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Abstract

Empirical work suggests that the network of research and development alliances is
asymmetric, with a small number of firms being involved in the majority of alliances.
The paper relates the structure of the collaboration network to a fundamental char-
acteristic of the demand for research output: the indivisibility in the use of research
output creates private and social incentives for a concentration of collaborative ac-
tivities. I investigate two models on the formation of bilateral collaborative links in
a socially managed industry and in an oligopolistic industry respectively. I find that
a concentrated network is a typical equilibrium and a socially efficient structure.

1 Introduction

The literature on research and development (R&D) collaboration has focused on the pros
and cons of an industry-wide agreement as compared to the case of independently operating
research labs (e.g. d’Aspremont and Jacquemin, 1988; Kamien et al., 1992). Yet, empirical
work on the high-tech sectors suggests that not all companies, even not the direct competi-
tors, are equally active in collaborating. Hagedoorn and Schakenraad (1992), for example,
identify seven key players in the information and communication technology industries of
the 1980s (AT&T, IBM, Siemens, Philips, Fujitsu, NEC, and Olivetti), who are involved
in many of the collaborative partnerships in these industries. These companies belong, at
the same time, to the list of top-ten sellers in their respective industry. Similarly, for the
global biotech and pharmaceutical industries of the 1990s, Powell et al. (2005) find that
a group of 24 well-known players had each formed more than twenty strategic alliances,
while the majority of firms had two or less alliances.
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The observations raise a number of questions. Can we explain the emergence of a
concentrated market structure in a micro-economic model on R&D collaboration? Is con-
centration welfare-efficient? Finally, in the light of the favorable treatment of research joint
ventures in the U.S. and in Europe, is there a policy lesson to learn from such a model?
For example, should R&D collaboration be encouraged between the firms at the margin or
rather between the central players in an industry?

Despite of the empirical evidence, issues like these have not been sufficiently addressed
in the literature. Katz (1986) was the first to study a less than industry-wide collaborative
agreement. More recent contributions come from Bloch (1995) and Yi (1998), who investi-
gate the set of industry partitions into research coalitions, and Goyal and Moraga-Gonzáles
(2001) and Goyal and Joshi (2003), who study networks of bilateral R&D alliances. A com-
mon finding is that less than industry-wide agreements are typical market structures in
equilibrium. Of particular interest are the analyses of some specific market settings in
Goyal and Moraga-Gonzáles (2001) and Goyal and Joshi (2003). The authors find that
equilibrium networks are typically highly asymmetric, with some firms being completely
excluded from any collaborative activity. Moreover, they obtain the surprising result that
those structures do, under certain conditions, welfare-dominate symmetric networks.

In this paper, I argue that concentration in the market structure of R&D collaboration
arises in a wide range of market settings and is typically efficient. My argument builds
on a fundamental property of the demand for R&D investments. The seminal articles by
Arrow (1962) and Dasgupta and Stiglitz (1980a) point already to the indivisibility in the
use of research output and to its implications for the market structure. An invention, for
example one that enables a firm to reduce its marginal production costs, can be applied
to every unit of the firm’s product, regardless of its scale of production. The returns to
investment are therefore higher, the larger the production scales.

This motivates two conjectures about the investment profile in an oligopolistic industry:
first, in an intra-industry comparison the returns to investment are increasing in a firm’s
current stock of R&D investments. Second, a reallocation of investments from a firm with
a small investment stock to an already R&D intensive firm is socially desirable. Likewise,
there are two good reasons for why concentration is also favored in the market structure
of collaborative agreements. First, every reallocated joint venture offers new investment
possibilities for an R&D intensive firm. Second, the members of a joint venture are likely
to enjoy larger spillovers from their partners than nonmembers. Hence, a reallocation
increases the potentially attainable spillovers for a R&D intensive firm.1

This paper scrutinizes the reasoning by means of two models on the formation of collab-
orative R&D agreements. I use a graph-theoretical framework that depicts an agreement
as a bilateral link in a network. The framework captures important stylized facts: the
majority of R&D alliances is bilateral and embedded in a network of similar ties. In the
Thomson SDC Platinum database, for example, the share of multilateral agreements is only
14% of the total of newly formed alliances over the period 1990–2002. In this network,

1The empirical literature on spillovers within joint research projects and the complementarities between
different projects suggests that both effects are actually at work (Henderson and Cockburn, 1996).
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some firms have multiple alliances with different partners, stressing the non-exclusivity in
the formation of collaborative agreements.

The first model investigates the formation of a collaboration network, given the linking
and production decisions are managed by a social planner. In the model, a set of firms
produces a homogenous good. Moreover, the firms are each endowed with a distinct ‘in-
tellectual asset’ of identical value. The formation of a link allows the involved firms to
exchange their assets, which leads to an exogenously specified reduction in their marginal
production costs. My main finding is the following: given the planner has only a limited
number of collaboration links at his disposal he prefers a star network, in which all links
originate from a single firm. The reason is that since the center firm of the star accumulates
all the intellectual assets in the industry, there is no other network that enables a more
cost-efficient production. Thus, I find that the welfare-efficient network exhibits maximal
concentration.

The result is the stepping stone for a second, more challenging model. Here, the social
planner loses control of the production decisions, which are now made by the firms. The
further modifications are that (i) the marginal cost reductions require endogenously deter-
mined and link-specific R&D investments, (ii) the firms produce differentiated products,
and (iii) also the number of collaborative links is endogenous. I analyze a two-stage non-
cooperative game, where in the first stage the firms and the social planner, respectively,
form a collaboration network and make link-specific R&D investments. In the second stage,
all firms, even the collaborators, compete in the product market.

I start with an investigation of the R&D investments, taking a collaboration network
as given. Using a specific but not uncommon R&D production function, I find that the
investments of the firms and the social planner are directly determined by the structure of
the network. In particular, the same amount is invested on every link.2 I use this to show
that the two-stage game is equivalent to a simpler game of link formation. In this game
and like in the first model, a link leads to an automatic decline of the marginal production
costs. The equivalence greatly simplifies the characterization of the equilibrium and the
welfare-efficient networks of the two-stage game.3

Concerning the efficient network, my first result pertains its architecture. I find that the
efficient network may be the empty network, in which no firm collaborates, or the complete
network with a collaborative agreement between any pair of firms. But if it is neither of
both, the efficient network has a dominant group or a core-periphery architecture, both of
which exhibit a strong asymmetry between firms.

Second, I examine the density and the degree variance in the efficient network. While
the density captures the welfare contribution from the mere number of collaborative link,

2The R&D production function is specified as follows: (i) there are perfect spillovers within the project
on a link, but no spillovers between different projects; (ii) the returns to research investments are constant
up to a certain threshold value, from which on no further investment pays off; and (iii) the R&D production
function exhibits constant returns with respect to the number of links a firm is involved in.

3The equivalence of the two games also motivates the models of Bloch (1995), Yi (1998), and Goyal
and Joshi (2003), who assume from the outset that the affiliation to a collaborative agreement is aligned
with an exogenous cost reduction.
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the degree variance depicts the contribution from their dispersion among the firms. It
turns out that the social welfare in a network is a function of density and degree variance
only. Moreover, among the networks of the same density the network with the highest
degree variance maximizes social welfare. Hence, like in the first model, it is efficient to
maximally concentrate a given number of collaboration links.

Third, I determine conditions on the demand and cost parameters, for which the efficient
network exhibits concentration. Because a general analysis is very complicated, I work with
two examples of a small market with seven firms and of a large market with an infinite
number of firms respectively. It turns out that although the exact architecture of the
efficient network depends on the characteristics of the market and the R&D technology, I
find in both cases a generic set of parameters that supports a concentrated network.

A characterization of the equilibria in the game provides a similar insight: the equi-
librium networks are typically concentrated as well. I therefore compare the extents of
concentration in the example of seven firms. I find that if the degree of product differ-
entiation is on an intermediate level, the equilibrium networks are of efficient density but
too little concentrated. If, on the other hand, products are strongly (weakly) differenti-
ated the equilibrium networks are too dense (too sparse). This suggests that the extent of
concentration is of particular relevance for markets with differentiated goods.

Before introducing the models, I briefly relate them to the literature. First, there is
the clear link to the literature on R&D collaboration. Two rather well-understood themes
are the free-rider problems in collaborative agreements (Kamien et al., 1992; Goyal and
Moraga-Gonzáles, 2001) and the fact that the current members of a joint venture may
exclude the entry of rivals to their agreement in order to maintain market power (Bloch,
1995; Yi, 1998). The current study is to the best of my knowledge the first to point
out that a concentration of collaborative R&D activities around a small group of firms is
socially efficient, because these firms accumulate the output of costly joint research. A
contribution to the studies by Bloch (1995) and Yi (1998) is to show that an exclusion of
some firms from collaborating is often socially desired. The authors point to the welfare
losses from an asymmetric market structure in a game, where the costs of collaboration
are insignificantly small and the industry-wide agreement is efficient. The current study,
on the other hand, investigates the situation of large costs, for which the complete network
is typically inefficient.

I should mention that the articles by Goyal and Moraga-Gonzáles (2001) and Goyal and
Joshi (2003) provide comparable network characterizations. Goyal and Moraga-Gonzáles
show in a Cournot oligopoly of three firms that an asymmetric network can be strategi-
cally stable and efficient. Goyal and Joshi find for a more general Cournot oligopoly and
significant (but not too large) costs aligned with the collaborative links that a dominant
group is a typical equilibrium architecture. Moreover, they show for Bertrand competition
and small linking costs that the efficient network has a core-periphery architecture. My
analysis indicates that all of their findings carry over to markets with an arbitrary number
of firms and differentiated products as well as to a wide range of cost levels.

Second, the property that the output of an investment can be applied to any scale of
production is not specific to collaborative R&D, but one of many investments involving
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high fixed costs. Other investments with the same property are, for example, in-house R&D
projects, technology licensing, investments into human capital or into the organization. My
analysis therefore has some overlap with the studies investigating the market structure in
industries with high fixed costs (e.g., Dasgupta and Stiglitz, 1980a; Spence, 1984).

