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Abstract 
 

This study explores the interaction between professional imprinting and age in the context of 
industry-science collaboration. Specifically, we examine the impact of localized and personal 
peer effects on academics’ involvement with industry and how these effects are moderated by 
the career age of the scientist. We suggest that both localized and personal peer effects drive 
industry involvement but that the effects from such imprinting are more pronounced the more 
recent the vintage of the scientist’s PhD degree is, suggesting that professional imprinting 
takes place in the early stages of a scientist’s academic career. Based on a sample of 343 
German academics in the field of biotechnology and publication data from the Science 
Citation Index Expanded (SCIE), we find that scientists with co-authors who have joint 
publications with industry personnel are more likely to be involved with industry (personal 
peer effect). Moreover, we find that the scientist’s involvement increases with the share of 
publications in the scientist’s department co-authored with industry personnel (localized peer 
effect). Only the latter effect turns out to be moderated by scientist’s age. While personal peer 
effects are independent of the scientist’s age, localized peer effects emerge for younger 
researchers. 
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1 Introduction 

Close interaction between science and industry has become a widespread phenomenon over 

the last decades, particularly since firms have been increasingly eager to open up their 

innovation processes in an effort to integrate external knowledge (Chesbrough, 2003). In this 

respect, universities and public research organizations have been regarded as particularly 

important collaboration partners because of the novelty and sophistication of the knowledge 

they can convey (Link et al., 2007). Scientific knowledge does however not spill over 

automatically to industry for further development and commercialization. Eventually, 

knowledge and technology transfer relies on the engagement of the individual academic 

scientist in industry-science activities (Bercovitz and Feldman, 2007). Researchers, for 

example, need to disclose new knowledge or collaborate with industry. Thus, the transfer is 

dependent on the individual’s decision to actively participate in industry-science activities.  

Our research is intended to contribute to the growing body of literature that 

investigates the factors driving academics to engage with industry (e.g., Meyer-Krahmer and 

Schmoch, 1998; Link et al., 2007). While existing research has largely focused on individual 

characteristics, faculty quality or the institutional environment as explanatory factors, this 

study aims at shedding new light on the effect that the scientist’s peers will have through 

professional imprinting on her decision to get involved with industry (Bercovitz and 

Feldman, 2008). More specifically, we examine the impact of localized and personal peer 

effects on academics’ involvement with industry and how these effects are moderated by the 

career age of the scientist. We suggest that a scientist’s involvement with industry will 

increase with the share of publications in the scientist’s department co-authored with industry 

personnel (localized peer effect). Moreover, we expect scientists with co-authors who co-

author with industry personnel to be more likely being involved with industry (personal peer 
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effect). However, both effects will be stronger the more recent the vintage of the scientist’s 

PhD, suggesting that professional imprinting takes place in the early stages of a scientist’s 

academic career.  

The empirical investigation rests upon on a sample of 343 academic researchers 

working in the biotechnology field in Germany who were surveyed in 2010. In fact, one of 

the industries that is particularly knowledge-driven and close to scientific research is the 

biotechnology industry. Technologic impulses for new products, methods and services 

frequently occur in scientific institutions or in collaboration between firms and such 

institutions (e.g., Audretsch and Stephan, 1996; Zucker et al., 2002). Involving scientists 

from academia is thus more important for firms in biotechnology compared to other sectors 

(Higgins et al., 2008). In Germany, more than 200 public research institutions, including 

universities, technical colleges, non-academic research institutions, and sites for state 

departmental research, carry out research in the field of biotechnology. Public science 

disposes of an annual budget of about 2.8 billion Euro for biotechnological research. Around 

27,000 people were involved in these research activities (BIOCOM, 2010).  

The results indicate that professional imprinting plays a major role in shaping 

scientists’ propensity to engage with industry. Both the localized and the personal peer effect 

turn out to be relevant which confirms and extends prior literature (Bercovitz and Feldman, 

2008). However, we also find evidence for the imprinting effect being dependent on the 

scientist’s career age. The more recent the vintage of the scientist’s PhD degree, the less 

likely becomes industry involvement. But imprinting is particularly effective in the early 

years of the scientist’s career. We find that this only pertains to the localized peer effect 

though, i.e. the scientist’s department co-publications, while the personal peer effect is 

unaffected by the career age. 
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Our contribution to existing literature is threefold. First, we extend existing studies in 

the field by disentangling the professional imprinting effect further. We differentiate between 

effects that stem from localized (department) and personal (co-authors) peers. Second, a 

possible moderating effect of a researcher’s age is neglected in the literature although it might 

be important for the researcher’s “proneness” to imprinting. Third, we do not limit the 

researcher’s commercial activity to a specific type such as the filing of an invention. Instead 

we consider a broader set of industry-science interactions by using an industry involvement 

index that comprises five different channels of industry-science interaction. 

The remainder of the paper is organized as follows. The next section summarizes the 

current literature on academic involvement with industry and derives hypotheses. The data, 

variables and estimation methods are discussed in section 3. The results and concluding 

remarks appear in sections 4 and 5, respectively.  

