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Abstract

We investigate determinants of patenting, focusing orceffef costs, complexity of tech-
nology and technological opportunity. In a theoretical elaaf patenting it is shown that
in complex technologies greater technological opponuréduces firms’ incentives to
patent while greater complexity of technology increaseermimg incentives. In con-
trast firms’ patenting incentives rise in discrete techgiae as technological opportunity
increases. Using European patent data a new measure obkegical complexity is de-
rived from patent citations. It is shown that patenting confs to our theoretical model.
The theoretical predictions are tested in a panel whiclwallos to study patenting be-
haviour of 2074 firms in 30 technology areas over 15 yearsulgefom GMM estima-
tion indicate that patent thickets exist in 10 of these asmbhave important effects on
patenting behaviour.
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1 Introduction

Strong increases in the level of patent applications haea lodserved at the United States
Patent and Trademark Office (USPT®p¢tum and Lernef1998 andHall (2005) as well
as the European Patent Office (EP@r{ Graevenitz et a(2007). These “patent explosions”
pose serious challenges for existing patent systems andgilsompetition authorities.

Explanations for the shift in patenting behaviour concaetion changes in the legal en-
vironment, changing management practices, the complexitsnportant technologies such
as semiconductors, greater fecundity of technology aneased strategic behaviour on the
part of firms. While it has been shown that most of these fagbdaty a role, there are no
formal models of patenting behaviour that explicitly mothese influence$ This paper pro-
vides a model that encompasses complexity and fecundityobinblogy as well as strategic
behaviour. We show the predictions of the model hold usingmean patent data.

Kortum and Lerner(1998 first investigated the explosion of patenting at the USPTO,
which began in 1984Hall (2009). By a process of eliminatioKortum and Lerne1998
1999 argue that the shift towards increased patenting is mahdyresult of changed man-
agement practices making R&D more applied and raising tele yif patents from R&D. In
contrastHall and Ziedonig2001) who focused on the semiconductor industry argue that the
patenting surge is a strategic response to an increase tireold-up in complex technolo-
gies. This resulted from the “pro-patent” legal environingshered in after the establishment
of the Court of Appeals for the Federal Circuit in the Unitetat8s (affe (2000). Both
Kortum and Lerne(1998 1999 andHall and Ziedonig200]) find little evidence for the in-
fluence of additional technological opportunity as an exateon for increased patenting.

In this paper we develop a model of patenting covering corguhel discrete technologies.
The model shows how technological opportunity, complegity technology and patenting
costs jointly determine the rate of patenting. We model th@ce between pursuit of new
technological opportunities and deepened protection istiag technologies by patenting of
“facets” of the technologies. The model shows strategiemtaig behaviour implies firms in
a complex technology should patéess in response to increasing technological opportunity.
Additionally, the model indicates that greater technatagcomplexity will raise firms’ in-
centives to patent. These predictions result from straieggraction of firms using a complex
technology: greater technological opportunity reducespessure on firms to defend their
stake in existing technologies by patenting heavily, wasmgreater complexity increases the
scope for holdup and raises the need for strategic buildyai@nt portfolios.

To test the model we use a comprehensive dataset based ofnasatdne EPO. It com-

For extensive discussions of the policy questions surrimgncurrent functioning of the patent systems in
the United States and in Europe refeiNational Research Coun¢2004; F.T.C.(2003; von Graevenitz et al.
(2007 andBessen and Meurg2009.

2Formal models of patenting abound, for a survey of this ditere refer toScotchmer(2009 or
Gallini and Scotchmer(2002. Formal models of patenting in patent thickets do not gtteto span
both complex and discrete technologies as we do heBessen(2009; Clark and Konrad(2005 and
Siebert and von Graevenif200§. These models usually build on the older patent race titeehee and Wilde
(1980; Reinganunm(1989 andBeath et al(1989.



prises information on patenting behaviour between 197828@8. We construct a measure
of blocking in a complex technology based on informationc#peto European patents. The
measure exploits the fact that patent examiners at the E@iCaie which prior patents block
or restrict the breadth of a patent application. We count bften three or more firms applied
for mutually blocking patents within a three year periodisIdives rise to a count of mutually
blocking firm Triples. The measure allows us to capture effects of complex blgckata-
tionships which can arise in complex technologies eventédmaownership remains relatively
concentrated. We find that the measure allows us to ideritégts of blocking in a complex
technology.

Additionally, a measure of technological opportunity i€ded to test our hypotheses. We
use the extent to which patents reference non-patenttliteréor this purpose Meyer(2000);
Narin and Nom#1985; Narin et al.(1997) show that the share of references pointing to non-
patent literature (mostly scientific publications) can lgmad proxy for strength of the science
link of a technology. Variation in the strength of the scietiak within a technology area will
indicate how much technological opportunity there is ategitime.

Our paper followdortum and Lernef1998 1999 andHall (2005 in considering patent-
ing across the full range of patentable technologies. Tllogva us to identify differences in
patenting behaviour between complex and discrete techieso

Firms’ patenting behaviour is known to be highly persistdoe to the long term nature of
firms’ R&D investment decisions. We control for the effect®é&D investment decisions on
patenting by including a lagged dependent variable in thpiecal model. Building on the
theoretical model it is shown that this allows us to contwmol inobserved variation in fixed
costs of patenting and in the value of patenting. The modedtisnated using systems GMM
estimators Blundell and Bond1998); Arellano (2003 andAlvarez and Arellanq2003) to
control for endogeneity of the lagged dependent variableelsas our measure of techno-
logical opportunity. Evidence from these regressions dsageesults from OLS and a fixed
effects estimator all support the theoretical predictiesderive from the theoretical model.

Our results complement the descriptive study of patentinth@a EPO undertaken by
von Graevenitz et a(2007). They use a set of indicators to identify technology areasgtich
firms build up patent portfolios for strategic reasons. Weeed their work by showing theo-
retically and empirically how patenting is affected by @ion in complexity of a technology
and technological opportunity. Additionally, we provideew measure of blocking complex-
ity. Both studies show strategic patenting behaviour hasioe very important in technology
areas central to productivity growth in recent yeaargenson and Wessn@007)).

Surveys of the use of patents show that traditionally firmsthggprotect their innova-
tions through secrecy or lead timegyin et al.(1987), Arundel and Kabl§1998, Cohen et al.
(2000, Arundel (2001, Arundel (2003). This used to be particularly true for complex prod-
uct industries. This has changed dramatically in the lasade. Firms in complex prod-
uct industries such as semiconductors, telecommunicgtsmftware and biotechnology have



adopted a strategy of building large patent portfolios avest heavily in amassing patents.
Shapiro(200]) investigates the consequences of the ensuing races tbgaignt portfolios.
He argues that firms in some industries are caught in a prisatiemma in which they jointly
create “patent thickets” that raise transactions costsnaayl damage incentives to innovate.
These patent thickets arise where many rival firms own psiteat must be combined to cre-
ate individual new products. This gives rise to complex hamgg problems that often cannot
be resolved properly.

In this paper we show for the first time to what extent pateick#ts also exist within the
patent system administered by the European Patent Offid®)(B®e find that incidence and
complexity of these thickets are increasing. There are napbdifferences between the patent
systems administered by the USPTO and the EPO: in partjcuksclaimed that examination
of patents is more thorough at the EPO and that the opposiyistem existing there provides
a cheaper way for rival firms to weed out weak patents thamphtigation does in the United
States Hall and Harhoff(2004), von Graevenitz et a[2007). Therefore, it is not a foregone
conclusion that patent thickets also affect the Europetenpaystem. Our finding that they do
raises important policy questions: what effects are thasenp thickets having on competition
in the affected sectors? Can the procedures governingtpajen Europe accommodate and
regulate strategic patenting behaviour on the scale dostadéere? Does Competition policy
need to take a more active role in regulating use of patergdsnmplex technologies?

