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Abstract

We investigate determinants of patenting, focusing on effects of costs, complexity of tech-

nology and technological opportunity. In a theoretical model of patenting it is shown that

in complex technologies greater technological opportunity reduces firms’ incentives to

patent while greater complexity of technology increases patenting incentives. In con-

trast firms’ patenting incentives rise in discrete technologies as technological opportunity

increases. Using European patent data a new measure of technological complexity is de-

rived from patent citations. It is shown that patenting conforms to our theoretical model.

The theoretical predictions are tested in a panel which allows us to study patenting be-

haviour of 2074 firms in 30 technology areas over 15 years. Results from GMM estima-

tion indicate that patent thickets exist in 10 of these areasand have important effects on

patenting behaviour.
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1 Introduction

Strong increases in the level of patent applications have been observed at the United States

Patent and Trademark Office (USPTO) (Kortum and Lerner(1998) andHall (2005)) as well

as the European Patent Office (EPO) (von Graevenitz et al.(2007)). These “patent explosions”

pose serious challenges for existing patent systems and also for competition authorities.1

Explanations for the shift in patenting behaviour concentrate on changes in the legal en-

vironment, changing management practices, the complexityof important technologies such

as semiconductors, greater fecundity of technology and increased strategic behaviour on the

part of firms. While it has been shown that most of these factors play a role, there are no

formal models of patenting behaviour that explicitly modelthese influences.2 This paper pro-

vides a model that encompasses complexity and fecundity of technology as well as strategic

behaviour. We show the predictions of the model hold using european patent data.

Kortum and Lerner(1998) first investigated the explosion of patenting at the USPTO,

which began in 1984 (Hall (2005)). By a process of eliminationKortum and Lerner(1998,

1999) argue that the shift towards increased patenting is mainlythe result of changed man-

agement practices making R&D more applied and raising the yield of patents from R&D. In

contrast,Hall and Ziedonis(2001) who focused on the semiconductor industry argue that the

patenting surge is a strategic response to an increased threat of hold-up in complex technolo-

gies. This resulted from the “pro-patent” legal environment ushered in after the establishment

of the Court of Appeals for the Federal Circuit in the United States (Jaffe (2000)). Both

Kortum and Lerner(1998, 1999) andHall and Ziedonis(2001) find little evidence for the in-

fluence of additional technological opportunity as an explanation for increased patenting.

In this paper we develop a model of patenting covering complex and discrete technologies.

The model shows how technological opportunity, complexityof a technology and patenting

costs jointly determine the rate of patenting. We model the choice between pursuit of new

technological opportunities and deepened protection of existing technologies by patenting of

“facets” of the technologies. The model shows strategic patenting behaviour implies firms in

a complex technology should patentless in response to increasing technological opportunity.

Additionally, the model indicates that greater technological complexity will raise firms’ in-

centives to patent. These predictions result from strategic interaction of firms using a complex

technology: greater technological opportunity reduces the pressure on firms to defend their

stake in existing technologies by patenting heavily, whereas greater complexity increases the

scope for holdup and raises the need for strategic buildup ofpatent portfolios.

To test the model we use a comprehensive dataset based on datafrom the EPO. It com-

1For extensive discussions of the policy questions surrounding current functioning of the patent systems in
the United States and in Europe refer toNational Research Council(2004); F.T.C.(2003); von Graevenitz et al.
(2007) andBessen and Meurer(2008).

2Formal models of patenting abound, for a survey of this literature refer toScotchmer(2005) or
Gallini and Scotchmer(2002). Formal models of patenting in patent thickets do not attempt to span
both complex and discrete technologies as we do here:Bessen(2004); Clark and Konrad(2005) and
Siebert and von Graevenitz(2006). These models usually build on the older patent race literatureLee and Wilde
(1980); Reinganum(1989) andBeath et al.(1989).
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prises information on patenting behaviour between 1978 and2003. We construct a measure

of blocking in a complex technology based on information specific to European patents. The

measure exploits the fact that patent examiners at the EPO indicate which prior patents block

or restrict the breadth of a patent application. We count howoften three or more firms applied

for mutually blocking patents within a three year period. This gives rise to a count of mutually

blocking firm Triples. The measure allows us to capture effects of complex blocking rela-

tionships which can arise in complex technologies even if patent ownership remains relatively

concentrated. We find that the measure allows us to identify effects of blocking in a complex

technology.