The remainder of the paper is organized as follows. Section 2 introduces some network
terminology. Section 3 investigates the collaboration network in a socially managed indus-
try. Section 4 analyzes a market with imperfect competition. I characterize the efficient
collaboration network and compare it with the networks that arise from the strategic for-
mation of links. The section ends with a robustness check of the main findings with respect
to market exit and spillovers. Section 5 concludes.

2 Networks

Consider a set of firm, N = {1, 2, ..., n} with n > 2. For any distinct firms i, j ∈ N ,
the pair-wise relationship between the firms is depicted by a bilateral link ij. A network
g = {ij : i, j ∈ N, i 6= j} is the complete collection of the links between firms. Denote
by Ni(g) the set of firms, with which firm i has a link in network g; firm i’s degree is the
cardinality of this set, ηi(g) = |Ni(g)|. A network partitions the set of firms according
to their degrees. We say that distinct i, j ∈ N are members of the same group hl(g),
0 ≤ l ≤ m, of the degree partition {h0(g), h1(g), ..., hm(g)}, if and only if ηi(g) = ηj(g) = l.
The degree distribution of network g assigns to every nonnegative integer l the frequency
weight nl(g) = |hl(g)|/n. Two important characteristics of the degree distribution are:

• the density D(g) = η̄(g)/(n − 1), where η̄(g) =
∑

i∈N ηi(g)/n denotes the average
degree, and

• the normalized degree variance C(g) = V (g)/Vmax, where the degree variance, V (g) =∑
i∈N(ηi(g)−η̄(g))2/n, is normalized by its maximum given n firms, Vmax = (3n− 2)2

(n− 2) (3n + 2)/256n2.

I now define the architecture of a network and introduce some relevant examples. Any two
networks g and g′ share the same architecture, if there exists a permutation of firms, P ,
such that g′ = {P (i)P (j)|ij ∈ g}. Thus, network g′ should be attainable from g by just
relabeling the firms. A regular network architecture of density D is such that every firm
has a degree of ηi(g) = (n−1)D. Two special cases are the empty network, ge, with D = 0
and the complete network, gc, with D = 1. An important irregular network architecture
is the dominant group of size n′, gn′

, with 2 ≤ n′ ≤ n − 1. The dominant group consists
of two groups of firms, one in which everybody is linked to everybody else in that group
(denoted by hn′−1), and another group consisting of isolate firms (denoted by h0). The
core-periphery architecture, gx, on the other hand induces a degree partition, where there
are two or more groups of firms with a positive degree. Moreover, every firm in group hm

(the core group) is linked to every other firm with at least one link. Hence, let i ∈ hm(gx).
If ηj(g

x) ≥ 1 it holds ij ∈ gx. The star, gs, is a special case of a core-periphery architecture.
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Figure 1: Network structures

It induces a two-point degree partition of the set of firms, {h1, hn−1}, with |hn−1| = 1. The
defined network architectures are illustrated in Figure 1.

3 Concentration in a socially managed industry

In this section, I investigate a socially managed industry. A social planner chooses the
scales of production at a set of firms. At the same time, he may form links between pairs
of firms in order to exchange their distinct ‘intellectual assets’. The question is at which
firms to produce and how to organize the network of collaborative ties efficiently.

Consider a set of initially identical firms, N = {1, 2, ..., n} with n > 2. Each firm
produces a homogeneous product at zero fixed costs and without any capacity restrictions.
Let each firm be endowed with a distinct intellectual asset, such as a blueprint for a
sophisticated component of the product. A firm may not use the asset on its own, but it
may share the asset with the other firms, in which case the recipient’s marginal production
costs decline. If firm i receives the assets of yi other firms its variable production costs are
given by C(qi, yi). It is a natural assumption in the context of intellectual assets that the
rate of the unit-cost reduction is the same for every unit produced at a firm, regardless
of its scale of production. I therefore specify C(qi, yi) = (γ0 − yi)qi, where γ0 denotes
the initial marginal production costs, γ0 > n − 1. Let Q denote the total quantity of the
commodity and qi the quantity produced by firm i. The net social benefit of production is
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given by

W (q1, q2, ..., qn, y1, y2, ..., yn) = U(Q)−
∑
i∈N

(γ0 − yi)qi

where U ′(Q) > 0. I assume that two firms automatically share their assets, if they are
involved in a collaborative link. Hence, in network g it holds yi = ηi(g). The formation of
a link shall be free of any costs, but I suppose that the social planner has only a limited
number of y links, 2 ≤ y ≤ n− 1, at his disposal.

The solution to the planner’s problem is the following. Concerning the efficient pro-
duction program, consider any network g. Denote the group of firms with the lowest
marginal production costs by hm(g), with hm(g) ⊆ N , and suppose without loss of gener-
ality that hm(g) = {1, 2, ...,m}, 1 ≤ m ≤ n. Suppose the planner chooses an output profile,
(q1, q2, ..., qn), such that qi > 0 for some i > m. Clearly, he can save production costs at
an amount of qi (ηm(g)− ηi(g)) by shifting production from firm i to firm m. Hence, it is
efficient to produce exclusively at the firms with the most acquired assets.

Concerning the efficient collaboration network, consider any positive total output Q.
Suppose the planner chooses a network g consisting of y = n − 1 links with |hm(g)| > 1.
Network g is not welfare-optimal. The planner may remove some links from the network
until he arrives at a core-periphery network gx, where |hm(gx)| = 1 and for any i ∈ N\{j}
with ηi(g

x) > 0 it is ij ∈ gx if and only if j ∈ hm(gx). He may produce output Q at firm j
for the same total production costs as before and we have W (gx) = W (g). Furthermore, the
planner may add the previously removed ties to network gx and link firm j to every other
firm that is not yet connected to it. In the resulting star network gs, firm j accumulates
n−1 assets and the planner saves production cost at the amount of Q for every reestablished
link. Hence, we find that W (gs) > W (g) and that the concentration of collaborative links
is efficient, because of the benefits that arise from an accumulation of intellectual assets.

4 Concentration under imperfect competition

4.1 The model

The preceding analysis highlights the efficiency of a concentrated collaboration network in
a socially managed industry. In the following, I repeat the analysis in a more challenging
setting, where (i) the social planner loses control of the production decisions, which are in
the hand of the profit-maximizing firms; (ii) the firms produce differentiated products; (iii)
the amount of assets exchanged on a link is endogenously determined by a link-specific
R&D investment; and (iv) next to the degree of concentration in the network, also the
number of links is endogenously determined.

I investigate a two-stage game, where in the first stage the firms and a social planner,
respectively, form a collaboration network and make link-specific R&D investments in
order to reduce the marginal production costs. In the second stage, all firms, even the
collaborators, compete in the product market. I first introduce the model and solve its
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second stage. I will then examine the equilibrium and the efficient R&D investments of
the first stage, taking as given an arbitrary network. Subsequently, I analyze the efficient
collaboration network and compare it to the equilibrium networks. Finally, I discuss some
of the crucial assumptions underlying the analysis. I now describe the model in more detail.

Market competition. Consider a set of initially identical firms, N = {1, 2, ..., n}, n > 2.
In the second stage of the game, each firm sells a single, possibly differentiated, product
to a continuum of homogeneous consumers, who consume each a numeraire good I in
addition. The representative consumer maximizes the quasi-linear utility function

U(I, q1, ..., qn) = I + α
∑
i∈N

qi −
1

2

∑
i∈N

q2
i −

β

2

∑
i∈N

∑
j 6=i

qiqj (1)

under the constraint I ≤ −
∑n

i=1 piqi, where qi denotes the quantity and pi the price of good
i. Let α, the market size, be positive throughout, and let β, the degree of substitutability
between products, come from the interval (0, 1], which implies a focus on markets, where
the collaborating firms are competitors in the product market. The case of β = 1 depicts a
market, where firms sell perfect substitutable goods, and β = 0 the case of firms operating
in independent markets. From utility maximization with respect to quantities, we obtain
the linear inverse demand functions pi = α− qi−β

∑
j 6=i qj, i ∈ N. A firm’s profit, gross of

any costs aligned with its R&D and linking activity, shall be given by πi = (pi−ci)qi. As in
Section 3, the marginal production costs are firm-specific and assumed to be independent
of the output.

To model market interaction, I suppose that all firms compete either in quantities or
in prices, but I disregard the case of perfect Bertrand competition. Thus, I shall assume
that β < 1, if the firms compete in prices.4 The existence of a unique Nash equilibrium
follows from the sub-(super-)modularity of the Cournot game (the Bertrand game with
differentiated products) and the linearity of the best-response functions (Amir, 1996). Us-
ing superscript q (p) to denote competition in quantities (prices), the Nash equilibrium
quantities and prices are given by

µqqq
i =

α

2 + (n− 1)β
− 1

2− β
ci +

β(
2 + (n− 1)β

)
(2− β)

∑
j∈N

cj (2)

µpqp
i =

(1− β)α

2 + (n− 3)β
− 1 + (n− 1)β

2 + (2n− 3)β
ci +

β(1 + β(n− 2))(
2 + (n− 3)β

)(
2 + (2n− 3)β

) ∑
j∈N

cj (3)

and pi = µqi +ci, where µq = 1 and µp = (1−β) (1 + (n− 1)β) / (1 + (n− 2)β). The gross
profit of a typical firm is πi = µq2

i . The following assumption guarantees that, regardless
of the profile of research investments and the network of collaborative ties, no firm exits
the product market.