Firms’ patenting activities and uses of their patent stamksincreasingly the focus of
competition policy cases. These cases have arisen in Eamgén the United States and
include the dispute between Intel and Intergrahapiro(2003), a recent case affecting
Yamaha and rivals in the personal watercraft indudRytiinfeld and Manes2005) and last
but not least the ongoing dispute between Qualcomm and Ndkiase legal disputes have
all revolved around attempts of a dominant patent owner taaeilicensing royalties from
rivals through aggressive assertion of their patent plotfdwo of these cases originate in the
semiconductor and telecommunications industries. Tme igccident: the complexity of the
technology employed in this field combined with a very higteraf patenting activity leads
to a dispersal of patent rights among rival firms.

This paper is structured as follows. Sectprovides a theoretical model of patenting
which explains how firms’ patenting strategies evolve impagse to increased patenting by
their rivals. We derive three hypotheses from this model #ia empirically testable. In
section3 we describe our dataset and the variables we employ to anéfyss’ patenting
behaviour. As there is little cross industry evidence oéptihg trends at the EPO, sectign
also provides a descriptive analysis of these trends, fiogysrticularly on our measure of
complexity and alternative measures thereof. Sectiprovides empirical results and Section
5 concludes.

3In the case of semiconductors the reasons for this changksaessed brindley and Teecé1997), Jaffe
(2000, Hall and Ziedonig2001)



2 Incentives to patent in discrete and complex technologies

In this section we model firms’ patenting behaviour. In marftr, we analyse how firms’
profit maximising patenting decisions are influenced by tiet of patenting, existing techno-
logical opportunity and the complexity of the technologgaimn which firms patent. Before
presenting our formal model we briefly describe the mecmasimodelled below.

Previous literature has shown that firms’ efforts to accateupatents are strongly influ-
enced by characteristics of a technology area such as fragtien of ownership rights or
potential threat of being held up by other patentees. It kas largued that these effects led to
a surge in patenting in complex technologies areas suchhas@eductors or telecommunica-
tions Hall and Ziedonig2001), Ziedonis(2004). These studies, however, do not provide an
explicit model of the interaction of complexity and firms’tpating efforts. We model firms’
patenting efforts as a function of the complexity of the uhdeg technology. In order to do
S0, we propose a simple model of complexity based on the widad notion that in complex
technologies products relate to a (potentially large) neinatb patents held by various different
patentees whereas in discrete technologies a direct prpdtent link dominates. In order to
create this measure of complexity, we distinguish techgiold opportunities) representing
separate subtechnologies within a technology area. Fongeaa technological opportunity
might be constituted by research related to the developofentertain chemical compound
in organic chemistry, the search for a drug in the pharmazadwdrea or the development of
special circuit in electronics. Complexity within thesehaological opportunities can arise
if it is possible to patent different facefs within an opportunity. If only one facet of an op-
portunity can be patented, the technology is discrete. @dtlevo facets must be patentable
in order to allow for situations where different patenteas @atent rights related to the same
technology — this is our definition of complexity. An increas the number of patentable
facets increases the potential number of patentees owabegts relating to the same techno-
logical opportunity. Hence, we model complexity of a tedogy as the number of patentable
facets. Figurel presents a graphical representation of this idea.

Further, we assume that patenting allows firms to benefit filoentotal value {) of a
technology opportunity. To capture maximum value from #ehhology opportunity a firm
must obtain as many patents as possible on facets of thetapjgr Firms face a tradeoff
between patenting more facets per opportunity and pagemtare different technological
opportunities. We show that technological opportunitied facets are complements in firms’
investment decisions.

As the number of facets per opportunity grows, so does thiegtmibty that different firms
will own patents related to the same opportunity. These fimmag need to disentangle their
ownership rights, giving rise to legal costs). We do not explicitly model the bargaining pro-
cess between firms that own patents on the same technologigaitunity. The literature on
patent thickets and complex technology shows that theremarg institutional arrangements
that allow firms to disentangle overlapping property rightBese include licensing, patent
pools, standard setting as well as litigati@hapiro(2001)). We adopt a reduced form rep-
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Figure 1. Relation between complexity and the number ofrgatde facets per technologi-
cal opportunity. Note thab, is discrete by definition as there is no chance of overlapping
ownership rights in this technology.

resentation of all of these mechanisms, by assuming thatieome more expensive as the
number of parties involved increases. Additionally, weuass that firms who own a greater
share of patents on a technological opportunity have adgastin bargaining which allow
them to appropriate a larger share of the benefits associatiedhe opportunity. These as-
sumptions are consistent with the arguments advancediddonis(20049) to explain patent
portfolio races in the semiconductor industry.

We assume that the total set of patentable facets in a temiy (k) consists ofD technol-
ogy opportunities and’ facets such thatt’O = (). The patent office grant only one patent
per facet. Each firm knows that there is a contest for patante@facets of a technological
opportunity. This implies that the probability of obtaigia patent is inversely proportional
to the number of rivals seeking a patent on the same facensFsimultaneously determine
the number of opportunitie®; € [0, O] to invest in and the number of facefs € [0, F] per
opportunity which they seek to patent.

Costs and benefits of patenting
Three types of cost are associated with patenting in our mode
i For each opportunity a firm invests in, it faces a fixed cofRR&D: ..

il For each facet which a firm patents the firm faces costs ofiaidtering and enforcing
the patent if it is granted?,,.

iii The coordination of R&D on different technologies imm@sscosts”.(0;). We assume

that ggéi > 0.

The benefits of patenting are a function of the value of eachni@logical opportunity”
and the expected number of facgt®ach firm receives a patent on. Define the expected share
of facets per patent which each firm obtaingfas % whereF; is the number of facets each



firm invests in per opportunity andis the probability of winning a patent on a given facet.
Note thatf; € [0, 1]. The probability of obtaining granted patent on a given fése

1
p= HT_;;?OJ, . (1)
This definition of the probability of obtaining a patent oneadt of a technology opportunity
reflects our assumption that there is a contest betweened&vers for each such patent. Then
the probability of obtaining the patent depends on the nurfajef rival firms simultaneously
trying to obtain the patent. Each firm vying for a patent onaefawill win that patent with
p = 5. In the expression above we assume that all rival firms make; F;0; patent
applications. Dividing these by the set of all patentabtefa/’O we obtain the number of
rivals’ patent applications that compete with each firm’sxapplications.

Given these costs and benefits the expected value of pagentntechnology area is:
7i = Oi[Va(fi) = L(fi, N)| = Osco = OiFpCy = C(O) )

where total legal costs of owning patents on an opportumgy/4f;) which decrease in the
share of facets owned on that opportunity.f;) represents the share of value of a technolog-
ical opportunity obtained by firm It is an increasing function of the firm’s share of patents
held on a given opportunity.

Comparative statics of this model

To simplify the derivation of comparative statics results show that the game firms are
playing is supermodular. Then we use results on supermiodataes to derive comparative
statics resultsNlilgrom and Robert£1990, Vives (1990 1999].# We define a symmetric
game in which firms’ payoffs depend on own strategies and tjggegate strategy of their
rivals. Additionally we will assume that strategy spaces eompact. These assumptions
imply that only symmetric equilibria exisW{ves (1999). Additionally, we can characterize
the comparativs statics for these equilibria by considpcioss-partial derivatives.
We begin by characterising the game firms are playing:

e There areV firms.

e Each firm chooses the number of technological opportuniies [0, O] and facets
F; € 0, F| to invest in. The firms’ strategy sets are elements of?.

e Each firm has the payoff functior}, defined in equation 1¢), which is twice continu-
ously differentiable and depends only on rivals’ aggregatsegies.

Firms’ payoffs depend on their rivals’ aggregate stratebecause the probability of obtaining
a patent on a given facet is a function of the sum of rivalsepaapplicationii# F;0;.

4For additional expositions of this method refeiQarter(2001) or Amir (2005.
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We can show that:

Proposition 1
The game is a smooth supermodular game.

To prove this proposition we must show that the firms’ profiidtions are supermodular
() in their own actions and (ii) in every combination of theiwn actions with those of rival
firms [Milgrom and Robert$1990)].