2 Academic involvement with industry 

2.1 Literature Review 

It has almost become conventional wisdom that knowledge produced in the public sector 

constitutes an important ingredient of economic growth and technological progress (Jaffe, 

1989; Adams, 1990). Close links to academic research have further been shown to be 

beneficial for the innovation performance of firms (Cockburn and Henderson, 1998; 

Belderbos et al., 2004) that have opened up their innovation processes in an effort to integrate 

external knowledge (Chesbrough, 2003). Universities and public research organizations are 

particularly important collaboration partners because of the novelty and sophistication of the 

knowledge they create (Link et al., 2007). Interacting with public science is attractive from 

the firm’s point of view because in-house knowledge production through R&D implies high 

cost, given the complex and dynamic processes that knowledge creation requires. 
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Universities offer in this respect access to complementary resources and allow to explore new 

technological opportunities (Dasgupta and David, 1994). Moreover, firms can hire public 

scientists to facilitate the transfer of tacit knowledge and to sustain their absorptive capacity 

for subsequent knowledge and technology transfer activities (Cohen and Levinthal, 1989; 

Song et al., 2003). In fact, several studies confirm the benefits of interacting with public 

science for firm performance. Industry-science interaction improves a firm’s ability to 

innovate (Arvanitis et al., 2008) and increases the firm’s share of sales with innovative 

products (Belderbos et al., 2004). 

Academics’ involvement with industry has been shown to take place through a variety 

of channels which can be characterized as either formal or informal. Formal involvement is 

typically based on a patent to be sold or licensed out (Bozeman, 2000; Thursby and Thursby, 

2002), collaboration in R&D (Laursen et al., 2010) or industrial consulting (Jensen et al., 

2010), while informal channels of interaction might involve joint publication of research 

results with industry personnel or informal contacts (Link et al., 2007; Grimpe and Fier, 

2010). A large body of prior literature has investigated why individual scientists are involved 

with industry. One of the conceptual lenses adopted in this literature is the scientific and 

technical human capital approach, which recognizes scientific and technical human capital 

as “individual endowments”, tacit and craft knowledge as well as social contacts and 

networks (e.g., Bozeman and Corley, 2004; Ponomariov and Boardman, 2010). Scientists 

accumulate scientific and technical human capital with their career age, scientific 

productivity, hierarchical position and previous successful collaboration with industry 

(Belkhodja and Landry, 2007). Moreover, scientists who are well connected, i.e. who occupy 

a central position in professional networks, build up higher scientific and technical human 

capital as “social capital begets human capital” (Ponomariov and Boardman, 2010: 616). 

Higher scientific and technical human capital is positively related with higher industry 
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involvement because scientists with a high endowment are assumed to possess a higher 

ability to carry out research projects together with industry. 

Another conceptual lens has focused on the organizational context, i.e. the 

characteristics of organizations that influence a scientist’s involvement with industry (e.g., 

Meyer-Krahmer and Schmoch, 1998; Siegel et al., 2003; Siegel et al., 2004). Several studies 

have shown that industry involvement depends on the mission and institutional context of 

public scientists, with differences being particularly pronounced between university-affiliated 

scientists and those at mission-oriented public research institutes. Schmoch et al. (2000) and 

Heinze and Kuhlmann (2008) find for Germany that scientists at universities and Max Planck 

institutes, who are by and large more oriented towards basic research, collaborate less 

actively with industry than scientists at Fraunhofer institutes who typically conduct 

application oriented research and are dependent on industry funding. Ponomariov (2008) 

finds a negative correlation between the scientific quality of university units and their 

industry involvement. Furthermore, the presence of industry close to the university’s location 

increases industry involvement. In this context, Siegel et al. (2004) argue that scientists 

require an appropriately designed reward and incentive system in order to be more actively 

involved with industry. The higher the royalty payments to the scientist, the higher the 

scientist’s propensity to collaborate with industry (Link and Scott, 2005). Moreover, there is 

considerable evidence that scientists in different scientific fields exhibit different industry 

involvement (Meyer-Krahmer and Schmoch, 1998; Heinze and Kuhlmann, 2008).  

A third approach has focused on the localized social context which refers to the 

physical space proximity to other scientists and professional relationships. Individuals 

observe people’s behavior of their environment and tend to imitate or adopt the observed 

practice like, for example, the industry involvement of colleagues (DiMaggio and Powell, 

1983; Bercovitz and Feldman, 2008). This influential effect has been referred to as 
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professional imprinting. Kenney and Goe (2004) find a positive correlation between the 

encouragement and support of entrepreneurial activities by the institution (social 

embeddedness) and the corporate involvement by faculty while comparing the engineering 

and computer science department of two US universities (Berkeley and Stanford). Bercovitz 

and Feldman (2008) find for two medical schools in the US that the individual’s decision to 

actively engage in technology transfer by disclosing an invention is influenced by the 

disclosing behavior of their local peers. Professional imprinting takes also place during the 

training phase. Scientists who are exposed to technology transfer activities during their 

graduate training have a higher probability to be involved in these activities later in their 

careers (Bercovitz and Feldman, 2008). Co-authors are also part of a scientist’s social 

environment since co-authorship ties go along with regular interaction (Stuart and Ding, 

2006). Stuart and Ding (2006) show that scientists with co-authors who had become 

academic entrepreneurs are more likely to become commercially active scientists.  

2.2 Hypothesis development 

Technology transfer has been shown to rely eventually on the engagement of the individual 

academic in industry-science activities (Bercovitz and Feldman, 2007; Link et al., 2007). 