4For an analysis of collaboration networks under perfect Bertrand competition, see Goyal and Joshi
(2003).
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(A1) No market exit: for any profile of marginal production costs, induced by the R&D
investments and the links between firms, it holds qi(ci,

∑
j 6=i cj) > 0 for any i ∈ N .5

Link-specific R&D. Consider a given network g. For any ij ∈ g, denote the research
effort by firm i invested into the joint project with firm j by xi,j, and denote an industry
profile of R&D investments by x = (xi,j, xj,i)ij∈g. The total investments on the link ij
are given by xij = xi,j + xj,i. Taking into account all the possible technological spillovers
between firms, the unit costs of a typical firm is a function of all the R&D investments in
the industry, ci = c(x1,2, x1,3, ..., x2,1, x2,3, ..., xn,n−1), where xj,k = 0 if jk /∈ g. Let a firm’s
initial marginal production costs be c(0) = γ0, with 0 < γ0 < α. The R&D technology
shall satisfy the following assumptions:

(A2) Perfect spillovers within a joint project and no involuntary spillovers: for any ij ∈ g
and k ∈ N\{i, j}, it holds ∂ck/∂xij = 0. For any ij ∈ g, it is ∂ci/∂xi,j = ∂cj/∂xi,j and
∂ci/∂xj,i = ∂cj/∂xj,i.

(A3) Constant returns up to a threshold level: for any ij ∈ g and k ∈ {i, j}, it is

∂ck

∂xi,j

=
∂ck

∂xj,i

=

{
−γ if xij ≤ 1
0 otherwise

where γ > 0.

I therefore write more conveniently ci = γ0 − γ
∑

j∈Ni(g) min{xij , 1}.
The choice of the R&D production function needs some motivation. Though atypical it

is nothing but a specification from the class of commonly used production functions. First,
(A2) is an extreme form of the widely used assumption that the spillovers between the
partners in a joint venture are larger than between the members of different joint ventures
(e.g., Katz, 1986; Kamien et al., 1992). Second, also (A3) is nothing but a specification of
the standard assumption that the R&D production function of a joint venture is concave
(d’Aspremont and Jacquemin, 1988; Kamien et al., 1992). The threshold investment value
can be motivated as follows. Suppose the second input in a joint research project is an
idea and suppose the idea is essential for R&D investments to take effect. A collaborative
partnership enables the firms to pool their distinct capabilities in order to create a new
idea. Moreover, they may exploit their idea in a joint project. Let the idea be exploited,
if the the total R&D investments on a link exceed the threshold value.

Concerning the division of labor on a link, denote by f the cost per unit of R&D effort
invested, with f > 0. I assume that:

(A4) Equal cost sharing: for any ij ∈ g, the investment costs borne by firm i is fxij/2.

Given a network g and an investment profile x, a firm’s profit is given by Πi(g, x) =
π (qi(g, x))− 1

2
f

∑
j∈Ni(g) xij.

5The precise condition depends on the mode of competition and the productivity of research invest-
ments. This condition will be specified in footnote 7.
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Equilibrium and efficiency. Concerning an equilibrium in the first stage of the game,
I adopt the rules by Goyal et al. (2005). In this game, the firms decide non-cooperatively
about whether to form a new link or to terminate some of their existing links and, at the
same time, about their R&D investments. A strategy of firm i is to announce a set of
intended collaboration links, si = {ij : j ∈ N\{i}}, and R&D efforts, ei = (ei,j)j∈N\{i}.
A link is established between two firms and the announced efforts come into realization,
ei,j = xi,j and ej,i = xj,i, if and only if ij ∈ si and ij ∈ sj. I assume that there are, next to
the R&D investment costs, small but positive costs of establishing a link.

Let (s, e) be a strategy profile, then is g(s) the induced network by the link announce-
ments and x(s, e) the profile of R&D investments. In the following, I omit the dependence
on the underlying strategies for expositional simplicity. An equilibrium is defined as fol-
lows. Write g + ij for the network that is obtained from network g by adding the link ij.

A network and a profile of R&D investments, (ĝ, x̂), constitutes a pair-wise equilibrium:
(i) if (ŝ, ê) constitutes a Nash equilibrium.
(ii) For ĝ + ij and any xi,j, xj,i ≥ 0 :
if Πi(ĝ + ij, xi,j, xj,i, x̂−ij) > Πi(ĝ, x̂) ⇒ Πj(ĝ + ij, xi,j, xj,i, x̂−ij) ≤ Πj(ĝ, x̂).

Condition (i) requires the link and effort announcements to be stable against any unilateral
deviation by a firm. Condition (ii) ensures that no single additional joint research project
pays off, given that all other projects remain in place and all other effort announcements
are unchanged.

Concerning an efficient state, the analysis comprises both social welfare concepts, the
consumer surplus (net of research costs) and the total surplus. A profile (g∗, x∗) is therefore
efficient, if respectively U (g∗, x∗) − f

∑
ij∈g∗ x∗ij ≥ U (g, x) − f

∑
ij∈g xij and U (g∗, x∗) +∑

i∈N Πi (g
∗, x∗) ≥ U (g, x) +

∑
i∈N Πi (g, x) for all g, xi,j ≥ 0, and xj,i ≥ 0.

4.2 R&D investments

In the first step of the analysis, I examine the R&D investments, taking a network as
given. I will take advantage of the fact that the investments are subject to a convexity
property, which has a strong implication for the efficient investment levels and the pair-wise
equilibrium investments on a link.

Lemma 1. Suppose the pair-wise equilibrium (ĝ, x̂) exists. For any ij ∈ ĝ, it must be
x̂ij = 1. Moreover, suppose the efficient profile (g∗, x∗). For any ij ∈ g∗, it must be
x∗ij = 1.

The proof is given in Appendix A. The essential ingredient in the proof is the fact that
the marginal profit as well as the marginal social benefit of a unit research effort increase
in the current stock of investments in a project. Due to this convexity property, if the firms
i and j and the social planner, respectively, invest on the link ij they prefer the maximal
attainable investment of one. The optimal R&D strategy is therefore a question of ‘all or
nothing’. Suppose, however, a network containing the link ij with xij = 0. It is clear that
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for any arbitrarily small linking costs the firms i and j and the social planner, are better off
by deleting it. Hence, for every link of an equilibrium network and of an efficient network,
respectively, the total invested effort is one.6

Together with (A4), the lemma has a strong implication that simplifies the following
analysis. Because the R&D investment costs are shared equally on a link, the division of
labor between the partners does not matter for profits or social welfare. In fact, it holds

Πi(g, xi,j, xj,i, x−ij) = Πi(g, x′i,j, x
′
j,i, x−ij) for any ij ∈ g if and only if xij = x′ij.

It follows that all economically relevant information about the investment profiles x∗ and
x̂ is contained in the structure of a network, since additionally in equilibrium and in an
efficient state it holds xij = 1. In the following, it is therefore sufficient to investigate a
simpler game of link formation introduced by Goyal and Joshi (2006).

In this game, a link induces an automatic change of the partners’ research and pro-
duction costs that depicts all the effects of their investment and link formation decisions.
The marginal production costs of firm i in network g is given by a linear function of
its degree, ci(g) = γ0 − γηi(g), and the term 1

2
f represents a constant cost of linking.

The net profit is given by Πi(g) = πi[ηi(g),
∑

j 6=i ηj(g)] − 1
2
fηi(g), and the utility of the

consumer by U(g) = U
[
(ηi(g))i∈N

]
. A pair-wise equilibrium network in this game sat-

isfies the following conditions: (i) ŝ constitutes a Nash equilibrium; and (ii) for ĝ + ij:
if Πi(ĝ + ij) > Πi(ĝ), it follows Πj(ĝ + ij) ≤ Πj(ĝ). A network g∗ is efficient, if re-
spectively U(g∗) − 1

2
f

∑
i∈N ηi(g

∗) ≥ U(g) − 1
2
f

∑
i∈N ηi(g) and U(g∗) +

∑
i∈N Πi(g

∗) ≥
U(g) +

∑
i∈N Πi(g) for all g.7 For expositional simplicity, I denote the total surplus and

the consumer surplus in a network by W (g) throughout the following, unless a distinction
is necessary.

The following proposition shows that the link formation game can be interpreted as a
reduced form of the model in this section.

Proposition 1. A network ĝ is a pair-wise equilibrium network if and only if there exists a
profile x̂, with x̂ij = 1 for any ij ∈ ĝ, such that (ĝ, x̂) is a pair-wise equilibrium. Moreover,
a network g∗ is efficient if and only if there exists a profile x∗, with x∗ij = 1 for any ij ∈ g∗,
such that (g∗, x∗) is efficient.

The proof is provided in Appendix A.

6Another important ingredient in the proof of the lemma is (A3), hence constant returns to R&D
investments up to a threshold value. If we relax the assumption and apply a strictly concave production
function instead, the firms i and j might prefer an interior investment level. Intuitively, if the production
function is sufficiently concave also the functions of profits and social benefits become concave. A study that
follows this path is Goyal et al. (2005). Because in their model the investment levels on the links depend
on the whole structure of a network, the authors encounter difficulties in determining the equilibrium and
the welfare-efficient networks.

7To satisfy (A1), we need to require that in a dominant group architecture gn−1, where only firm i is
isolated, qi(gn−1) > 0. This implies that under quantity competition α− γ0 > [γ(n− 1)(n− 2)β] / [2− β]
and under price competition α− γ0 > [γ(1 + (n− 2)β)(n− 1)(n− 2)β] /

[
2 + (2n− 5)β − (2n− 3)β2

]
.
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4.3 The efficient collaboration network

The analysis of the R&D investments has shown that the model in this section is equivalent
to a simpler game of link formation. In the following, I investigate the efficient collaboration
network of this link formation game. I show that the social welfare function is convex and
submodular with respect to collaborative ties. I use these properties to characterize the
efficient network and find that it is typically highly concentrated. For a market with a
very large number of firms, I determine conditions on the cost and market parameters that
are sufficient for a concentrated network to be welfare-dominant. I see two implications of
the analysis. First, the accumulation of intellectual assets is also efficient in a market with
imperfect competition. Second, because the degree variance in a network is related to the
Herfindahl index, the market dominance of a few firms is not necessarily detrimental from
a societal perspective.

Convexity and submodularity. In the model, the formation of a collaborative tie costs
society a constant amount of money. Although I assume away technological spillovers,
the marginal social returns to any two links are interrelated by the fact that the social
benefit to a link ij depends on the market shares of the firms i and j, prior to the link.
Firm i’s and j’s market shares are, however, again determined by all prior investments
being made in the industry. This ‘market-interdependence’ has two faces: adding link ij
to network g becomes more beneficial the larger the degrees of firms i and j in network g
(convexity). On the other hand, the social returns to ij deteriorate with the degree of a
firm k ∈ N\{i, j} (submodularity). This is shown in the following result.