To begin with we derive the first order conditions charastag the optimal number of
technological opportunities and facets firms invest in:

on aC.
90, = Vw(fz‘) - L(fi) - C, — FipC, — 8—02 =0 (3)
or Oow 0L P

vy % _pelol - 4
5, ~\Va7, ~ a7~ FC:J O =0 )

These first order conditions constitute a system of impletations which determine the opti-
mal choice of opportunities;) and facets ;) chosen by each firm in equilibrium.

Given this system of first order conditions we can show thatdirprofit functions are
supermodular. To see this we derive the cross partial demgwith respect to firms’ own
actions as well as those of rival firms:

0*m;

D0,0F;

(%Jg_ 8L£_
ofi ' Of; I

pCy =0 ()
Notice that this expression must be zero as it can be tramsfibto the first order condition

(4) for the optimal number of facets by multiplication with. Next consider effects of rivals’
actions on firms’ own actions:

O Ow(f;) F; op  OL(f;) Fi dp dp
90:00; ~ a5, Fao,  of Foo, a0, =0 ©)
2 N2 N
Om Vﬁw(fz)ﬂ dp  OL(f;) F; dp _Eca@ _o . @
90,0, af. FOF, 0f, FOoF, aF,
0*m; Ow oL O; Op 0w 0*LpE;, Op
— _0.2Z _po | 2222 vZE 0.
dF,00, [Vafi O, G| F 20, * [Olvaff Ozaff} ma0, " ®
0, Ow OL O; Op 0w 0*>L1 pF; Op
— 9 ke, |2 o, —o, 9
OF,0F, [Vafi af, G| 7 or, * [Olvaff O’aff] mor ) O

where the first two conditions are transformations of the @rder condition for the optimal
number of facets4). In case of the lower two conditions notice that the firstten square

brackets is zero as it is just that same first order conditibime terms in the second set of
brackets are negative if:

i) the share of value of a technological opportunity whichrenfcan appropriate with
additional facets is decreasing as firms’ share of facets tectanological opportunity

increasesgjf; <0;




i) legal costs fall at a decreasing rate as firms’ share adtiaon a technological opportu-

. . 32L
nity Increasesy - > 0.

At least one of these two conditions must be fulfilled for theng outlined above to be smooth
supermodular.

Condition(7) indicates that as a firm’s share of patents on a technologpg@drtunity in-
creases, the marginal value of additional patents is delorgaThis assumption will hold if
a firm holding some patents on a technological opportunigbie to make use of the tech-
nology covered to some extent in the face of blocking patenits contrast if any one patent
on a technological opportunity blocks the use of the teabgplentirely, the assumption is
violated®

Condition (i) indicates that firms’ legal costs of appropriating a sharéhefvalue of a
technology opportunity fall if they own a larger share ofgrds on that technology opportu-
nity. This assumption reflects the widespread belief thgelapatent portfolios are beneficial
to firms operating in technology areas that fall within coexglechnologies because they pro-
vide firms with bargaining chipdHall and Ziedonig2001)).

Note that the game will not be smooth supermodular if therteldgy is not complex. By
definition in that case there is only one fa¢ét = 1) per technological opportunity. Then
firms appropriate the whole value of the technological oppoty with one patent and the
second derivatives irBf and Q) are zero. We will return to this case below.

Now we turn to the comparative statics effects of an incr@asechnological opportunity
on firms’ actions. We show that:

Proposition 2
Increased technological opportunity reduces firms’ paigréfforts in a complex technology.

To determine the effects of an increase in technologicabdppity O we investigate the
following cross-partial derivatives:

0, ow 0L op F;
90,00 _[ of;  of; _FC”]EF_O (10)
0, Ow 0L O; Op 0w O?LN\ pF; Op
- = po,| 22 R Vo W) Pl Bt 11
OF,00 [ of, o, C@] Fao (Ozvafﬁ Ozaff) g0 <Y D

The terms in square brackets in both expressions above ardoyehe first order condition
(4) for the optimal number of facets. The term in round brackeequation {1) is negative
if the game is smooth supermodular, i.e. if the technologyaplex.

Therefore, greater technological opportunity lowers firoverall investments in patent-
ing. It reduces the intensity of competition to dominateviilal technological opportunities
which lowers investments in facets and the number of newnt@olgies which firms invest in.

Now we turn to the question how an increase in the compleXity tchnology affects
firms’ incentives to patent. We find that the effect is ambiggiand depends on the relative

5Such a setting is modelled Biebert and von Graevenit2008 2006
6Clark and Konrad2005 make such an assumption.
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strength of two effects: the costs of administering morepiatand the marginal benefits of
additional patents. Only if these marginal benefits are bigbugh will the term be positive.
To see this consider the following cross-partial derivediv

00,0F L af, 0of “‘1OOOF
0%, ow OL O;p? *w of; O0*LOf;
= — —F — —

OF,0F [Vafi of; C“} FO (Vaff OF  90f20F

Here the terms in square brackets are zero by the first ordetitaan (4) for the optimal
number of facets. The term in round brackets in equatid®) (s positive if the costs of
administration of patentS, are insignificant.

This shows that:

0 (12)

S TICE

Proposition 3
Increased complexity of a technology will increase firmstepging efforts if the costs of
administering patents are low relative to their value ag#iaing chips.

Finally, consider again the case of a discrete technologppnity. HereF’ = F; = 1 by
definition. Therefore firms’s payoffs are defined as:

T, — OZVp — OiCO — Ol'pCa — Cc(Oz) . (14)

We have already noted that a game with this payoff functigribonger supermodular. How-
ever we can show that under the slightly stronger assumgiiatrcosts of coordinating tech-
nological opportunities{.(O;)) are strictly convex in the number of opportunities firmsais/
in, we obtain a unique equilibrium for the game. We can thenalestrate that:

Proposition 4
Greater technological opportunity increases firms’ patgrefforts in a discrete technology.

To see that this is true consider the first and second ordematiges of the payoff function
with respect to technological opportunities invested in:
on aC. 0?m 0?C,

90, (V= Cap 20, ~ " 902~ 9072 (15)

If we assume that costs of coordianting technological ofppaties are strictly conve@é% >

0, then Propositiod can be proved with the help of the implicit function theorem:

_ 2 2
20; o°rm /877 0 (16)

20 ~ 90,00/ 802~

8% . Op
wherez575 = (V — Ca) 35 > 0.

This concludes our analysis of the model.



3 Description of the dataset and of important patenting trerds

In this section we discuss the data used to test our theaketiodel. In particular, a new

measure of complexity of a technology is discussed. Nextpregide descriptive evidence

supporting the theoretical model. Discrete and complehlrtelogy areas are compared with
regard to selected patent indicators. Using our measu@oplexity we show that descriptive
evidence on patenting provides support for the theoreticalel.

3.1 Dataset and derivation of variables

Our empirical analysis is based on the PATSTAT database@‘BPrldwide Patent Statisti-
cal Database”) provided by the EPhis database includes data on about 56 million patent
applications filed at more than 65 patent offices world-wildeontains procedural and bib-
liographic information on patents including information geferenced documents (patent ci-
tations). We analyse all patent applications filed at the BEtWeen 1980 and 2003 — more
than 1,5 million patent applications with about 4.5 milli@ierenced documents.

We classify patents using the IPC classification which alaw to analyse sectoral dif-
ferences in patenting activities. The categorisation usdzhsed on an updated version of
the OST-INPI/FhG-ISI technology nomenclatdrdhis classification divides the domain of
patentable technologies into 30 distinct technology atedi¢e also classify selected tech-
nology areas as discrete or complex using to the classdicati Cohen et al(2000. This
classification received additional supportall (20095.

Below we show that there are clear differences between econagpid discrete technologies
on the basis of this distinction. However, we also provideea ontinuous variable that
captures the degree of complexity of technologies. We slhaivthere are some differences
between this variable and the classification suggestecidinen et al(2000.