Thus, the transfer is dependent on the individual’s decision to be actively involved with 

industry. In this section we develop hypotheses regarding an individual’s attribute, the 

researcher’s academic age, and the social context of the researcher.  

Age effect.  

Industry involvement is likely to vary with the career age of a scientist, i.e. the time 

period since the scientist received her PhD. Based on the human capital argument more 

experienced researchers are likely to possess a higher ability to carry out research projects 

with industry. More established researchers typically have a larger network of researchers 

they know, not only in academia but also in industry compared to researchers at an early 
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stage in their career. Social capital, in this respect, begets human capital. Since they have 

been active in this field for a longer time period more occasions have arisen for them to 

interact with industry researchers. Moreover, they probably even know researchers who 

switched from science to industry. Time in this regard is necessary to build up relationships. 

In fact, Haeussler and Colyvas (2011) find for life scientists in the UK and Germany a 

positive effect of a scientist’s age on commercial activities, including consulting, patenting, 

and the founding of a firm.  

There are however also indications that industry involvement might contradict 

traditional academic norms and that particularly younger researchers adopt new 

organizational initiatives. Bercovitz and Feldman (2008), for example, show that the 

probability of disclosing an invention decreases with the career age for faculty in medical 

schools in the US. This finding is confirmed by a study of the wine industry (Giuliani et al., 

2010). Other research finds no effect at all. Ponomariov and Boardman (2010) cannot detect a 

significant association between career age and the number of publications with industrial 

collaborators for researchers affiliated with a university research center. Overall, the effect of 

a researcher’s career age is thus not unambiguous. However, since industry involvement is 

not a new phenomenon, which is particular true for the life sciences, we expect that a 

researcher’s industry involvement increases with career age. This leads to the first 

hypothesis:  

Hypothesis 1. The scientist’s involvement with industry will decrease the more recent 

the vintage of the scientist’s PhD degree.  

Professional imprinting effects. 

An individual’s behavior is shaped by the social environment. Organization theory 

suggests that based on mimetic isomorphic processes in organizations one entity adopts 

another entity’s practice by imitating it in the belief that the new practice is beneficial 
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because the other entity succeed with it (DiMaggio and Powell, 1983; Giuliani et al., 2010). 

Transferring this logic to our context implies that individuals observe the behavior of their 

close environment with regard to industry involvement and imitate the observed practice. In a 

similar way, social learning theory argues that individuals follow the behavior of relevant 

peers if they face uncertainty about norms (Bandura, 1986; Bercovitz and Feldman, 2008). 

Colleagues’ behavior provides information of accepted and supported practice (Bercovitz and 

Feldman, 2007). If involvement with industry is common in one’s environment, these 

activities are likely to be the norm. Thus, the individual decision to engage in commercial 

activity is most likely not only determined by individual attributes but also influenced by the 

individual’s social environment. Only a few studies have analyzed whether scientists’ 

commercial activity is influenced by their local work environment. Bercovitz and Feldman 

(2008) find a peer effect for faculty of medical schools on the decision to disclose an 

invention. Hence, we expect that a scientist’s involvement with industry will be influenced by 

the behavior of the colleagues in the department (localized peer effect). We suggest: 

Hypothesis 2. The scientist’s involvement with industry will increase with the share 

of publications in the scientist’s department co-authored with industry personnel. 

Besides departmental colleagues, a scientist’s co-authors might be a reference point 

regarding the norms of behavior. The rationale regarding the local peers can basically be 

transferred to co-authors. Individuals typically learn from those they frequently interact with 

(Bercovitz and Feldman, 2008) and co-authorship ties are characterized by frequent 

interaction. Moreover, researchers choose whom to collaborate with in contrast to colleagues 

they usually got to work with as long as they do not bear the responsibility for hiring. They 

might select scientists as co-authors who they respect and trust. Accordingly, the scientist’s 

industry involvement is likely to be influenced by the behavior of the scientist’s co-authors 

(personal peer effect). We therefore expect the following relationship: 
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Hypothesis 3. Scientists with co-authors who have co-authors from industry will be 

more likely to be involved with industry.  

The moderating role of age.  

If researchers face uncertainty they follow the behavior of peers as social learning 

theory suggests (Bandura, 1986; Bercovitz and Feldman, 2008). Since researchers are 

particularly in the early stages of their career uncertain about the norms, the influence by the 

social environment might be pronounced for younger researchers. Moreover, younger 

researchers are probably more open regarding their research agenda and practice. They still 

have to find and establish “their” place in the research community, and they learn by 

observing the research practice of others. If industry involvement is practiced by others they 

might follow and internalize this practice as well and act according to the observed research 

practice. Therefore, it is reasonable to assume that researchers at the beginning of a career are 

more susceptible than more established researchers. In addition, young researchers are also 

more dependent on the department so that in turn they are more eager to conform to the local 

environment. Established researchers can also observe the behavior of other researchers but 

are not as influenced by this compared to younger researchers. Influencing older researchers 

is probably more challenging and they might also not respond to incentives to the same extent 

as young researchers. Adoption of specific practices is more likely in the training and 

qualification phase of younger researchers. Bercovitz and Feldman (2007) find that 

researchers who were exposed to pro-commercialization activities during their training phase 

(measured by the number of patent applications at the individual’s graduate institution during 

the time of their training) are more likely to adopt this practice in their own career. Thus, we 

argue that in particular researchers in an early stage of their career will adopt the practice they 

are exposed to. The influence of the professional environment consequently varies with the 

vintage of a researcher’s degree. The localized peer effect will be stronger the more recent the 
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vintage of the scientist’s PhD, suggesting that professional imprinting takes place in the early 

stages of a scientist’s academic career. Hence, 

Hypothesis 4. The effect of a scientist’s department share of publications co-authored 

with industry personnel on the scientist’s involvement with industry will increase the more 

recent the vintage of the scientist’s PhD degree. 