Additionally, a measure of technological opportunity is needed to test our hypotheses. We

use the extent to which patents reference non-patent literature for this purpose. (Meyer(2000);

Narin and Noma(1985); Narin et al.(1997)) show that the share of references pointing to non-

patent literature (mostly scientific publications) can be agood proxy for strength of the science

link of a technology. Variation in the strength of the science link within a technology area will

indicate how much technological opportunity there is at a given time.

Our paper followsKortum and Lerner(1998, 1999) andHall (2005) in considering patent-

ing across the full range of patentable technologies. This allows us to identify differences in

patenting behaviour between complex and discrete technologies.

Firms’ patenting behaviour is known to be highly persistent, due to the long term nature of

firms’ R&D investment decisions. We control for the effects of R&D investment decisions on

patenting by including a lagged dependent variable in the empirical model. Building on the

theoretical model it is shown that this allows us to control for unobserved variation in fixed

costs of patenting and in the value of patenting. The model isestimated using systems GMM

estimators (Blundell and Bond(1998); Arellano (2003) andAlvarez and Arellano(2003)) to

control for endogeneity of the lagged dependent variable aswell as our measure of techno-

logical opportunity. Evidence from these regressions as well as results from OLS and a fixed

effects estimator all support the theoretical predictionswe derive from the theoretical model.

Our results complement the descriptive study of patenting at the EPO undertaken by

von Graevenitz et al.(2007). They use a set of indicators to identify technology areas in which

firms build up patent portfolios for strategic reasons. We extend their work by showing theo-

retically and empirically how patenting is affected by variation in complexity of a technology

and technological opportunity. Additionally, we provide anew measure of blocking complex-

ity. Both studies show strategic patenting behaviour has become very important in technology

areas central to productivity growth in recent years (Jorgenson and Wessner(2007)).

Surveys of the use of patents show that traditionally firms mostly protect their innova-

tions through secrecy or lead time (Levin et al.(1987), Arundel and Kabla(1998), Cohen et al.

(2000), Arundel(2001), Arundel(2003)). This used to be particularly true for complex prod-

uct industries. This has changed dramatically in the last decade. Firms in complex prod-

uct industries such as semiconductors, telecommunications, software and biotechnology have
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adopted a strategy of building large patent portfolios and invest heavily in amassing patents.3

Shapiro(2001) investigates the consequences of the ensuing races to build patent portfolios.

He argues that firms in some industries are caught in a prisoner’s dilemma in which they jointly

create “patent thickets” that raise transactions costs andmay damage incentives to innovate.

These patent thickets arise where many rival firms own patents that must be combined to cre-

ate individual new products. This gives rise to complex bargaining problems that often cannot

be resolved properly.

In this paper we show for the first time to what extent patent thickets also exist within the

patent system administered by the European Patent Office (EPO). We find that incidence and

complexity of these thickets are increasing. There are important differences between the patent

systems administered by the USPTO and the EPO: in particular, it is claimed that examination

of patents is more thorough at the EPO and that the oppositionsystem existing there provides

a cheaper way for rival firms to weed out weak patents than patent litigation does in the United

States (Hall and Harhoff(2004), von Graevenitz et al.(2007)). Therefore, it is not a foregone

conclusion that patent thickets also affect the European patent system. Our finding that they do

raises important policy questions: what effects are these patent thickets having on competition

in the affected sectors? Can the procedures governing patenting in Europe accommodate and

regulate strategic patenting behaviour on the scale documented here? Does Competition policy

need to take a more active role in regulating use of patents incomplex technologies?

Firms’ patenting activities and uses of their patent stocksare increasingly the focus of

competition policy cases. These cases have arisen in Europeand in the United States and

include the dispute between Intel and Intergraph (Shapiro(2003)), a recent case affecting

Yamaha and rivals in the personal watercraft industry (Rubinfeld and Maness(2005)) and last

but not least the ongoing dispute between Qualcomm and Nokia. These legal disputes have

all revolved around attempts of a dominant patent owner to extract licensing royalties from

rivals through aggressive assertion of their patent portfolio. Two of these cases originate in the

semiconductor and telecommunications industries. This isno accident: the complexity of the

technology employed in this field combined with a very high rate of patenting activity leads

to a dispersal of patent rights among rival firms.