In the following we discuss our measures of patenting, teldgical opportunity and com-
plexity. These are the most important variables neededtdte theoretical model. Addition-
ally, we discuss several variables that will be used as obwarriables in the empirical model
of sectiord. These describe additional influences on firms’ patentitensity.

Measures of patenting, complexity and technological oppdunity

Number of patent applications We compute the number of patent applicatiohg filed

by applicanti separately for all OST-INPI/FhG-ISI 30 technology areasn an annualt
basis. To aggregate patent applications to the firm leveldwallenges must be overcome:
firm names provided in PATSTAT are occasionally misspelled subsidiaries of larger firms
are not identified in the dataset. Therefore, we devoted siderable amount of resources to

"We currently use the September 2006 version of PATSTAT.
8SeeOECD (1999, p. 77
®These are listed in Tabkin the appendix
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clean applicant names and to consolidate ownership stasifl The aggregation of patent
applications are based on these consolidated applical@stiiies. The variables discussed
below are also based on this consolidation.

Due to the skew distribution of patent applications we tfams the variable logarithmi-
cally to derive a dependent variable for estimation. Tald@ows the transformed variable is
much closer to a normally distributed variable than the raaasure of patent applications.

Technological opportunity In our model, we establish a clear relationship between firms
patenting levels in complex technologies and the emergehioew technological opportuni-
ties. Unfortunately, a direct measure of existence or eararg of new technological oppor-
tunities does not exist. Instead, we use a construct thaasedon the strength of the link
between R&D firms conduct within a technology area and relelasic research as an indi-
rect measure of the emergence of new technological oppbesinThis construct is based on
the assumption that basic research is more likely to opereuptechnological opportunities
than applied research which predominantly refines exisdolgnologies.

Early stages of the evolution of a technology are charasdrby a large share of basic
research often conducted in publicly-funded labs. In latages of a technology industry
driven development of existing technological opportw@stivill dominate basic research. Then
the focus is on refining existing opportunities rather thesating new ones. While there is
no perfect measure for the position of a technology areaarstilised cycle of technology
evolution, the share of references listed on a patent whaait o non-patent literature (mostly
scientific publications) can be used as a good proxy for thength of the science link of a
technology Meyer(2000; Narin and Nomg1985; Narin et al.(1997).

Therefore, we use the share of non-patent references/eetatall references contained on
a patent as a proxy for a patent’s position in the technolgglecand hence as a measure for
the creation of new technological opportunities. As we aterested in the characterisation
of technological areas with regard to the existence of nahrielogical opportunities, we
compute the average of the share of non-patent referenegisedo all references on a patent
on the level of OST-INPI/FhG-ISI areaand yeat for our multivariate analyses.

Complexity of technology areas The distinction between discrete and complex technolo-
gies is widely accepted in the literatur€dhen et al.(2000, Kusonaki et al.(1998, Hall
(2005). Discrete technologies are characterised by a relgtisebng product-patent link,
e.g. in pharmaceuticals or chemistry, whereas in compldustries products are likely to
build upon technologies protected by a large number of patesid by various parties. It is
often held that patent filing strategies vary largely betweiscrete and complex industries.

10The aggregation of patenting activities on the firm level®ived great efforts consolidating subsidiaries of
large corporations. Detailed information on the cleaning aggregation algorithms can be obtained from the
authors upon request. We would like to thank Bronwyn Hallgiaviding us with software for this purpose. We
used this and undertook additional efforts to consolidate fiames.
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Despite the widely acknowledged notion of a technologyisiptexity there is no direct
measure of it nor is there an indirect construct related topiexity. Kusonaki et al(1998
andCohen et al(2000 (footnote 44) provide schemes which classify industreediacrete or
complex based on ISIC codes. These classification scheméssed on qualitative evidence
gathered by the authors from various sources in order taragepdifferent industrial sectors
into complex or discrete areas. A major drawback of a clasdin based on prior informa-
tion from industry codes is that is does not allow to analysenfluence of different levels of
complexity but only to distinguish the binary cases disegid complex.

To improve on this, we measure complexity of a technologg éineough firms’ patenting
activities. Our measure is derived from to the degree oflapdretween firms’ patent portfo-
lios. Such overlap leads to blocking dependencies among fifrexisting patents containing
prior art critical to the patentability of new inventionsarfield are held by both firms, each
firm can block its rival’s use of innovations. Then, a firm cayacommercialise a technology
if it gets access to a rival’'s patented technology. In ardasrevproducts draw on technologi-
cal opportunities protected by numerous firms (complexrietdyies) we expect to observe a
large number of such dependencies. In discrete technasltigganverse should be true.

We capture blocking dependencies among firms by analysangefierences contained in
patent documents. References to older patents or to nemigaérature are included in EPO
patents in order to document the extent to which inventiatisfy the criteria of patentability
(Harhoff et al.(2006). Often, existing prior art limits patentability of an iemtion. For ex-
ample, the existence of an older but similar invention caluce the patentability of a newer
invention. In these casesitical documents containing conflicting prior art are referenced i
patent documents and are classified as X or Y references lpateat examiner at the EPO
during the examination of the patent applicationf the patentability of a firm A's inventions
is frequently limited by existing patents of another firm Bisireasonable to assume that the
R&D of A is blocked by B to a certain degree. If the inverse sodkue, A and B are in a mu-
tual blocking relationship which we call a blocking pairniore than two firms own mutually
blocking patents the complexity of blcoking relationshipsreases and resolution of blocking
becomes increasingly costly. To capture more complextstres of blocking we compute the
numberTriplesin which three firms mutually block each other’s patents.uFeg provides a
graphical example of our complexity measure.

From a computational perspective, pairs and triples anetiftled using the following ap-
proach: For each firmhwe analyse all critical patent references contained in fisnpatents
applied for in a technology areaover the current and the two preceding yedrs @ to t)
and identify the owners of the referenced patent documéntbe next step we keep the most
frequently referenced firms (top 20) yielding annual lidgtirons which are blocking firm in

1A patent contains various different types of referencest-athof them are critical. Often, related inventions
which are not critical for the patentability of the inventiseeking patent protection are also included in the
patent document. The EPO provides a full classification @féferences included in patent documents allowing
us to identify critical references which are classified asrX.oTable A contains an overview of different types
of references contained in patents.
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Figure 2: Identification of our measures of a technology Betdmplexity.

yeart.'? Pairs are then established if firrhis on firm B’s list of most frequently referenced
firms and, at the same time, firf is on firm A’s list of most frequently referenced firms.
Finally, triples are formed if firmA and firm B, firm A and firmC and firm B and firmC
form pairs in the same year. We include the total number dfteg triples; in areaa and
yeart in our regression in order to analyse how the complexity ecamology area influences
firms patenting behaviour in this area.

Control variables

Fragmentation of prior art Ziedonis (20049 showed that semiconductor firms increase
their patenting activities in situations where patent imald are largely fragmented across
different parties. Ziedonis’ fragmentation index has prachantly been studied in complex
industries Ziedonis(2004), Schankerman and Noé€006§) where increasing fragmentation
has been found to increase the number of firms’ patent apipiisa This has been attributed to
firms’ efforts to reduce potential hold-up by opportunigiatentees owning critical or block-
ing patent rights — a situation which is often associateti tie existence gbatent thickets.

We construct an index of fragmentation of patent ownersbipefich firm based on the
fragmentation index proposed Hyedonis(2004:

n

Fragiw=1-_ sij (17)

j=1

wheres;;, is firm ‘s share of critical references pointing to patents held by fi. Small

12The threshold of keeping only the 20 most frequently refeeeipatent owners is an arbitrary choice. Our
results are robust to different choices of the thresholellev
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values of this fragmentation index indicate that prior eferenced in a firm’s patent portfolio
is concentrated among few rival firms and vice versa.