Basically the same argument for a moderating effect of the researcher’s age can be 

applied to the influence of personal peers on a researcher’s industry involvement. This leads 

to the last hypothesis:  

Hypothesis 5. The effect of co-authors who have co-authors from industry on the 

scientist’s involvement with industry will increase the more recent the vintage of the 

scientist’s PhD degree. 

3 Data and Methods 

3.1 Data 

To analyze the relationship between age, professional imprinting and industry involvement 

we make use of a unique and novel dataset. In summer 2010, the Centre for European 

Economic Research (ZEW) undertook an online survey of academic researchers working in 

the field of biotechnology in Germany. The population targeted comprised researchers who 

worked at either a university or a public research institution and who had published at least 

one paper in a peer reviewed journal in the field of biotechnology. Researchers were 

identified using journal publications from the Science Citation Index Expanded (SCIE) in the 

field of biotechnology between 2004 and 2008. The comprehensive list of relevant journals 

was compiled based the subject categories assigned to each journal. Only authors working at 

an institution located in Germany are considered. If provided, email-addresses were taken 

from the publications. Otherwise email-addresses were collected manually from the internet 
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which involved a complex search since only the authors and affiliations located in Germany 

were known for each publication but not the link between them. In total, we approached 

3,359 researchers of whom 458 filled in the questionnaire. After dropping observations with 

missing values in the variables of interest the empirical investigation rests upon a sample of 

343 researchers. 

The publication data from the SCIE not only conveys information about the publication 

activities of the individual researcher between 2004 and 2008 but also about the departmental 

publication activities through the mentioned affiliations on a publication. After harmonizing 

the affiliations we constructed a measure for each institution with the number of publications 

originating in the specific institution. For universities this measure is on department level; for 

public research institutions it is on the institution level. The department’s or institution’s 

publication record is linked then to the researcher. 

Furthermore, we identified the region where the scientist’s institution is located to 

control for the regional environment. To allow for a reasonable size the region is defined as 

the district (NUTS-3) in which the scientist’s institution resides plus the immediate 

neighboring districts. Regional information on the GDP per capita and the number of plants is 

collected and merged.  

3.2 Variables 

Dependent variable. In order to measure a scientist’s involvement with industry, we follow 

Bozeman and Gaughan (2007) who construct an industry involvement index based on faculty 

responses whether they engaged in different types of industry interaction. In our survey, 

scientists were asked to indicate interaction with respect to five items: (a) direct collaboration 

with industry personnel in a joint research project, (b) performing a service (measuring, 

analyzing, consulting) or creating a technical artifact (bacteria, cell cultures) on behalf of a 

company, (c) licensing-out research results, (d) joint publication of research results with 
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industry personnel, and (e) informal contacts with industry personnel. The time frame the 

scientists were asked to refer to were the last 12 months, i.e. from about mid 2009 to mid 

2010. We then calculated the frequency (in %) of each item’s occurrence in the sample and 

used the inverse as a weight for the corresponding item. Subsequently, we multiplied each 

type of interaction with its weight and summed the factors to create a weighted industrial 

involvement index. As a robustness check, we use the summed number of interaction types 

without considering their frequency of occurrence in the sample. 

Focus variables. We use three main explanatory variables. The first refers to the 

scientist’s career age, i.e. the number of years since the scientists received her PhD. This 

information is available from the survey. As the variable is skewed, we take the natural 

logarithm of it. The second variable focuses on the scientist’s localized peers. To construct 

this measure, we identified all publications listed in the SCIE that affiliates with the 

scientist’s department or institute published between 2004 and 2008. We then identified those 

publications that were co-authored with industry personnel and calculated the share of those 

publications in the total number of publications by department members. The third variable is 

intended to capture personal peer effects. We measure those by identifying all publications by 

the scientist’s co-authors between 2004 and 2008. If any of the scientist’s co-authors had 

published a paper together with industry personnel, we create a dummy variable that takes the 

value of one and zero otherwise. Since the dependent variable refers to 2009 and 2010, the 

explanatory variables based on publication information are lagged. 