Lemma 2. The total surplus and the consumer surplus are:
(i) convex in links: W (g+ij+ik)−W (g+ik) > W (g+ik)−W (g) for any g with ij, ik /∈ g,
if additionally ηj(g) ≥ ηk(g) + 1, and
(ii) submodular in links: W (g + ij + kl)−W (g + kl) < W (g + ij)−W (g) for any g with
ij, kl /∈ g and k, l ∈ N\{i, j}, if additionally, in case that firms compete in quantities and
W (g) represents the consumer surplus, β < (n− 4)/(n− 1).

The proof can be found in Appendix B.

Network architecture. The lemma allows for a marginal check, of whether a network is
socially efficient or whether an additional collaboration tie between firms increases welfare.

Proposition 2. If the efficient network g∗ has a regular architecture, then it must either be
the empty network, ge, or the complete network, gc. If the efficient network g∗ is irregular,
it has either a dominant group architecture, gn′

, for some 0 < n′ < n, or has a core-
periphery architecture, gx.

Proof. I first characterize an efficient architecture, which is regular. Suppose a regular
network g that is neither empty nor complete. Thus, there exist distinct firms i, j, and
k with ij ∈ g and ik /∈ g. For efficiency of g, it must hold for any ij ∈ g that W (g) −
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W (g− ij) ≥ 0. In network g− ij, however, ηk(g− ij) = ηj(g− ij) + 1 and therefore, from
convexity in links, W (g + ik) − W (g) > W (g) − W (g − ij) ≥ 0. This is a contradiction
to network g having an efficient architecture. Hence, if the efficient network is regular it
must either be the empty network or the complete network.

I turn to a characterization of irregular architectures. Suppose first that network g∗

with an efficient and irregular architecture induces a two-point degree partition, {h0, hm}
with 0 < m < n−1, and suppose |hm| = 2. Then we have a dominant group. Assume next
a network g that induces a two-point degree partition with |hm| > 2, and in which for every
firm i ∈ hm it holds ηi(g) < |hm| − 1. Hence, there exist distinct firms i, j, k ∈ hm, with
ik ∈ g and ij /∈ g. For g having an efficient architecture, it must hold W (g)−W (g−ik) ≥ 0.
However, in network g it is ηj(g − ik) = ηk(g − ik) + 1. Hence, convexity in links applies
and therefore W (g + ij)−W (g) > W (g)−W (g− ik). This is a contradiction to g having
an efficient architecture. Thus, if an efficient network g∗ induces a two-point partition with
|hm| > 2 then ηi(g

∗) = |hm| − 1 for every i ∈ hm. This is a dominant group.
Suppose next that a network g∗ with an efficient architecture induces a degree partition,

{hl1 , hl2 , ..., hm}, with at least two groups of firms with a positive degree. I show that for
every firm i with ηi(g

∗) > 0 : ij ∈ g∗, if j ∈ hm. Suppose not and take a network g that
induces a degree partition with more than one group of positive degree and with distinct
i and j, such that ηi(g) > 0 and j ∈ hm but ij /∈ g. In this network, there is a firm k with
ik ∈ g. However, since ηk(g− ik) ≤ ηj(g− ik)− 1, convexity in links applies and therefore
W (g + ij) − W (g) > W (g) − W (g − ik). This is a contradiction to g being efficient. In
an efficient network g∗, it therefore holds for any j ∈ hm that ij ∈ g∗ for every firm i with
ηi(g

∗) > 0. This is a core-periphery network.

The proof bases exclusively on the convexity property of Lemma 2. An efficient network
has one of the architectures illustrated in Figure 1. A commonality of all the irregular
networks in the figure is that they have a high degree variance, and hence are characterized
by a high degree of concentration. This is the result of the interplay between convexity and
submodularity. Convexity makes it socially beneficial to form a link between those firms
that are already involved in a lot of ties. Submodularity, on the other hand, dilutes the
benefits from linking the active firms also to the poorly connected firms.8 This suggests
that a disparity between firms might actually be a desirable characteristic of a network. It
is still an open question, however, whether and when the irregular architectures welfare-
dominate the empty network and the complete network. This is further investigated below.

Density and degree variance. The following result shows that social welfare in a network
is intimately related to two simple properties of the degree distribution.

8Although the proof of Proposition 2 does not take explicit advantage of submodularity, it plays an
important role as I show elsewhere. If the welfare function is super- instead of submodular in links, which
is the case when the firms produce complimentary products or sell on independent markets, the efficient
network is either only the empty network or the complete network (Westbrock, 2007).
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Lemma 3. The total surplus and the consumer surplus in network g can be written as
functions of the density and the degree variance. In particular, W (g) = Y [D(g), C(g)]
with

Y [D(g), C(g)] = ξ1 + ξ2D(g) + ξ3D(g)2 + ξ4C(g), (4)

where ξ1, ξ3 > 0 and ξ4 ≥ 0, with strict inequality, if additionally, in case that firms compete
in quantities and W (g) represents the consumer surplus, β < 1.

The proof and the precise specification of the parameters are given in Appendix B. The
lemma implies that the welfare-related properties of a network are completely captured by
the density and the degree variance. The density captures the contribution to welfare from
the total amount of collaborative activity. This contribution can be positive or negative
depending on the sign of ξ2 and the size of ξ3. The final summand in equation (4) captures
the welfare effects from the dispersion of collaboration ties among the firms. Since ξ4 is
typically strictly larger zero, it follows that, having fixed the network density, social welfare
increases with the concentration of collaborative activities.

Proposition 3. For any 0 ≤ D ≤ 1, an efficient network g∗ with D(g∗) = D is maximally
concentrated.

This confirms our findings from the socially managed industry in Section 3, however, in
a more challenging setting: maximal concentration is efficient, even though the firms are
engaged in imperfect competition and even though they sell differentiated products. The
underlying intuition is the following.

Suppose a regular network, gr, where marginal production costs are given by ci = cj

and prices by pi = pj for any i, j ∈ N . Suppose we remove a link ij and connect firm i to
another firm k instead. In this way, concentration increases. The representative consumer
is affected as follows: given the products of the firms are not homogenous, pj increases
and pk declines, both at the same absolute rate. Hence, in the more concentrated network,
the consumer can still afford the old bundle of goods. However, it is well known from
consumer theory that he can save costs and still obtain the same utility level by shifting
some consumption from good j to k. Furthermore, with any further price reduction of pk,
compensated by a price increase of another good, the consumer can save even more costs,
because his expenditure function is concave in prices (see e.g., Deaton and Muellbauer,
1980). The utility-maximizing network is therefore a ‘corner solution’. Similar, also the
industry profit-maximizing network is maximally concentrated, because the function of
joint profits is concave in the marginal production costs.9

A different interpretation of Proposition 3 is that it places a necessary restriction on the
structure of an efficient network. The proposition implies that we can limit our search to

9Note that the degree of concentration is irrelevant for consumers (ξ4 = 0), if the firms sell a homoge-
neous product. The reason is that all firms need to choose the same price to stay in the market, regardless
of the asymmetry in the network. Moreover, since it is a feature of the model that any two networks with
the same density are aligned with the same average market price, the distribution of links does not matter.
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Figure 2: Network concentration as a function of density

the set of maximally concentrated networks. More precisely, define the function C∗ (D) =
max{C(g) : D(g) = D} for any 0 ≤ D ≤ 1. Denote the set of maximally concentrated
network given G∗ = {g : C(g) = C∗ (D)}. The concentration in an efficient network is now
equivalently determined by C(g∗) = C∗(D∗), where

g∗ = argmax
g∈G∗

{W (g)} and D∗ = argmax
0≤D≤1

{Y [C∗(D), D]}.

Hence, the search for the density and the concentration in an efficient network simplifies
to a optimization problem in density only. Snijders (1981) determines the architectures
of the networks in G∗. Unfortunately, the term C∗ (D) is rather complicated for general
n and D. Therefore, I investigate the case of a large industry, for which C∗ (D) can be
approximated by a much simpler expression. An analysis of the efficient network in an
exemplary small industry is delegated to Section 4.5.

Example of a large industry. Appendix C shows that C∗ (D) has a limiting value
given by

lim
n→∞

C∗ (D) =
256

27

{
(1−D)

3
2 (1− (1−D)

1
2 ) if 0 ≤ D ≤ 1

2

D
3
2 (1−D

1
2 ) if 1

2
≤ D ≤ 1

The expression is illustrated in Figure 2. For 1
2
≤ D ≤ 1, this is the concentration in a

dominant group, and for 0 ≤ D ≤ 1
2

it is the concentration in a core-periphery architec-
ture. Appendix C derives moreover a limiting value for the normalized Y [C∗(D), D]. The
existence of this limiting value, yet, requires that the costs of linking, f , are proportional
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to the number of firms in the industry. Otherwise, Y [C∗(D), D] is uniquely maximized for
D = 1. Assuming differentiability of the limit value in addition, we obtain the following
result:

Proposition 4. In a large industry and for f = nφ, with φ > 0, the normalized total
surplus and the normalized consumer surplus, net of linking costs, have limiting values,
Y∞ [C∗(D(g)), D(g)] = lim

n→∞
[W (g) − W (ge)]/n3. Suppose Y∞[·] is continuously differen-

tiable, there exist φ ∈ (φ1, φ2), with φ1 > 0, such that

∂

∂D
Yφ,∞ [0, 0] > 0 and

∂

∂D
Yφ,∞ [0, 1] < 0,

if additionally, in case that firms compete in quantities and Y∞[·] represents the consumer
surplus, β < 1.

Thus, for φ ∈ (φ1, φ2) the efficient network in a large industry is certainly asymmet-
ric. The proof and the precise Y∞ [C∗(D), D] are given in Appendix C. The proposition
confirms the prevalence of concentration, but also provides a new insight on its nature:
the extent of concentration is sensitive to the costs of forming collaborative ties. This
becomes more clear, when we specify Y∞ [C∗(D), D]. For example, let the term represent
total welfare and let the firms compete in quantities. Moreover, let us use the parameter
A, with A > 1, to depict the market size in a large industry.10 The requirement for an
asymmetric efficient network is

γ2 4A(2− β)− 3 + β

4 (2− β)2 <
1

4
φ < γ2 4A(2− β) + 3− β

4 (2− β)2 .