Unlike previous studies of patenting in complex technaggielying on USPTO patent
data Ziedonis(2004,Schankerman and No€2006§) we base the computation of the frag-
mentation index solely on critical references which aresifeed as limiting the patentability
of the invention to be patented (X and Y references). ThigSraison is not available in the
USPTO data. Computing the fragmentation index based analrieferences should yield a
more precise measure of the hold up potential associatédragmentation of patent holdings
in a technology area.

Technological diversity of R&D activities A firm’s reaction to changing technological or
competitive characteristics in a given technology areahirdg influenced by its opportunities
to strengthen its R&D activities in other fields. For exampie firm is active in two tech-
nology areas it might react by a concentration of its agésiin one area if competition in
the other area is increasing. If a firm is active in only onétexdtogy area, it does not similar
possibilities to react to increases in competitive pressur order to control for potential ef-
fects of opportunities to shift R&D resources we includetthtal number of technology areas
(Areas,) with at least one patent application filed by fiinm yeart.

Size dummies. While we do not explicitly model the influence of firm size ongyaing
behaviour, it seems reasonable to assume that the costahioigt and upholding a patent
depends on the size of a firm. In particular, larger firms migle lower legal cost due
to economies of scale, increased potential to source irl Bgaices and accumulation of
relevant knowledge which in turn might lead to a differentgoing behaviour than smaller
firms. For instance&Somaya et al(2007), find that the size of internal patent departments
positively influences firms’ patenting propensity.

If the economies-of-scale argument holds, the cost of piatpshould not be directly
related to size characteristics such as a firm’s number of®mes, its total revenues or sales.
Rather, the cost of patenting can be assumed to be a fundtitve ¢otal amount of patents
filed by a firm. Therefore, we include a 'size dummy’ variabésed on the number of patents
filed by a firm in a technology area in a given year in our regoess We distinguish between
small and large patentees. These size categories are basathwal patent applications in a
given areau. Firms belonging to the upper half of the distribution ofeydtes in a given year
are coded as large firms.

3.2 Descriptive analysis of patenting in Europe

In this section we provide descriptive aggregate stasistic patenting trends at the EPO. We
establish several stylized facts which provide supporbtermodelling approach.

Figure3 presents annual patent applications filed at the EPO beth@&hand 2003. We
distinguish applications filed in complex and discrete tetbgy areas using the categorisation
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Annual Patent Applications at EPO between 1977 and 2003
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Figure 3: Annual number of patent applications filed at th€@B# priority year. Note:
Blue line indicates total patent applications. Red linagates patent applications in complex
technology areas. Green line indicates patent applicatiodiscrete technology areas.

of Cohen et al(2000. The Figure shows patenting grew strongly over this penwith the
main contribution coming from technology areas classifiedc@mplex. This development
is comparable to trends at the USPTHaIl (2005 shows that the strong increase in patent
applications is is driven by firms patenting in the electricamputing and instruments area
all of which are complex technology areas by the classificedif Cohen et al(2000.

Fragmentation of Patent Ownership at the EPO

1980-2003
0.001:

0.0008—
0.0006—
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0.0002—

— Fragmentation index for complex technologies
— Fragmentation index for discrete technologies

Corrected Fragmentation Index based on X- and Y- Citations

o+ 71— 17—

T T
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Figure 4: Average fragmentation index. Note: Blue line gades average level of fragmen-
tation index in complex technology areas. Red line indeateerage level of fragmentation
index in discrete technology areas.

Now we turn to explanations for the strong growth in patemtiRirst, consider a leading
explanation for increased patenting in complex technokorggs: the fragmentation of patent
rights in a complex technology area is likely to raise firnahisactions costs as they must bar-
gain with increasing numbers of rivals in order to preveritdhgp of their productsZiedonis
(2004 andSchankerman and No&006 show that increased fragmentation of patents leads
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to greater patenting efforts in the semiconductor and ss#wndustries respectively. Figute
provides annual averages of the fragmentation index at ®@ fér the years 1980 to 2003.
Two observations derived from Figudeare striking: First, fragmentation of ownership rights
fell steadily before 1995 and then increased graduallyetifésr. Second, the difference in the
fragmentation index in complex and discrete technologgsre negligible.

Both observations raise the question whether the growtlaterp applications can be at-
tributed to fragmentation alone. While the developmentrafjfinentation in complex and
discrete areas is almost identical we observe strikingidifices in the growth of patent appli-
cations between complex and discrete technology areas.

Triples in Discrete and Complex Technology Areas at EPO
1980-2003

a
=}

— Triples in complex technology areas
— Triples in discrete technology areas

N w I
o S S
| | |

Average Number of Triples over Previous Three Years
=
|

o

T T T T T T T T [ T T T T [ T T T
1980 1985 1990 1995 2000
Year

Figure 5: Average number of triples identified. Note: Theeline indicates average number
of triples in complex technology areas. The red line indisadverage number of triples in
discrete technology areas.

Next we explore two explanations for the increase in patgnit the EPO that build on
the theoretical model developed above: firstly firms builtepaportfolios to strengthen their
bargaining positions if complex bargaining situationsragee likely to arise and secondly the
pressure to obtain patents becomes more intense as tegluablopportunity declines. The
first of these explanations is similar to the explanationg@atenting derived from fragmenta-
tion of property rights: it also emphasises transactios$sdocreases derived from bargaining
over blocking patents. However, we believe that transastemsts also rise if a small number
of firms own patent rights that depend on the rights of otherdithat also block each other.
Then, bargaining will become increasingly complex as hilogkannot be resolved through a
series of bilateral negotiations. Our measure of mutualkihg between three and more firms
(Triples) captures the degree to which complex blockingesi

In Figure®6 this measure is presented. The Figure presents annuabasesathe number
of Triples in complex and in discrete aredswWe observe very different developments of the
count of Triples in these two fields. The number of Triples aema largely stable at values

13The precise definition of this measure is given in Secidrabove.
4we distinguish complex and discrete using the classifinatiggested bZohen et al(2000 here.
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well under 10 in discrete technology areas, while it incesastrongly in complex technology
areas. It is reassuring to see that our measure of complgaibarg situations is greater in
complex technologies as previously definedCphen et al(2000.

Non Patent References in Complex and Discrete Technology Are: Non Patent References in complex technology areas
1980-2002 1987-2002

— Complex technology areas
— Discrete technology areas

1.5+

0.5+

Average Non Patent References per Patent
Average Non Patent References per Patent

0

e . B S ey B B B By B S B S — T T T T T T T T
1980 1984 1988 1992 1996 2000 1988 1992 1996 2000
Year Year

Figure 6: The left panel presents average non patent reesguer patent for complex (blue
line) and discrete (red line) technology areas. The rigimeparesents average non patent
references per patent for several complex technology arBais panel focuses only on the
sample period we use for our regressions below.

This shows that blocking intensities almost certainly cboted to the strong increases in
patenting that we observe in Figuse Next we turn to the development of technological op-
portunity. In our theoretical model Propositi@nndicates greater technological opportunity
in a complex technology should lower the pressure to pafenhoted in Sectio.1we mea-
sure technological opportunity using changes in the ratefefences to non patent literature
within a technology area. This measure will provide infotim@about variation in technolog-
ical opportunity between and across technology areas. éfhpdnel of Figure3.2 shows that
technological opportunity was generally greater in digctechnology areas after 1990, than
in complex technology areas. The right hand panel of therEighows that the average level
of non patent references in complex technology areas masissderable variation across and
especially within complex technologies over time.

Note that the level of non patent references in the complexiglogy areas began to de-
cline just after 1992, which coincides with the date at whighgrowth in patent applications
at the EPO picked up as FiguBeshows. These descriptive results suggest that a multiearia
analysis of patenting levels based on the theoretical mudslented above will prove to be
interesting.