This paper is structured as follows. Section2 provides a theoretical model of patenting

which explains how firms’ patenting strategies evolve in response to increased patenting by

their rivals. We derive three hypotheses from this model that are empirically testable. In

section3 we describe our dataset and the variables we employ to analyse firms’ patenting

behaviour. As there is little cross industry evidence of patenting trends at the EPO, section3

also provides a descriptive analysis of these trends, focusing particularly on our measure of

complexity and alternative measures thereof. Section4 provides empirical results and Section

5 concludes.
3In the case of semiconductors the reasons for this change arediscussed byGrindley and Teece(1997), Jaffe

(2000), Hall and Ziedonis(2001)
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2 Incentives to patent in discrete and complex technologies

In this section we model firms’ patenting behaviour. In particular, we analyse how firms’

profit maximising patenting decisions are influenced by the cost of patenting, existing techno-

logical opportunity and the complexity of the technology area in which firms patent. Before

presenting our formal model we briefly describe the mechanisms modelled below.

Previous literature has shown that firms’ efforts to accumulate patents are strongly influ-

enced by characteristics of a technology area such as fragmentation of ownership rights or

potential threat of being held up by other patentees. It has been argued that these effects led to

a surge in patenting in complex technologies areas such as semiconductors or telecommunica-

tions (Hall and Ziedonis(2001), Ziedonis(2004)). These studies, however, do not provide an

explicit model of the interaction of complexity and firms’ patenting efforts. We model firms’

patenting efforts as a function of the complexity of the underlying technology. In order to do

so, we propose a simple model of complexity based on the widespread notion that in complex

technologies products relate to a (potentially large) number of patents held by various different

patentees whereas in discrete technologies a direct product-patent link dominates. In order to

create this measure of complexity, we distinguish technological opportunitiesO representing

separate subtechnologies within a technology area. For example, a technological opportunity

might be constituted by research related to the developmentof a certain chemical compound

in organic chemistry, the search for a drug in the pharmaceutical area or the development of

special circuit in electronics. Complexity within these technological opportunities can arise

if it is possible to patent different facetsF within an opportunity. If only one facet of an op-

portunity can be patented, the technology is discrete. At least two facets must be patentable

in order to allow for situations where different patentees own patent rights related to the same

technology – this is our definition of complexity. An increase in the number of patentable

facets increases the potential number of patentees owning patents relating to the same techno-

logical opportunity. Hence, we model complexity of a technology as the number of patentable

facets. Figure1 presents a graphical representation of this idea.

Further, we assume that patenting allows firms to benefit fromthe total value (V ) of a

technology opportunity. To capture maximum value from the technology opportunity a firm

must obtain as many patents as possible on facets of the opportunity. Firms face a tradeoff

between patenting more facets per opportunity and patenting more different technological

opportunities. We show that technological opportunities and facets are complements in firms’

investment decisions.

As the number of facets per opportunity grows, so does the probability that different firms

will own patents related to the same opportunity. These firmsmay need to disentangle their

ownership rights, giving rise to legal costs(L). We do not explicitly model the bargaining pro-

cess between firms that own patents on the same technologicalopportunity. The literature on

patent thickets and complex technology shows that there aremany institutional arrangements

that allow firms to disentangle overlapping property rights- these include licensing, patent

pools, standard setting as well as litigation (Shapiro(2001)). We adopt a reduced form rep-
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Figure 1: Relation between complexity and the number of patentable facets per technologi-
cal opportunity. Note thatO1 is discrete by definition as there is no chance of overlapping
ownership rights in this technology.

resentation of all of these mechanisms, by assuming that they become more expensive as the

number of parties involved increases. Additionally, we assume that firms who own a greater

share of patents on a technological opportunity have advantages in bargaining which allow

them to appropriate a larger share of the benefits associatedwith the opportunity. These as-

sumptions are consistent with the arguments advanced byZiedonis(2004) to explain patent

portfolio races in the semiconductor industry.