For φ being large, both the left-hand side (LHS) and the right-hand side (RHS) are smaller
than the middle term (M). Hence, the empty network maximizes welfare. On the other
hand, for small φ, both terms are greater (M), meaning the complete network is efficient.
Asymmetry is desired in industries with intermediate levels of linking costs. The compar-
ative statics with respect to the other project and market characteristics is the following:
since (LHS) and (RHS) increase in A, γ2, and β, it follows that, adapting the argument
from above, concentration is typically favored in markets of medium size, for medium R&D
productivity, as well as medium levels of product substitutability.

This suggests that concentration is efficient, when collaborative links are moderately
productive and competition is moderately intense. For example, the inequalities are si-
multaneously satisfied for A = 2, γ = 1, and β = 0.5, if additionally 4.22 < φ < 6.44.
However, we can verify that the difference between (RHS) and (LHS) is larger under price
competition than under quantity competition. Thus, efficient concentration seems to be a
more common phenomenon under the more intense price competition.

10More precisely, it is the effective market size, α − γ0, A times the minimum effective market size
determined by (A1).
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Concentration of market shares. Proposition 3 has another implication. The distri-
bution of collaborative links also determines the firms’ market shares and hence concen-
tration in the product market. Denoting by mi = qi/

∑
i∈N qi the market share of firm i

and by m = 1/n the average market share, we can write for any network g

mi(g)−m(g) =
χ1

χ2 + χ3η(g)
[ηi(g)− η(g)] ,

where the χ’s depend on the mode of competition, but can shown to be always strictly
positive. It follows that, for given n and η(g), a typical measure of product market con-
centration, like the Herfindahl index, is proportional to the degree variance in a network.
Proposition 3 therefore suggests that, if it is for the purpose of concentrating the R&D
production around a group of firms, concentration in the product market is a tolerable side
effect. Note, however, that the gains from concentration are not only appropriated by the
firms, because it is in the consumers’ interest as well.

4.4 Collaboration networks in equilibrium

A main finding of the previous analysis is that in markets with imperfect competition
an efficient network typically exhibits some concentration of collaborative links. This
puts the observations by Hagedoorn and Schakenraad (1992) and Powell et al. (2005) of
highly concentrated networks in several high-tech industries in a rather positive light. I
now investigate the pair-wise equilibrium networks of the link formation game. A first
question is how well the model does in ‘matching’ the data. Moreover, the following
characterization results will be used in a subsequent comparison of the equilibrium and the
efficient networks.

Convexity and strategic substitutes. Because the number of collaborative ties de-
termines a firm’s competitive position in the market, we obtain the following complement
to Lemma 2.

Lemma 4. A firm’s profit is:
(i) convex in links: Πi(g + ij + ik) − Πi(g + ik) > Πi(g + ik) − Πi(g) for any g with
ij, ik /∈ g, and
(ii) links are strategic substitutes: Πi(g + ij + kl) − Πi(g + kl) < Πi(g + ij) − Πi(g) for
any g with ij, kl /∈ g and k, l ∈ N\{i}.

The proof is omitted.

Network architecture. The lemma allows for a characterization of the pair-wise equi-
librium networks. It suffices to apply a proposition by Goyal and Joshi (2006) showing
that network asymmetry is a typical outcome under convexity of the profit function.

Proposition 5 (Prop. 3.1 Goyal and Joshi (2006)). Suppose the profit function in a link
formation game satisfies convexity and market-wide externalities. A pair-wise equilibrium
network exists and is either empty, complete, or has a dominant group architecture.
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A dominant group architecture can entail a high concentration of collaborative ties. As
illustrated in Figure 2, in particular the dense dominant groups, with 0.5 < D(gn′

) < 1,
attain maximal concentration.

Sufficient condition for concentration. The following question is under which condi-
tions on costs and market characteristics concentration is a common characteristic of every
equilibrium network. This is the result.

Proposition 6. Suppose β > β∗, with β∗ ≤ 1/2, but regardless of whether the firms
compete in quantities or in prices. It exist f ∈ (f1, f2), with f1 > 0, such that every
pair-wise equilibrium network has a dominant group architecture.

Proof. For the empty network to be supported as a pair-wise equilibrium network, nec-
essarily 1

2
f ≥ πi[1, 1] − πi[0, 0]. Otherwise, condition (ii) is violated. For the com-

plete network to be supported as a pair-wise equilibrium network, necessarily n−1
2

f ≤
πi[(n − 1), (n − 1)2] − πi[0, (n − 1)(n − 2)]. Otherwise, condition (i) is violated. In com-
bination with Proposition 5, the proposition follows, if and only if we can find f such
that

1

n− 1

(
πi[(n− 1), (n− 1)2]− πi[0, (n− 1)(n− 2)]

)
<

1

2
f < πi[1, 1]− πi[0, 0]. (5)

This requires β > 2
n+1

under quantity competition and β > [n−5+
√

9n2 − 10n + 1]/[2 (n2 − 3)]
under price competition.

Hence, if the products of the firms are sufficiently close substitutes there exist some
intermediate levels of linking costs, for which every equilibrium network exhibits concen-
tration. A comparative static analysis of the inequalities in (5) with respect to the other
market characteristics provides the following insights: first, concentration typically occurs
for moderate levels of research productivity and for a moderate market size. This is because
(LHS) and (RHS) are both increasing in γ and α− γ0. Second. since (LHS) is decreasing
in n and (RHS) first increases and then decreases as well, concentration is a phenomenon
of medium-sized industries. Finally, a comparison of price and quantity competition pro-
duces a ambiguous results. For small β and n, the difference between (RHS) and (LHS) is
larger under price competition, and concentration seems therefore more typical there. On
the other hand, for β and n being large, the opposite is true. To summarize, just as for
the efficient networks, in particular markets of medium size and with a medium research
productivity appear to be prone to concentration. On the other hand, since we require
β > β∗, concentration is a more common equilibrium phenomenon the more intense the
competition in a market is.

Data matching. Here, I shortly compare the model predictions with the empirical find-
ings on alliance networks in three high-tech industries. A first interesting property of a
dominant group architecture is that, as shown by Goyal and Joshi (2006), the firms in
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the central group attain higher profits and have a larger market share than the firms at
the fringe. This is consistent with the findings of Hagedoorn and Schakenraad (1992)
that the leading companies in the information technology industries are also central in
the network. Second, I also tried to match the model predictions on the network con-
centration. Appendix C provides the formula for the concentration in a dominant group
network as a function of density. The respective figures for the real networks are taken
from Powell et al. (2005) and Duysters and Vanhaverbeke (1996). The comparison pro-
duces, however, a rather unclear picture. While for the biotech and pharmaceutical firms
in the 1990s it is C(gbio) = 1.36 × 10−4 at a density of D(gbio) = 2 × 10−3, a dominant
group of the same density has C = 8.1 × 10−4, which is about six times higher.11 On
the other hand, Duysters and Vanhaverbeke (1996) calculate for the DRAM industry of
the 1980s C(gdram) = 4.25× 10−2 and D(gdram) = 6.96× 10−2 and for the RISC industry
C(grisc) = 8.1× 10−1 and D(grisc) = 2.5× 10−1. The dominant groups of the same density
have C = 7.14 × 10−2 and C = 5.88 × 10−1 respectively. Hence, the real networks are in
one case substantively more and in two cases substantively less concentrated.

4.5 Match of Equilibrium and Efficiency

We have seen that both the equilibrium networks and the efficient networks typically
exhibit a high degree of concentration of collaborative ties. In the following, I investigate
for a small market with seven firms and various levels of linking costs whether or not
an equilibrium network coincides with an efficient structure. The analysis focuses on the
empirically most relevant sparse networks.

Consider a Cournot-oligopoly of seven firms and fix γ = 1 and α−γ0 = 60β/(2−β). For
some moderate degree of product substitutability (β = 0.8), density and concentration in
the equilibrium networks and the efficient networks are illustrated in Figure 3. The figure
shows that the density of both networks decreases in linking costs, whereas concentration is
non-monotonic in costs. Moreover, because the efficient network is asymmetric and actually
highly concentrated for f ∈ [12.5 , 16.5], we can confirm Proposition 4 for this exemplary
small industry. Finally, the figure points to a tension between equilibrium and efficiency:
any sparse equilibrium network is too little concentrated. A comparison of densities does,
on the other hand, produce a rather unclear picture.

To make the point clear, I focus on the regime f ∈ [14.5 , 16], for which the empirically
most relevant sparse but non-empty equilibrium networks are supported. The left graph
shows that in this cost interval there exists an equilibrium network that is denser than the
efficient structure as well as another sparser equilibrium network. On the other hand, take
the right graph and f ∈ [15.25 , 16]. It becomes clear that any equilibrium network in this
cost interval is too little concentrated as compared to the efficient network.

I have repeated the exercise for various degrees of substitutability and found the same
kind of tension between equilibrium and efficiency, as long as β ∈ (0.69 , 0.83). For larger

11The figures for the biotech and pharmaceutical industry are calculated on basis of Figure 3 in Powell
et al. (2005).
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Figure 3: Density and concentration for moderate product substitutability

Note. The figure illustrates the density (D) and the concentration (C) of
the pair-wise equilibrium networks and the efficient network for various linking
costs (f). For any cost level on the x-axis, the grayish areas indicate the range
of densities and concentration, respectively, that are supported in a pair-wise
equilibrium network. The dotted lines show the density and concentration of
the efficient network.

(smaller) β, the sparse equilibrium networks are denser (sparser) than the efficient struc-
ture, which is then the empty (complete) network. This suggests that, from a welfare
viewpoint, the dispersion of collaborative ties matters only for moderate market rivalry,
where the equilibrium networks suffer from too little concentration. Although they are too
concentrated under intense or weak market rivalry, the main problem is a discrepancy in
the amount of collaborative activities.