To complete this section Table provides additional information on the distribution of
Triples across all 30 technology areas. This shows howfsigni the hold up potential mea-
sured by Triples is in the ICT technologies. The number opl€s is between five and six
times as large there as it is in other industries such as kapdPrinting which still exhibit
significant complexity.
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Table 1: The Distribution of Triples Between 1987 and 2002

Technology area Mean Median Std. dev. Minimum Maximum
Electrical machinery, Electrical energy24.23 20 8.99 10 42
Audiovisual technology 116.48 120 17.68 74 148
Telecommunications 99.64 93 39.17 27 166
Information technology 57.16 59 10.71 28 73
Semiconductors 62.84 63 17.89 26 91
Optics 57.30 58 12.02 42 77
Analysis, Measurement, Control 6.61 4 6.31 0 21
Medical technology 4.10 3 2.16 1 8
Nuclear engineering 0.95 1 1.17 0 4
Organic fine chemistry 3.77 2 4.03 0 15
Macromolecular chemistry, Polymers 16.00 14 8.17 4 32
Pharmaceuticals, Cosmetics 3.47 4 2.68 0 8
Biotechnology 0.00 0 0.00 0 0
Agriculture, Food chemistry 0.07 0 0.26 0 1
Chemical and Petrol industry 11.16 10 5.49 4 22
Chemical engineering 1.35 1 0.87 0 3
Surface technology, Coating 3.48 3 2.82 0 9
Materials, Metallurgy 2.41 2 2.12 0 6
Materials processing, Textiles, Paper 3.92 3 2.73 1 9
Handling, Printing 20.26 16 13.55 4 50
Agricultural and Food processing, 0.35 0 0.71 0 2
Environmental technology 3.23 0 4.73 0 15
Machine tools 1.91 1 1.57 0 5
Engines, Pumps and Turbines 21.72 15 21.10 3 69
Thermal processes and apparatus 0.37 0 0.62 0 2
Mechanical elements 2.33 2 2.14 0 7
Transport 16.54 14 12.00 2 50
Space technology, Weapons 0.00 0 0.00 0 0
Consumer goods 0.72 0 1.05 0 4
Civil engineering, Building, Mining 0.00 0 0.00 0 0
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4 An Empirical analysis of patenting behaviour

In this section we derive an empirical model with which td tee theory advanced in Section
2. Then, we describe the sample and provide results.

4.1 An empirical model of patenting behaviour

Building on the results of sectidhwe estimate a model predicting the level of patent applica-
tions filed by a firm in a given year at the EPO. It is well knowattiirms’ patent applications
are highly persistent, reflecting long term investments&bRapacity. To deal with this we
include a lagged dependent variable in our model and esithatfollowing relationship:

Aiy = Bo+ Badir—1+ 800+ BcCiv + Bx' Xy
+ BacAi-1Cis + BocOiCiv + BocrOiiCiiLiy + BorOi Ly (18)
+xi + Gt where:
A, — Patent Applications O, — Technological Opportunity: Non Patent References

C;+ — Complexity: Triples X, — Control variables: Fragmentation, Area count, Size(L)

This specification allows us to control for effects of teclmgical opportunity3, and com-
plexity G¢ in discrete technologies as well as in complex technolatiesigh the interaction
terms. We also include interaction terms that allow us ttirdisiish the patenting behaviour
of large and small firms in complex and discrete technologi®s do this as our theoretical
model indicates that firms’ patenting behaviour will dependhe share of patents they expect
to receive on a given technological opportunity.

The empirical model allows us to test the following hypotsethat reflect the predictions
derived from the theoretical model:

H1 : Increased technological opportunity lowers the le¥gladent applications in complex
technologies (Propositiad);

H2 : Increased complexity of a technology raises the leveladént applications in a com-
plex technologies (Propositid);

H3 : Increased technological opportunity raises the le¥@ladent applications in discrete
technologies (Propositiof).

Hypothesis 1 implies that, + Boc x C;; < 0, hypothesis 2 implies that: + Boc x
O+ + Bac x A;; > 0 and hypothesis 3 implies thap > 0.

4.2 Data and descriptive statistics

Our dataset consists @3, 448 observations of firms patenting in specific technology areas
in a given year. Our data covers the period between 1978 wieekEPO began operating
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and 2003. We excluded patentees from the sample in two sfiegts:.we excluded all those
patentees with fewer that) patent applications in a given technology area over theeenti
period, second we excluded those patentees who had fewethiteee years of positive patent
applications in a technology area in the fifteen years afi8i71 These steps were necessary to
exclude firms that cannot be considered to have a long teremfpag) strategy. Only patentees
with a longer patenting horizon will be affected by changegechnological opportunity, or
the degree of blocking over time.

Table2 shows that most firms remaining in the sample have a low arlevall of patent
applications per area (5.43) but are active in 8 or 9 diffetenhnology areas. The large
dummy splits firms almost exactly into the largest and smsalliems in the sample. The
median technology area contained 5 Triples in a given ydag.|@vel of non patent references
in the average technology area is 1.151. The table also iognté#ormation about sample
statistics for the year 1992, after which patent applicetioncreased markedly as Figuse
shows.

A comparison of sample means and means for 1992 shows thatgatent in more areas,
face more Triples and generate fewer non patent refererftas1®92 than before. This
confirms what we have shown graphically in the previous sacti

Table 2: Descriptive statistics for the sample (1987-2002)

Variable Aggregation | Mean Median Standard Mini-  Maxi-
level deviation mum mum
Patent applications Firm 5.431 1.000 18.594 0.000 752.000
log Patent application$ Firm 1.051 0.693 1.052 0.000 6.624
Areas Firm 8.751 7.000 6.027 0.000 30.000
Large dummy Firm 0.504 1.000 - 0.000 1.000
Non Patent References  Area 1.151 0.894 0.827 0.174 4.532
Triples Area 18.480 5.000 30.085 0.000 166.0P0
Fragmentation Area 0.001 0.000 0.006 0.000 0.355

Observations= 173,448

Sample statistics for 1992

Patent applications Firm 4.235 1.000 14.024 0.000 387.000
log Patent application$ Firm 0.923 0.693 0.990 0.000 5.961
Areas Firm 7.746 6.000 5,563 0.000 27.000
Large dummy Firm 0.438 0.000 - 0.000 1.000

Non Patent References  Area 1.205 0.970 0.747 0.290 3.554
Triples Area 15.761 3.000 25.348 0.000 104.000
Fragmentation Area 0.001 0.000 0.006 0.000 0.168

Observations= 11,325
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Table3 provides additional information about the structure ofptaael which we employ.
It shows that in total there are 2074 different firms in theadat. Each firm applied for an
average of 628 patents across all areas and years inclutteelsample. The lower half of the
table shows that our sample contaiids’% of all patents applied for at the EPO a2wi8% of
patentees.

We treat firms operating in several technology areas asatepaloservations in each area.
We do this to control for area specific patenting behavioundividual firms. Where we use
panel data, the panel is unbalanced due to entry and exitd firto technology areas.

Table 3: Panel descriptives for the sample

Firm level (n=2074) Mean Median SD
Total patents 628.27 205 1944.94
Total patents (annual) 37.02 12 111.65
Technological areas (annual) 5.54 4 4.56
Area-Year level (n=650) Mean Median SD
Total patents in area 2594.23 2310 1778.8)
Total patents in sample 1449.35 1012 1695.86
Total firms in area 1077.62 893 668.14
Total firms in sample 266.84 263 253.71
Triples 14.67 2 27.69
Non Patent References 0.98 0.75 0.75
Fragmentation 0.001 0 0.009
4.3 Results

In this section we set out empirical results. First, we pdeuwiesults from fixed effects and
ordinary least squares estimation. These results are ktwlabiased as we include a lagged
dependent variable in our model. However, they provide toared upper bounds on the
values of the lagged dependent variable for GNBdnd (2002. We also provide results
from dynamic panel estimates using the system GMM estimaitbr orthogonal deviations
as proposed bprellano and Bove(1995.

We do not reject the predictions of our theoretical modepdrticular, we find that greater
technological opportunity reduces firms’ patenting in ctergechnologies. This effect is
diminished for very large firms but remains present. We atsw that growing complexity of
blocking has the effect of increasing firms’ patenting agtiAdditionally, we show that there
is weak evidence to suggest that fragmentation of patenewmhip affects firms incentives to
patent in complex technologies once we control for effe¢tsomnplexity and technological
opportunity.