Control variables. We control for several factors that have been shown to be relevant in 

studies explaining scientists’ involvement with industry (e.g., Link et al., 2007). In this 

respect, we control for the scientist’s research productivity in terms of papers published in 

SCIE journals from 2004 and 2008. Scientists were also asked to indicate whether they had 
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previously applied for patent.1 Department research productivity is controlled for by taking 

the sum of publications by department affiliates from 2004 to 2008. Another indicator of 

faculty quality is whether a scientist is tenured or not. Scientific field effects within 

biotechnology are controlled for by including dummy variables for a research orientation 

towards life sciences, natural sciences, engineering, and other sciences. Moreover, we use a 

dummy variable to indicate whether the scientist’s research is applied (in contrast to basic 

research), which is taken from the questionnaire to control for the technological opportunity 

of the research. The regressions will also control for whether the scientist is employed at a 

public research organization (in contrast to a university). Some scientists in the sample are 

affiliated with both a PRO and a university though. Besides controlling for the scientist’s 

gender, we also include two measures that are intended to capture the “supply side” of 

industry-science interaction opportunities. In this regard, we include the GDP per capita in 

the region where the scientist’s institution is located as well as the regional number of plants 

in natural logarithm. The idea behind these two control variables is that industry-science 

interaction tends to be localized (Laursen et al., 2010) and that more opportunities for 

interaction arise the higher regional level of economic development is. In this context, the 

region is defined as the district (NUTS-3) in which the scientist’s institution resides plus the 

immediate neighboring districts. Correlations between the explanatory variables are fairly 

low (see Table 3 in the appendix). Moreover, the average variance inflation factor (VIF) 

equals 1.26. Thus, there is no indication for a multicollinearity problem in the data.  

3.3 Methods 

Our dependent variable is the industry involvement index which is the weighted sum of the 

different types of a researcher industry interaction. Thus the dependent variable is a 

continuous variable subject to left-censoring. The variable takes a value of zero which 
                                                 
1 The questionnaire refers to the number of inventions for which patent protection was sought. There is 

thus no double-counting of applications made at different patent offices. 
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represents the lower limit if the researcher is not involved in any of the five types of industry 

interaction. The largest value of the dependent variable in the sample is 2.6. Consequently, 

the industry involvement is estimated applying a tobit model (for details on the model see, 

e.g., Wooldridge, 2007).  

As a robustness check we use the number of industry involvement channels as 

dependent variable. The variable takes integer values from 0, in case of no industry 

involvement, to 5, if the researcher is involved in all five types of interaction. Since the 

variable has an upper limit, a count data model would not be an appropriate estimation 

method. Instead we use the ordered probit model to take into account the ordinal structure of 

the variable (Wooldridge, 2007).  

4 Results 

4.1 Descriptive results  

Table 2 presents descriptive statistics for the variables used in the analysis for the full sample 

and a split sample, depending on a researcher’s above or below median industry involvement 

index. On average 7.8 percent of the publications within a department are co-authored by 

personnel from industry. Departments of scientists with below median industry exhibit lower 

shares than departments of scientists with above median industry involvement activities. 

However, based on a one-tailed t-test for this hypothesized variable the difference is only 

significant on the 10%-level. A positive relationship between scientists’ industry involvement 

and joint publications of their co-authors with industry personnel becomes evident based on 

the mean comparison between the two groups. Scientists with higher industry involvement 

activities have statistically more often co-authors who have published jointly with industry 

personnel than scientists with lower industry involvement activities. The descriptive results 

also indicate that a scientist’s industry involvement varies with academic age. We find that 
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the mean of the academic age of scientists with more industry involvement is statistically 

larger than the mean for scientists with less industry involvement at any level greater than 

0.8 percent. The descriptive results already indicate support for hypotheses 1, 2 and 3. A 

multivariate analysis is warranted. 
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Table 1: Sample averages, total and by industry involvement 

 
All observations 

(N=343)  

Below median industry 
involvement index 

(N=171)  

Above median industry 
involvement index 

(N=172) 
 Mean Std. Dev. Min Max  Mean Std. Dev.  Mean Std. Dev. 
Dependent variable           
Industry involvement index 0.929 0.717 0 2.616  0.316 0.275  1.538 0.454 
No. of industry involvement channels 2.327 1.432 0 5  1.082 0.747  3.564 0.677 
Focus variable           
Joint publications w/ industry by dept. (share) 0.078 0.071 0 0.571  0.073 0.060  0.084 0.080 
Co-authors published w/ industry (d) 0.566 0.496 0 1  0.444 0.498  0.686 0.465 
Years since PhD (ln) 2.197 1.132 0 3.932  2.050 1.142  2.344 1.106 
Control variable           
No. of publications by dept. 63.921 62.814 0 266  65.795 64.791  62.058 60.917 
No. of publications by individual 3.799 4.361 1 26  2.871 2.989  4.721 5.239 
Patent application (d) 0.475 0.500 0 1  0.316 0.466  0.634 0.483 
Applied research orientation (d) 0.697 0.460 0 1  0.544 0.500  0.849 0.359 
Field: Biosciences (biology, medicine) (d) 0.735 0.442 0 1  0.789 0.409  0.680 0.468 
Field: Natural Sciences (d) 0.128 0.335 0 1  0.099 0.300  0.157 0.365 
Field: Engineering (d) 0.070 0.255 0 1  0.035 0.185  0.105 0.307 
Field: Other (d) 0.067 0.250 0 1  0.076 0.266  0.058 0.235 
Tenured position (d) 0.554 0.498 0 1  0.503 0.501  0.605 0.490 
Public research institution (d) 0.382 0.487 0 1  0.398 0.491  0.366 0.483 
Female (d) 0.292 0.455 0 1  0.351 0.479  0.233 0.424 
GDP per capita in region 31.355 8.958 19.638 54.763  32.070 9.118  30.645 8.766 
No. of plants in region (ln) 9.816 0.964 7.231 11.234  9.840 1.031  9.791 0.895 
Note: (d): dummy variable.  
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4.2 Main results 