4.6 Robustness

The analysis so far has assumed that all firms produce positive output in any possible
network and that there are no involuntary technological spillovers between firms. Yet, both
issues might seriously violate the favorable assessment of a highly concentrated structure.
I discuss here the robustness of the results on their welfare-superiority. Moreover, I check
the implications of adding in-house R&D projects to the model.
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Market exit. According to (A1), no firm is forced out of the market by occupying only
a peripheral position in the network and thereby having a comparative cost disadvantage.
Here, I relax the assumption and investigate an implication for the efficient network of the
link formation game.

Suppose n > 3. In the spirit of Proposition 3, let us compare total welfare in a regular
network, gr, and in a dominant group, gn′

, of the same density. To incorporate the effect of
market exit, let (A1) be violated for the n−n′ firms that are isolated in network gn′

. Hence,
for any i ∈ h0(g

n′
) it shall be qi(g

n′
) ≤ 0. Their quantities are set to zero. Moreover, the

remaining firms j ∈ hn′−1(g
n′

) compete in the market, given n′ firms. Suppose competition
is in quantities. The market exit condition becomes (2 − β)(α − γ0) ≤ βn′(n′ − 1)γ. In
network gr, total welfare can be written as

W (gr) = n
(
α− γ0 −

n′(n′ − 1)

n
γ
)
qi(g

r)− n

2

(
1 + (n− 1)β

)
qi(g

r)2 − 1

2
n′(n′ − 1)f,

which is under quantity competition

=
(n(α− γ0) + n′(n′ − 1)γ)2

2n(2 + (n− 1)β)

(3 + (n− 1)β)

(2 + (n− 1)β)
− 1

2
n′(n′ − 1)f.

Note first that for n = n′, network gr is the dominant group network and therefore W (gr) =
W (gn′

). Second, write n = n′ + (n− n′) and differentiate W (gr) with respect to (n− n′).
It is (3 + (n − 1)β)/(2 + (n − 1)β) positive, but declining in (n − n′). Moreover, also the
first factor in W (gr) is positive and its derivative is equal to

[n(α− γ0) + n′(n′ − 1)γ]
n (2− β) (α− γ0)− (2 + (2n− 1)β) n′(n′ − 1)γ

(2 + (n− 1)β)2 n2
.

Note now that (2 + (2n− 1)β) n′(n′ − 1)γ > (2n − 1)βn′(n′ − 1)γ, which is again greater
n(α − γ0)(2 − β) due to the market-exit condition. Thus, the derivative is negative and
therefore W (gr) < W (gn′

) for any n′ < n. Moreover, the dominant group performs better
the larger the difference n−n′, and hence the higher the concentration in gn′

. This suggests
that highly concentrated networks are also efficient under market exit.

Spillovers. The focus of a large body of the literature on research collaboration are the
effects of knowledge spillovers to the whole industry (d’Aspremont and Jacquemin, 1988) or
via the network (Goyal and Moraga-Gonzáles, 2001). Due to the complications involved in
the analysis of the second type, I focus here on a robustness check with respect to industry-
wide spillovers.12 A modification of (A2) in this direction is the following. Suppose firm
i’s marginal cost of production in network g is given by

ci(g) = γ0 − γ
[
(1− θ)

∑
j∈Ni(g)

min{xij, 1}+ θ
∑
kl∈g

min{xkl, 1}
]
,

12See Deröıan (2005) for an investigation of network-dependent spillovers.
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with 0 < θ < 1. Hence, the unit costs are additionally reduced by collaborative projects
not in the neighborhood of firm i. It turns out that the results on the efficient network
carry over to this modified model, as long as the rate of spillovers is not too high.

A unit R&D investment has now the following impact on the second-stage quantities

∂qi

∂xij

= −γ

∂qi

∂ci

+
∂qi

∂cj

+ θ
∑

k∈N\{i,j}

∂qi

∂ck


∂qi

∂xjk

= −γ

2
∂qi

∂cj

+ θ
∂qi

∂ci

+ θ
∑

l∈N\{i,j,k}

∂qi

∂cl

 .

Suppose θ is sufficiently small such that ∂qi/∂xij > 0. For example, under Cournot compe-
tition with homogenous products this is satisfied for any θ < 1. It follows that total welfare
and profits are convex with respect to R&D investments and, if the additional requirements
of Lemmas 2 (i) and 4 (i) are met, collaborative links. Thus, Lemma 1 and Propositions 1,
2, and 5 carry immediately over for the total surplus and profits. For the convexity of the
consumer surplus, we require a somewhat lower spillover rate (under Cournot competition
with β = 1 : θ < 0.95).

Furthermore, let ∂qi/∂xjk < 0 (θ < 0.66). The total welfare is then submodular in
links and links are strategic substitutes. Hence, a dominant group or a core-periphery are
typical architectures of an efficient network, and Proposition 6 applies to the equilibrium
networks. For the consumer surplus, we require again a lower spillover rate (under Cournot
competition with β = 1, the conditions for submodularity cannot be met).

Finally, since the terms ∂qi/∂xij and ∂qi/∂xjk are independent of network g, the social
welfare can be expressed as a function of density and concentration. Thus, we can apply
Lemma 3 to the case of spillovers. Moreover, if the requirements on ξ4 of Lemma 3 are
satisfied but for any θ < 1, total welfare and consumer surplus increase in the degree of
concentration in the network. Proposition 3 therefore holds as well.

In-house R&D. I have excluded in-house R&D projects from the analysis. Enabling
a firm to do a single in-house project does not change any of the main results. Suppose
the same research technology as for a cooperative project ((A2) and (A3)). Since profits
and social welfare are then convex with respect to in-house R&D investments, Lemma
1 applies to these projects as well. Moreover, collaborative links still satisfy convexity,
submodularity, and strategic substitutability. Thus, Lemmas 2 and 4 and Propositions 2
and 5 carry over. The limitation of this modification is that an empty network can be
supported in a pair-wise equilibrium with no R&D investments at all as well as with a
single firm investing in its in-house project. Proposition 1 and Lemma 3 therefore need to
be adjusted.
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5 Concluding remarks

In his seminal article, Arrow (1962) points to the imperfections aligned with the demand
and the production of the commodity information, and to the consequences for the market
structure in innovating industries. I have studied two models on the formation of an R&D
collaboration network and investigated the consequences of the indivisibility in the use
of R&D output. The fact that the output of a joint project can be applied to any unit
of the firms’ products, independent of their production scales, creates private and social
incentives for a concentration of costly research output.

The first aim of the paper is to explain the fact that in several high-tech industries
the industry leaders are also involved in a large number of R&D alliances. Although
the fit of the precise model predictions with three exemplary alliance networks is rather
weak, my analysis is qualitatively confirmative: the equilibrium networks typically exhibit
a concentration of collaborative links. Moreover, the well-connected firms attain a larger
market share and higher profits in equilibrium.

The second question is how the empirical pattern can be assessed from a societal view-
point. My analysis of the welfare-efficient networks suggests that the collaborative produc-
tion of R&D should preferably be organized in a network dominated by a small number
of firms. This conclusion turns out to be robust to a host of challenges. In particular,
concentration is efficient despite the adverse effect on competition in the product market
and despite consumers’ tastes for differentiated products. I have also checked the robust-
ness with respect to a setting, where concentration leads to market exit of the firms in the
periphery of the network.

Another interesting finding of this analysis is that, for any two industries with the same
number of firms and the same number of collaborative links, the extent of network con-
centration is proportional to the Herfindahl index of product market concentration. This
has a surprising implication for the index. In contrast to the common interpretation, the
extent of product market concentration may be positively related to the welfare generated
in a market.

Furthermore, the models show that the welfare in a network increases in the extent
of concentration of collaborative links. This might have an interesting implication for the
selection of partner firms in a policy program to foster collaborative R&D activity, like
the European EUREKA. The result suggests that collaboration should not be encouraged
between the small and young enterprises, which get a favorable treatment in the program,
but between the large and already very actively collaborating companies.

As a caveat to the normative conclusions, there are some restrictive assumptions un-
derlying the models in this paper. I have confined my analysis to collaborative projects
bearing an incremental innovation, meaning that a project aims at improving the current
products of the partners. On the other hand, a joint project may also enable a drastic
innovation that replaces their old generation of products. The welfare assessment of an
asymmetric market structure is a completely open issue in this context. Other issues,
which are highly relevant but have only shortly been addressed in this study, are market
exit and network-dependent spillovers.
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A R&D investments

I begin by deriving a convexity property of R&D investments:

Convexity property. Because the unit-production costs of a firm are linear in R&D efforts and moreover
since πi = µq2

i , ∂U
∂pi

= −qi, and pi = µqi + ci, for any network g, 0 ≤ xij ≤ 1, and ij ∈ g:

∂2πi

∂2xij
= 2µ

(
∂qi

∂xij

)2

(6)

∂2
∑

j∈N πj

∂2xij
= 2µ

 ∑
k∈{i,j}

(
∂qk

∂xij

)2

+
∑

l∈N\{i,j}

(
∂ql

∂xij

)2
 (7)

∂2U

∂2xij
= µ

 ∑
k∈{i,j}

∂qk

∂xij

(
γ

µ
− ∂qk

∂xij

)
−

∑
l∈N\{i,j}

(
∂ql

∂xij

)2
 (8)

where ∂qi

∂xij
= −γ(∂qi

∂ci
+ ∂qi

∂cj
) greater zero and ∂qi

∂xjk
= −2γ ∂qi

∂cj
smaller zero. The convexity of the firm

profits follows immediately from the fact that (6) and (7) are both positive. Although the two summands
in (8) are of opposite sign, their sum is positive regardless of the mode of competition between firms. This
follows from the fact that (8) becomes under quantity competition

2γ2 4 + (4n− 8)β + (n2 − 8n + 9)β2 − (n2 − 4n + 3)β3

(2 + (n− 1)β)2 (2− β)2

and under price competition

2γ2

µp

(1 + (n− 2)β)
(
4 + (8n− 16)β + (5n2 − 24n + 25)β2 + (n3 − 9n2 + 21n− 15)β3

)
(2 + (n− 3)β)2 (2 + (2n− 3)β)2

.

