences of different 
network structures. However, the first attempt is limited by some problems in the data 
structure: adequate correction with the available data leads to correlations between the 
original and the corrected variables. On the other hand, simulation experiments show that 
network structure indeed has a significant effect not just on the strength but also on the 
direction of the relationship between knowledge coming from partners and productivity. 
 
This way two important and interrelated conclusions can be drawn from the analysis 
presented in the paper. First, tacit knowledge transferred through interregional patent inventor 
networks have a positive effect on regional productivity but second, this effect is detectable 
only if one accounts for the specific structure of the underlying network, which is scale-free. 
An implication of these results is that when the statistical analysis of any kind of flows comes 
to the picture, the specific structure of the network serving as a medium for these flows plays 
an important role which can not be disregarded. 
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Appendix 
 

 Coefficient Std. Error t-ratio  

Const 5.344 0.418 12.784 *** 
PATSTOCK 0.180 0.040 4.511 *** 
NETWORK -0.178 0.059 -3.007 *** 

Mean dependent var 5.108 S.D. dependent var 0.637 
Sum squared resid 95.133 S.E. of regression 0.588 

Log-likelihood -245.025 Akaike criterion 496.049 
Schwarz criterion 506.921 Hannan-Quinn 500.411 

Table A1 – Results of panel regression (1) with weighted adjacency matrix and depreciated knowledge 
stock  

 
 Coefficient Std. Error t-ratio  

Const 5.597 0.381 14.677 *** 
PATSTOCK 0.163 0.040 4.092 *** 
NETWORK -0.205 0.055 -3.723 *** 

Mean dependent var 5.108 S.D. dependent var 0.637 
Sum squared resid 97.792 S.E. of regression 0.596 

Log-likelihood -248.843 Akaike criterion 503.687 
Schwarz criterion 514.559 Hannan-Quinn 508.049 

Table A2 – Results of panel regression (1) with weighted adjacency matrix and non-depreciated 
knowledge stock  

 
 Coefficient Std. Error t-ratio  

Const 3.514 0.492 7.137 *** 
PATSTOCK 0.160 0.041 3.903 *** 
NETWORK 0.0945 0.058 1.618  

Mean dependent var 5.108 S.D. dependent var 0.637 
Sum squared resid 93.927 S.E. of regression 0.584 

Log-likelihood -243.258 Akaike criterion 492.517 
Schwarz criterion 503.389 Hannan-Quinn 496.879 

Table A3 – Results of panel regression (1) with binary adjacency matrix and depreciated knowledge stock  
 

 Coefficient Std. Error t-ratio  

Const 3.868 0.495 7.814 *** 
PATSTOCK 0.127 0.041 3.052 *** 
NETWORK 0.0686 0.059 1.170  



Mean dependent var 5.108 S.D. dependent var 0.637 
Sum squared resid 97.400 S.E. of regression 0.595 

Log-likelihood -248.286 Akaike criterion 502.573 
Schwarz criterion 513.445 Hannan-Quinn 506.935 

Table A4 – Results of panel regression (1) with binary adjacency matrix and non-depreciated knowledge 
stock  

 
 Coefficient Std. Error t-ratio  

Const 5.616 0.081 69.043 *** 
INTER -0.099 0.049 -2.019 ** 

Mean dependent var 5.543 S.D. dependent var 0.664 
Sum squared resid 107.567 S.E. of regression 0.641 

Log-likelihood -255.615 Akaike criterion 515.230 
Schwarz criterion 522.374 Hannan-Quinn 518.101 

Table A5 – Results of panel regression (4) with REL_LINK as 
independent variable 

 
 Coefficient Std. Error t-ratio  

Const 5.387 0.087 61.963 *** 
INTER -0.327 0.164 -1.998 ** 

Mean dependent var 5.514 S.D. dependent var 0.670 
Sum squared resid 115.818 S.E. of regression 0.644 

Log-likelihood -273.715 Akaike criterion 551.431 
Schwarz criterion 558.700 Hannan-Quinn 554.347 

Table A6 – Results of panel regression (4) with INTER_SHARE as 
independent variable 

 
 
 