Table 2 shows our main model results. Model 1 and model 2 report findings from the tobit 

regressions, in which the industry involvement index is used as the dependent variable. In the 

baseline model 1 we find that both co-author publications with industry and the career age 

exhibit a positive effect on industry involvement. The effect of the share of publications with 

industry in the scientist’s department is however not significant. Model 1 thus finds support for 

hypotheses 1 and 3. Looking at the results in model 2 which incorporate the interaction effects, 

we find the two results from model 1 confirmed. Additionally, we find a significant positive 

effect of the share of publications with industry in the scientist’s department which lends support 

to hypothesis 2. Regarding the interaction with scientist age we find a negative and significant 

interaction for the share of joint publications with industry in the scientist’s department but no 

significant effect of the interaction for co-authors’ publication with industry. This result supports 

hypothesis 4 but rejects hypothesis 5. Models 3 and 4 use the number of different interaction 

channels with industry as dependent variable and are consequently estimated by ordered probit 

regressions. All results turn out to be consistent to models 1 and 2. 

Our results indicate that professional imprinting plays a major role in shaping scientists’ 

propensity to engage with industry. Both the localized and the personal peer effect turn out to be 

relevant which confirms and extends prior literature (Bercovitz and Feldman, 2008). However, 

we also find evidence for the imprinting effect being dependent on the scientist’s career age. The 

more recent the vintage of the scientist’s PhD degree, the less likely becomes industry 

involvement. But imprinting is particularly effective in the early years of the scientist’s career. 

We find that this only pertains to the localized peer effect though, i.e. the scientist’s department 

co-publications, while the personal peer effect is unaffected by the career age. This suggests that 
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personal peer effects are less sensitive towards the scientist’s professional “lifecycle” and that 

the scientist’s department acts as a major reference point for the scientist’s activities in her or his 

early years of the career. 

Regarding the control variables, we find consistent effects across all models. It appears that 

the number of publications in the department has a slightly negative effect on industry 

involvement. This result confirms prior literature in that the general research orientation of a 

department, as evidenced by a high publication output, decreases industry involvement (e.g., 

Ponomariov, 2008). Moreover, and as expected, we find that scientists with patent applications 

and those whose research is application oriented exhibit higher industry involvement. Prior 

literature has suggested that industrial firms are particularly interested in collaborating with those 

scientists who have demonstrated their ability and interest in application and commercialization 

of research results (e.g., Link et al., 2007), which is what we can confirm. Moreover, we find that 

engineering scientists are significantly more engaged with industry while there are no other 

significant discipline effects, except for a marginally significant and positive effect of natural 

sciences. This result again confirm prior findings (e.g., Grimpe and Fier, 2010). Interestingly, all 

other control variables seem to be irrelevant for explaining a scientist’s involvement with 

industry. In this respect, we find no effect of whether the scientist is tenured, working at a public 

research organization (as opposed to at a university) and for the scientist’s gender. Moreover, our 

regional control variables which are intended to capture the local “pool” of collaboration 

opportunities turn out to be insignificant, although prior literature had shown that collaboration 

patterns tend to be localized (e.g., Czarnitzki and Hottenrott, 2009). 
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Table 2: Estimation results 
 Model 1 Model 2 Model 3 Model 4 

 

Industry 
involvement 

index 

Industry 
involvement 

index 

No. of 
industry 

involvement 
channels 

No. of 
industry 

involvement 
channels 

Joint publications w/ industry by dept. (share) 0.330 2.676** 0.595 4.578** 
 (0.539) (1.244) (0.862) (1.998) 
Co-authors published w/ industry (d)  0.322*** 0.375** 0.549*** 0.592** 
 (0.083) (0.168) (0.131) (0.266) 
Years since PhD (ln)  0.104** 0.202*** 0.186*** 0.339*** 
 (0.043) (0.068) (0.067) (0.108) 
Int.: dept. joint publ. w/ ind. * years since PhD  -1.058**  -1.800** 
  (0.510)  (0.818) 
Int.: co-authors publ. w/ ind. * years since PhD  -0.020  -0.011 
  (0.069)  (0.109) 
No. of publications by dept.  -0.001* -0.001* -0.002** -0.002** 
 (0.001) (0.001) (0.001) (0.001) 
No. of publications by individual  0.011 0.012 0.016 0.018 
 (0.010) (0.010) (0.015) (0.015) 
Patent application (d)  0.266*** 0.273*** 0.375*** 0.389*** 
 (0.084) (0.084) (0.133) (0.133) 
Applied research orientation (d)  0.502*** 0.496*** 0.796*** 0.794*** 
 (0.086) (0.086) (0.138) (0.139) 
Field: Natural Sciences (d)  0.198* 0.179 0.289* 0.258 
 (0.111) (0.110) (0.175) (0.176) 
Field: Engineering (d)  0.427*** 0.434*** 0.737*** 0.753*** 
 (0.147) (0.147) (0.237) (0.239) 
Field: Other (d)  0.138 0.166 0.235 0.283 
 (0.150) (0.150) (0.235) (0.236) 
Tenured position (d)  0.021 0.006 0.002 -0.021 
 (0.092) (0.092) (0.144) (0.145) 
Public research institution (d)  0.055 0.063 0.093 0.106 
 (0.079) (0.079) (0.125) (0.125) 
Female (d)  -0.078 -0.054 -0.141 -0.102 
 (0.083) (0.083) (0.130) (0.131) 
GDP per capita in region  -0.006 -0.005 -0.008 -0.008 
 (0.005) (0.004) (0.007) (0.007) 
No. of plants in region (ln)  0.025 0.018 0.041 0.030 
 (0.043) (0.043) (0.068) (0.068) 
Constant -0.137 -0.298   
 (0.401) (0.411)   
Pseudo R2  0.16 0.17 0.11 0.12 
N 343 343 343 343 
LR/Wald chi2  130.037 134.767 133.672 138.813 
P-value  0.000 0.000 0.000 0.000 
Log likelihood -340.332 -337.967 -514.374 -511.803 