Both are positive for n > 2 and β ∈ (0, 1] under quantity competition and for n > 2 and β ∈ (0, 1) under
price competition respectively.

I continue with an implication for the efficient and the pair-wise equilibrium R&D investments.

Proof of Lemma 1. Suppose a network g with 0 < xij < 1 for some ij ∈ g. Suppose moreover, without
loss of generality, xi,j > 0. For (g, xi,j , xj,j , x−ij) to constitute a pair-wise equilibrium:

πi(g, xi,j , xj,i, x−ij)−
1
2
fxi,j ≥ πi(g, 0, xj,i, x−ij).

Due to the convexity of profits, we have, however, πi(g, 1−xj,i, xj,i, x−ij)− 1
2f(1−xj,i) > πi(g, xi,j , xj,i, x−ij)−

1
2fxi,j . Hence, firm i is better off choosing x̂i,j = 1 − xj,i. Profile (g, xi,j , xj,i, x−ij) is therefore not a
pair-wise equilibrium. Suppose now ij ∈ g with xij = 0. For any arbitrarily small linking costs, firm i is
better off by deleting the link. Profile (g, 0, 0, x−ij) therefore does not constitute an equilibrium either. It
follows that in a pair-wise equilibrium (ĝ, x̂) for any ij ∈ ĝ: x̂ij = 1. A similar argument applies to the
efficient R&D investments on a link, and we therefore find that the maximal attainable investment of one
is individually as well as socially rational.

Another related implication is the following:

Lemma 5. Consider any given (s−i, e−i) = (sj , ej)j∈N\{i}. It is (ŝi, êi) a ‘best response’ strategy of firm
i, if for any ij ∈ g(ŝi, s−i) it holds x̂i,j = 1 − xj,i. Moreover, it is (s∗i , e

∗
i ) ‘welfare dominant’, if for any

ij ∈ g(s∗i , s−i) it holds x∗i,j = 1− xj,i.
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Proof. Suppose a network g(ŝi, s−i) with 0 ≤ xij < 1 for some ij ∈ g. For (ŝi, ei) to be a ‘best response’
to (s−i, e−i):

πi(g, xi,j , xj,i, x−ij)−
1
2
fxij > πi(g − ij, 0, 0, x−ij)

This cannot be satisfied for xij = 0, because of the linking costs. Strategy (ŝi, ei) is therefore not a best
response. For any 0 < xij < 1, we have πi(g, 1−xj,i, xj,i, x−ij)− 1

2f > πi(g, xi,j , xj,i, x−ij)− 1
2fxij due to

the convexity of a firm’s profit function. Hence, firm i is better off by choosing x̂i,j = 1 − xj,i. Strategy
(ŝi, ei) is therefore not a best response. It follows that (ŝi, êi) requires x̂i,j = 1−xj,i for any ij ∈ g(ŝi, s−i).
A similar argument applies to the efficient R&D investments on a link.

We can now verify the following:

Proof of Proposition 1. I begin with the equivalence of the set of equilibria. Let us depict a strategy profile
s of the link formation game by a strategy profile (s, x̄) of a game of link formation and R&D investments,
Γ, where x̄ is such that x̄i,j = x̄j,i = 1/2 if ij ∈ g. Using the specification of the profit functions in this
section, clearly Πi(g) = Πi(g, x̄) for any s ∈ S and i ∈ N . Hence, the set of equilibrium networks in the
two games are equivalent.

Let us now relate the set of equilibria of Γ to the set of equilibria of the model described in this section.
Suppose (ĝ, x̂) constitutes a pair-wise equilibrium in the model of this section. By Lemma 1 and (A4), we
have Πi(ĝ, x̂) = Πi(ĝ, x̄) for any i ∈ N . Moreover, define Xi =

∏
j∈Ni(g) Xi,j . The strategy set Si of Γ is a

strict subset of the strategy set Si ×Xi of the model in this section. Hence, (ĝ, x̄) constitutes a pair-wise
equilibrium of Γ.

Suppose, to the converse, that (ĝ, x̄) is a pair-wise equilibrium of Γ. It is immediately clear that x̄
satisfies xij = 1 for ij ∈ ĝ. Moreover, for any s ∈ S and i ∈ N : x̄i = (x̄i,j)j∈Ni(g) satisfies the requirement
of a best response strategy according to Lemma 5. It follows that (ĝ, x̄) constitutes a pair-wise equilibrium
of the model in this section. A similar argument can be made for the equivalence of the set of efficient
states.

B Efficient collaboration network

This appendix contains the proofs of Lemma 2 and Lemma 3.

Proof of Lemma 2. I begin with part (i). Because the unit-production costs of firm i are linear in the
degree of firm i in network g and moreover since πi = µq2

i , ∂U
∂pi

= −qi, and pi = µqi + ci, for any network
g with ij, ik /∈ g:∑
i∈N

Πi(g + ij + ik)− 2Πi(g + ik) + Πi(g) = 2µ

[
(

∂qi

∂xij
)2 +

∑
l∈N\{i,j,k}

(
∂ql

∂xij
)2 (9)

+
∂qk

∂xik
(qj(g + ik)− qk(g)) +

∂qj

∂xik
(qk(g + ik)− qj(g))

]
U(g + ij + ik)− 2U(g + ik) + U(g) = µ

[
∂qi

∂xij
(
γ

µ
− ∂qi

∂xik
)−

∑
l∈N\{i,j,k}

(
∂ql

∂xij
)2 (10)

+(
γ

µ
− ∂qk

∂xik
)(qj(g + ik)− qk(g))− ∂qj

∂xik
(qk(g + ik)− qj(g))

]
where ∂qi

∂xij
= −γ(∂qi

∂ci
+ ∂qi

∂cj
) and ∂qi

∂xjk
= −2γ ∂qi

∂cj
. If ηj(g) = ηk(g) + 1, (9) and (10) simplify to (7) and

(8), respectively, since then qj(g + ik) − qk(g) = ∂qj

∂xij
and qk(g + ik) − qj(g) = ∂qj

∂xik
. The convexity in

links follows immediately from the convexity property in Appendix A. Moreover, it can be verified that
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for ηj(g) > ηk(g) + 1, (9) is even greater (7) and (10) is greater (8) (for ηj(g) < ηk(g) + 1, on the other
hand, there are parameters that do not satisfy the convexity property).

I turn to part (ii). For any network g with ij, kl /∈ g and k, l ∈ N\{i, j}:∑
i∈N

Πi(g + ij + kl)−Πi(g + kl)−Πi(g + ij) + Πi(g) = 2µ

[ ∑
u∈{i,j,k,l}

∂qu

∂xij

∂qu

∂xkl
(11)

+
∑

v∈N\{i,j,k,l}

(
∂qv

∂xij

)2 ]

U(g + ij + kl)− U(g + kl)− U(g + ij) + U(g) = µ

[ ∑
u∈{i,j}

∂qu

∂xkl
(
γ

µ
− ∂qu

∂xij
) (12)

−
∑

v∈{k,l}

∂qv

∂xij

∂qv

∂xkl
−

∑
w∈N\{i,j,k,l}

(
∂qw

∂xij

)2 ]

The summand in the parentheses of (11) is under quantity competition −4 (4+nβ)β

(2+(n−1)β)2(2−β)2
and under price

competition − 4
(µp)2

(1+(n−2)β)(4+(5n−8)β+(n2−4n+2)β2)β

(2+(n−3)β)2(2+(2n−3)β)2
. Both are negative for any β ∈ (0, 1). The sum-

mand in the parentheses of (12) is under quantity competition −4 (n−4−(n−1)β)β2

(2+(n−1)β)2(2−β)2
, which is negative for

n > 4 and β ∈ (0, n−4
n−1 ). Under price competition, the summand becomes− 4

(µp)2
(1+βn−2β)(n−4+(n2−5n+7)β)β2

(2+(n−3)β)2(2+(2n−3)β)2
,

which is negative for β ∈ (0, 1).

Proof of Lemma 3. I will show that:

U(g) = λ3

{
λ1 + n (n− 1) D(g) [λ2 + D(g)]

}
+ λ5C(g)∑

i∈N

Πi(g) = λ4

{
λ1 + n (n− 1) D(g) [λ2 + D(g)]

}
+ λ6C(g) − 1

2
fn (n− 1) D(g)

with λ1 to λ6 as defined below, which immediately implies the lemma. Let us express the welfare in
network g by

W (g) = [W (g)−W (gr)] + [W (gr)−W (ge)] + W (ge).

The first summand depicts the welfare contribution from the degree variance, whereas the second summand
contains the contribution from the density (note that D(g) = D(gr) and C(gr) = C(ge) = 0). I derive
each summand in turn and begin with W (gr)−W (ge).
Using U =

∑
i∈N

[
qi

(
α− ci − (µ + 1

2 )qi − β
2

∑
j 6=i qj

)]
and

∑
i∈N πi = µ

∑
i∈N q2

i , we can write

U(gr)− U(ge) = n (α− γ0 + γη̄) qi(gr)− n(α− γ0)qi(ge) (13)

−n
2µ + 1 + (n− 1)β

2
(
qi(gr)2 − qi(ge)2

)
∑
i∈N

Πi(gr)−
∑
i∈N

Πi(ge) = nµ
(
qi(gr)2 − qi(ge)2

)
− 1

2
fnη̄, (14)

where η̄ denotes the average degree in network gr. It can be verified that

qi(gr)− qi(ge) = η̄(
∂qi

∂xij
+ (

n

2
− 1)

∂qi

∂xjk
) and qi(ge) =

(α− γ0)
γ

(
∂qi

∂xij
+ (

n

2
− 1)

∂qi

∂xjk
).