We estimate OLS and fixed effects models (Tab)léo provide a baseline against which
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to judge the results of our GMM models (Talde Table4 includes simple models as well as
models that test our hypotheses through the interactidniplfes with Non patent references
(NPR).Triplesmeasure complexity of blocking whildon patent references capture the level
of technological opportunity in a technology area at a gitvere.

Table 4: Coefficients for Simple Models of Patent Applicaso

OLS models Fixed effects models
Variable OLS1 OLS2 OLS3 FE1 FE 2 FE3
log Patentcount ¢ 0.599***  (0.,683**  (0.583*** 0.172**  0.157**  0.156***
(0.002) (0.002) (0.002) | (0.002) (0.002) (0.003)
log Patentcount | x Triples 0.001***  0.001*** 0.001***  0.001***
(0.000) (0.000) (0.000) (0.000)
Non Patent References (NPRR)0.064***  0.076***  0.067*** 0.002 0.016 -0.007
(0.002) (0.002) (0.003) (0.007) (0.008) (0.009)
NPR x Triples -0.002***  -0.002*** 0.000 0.000
(0.000) (0.000) (0.000) (0.000)
NPR x Triples x Large 0.000* 0.000
(0.000) (0.000)
NPR x Large 0.020*** 0.038***
(0.004) (0.006)
Fragmentation 29.910** 30.332*** 30.352*** | 34.246*** 33.811*** 33.825***
(0.269) (0.320) (0.320) (0.346) (0.392) (0.392)
Fragmentation< Triples -0.028***  -0.028*** 0.016 0.016
(0.007) (0.007) (0.009) (0.009)
Triples 0.000***  0.002***  0.002*** 0.001*** 0.000 0.000
(0.000) (0.000) (0.000) | (0.000) (0.000) (0.000)
Areas 0.018**  0.018***  0.018*** 0.084***  0.084***  (0.084***
(0.000) (0.000) (0.000) | (0.000) (0.000) (0.000)
Large 0.279**  (0.282**  0.256*** 0.305***  0.306***  0.263***
(0.004) (0.004) (0.006) | (0.005) (0.005) (0.009)
Year dummies YES YES YES YES YES YES
Primary area dummies YES YES YES YES YES YES
Constant 0.122*%*  0.116***  (0.128*** 0.029 0.031* 0.060***
(0.011) (0.011) (0.012) (0.015) (0.016) (0.016)
R-squared 0.671 0.672 0.672 0.300 0.301 0.301
N 173448 173448 173448| 173448 173448 173448

*p<0.05, ** p<0.01, *** p<0.001
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Table 5: Coefficients for System GMM Models of Patent Appimas

Allowing correlation

with fixed effects

Assuming no correlation
with fixed effects

Variable SGMM MIN SGMMEND DGMMEND SGMMEND2| SGMMNPR SGMM F
log Patentcount 4 0.684*** 0.678*+* 0.863*** 0.735%*+* 0.715%+* 0.915%**
(0.072) (0.068) (0.091) (0.058) (0.047) (0.039)
log Patentcount ; x Triples -0.017*** -0.015*** -0.012*** -0.011*** -0.007***  -0.004***
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
Non Patent References (NPR) 1.581*** 1.386*** 1.198*** 0.968*** 0.271%** 0.171
(0.221) (0.182) (0.164) (0.113) (0.019) (0.119)
NPR x Triples -0.038*** -0.034*** -0.028*** -0.024*** -0.008*** -0.003
(0.005) (0.004) (0.004) (0.002) (0.001) (0.003)
NPR x Triples x Large 0.006*** 0.006*** 0.006*** 0.005*** 0.004*** 0.002***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.000)
NPR x Large -0.436*** -0.425%** -0.262*** -0.397*** -0.466***  -0.506***
(0.055) (0.052) (0.033) (0.042) (0.034) (0.032)
Fragmentation -15.234* -12.482* -13.998* -4.848 -1.448 -2.313
(6.510) (6.192) (6.123) (3.654) (1.210) (1.946)
Fragmentationx Triples 0.262** 0.247* 0.181* 0.188* 0.102* 0.156*
(0.100) (0.097) (0.091) (0.083) (0.044) (0.071)
Triples 0.063*** 0.057**+* 0.042%+* 0.040%** 0.015%** 0.007
(0.007) (0.006) (0.005) (0.004) (0.001) (0.004)
Areas 0.095*** 0.096*** 0.031* 0.086*** 0.085*** 0.058***
(0.010) (0.010) (0.014) (0.008) (0.007) (0.006)
Large 0.430*** 0.409*** 0.257*** 0.325%** 0.442%** 0.412%*
(0.087) (0.081) (0.053) (0.065) (0.049) (0.048)
Year dummies YES YES YES YES YES YES
Primary area dummies YES YES YES YES YES YES
Constant -1.672%** -1.515%** -1.157%** -0.597*** -0.526***
(0.198) (0.167) (0.105) (0.046) (0.106)
N 173448 173448 171380 173448 173448 173448
m1 -12.75267 -13.49454 -9.115675 -16.66536 -20.32686  -28.27661
m2 4.690134 5.564835 5.686894 9.293913 12525 20.07668
m3 1.093296 .7390595 -.4191068 -.4131314 -1.354271 -1.47849]
Hansen 2.178791 10.67657 7.067067 70.62775 184.0212 288.5185
Degrees of freedom 1 5 4 9 7 7

4

*p<0.05, ** p<0.01, ** p<0.001

1. Asymptotic standard errors, asymptotically robust teteskedasticity are reported in parentheses

2. m1-m3 are tests for first- to third-order serial correlatin the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It istdbuted as¢? under the null of instrument

validity, with degrees of freedom reported below.
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4. In all cases GMM instrument sets were collapsed and lags limeited.

We also report specifications that allow the effectNoh patent references and of Triples to vary
according to size of the firm’s patent portfolio. The OLS misdripport Propositio@: greater tech-
nological opportunity (Non Patent References) reducessfipatenting efforts in complex technology
areas. In contrast there is no clear result3oilhe fixed effects models provide no clear evidence on
either Proposition. Note that in case of the fixed effects e®the ratio obg/o—g is 0.81. It has been
shown that the finite sample bias of the system GMM estimattarge if this ratio is large, which is
not the case her@(n and Kiviet(2006,Hayakawa2006)).

Table5 presents results of six models estimated with system afeteliice GMM using orthogonal
deviations Arellano and Bove(1995).1> The models presented differ in the number of overidentify-
ing restrictions employed as well as assumptions aboutdirelation of the explanatory variables with
fixed effects. The four models reported in the central patheftable allow for correlation between all
explanatory variables apart frommiples with fixed effects. In the two specifications on the right side
of the table we assume that subsets of the explanatory lesiabe uncorrelated with fixed effects.

Note that the number of observations in our dataset impfiasZt/N — 0. This implies that a
systems GMM estimatoB{undell and Bond1998)) using forward deviations is asymptotically con-
sistent Alvarez and Arelland2003; Hayakawa2006). We employ this estimator as the persistence
of the patenting series is very high in our sample: the cadefftoon the lagged dependent variable in
an AR1 model with time and primary area dummie8.. Blundell and Bond1998 note that a dif-
ference GMM estimator will be affected by a weak instrumemtsblem in this context. Specification
DGMM END reported in Tablé, which is estimated by difference GMM, does not suggest tteat
weak instruments problem is severe here. However, the ciggifion the lagged dependent variable
is somewhat above that reported for the comparable syststinsagors. It is also significantly above
the coefficients from the OLS regressions reported in TaAblEherefore, we focus our analysis on the
results from the system estimators. Note however that thetaative results provided by the difference
estimator are the same as those from the systems estimators.