Note: Standard errors in parentheses. *** (**,*) indicate a significance level of 1% (5%, 10%). (d): dummy 
variable. Reference field: biosciences (biology, medicine). 
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4.3 Robustness test  

It could be argued that it needs some time to observe other colleagues’ behavior. Therefore, as a 

robustness check we repeated the analyses for a sub-sample of scientists. To ensure that 

researchers get a chance to become imprinted by the department only researchers who worked at 

the corresponding department for a relevant period are considered. Thus, the sub-sample is 

restricted to researchers who were hired before 2005. As the results show (see models 5 and 6 in 

Table 4 in the appendix) the imprinting and age effects hold although the imprinting effects are 

not as pronounced. The same applies for the interaction effect. This is due to the lack of very 

young researchers in the sub-sample since it excludes per definition very young researchers who 

are within their first five years of their academic career.  

Moreover, to check the robustness of the role of a scientist’s career age we split the sample at the 

median career age (14 years) and re-estimated the regressions for the split sample (see models 7 

and 8 in Table 4 in the appendix). For the younger scientists both professional imprinting effects 

are present while for the older researchers only the personal peer effect becomes apparent. 

Therefore, this check backs up the main results. 

Moreover, a potential endogeneity/selection bias might arise if staff hiring relies on the 

applicant’s former industry involvement so that resulting departmental effects are not driven by 

the department’s influence but due to the department’s hiring strategy. But the most important 

task of a researcher is publishing, followed – at a great distance – by teaching which applies 

primarily for universities, and to a smaller extent for public research institutions. Commercial 

activities play only a minor role. This is also confirmed by the assessments of the researchers in 

the sample. 91 percent of the researchers assess publishing as a very important task of 

researchers; an additional 8 percent rated it as an important task. In contrast technology transfer 
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is rated by 9 percent (20 percent) of the respondents as a very important (important) task. 

Patenting activities reach similar values (9 percent very important; 16 percent important). 

Accordingly, hiring decisions are primarily based on the publication record of the applicant, not 

on their prior industry involvement (see also Bercovitz and Feldman, 2007). 

5 Conclusion 

Our research sheds new light on the factors driving academics to engage with industry. We 

suggest that professional imprinting has a major role to play, which we distinguish into localized 

and personal peer effects. Moreover, we explicitly account for the scientist’s career age and how 

this affects professional imprinting. Based on a sample of biotechnology scientists in Germany, 

our results suggest that imprinting in fact depends on the scientist’s career age, with younger 

scientists being more receptive to imprinting that stems from the local environment, i.e. the 

scientist’s department. While imprinting through co-authors, i.e. personal peers, is important to 

explain industry involvement, the effect does not appear to be dependent on the scientist’s career 

age. In this respect, we extend existing literature in the field by disentangling the professional 

imprinting effect into localized (department) and personal (co-authors) peer effects. Moreover, 

prior literature has all too often treated the scientist’s age as a control variable and neglected its 

moderating impact on imprinting. Finally, previous studies have focused on single areas of 

scientists’ involvement with industry. By employing an industry involvement index that 

integrates different channels of potential collaboration, we provide a more holistic picture of 

academics’ engagement with industry. 

Our research, however, needs to acknowledge several limitations. First, our measure for 

personal peer effects, i.e. an indicator for whether co-authors of the scientist have published 
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together with industry personnel, could be related to the measure for localized peer effects in 

case the scientist’s co-authors work at the same department, although we generally find a very 

low correlation between the two measures. Moreover, our survey data just represent a cross-

section. Ideally, it would be desirable being able to follow scientists through their career in order 

to make a better informed analysis of how the career age affects professional imprinting. 

Nevertheless, our research offers important insights for science, technology and innovation 

(STI) policy making. Given that the traditional mission of public science has shifted in recent 

years from educating students and conducting (basic) research towards becoming more 

“entrepreneurial” and engaging with industry (Etzkowitz et al., 2000), our research makes clear 

that it is not only the personal motivation of the scientist or the organizational infrastructure like 

the presence of a technology transfer office that matter for industry involvement, but it is also the 

scientist’s immediate environment to which he or she makes reference in the decision to become 

engaged with industry. Efforts to promote industry involvement should therefore not ignore peer 

effects, which however can be difficult to influence. Policy measures should hence be targeted 

primarily at groups of researchers and not (only) individual scientists. Moreover, industry 

involvement has been shown to typically occur in later stages of the career. It thus seems pivotal 

to facilitate industry-science interaction particularly for scientists in their early stage of career. 