For example, concerning the left-hand term, note that in network gr a firm i is involved in η̄ links more
than in the empty network, and the other firms, j ∈ N\{i}, are involved in η̄(n

2 − 1) more links.
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After substituting and using the facts that qi(gr)2−qi(ge)2 = [qi(gr)− qi(ge)] [qi(gr)− qi(ge) + 2qi(ge)]
and η̄ = (n− 1)D(gr), we can simplify (13) and (14):

U(gr)− U(ge) = n(n− 1)D(gr)
[
λ2λ3 + λ3D(gr)

]
∑
i∈N

Πi(gr)−
∑
i∈N

Πi(ge) = n(n− 1)D(gr)
[
λ2λ4 + λ4D(gr)− 1

2
f
]

with

λ2 =
2(α− γ0)
γ(n− 1)

λ3 = (n− 1)(
∂qi

∂xij
+ (

n

2
− 1)

∂qi

∂xjk
)
2γ − [2µ + 1 + (n− 1)β][ ∂qi

∂xij
+ (n

2 − 1) ∂qi

∂xjk
]

2

λ4 = (n− 1)µ(
∂qi

∂xij
+ (

n

2
− 1)

∂qi

∂xjk
)2.

The reader might check that ( ∂qi

∂xij
+(n

2 − 1) ∂qi

∂xjk
) > 0 and 2γ− [2µ+1+(n− 1)β][ ∂qi

∂xij
+(n

2 − 1) ∂qi

∂xjk
] > 0,

for any β ∈ (0, 1] and regardless of whether competition between firms is in quantities or prices.
Let us turn to the derivation of W (g)−W (gr). I start from the expressions

U(g)− U(gr) =
∑
i∈N

{qi(g) [α− γ0 + γηi(g)]} − n(α− γ0 + γη̄)qi(gr) (15)

− (µ +
1
2
)
∑
i∈N

qi(g)2 − β

2

∑
i∈N

∑
j 6=i

[
qi(g)qj(g)

]
+n

2µ + 1 + (n− 1)β
2

qi(gr)2∑
i∈N

Πi(g)−
∑
i∈N

Πi(gr) = µ
∑
i∈N

[qi(g)2 − qi(gr)2]. (16)

It can be verified that qi(g)− qi(gr) = ( ∂qi

∂xij
− ∂qi

∂xjk
)(ηi(g)− η̄), because the difference ηi(g)− η̄ measures,

in how many links firm i is more (less) involved in network g as compared to gr, and accordingly in how
many links less (more) another firm j ∈ N\{i} is involved in. The following properties help to simplify
(15) and (16):
(i)

∑
i∈N {[α− γ0 + γηi(g)] qi(gr)} − n(α− γ0 + γη̄)qi(gr) = 0,

(ii) qi(g)qj(g)− qi(gr)2 = [qi(g)− qi(gr)] [qj(g)− qi(gr)] + qi(gr) [qi(g)− qi(gr) + qj(g)− qi(gr)],
(iii)

∑
i∈N (ηi(g)− η̄) = 0,

(iv)
∑

i∈N

∑
j 6=i(ηi(g)− η̄) = 0,

(v)
∑

i∈N ηi(g)(ηi(g)− η̄) = nV (g)
(vi)

∑
i∈N

∑
j 6=i(ηi(g)− η̄)(ηj(g)− η̄) = −nV (g).

Applying all of them, we get

U(g)− U(gr) = λ5C(g)∑
i∈N

Πi(g)−
∑
i∈N

Πi(gr) = λ6C(g)

with

λ5 = Vmaxn(
∂qi

∂xij
− ∂qi

∂xjk
)
2γ − (2µ + 1− β)( ∂qi

∂xij
− ∂qi

∂xjk
)

2

λ6 = Vmaxnµ(
∂qi

∂xij
− ∂qi

∂xjk
)2.
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The reader might check that ( ∂qi

∂xij
− ∂qi

∂xjk
) > 0 and 2γ − (2µ + 1 − β)( ∂qi

∂xij
− ∂qi

∂xjk
) ≥ 0 for any β ∈

(0, 1] and regardless of the competition mode, with equality only if the firms compete in quantities and
β = 1. To complete, it can be verified that U(ge) = λ1λ3 and

∑
i∈N Πi(ge) = λ1λ4, where λ1 =

n(α− γ0)2/ (γ(n− 1)).

C Network density and concentration

Here, I derive density and concentration of the equilibrium and the efficient networks (in a large industry)
and provide the proof of Proposition 4.

The normalized degree variance in a dominant group network of size n′ is given by

C(gn′
) =

n′(n′ − 1− n′(n′−1)
n )2 + (n− n′)(n′(n′−1)

n )2

n
/Vmax

=
(n′ − 1)(n− n′)

n

n′(n′ − 1)
n

/Vmax.

Snijders (1981) determines the architecture of the variance maximizing networks of density D, 0 < D < 1,
which is obtained as follows: define the complementary network, gc, to network g as gc = {ij : i, j ∈
N, i 6= j, ij /∈ g}. The complementary network has its links exactly where the other does not. Note that
D(gc) = 1 − D(g) and V (gc) = V (g) for any g. A variance-maximizing network g̃ of density D has the
following properties:

(i) either g̃ or g̃c partitions the set of firms into a four-point degree partition {h0, hl1 , hl2 , hl3}, for which
l1 = |hl3 |, l2 = |hl2 |+ |hl3 |−1, and l3 = |hl1 |+ |hl2 |+ |hl3 |−1 (see Section 4.1 for the definition of a degree
partition). Moreover, |hl1 | = 1 and |hl2 | + |hl3 | is the largest integer I with I(I − 1)/n(n − 1) < D, if g̃
induces the partition of firms, and the largest integer I with I(I − 1)/n(n− 1) < 1−D, if g̃c induces the
partition, and
(ii) g̃ = argmax

g′
{max[V (g′), V (g′c)]}, where g′ ∈ {g : i, j ∈ N, i 6= j, D(g) = D}.

According to property (i), either g̃ or g̃c has a dominant group-like architecture, where the size of the group
of connected firms is maximized given D. The remaining links originate from the single firm in hl1 , which
is linked to every firm in hl3 . Property (ii) then ensures that we choose a variance-maximizing network
from the networks under (i).

For n being finitely large, determining the maximum variance, V (g̃), is cumbersome. However, for
n →∞, we can exploit the fact that lim

[
D(gn′+1)−D(gn′

)
]

= lim
[

n′(n′+1)
n(n−1) − n′(n′−1)

n(n−1)

]
= lim 2n′

n(n−1) = 0.
Hence, as an approximation, either g̃ or g̃c has a dominant group architecture for every 0 < D < 1. Suppose
that for n large, V (g̃) is a continuous function of D, which I denote by V ∗(D). It follows

lim C∗(D) = lim [V ∗(D)/Vmax] ≈ lim
[
max

{
V (gD), V (g1−D)

}
/Vmax

]
= max

{
D

3
2 (1−

√
D), (1−D)

3
2 (1−

√
1−D)

} 256
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,

where in the first line, gD and g1−D denote dominant group networks of density D and 1−D respectively.
For the second line, I use

lim
1
n2

V (gD) = lim
1
n2

(n′ − 1)(n− n′)
n

n′(n′ − 1)
n

= D
3
2 (1−

√
D).

This is because D(gD) = [n′(n′ − 1)]/[n(n − 1)], hence we have n′ = 1
2 + 1

2

√
(1 + 4Dn(n− 1)) and

lim n′(n′−1)
n2 = D. Let us approximate n′ by 1

2 + n
√

D, which is a good approximation for n large and D

not too small. We obtain lim (n′−1)(n−n′)
n2 =

√
D(1−

√
D). Moreover, I use lim n2

Vmax
= 27

256 .
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For the following proof of Proposition 4, I specify the effective market size, α− γ0, by a parameter A,
with A > 1. More precisely, under quantity competition α− γ0 = A[γβ (n− 1) (n− 2)]/[2− β] and under
price competition α − γ0 = A[γβ (1 + (n− 2)β) (n− 1) (n − 2)]/[2 + β(2n − 5) − β2(2n − 3)], where the
second factors on the right-hand sides are the minimum effective market sizes of footnote 7.

Proof of Proposition 4. Suppose a large industry, with n →∞, and suppose f = nφ. Using the specifica-
tion of Y [C∗(D(g)), D(g)] from Lemma 3 and L’Hospital’s rule, we get under quantity competition:

lim
U(g)− U(ge)

n3
= γ2 A

2− β
D(g) + γ2 27

512
(1− β)
(2− β)2

lim C(g)

lim
∑

i∈N Πi(g)−Πi(ge)
n3

= −1
4
φD(g) + γ2 54

512 (2− β)2
lim C(g),

and under price competition:

lim
U(g)− U(ge)

n3
= γ2 A

2− 2β
D(g) + γ2 27

2048(1− β)
lim C(g)

lim
∑

i∈N Πi(g)−Πi(ge)
n3

= −1
4
φD(g) + γ2 54

2048(1− β)
limC(g).

The efficient density is therefore determined by D(g∗) = argmax
{

lim W (g)−W (ge)
n3

}
, with lim C(g) =

limC∗(D). Suppose the limiting value of Y [·] is differentiable with respect to D. The first-order derivative
evaluated at D ∈ {0, 1} is under quantity competition approximately:

(lim
U(g)− U(ge)

n3
)′

∣∣∣∣
D

≈ γ2[4A(2− β) + (1− 2D)(1− β)]/[4 (2− β)2]

(lim
∑

i∈N Πi(g)−
∑

i∈N Πi(ge)
n3

)′
∣∣∣∣
D

≈ γ2[2− 4D]/[4(2− β)2]− 1
4
φ

and under price competition approximately:

(lim
U(g)− U(ge)

n3
)′

∣∣∣∣
D

≈ γ2[8A + 1− 2D]/[16(1− β)]

(lim
∑

i∈N Πi(g)−
∑

i∈N Πi(ge)
n3

)′
∣∣∣∣
D

≈ γ2[2− 4D]/[16(1− β)]− 1
4
φ.

For example, a network that maximizes consumer surplus, net of linking costs, under quantity competition
has a positive degree variance, if

γ2 4A(2− β)− 1 + β

4 (2− β)2
<

1
4
φ < γ2 4A(2− β) + 1− β

4 (2− β)2
.
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