In all models reported in Tabthe instrument sets were collap$®dnd instrumenting lags were
limited as described below. This was done as the Hansem@slitierence in Hansen tests rejected the
overall instrument sets as well as individual instrumert@rg larger instrument sets were employed.
Specification SGMM END?2 illustrates how sensitive the Harnest is to the size of the instrument set
here. This specification is identical to SGMM ENDS3, we justalfor an extra lag on the instrument
sets for the endogenous variables in this specification.spkeification is rejected by the Hansen test
at conventional significance levels.

All models reported in Tablé contain the following explanatory variableldon patent references,
Triples, Fragmentation, Area count, Large dummy and the lagged dependent variable as well as in-
teractions of some of these variables. We consld#ge and Area count to be endogenous as they
reflect decisions about how widely and where to engage irareevhich may be contemporaneous
with decisions determining the level of patent applicadioWe consider the remaining variables to
be predetermined since they depend in large part on the gajgre decisions of rival firms. Finally
note that we include only year and primary area dummies alsasdtiples in the levels equation as

15All models were estimated witktabond? in Stata 9.2 . This package is describedRo¢dman(2009).
16Collapsing instrument sets reduces the number of momeulitimms used for GMM Roodmar(2008).
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it is likely that the fixed effects are correlated with difaces in the remaining explanatory variables.
Triples is the only variable that reflects purely technology areaifipecharacteristics which may be
assumed to be orthogonal to firm specific effects.

We estimate two models in which we treat Fragmentation (GMMud Non patent references
(GMM NPR) as uncorrelated with fixed effects. Results from ifansen tests for both specifications
reported in Tablé show that these models are clearly rejected.

Our preferred models are reported as SGMM MIN and SGMM ENDaiplds. In SGMM MIN we
restrict the number of instruments such that the model isgusridentified.Hayakawa(2006) argues
that such a minimum instruments specification is unbiasezkitings where T is fixed and-N ~c.
The specification SGMM END includes one additional lag fa #mdogenous variables. Results from
these two specifications are statistically indistinguigba

Focusing on these two specifications we find that all our #tezal predictions are borne out by
the data. First, we find that in discrete technologies aafutti technological opportunity raises firms’
patenting rates. The coefficient fdlon patent references is positive and highly significant. Even in
case of large firms the overall effect remains positive. $h@wvs that Hypothesis Il cannot be rejected.
Second, the coefficient on the interactionNuin patent references andTriples is negative. The overall
effect of additional Non patent references on patentingimes negative if there are more théh
Triples in a technology area. As Tahleshows this is the case in at least one year for eight of the
technology areas in our sample. For Audiovisual technolgy Optics it is always the case! In case
of larger firms the predicted effects of complexity alreadgeawhen the number of Triples is above
4. This is always the case f@rtechnology areas in our sample! These findings show that tHgps
| cannot be rejected in our sample. Finally, the coefficianfioples is positive and greater than that
on the sum of interactions dfiples with Non patent references and . This shows that greater blocking
complexity and therefore greater complexity of a technglagea increase firms’ levels of patenting.
Therefore, we cannot reject Hypothesis II.

Additionally, our results indicate that the persistsenteaienting decreases as technology areas
become more complex. This suggests that patentees are@spmnsive to their competitors’ patenting
behaviour in complex technology areas than in discretentdolyy areas. Finally, our results show that
fragmentation of patent portfolios increases firms’ patgnefforts in technology areas in which there
are more tharb0 Triples, i.e. if blocking complexity is high. This effect mfirms the findings of
Ziedonis(2004). We also find that fragmentation of patent ownership inrdigctechnology areas has
negative effects on firms’ patenting efforts.

5 Conclusion

Patent applications have been increasing steeply at thefTOS#d the EPO since 1984 and 1992
respectively. In both cases these increases have raisstianseabout the operations of the affected
patent offices as well as effects of these trends on econartiiditya more generally £.T.C.(2003); ?
andvon Graevenitz et a(2007). The increases in patenting are concentrated in compthnblogies
(Hall (2005 and von Graevenitz et al(2007)) which are prone to the formation of patent thickets.
Resulting increases in transactions costs affect techiesidhat are central to the large productivity
increases recorded in the recent pEsygenson and Wessn@007).

There is a great deal of evidence that patenting has inadeasesponse to evolution of the legal en-
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vironment, specifically in the United States, changes imthaagement of R&D and patenting, increas-
ing complexity of technology and more strategic behavidupatent applicantsKortum and Lerner
(1998; Hall and Ziedonis(2001); Ziedonis(2004). The contribution of technological fecundity to
current patenting trends is less well understood.

We provide a model of patenting that encompasses discrdteanplex technologies. The model
captures effects of technological opportunity and teobgichl complexity on firms’ patenting incen-
tives in contexts in which firms’ interact strategicallydhgh the patent system. We show that greater
technological opportunity will raise patenting in diserdechnologies but will lower it in complex
technologies. We also show that greater complexity of teldgies will raise firms’ patenting levels.

Using data on patenting in Europe we show that our model giefiims’ patenting behaviour well.
All predictions of the theoretical model are confirmed. Wetoee the dynamic aspects of patenting
behaviour by including a lagged dependent variable in oyiecal specifications. In order to control
for the endogeneity this creates we estimate our modelg @BMM estimators Arellano and Bover
(1995; Blundell and Bond1998); Alvarez and Arellan@2003).

In order to estimate our model we derive a new measure of inigatomplexity which is derived
from patent data. This measure captures the extent to whitdnpthickets have formed in specific
technology areas. The measure also shows us how complexedifftechnologies are. With the help
of this measure we show that patent thickets exist in nin@btltirty technology areas at the EPO.

Our data indicate that the problem of patent thickets at #@ s getting worse in recent years. In
future work we intend to investigate whether this has medsareffects on the productivity of firms’
R&D investments.
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Appendix
A Complex and discrete technologies

Table 6: Classification of technology areas according to-O8/FhG-ISI

Area Code | Description Classification
1 Electrical machinery, electrical energy Complex
2 Audiovisual technology Complex
3 Telecommunications Complex
4 Information technology Complex
5 Semiconductors Complex
6 Optics Complex
7 Analysis, measurement, control technology Complex
8 Medical technology Complex
9 Nuclear engineering Complex
10 Organic fine chemistry Discrete
11 Macromolecular chemistry, polymers Discrete
12 Pharmaceuticals, cosmetics Discrete
13 Biotechnology Discrete
14 Agriculture, food chemistry Discrete
15 Chemical and petrol industry, basic materials chemistry Discrete
16 Chemical engineering Discrete
17 Surface technology, coating Discrete
18 Materials, metallurgy Discrete
19 Materials processing, textiles paper Discrete
20 Handling, printing Discrete
21 Agricultural and food processing, machinery and apparatus Discrete
22 Environmental technology Complex
23 Machine tools Complex
24 Engines, pumps and turbines Complex
25 Thermal processes and apparatus Complex
26 Mechanical elements Complex
27 Transport Complex
28 Space technology, weapons Complex
29 Consumer goods and equipments Complex
30 Civil engineering, building, mining Complex

Description of the 30 technology areas contained in the O&T/FhG-ISI technology nomenclature.
We classified the 30 technology areas as complex or discitet@ating to replicate the classification
of Cohen et al(2000.
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Type Description

X

Particularly relevant documents when taken alone (a cldimeention cannot
be considered novel or cannot be considered to involve antiwe step)
Particularly relevant if combined with another documentha&f same category
Documents defining the general state of the art

Documents referring to non-written disclosure

Intermediate documents (documents published betweeratbefifiling and the
priority date)

Documents relating to theory or principle underlying theeintion (documents
which were published after the filing date and are not in conflith the appli-
cation, but were cited for a better understanding of theritioe)

E Potentially conflicting patent documents, published onftarahe filing date of
the underlying invention

Document already cited in the application

Document cited for other reasons (e.g., a document whichthrayw doubt on a
priority claim)

TO>»r<

—

— O

Table 7: Overview over different types of references ineliith the search report by the EPO.
Source: EPO Guidelines for Examination in the EuropeanrP&éice, 2003.
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