As imprinting has turned out to be more effective in those years, STI policy could target 

researcher groups with a high share of early-stage researchers. 
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Appendix 

Table 3: Correlation matrix (343 observations) 
Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
(1)   Joint publications w/ industry by dept. 1              
(2)   Co-authors published w/ industry (d)  0.15 1             
(3)   Years since PhD (ln)  0.04 0.04 1            
(4)   No. of publications by dept.  0.10 0.21 0.06 1           
(5)   No. of publications by individual  0.04 0.37 0.25 0.10 1          
(6)   Patent application (d)  0.20 0.16 0.34 0.04 0.25 1         
(7)   Applied research orientation (d)  0.14 0.15 0.03 0.08 0.09 0.31 1        
(8)   Field: Natural Sciences (d)  0.02 0.05 0.02 -0.13 -0.03 0.02 -0.03 1       
(9)   Field: Engineering (d)  -0.06 -0.06 -0.12 -0.10 0.03 0.04 0.11 -0.11 1      
(10) Field: Other (d)  -0.03 0.00 -0.09 -0.08 0.11 -0.05 0.13 -0.10 -0.07 1     
(11) Tenured position (d)  -0.03 0.10 0.58 0.01 0.25 0.21 0.01 0.05 -0.08 -0.04 1    
(12) Public research institution (d)  -0.04 -0.03 -0.04 0.21 0.04 -0.04 -0.07 0.00 -0.07 -0.09 0.03 1   
(13) Female (d)  -0.07 -0.10 -0.15 -0.02 -0.19 -0.20 -0.02 0.06 -0.03 0.03 -0.13 -0.03 1  
(14) GDP per capita in region  0.00 0.03 0.00 0.05 0.03 -0.01 -0.02 -0.02 0.06 0.03 0.03 -0.18 0.05 1 
(15) No. of plants in region (ln)  -0.15 0.02 0.02 0.24 0.01 -0.03 -0.02 -0.02 0.05 0.00 0.02 0.05 0.02 0.39 
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Table 4: Robustness checks with various sub-samples  
 Model 5 Model 6 Model 7 Model 8 

 
Only researchers who were  

hired before 2005 
Below median 

career age 
Above median 

career age 

 

Industry 
involvement 

index 

Industry 
involvement 

index 

Industry 
involvement 

index 

Industry 
involvement 

index 
Joint publications w/ industry by dept. (share) 0.189 3.912* 1.751** -0.963 
 (0.658) (2.258) (0.741) (0.789) 
Co-authors published w/ industry (d)  0.372*** 0.531* 0.453*** 0.241** 
 (0.108) (0.285) (0.121) (0.113) 
Years since PhD (ln)  0.119** 0.289*** 0.069 0.375** 
 (0.057) (0.100) (0.061) (0.168) 
Int.: dept. joint publ. w/ ind. * years since PhD  -1.476*   
  (0.855)   
Int.: co-authors publ. w/ ind. * years since PhD  -0.069   
  (0.107)   
No. of publications by dept.  -0.002*** -0.002** 0.000 -0.002*** 
 (0.001) (0.001) (0.001) (0.001) 
No. of publications by individual  0.014 0.016 -0.007 0.019* 
 (0.010) (0.010) (0.021) (0.010) 
Patent application (d)  0.237** 0.254** 0.152 0.307*** 
 (0.101) (0.100) (0.127) (0.108) 
Applied research orientation (d)  0.482*** 0.481*** 0.343*** 0.623*** 
 (0.108) (0.107) (0.123) (0.115) 
Field: Natural Sciences (d)  0.226 0.213 0.026 0.323** 
 (0.145) (0.145) (0.163) (0.145) 
Field: Engineering (d)  0.598*** 0.604*** 0.350* 0.536*** 
 (0.188) (0.187) (0.204) (0.206) 
Field: Other (d)  0.096 0.081 0.182 0.293 
 (0.210) (0.209) (0.203) (0.217) 
Tenured position (d)  0.015 0.003 -0.051 -0.163 
 (0.111) (0.111) (0.133) (0.142) 
Public research institution (d)  0.060 0.074 0.077 0.002 
 (0.098) (0.099) (0.120) (0.100) 
Female (d)  -0.099 -0.076 -0.044 -0.025 
 (0.109) (0.108) (0.117) (0.116) 
GDP per capita in region  -0.008 -0.008 -0.010 -0.002 
 (0.005) (0.005) (0.007) (0.006) 
No. of plants in region (ln)  0.052 0.032 -0.062 0.054 
 (0.054) (0.055) (0.066) (0.055) 
Constant -0.270 -0.531 0.803 -1.108 
 (0.515) (0.532) (0.589) (0.722) 
Pseudo R2  0.18 0.18 0.13 0.22 
N 218 218 166 177 
LR/Wald chi2  92.29 96.87 49.87 92.43 
P-value  0.000 0.000 0.000 0.000 
Log likelihood -216.519 -214.232 -162.108 -162.194 

Note: Standard errors in parentheses. *** (**,*) indicate a significance level of 1% (5%, 10%). (d): dummy 
variable. 
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