We assume that the total set of patentable facets in a technology (Ω) consists ofO technol-

ogy opportunities andF facets such that:FO = Ω. The patent office grant only one patent

per facet. Each firm knows that there is a contest for patents on the facets of a technological

opportunity. This implies that the probability of obtaining a patent is inversely proportional

to the number of rivals seeking a patent on the same facet. Firms simultaneously determine

the number of opportunitiesOi ∈ [0, O] to invest in and the number of facetsFi ∈ [0, F ] per

opportunity which they seek to patent.

Costs and benefits of patenting

Three types of cost are associated with patenting in our model:

i For each opportunity a firm invests in, it faces a fixed cost ofR&D: Co.

ii For each facet which a firm patents the firm faces costs of administering and enforcing

the patent if it is granted:Ca.

iii The coordination of R&D on different technologies imposes costsCc(Oi). We assume

that ∂Cc

∂Oi
> 0.

The benefits of patenting are a function of the value of each technological opportunityV

and the expected number of facetsfi each firm receives a patent on. Define the expected share

of facets per patent which each firm obtains asfi ≡
Fip

F
whereFi is the number of facets each
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firm invests in per opportunity andp is the probability of winning a patent on a given facet.

Note thatfi ∈ [0, 1]. The probability of obtaining granted patent on a given facet is:

p =
1

1 +
P

j 6=i FjOj

FO

. (1)

This definition of the probability of obtaining a patent on a facet of a technology opportunity

reflects our assumption that there is a contest between several firms for each such patent. Then

the probability of obtaining the patent depends on the number (n) of rival firms simultaneously

trying to obtain the patent. Each firm vying for a patent on a facet will win that patent with

p = 1

1+n
. In the expression above we assume that all rival firms make

∑

j 6=i FjOj patent

applications. Dividing these by the set of all patentable facetsFO we obtain the number of

rivals’ patent applications that compete with each firm’s own applications.

Given these costs and benefits the expected value of patenting in a technology area is:

πi = Oi

[

V ω(fi) − L(fi, N)
]

− Oico − OiFipCa − Cc(Oi) , (2)

where total legal costs of owning patents on an opportunity are L(fi) which decrease in the

share of facets owned on that opportunity.ω(fi) represents the share of value of a technolog-

ical opportunity obtained by firmi. It is an increasing function of the firm’s share of patents

held on a given opportunity.

Comparative statics of this model

To simplify the derivation of comparative statics results we show that the game firms are

playing is supermodular. Then we use results on supermodular games to derive comparative

statics results [Milgrom and Roberts(1990), Vives (1990, 1999)].4 We define a symmetric

game in which firms’ payoffs depend on own strategies and the aggregate strategy of their

rivals. Additionally we will assume that strategy spaces are compact. These assumptions

imply that only symmetric equilibria exist (Vives (1999)). Additionally, we can characterize

the comparativs statics for these equilibria by considering cross-partial derivatives.

We begin by characterising the game firms are playing:

• There areN firms.

• Each firm chooses the number of technological opportunitiesOi ∈ [0, O] and facets

Fi ∈ [0, F ] to invest in. The firms’ strategy setsSn are elements ofR2.

• Each firm has the payoff functionπi, defined in equation (14), which is twice continu-

ously differentiable and depends only on rivals’ aggregatestrategies.

Firms’ payoffs depend on their rivals’ aggregate strategies because the probability of obtaining

a patent on a given facet is a function of the sum of rivals’ patent applications
∑

i6=j FjOj.

4For additional expositions of this method refer toCarter(2001) or Amir (2005).
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We can show that:

Proposition 1

The game is a smooth supermodular game.

To prove this proposition we must show that the firms’ profit functions are supermodular

(i) in their own actions and (ii) in every combination of their own actions with those of rival

firms [Milgrom and Roberts(1990)].

To begin with we derive the first order conditions characterising the optimal number of

technological opportunities and facets firms invest in:

∂π

∂Oi

= V ω(fi) − L(fi) − Co − FipCa −
∂Cc

∂Oi

= 0 (3)

∂π

∂Fi

=
[

V
∂ω

∂fi

−
∂L

∂fi

− FCa

]

Oi

p

F
= 0 (4)

These first order conditions constitute a system of implicitrelations which determine the opti-

mal choice of opportunities (̂Oi) and facets (̂Fi) chosen by each firm in equilibrium.

Given this system of first order conditions we can show that firms’ profit functions are

supermodular. To see this we derive the cross partial derivatives with respect to firms’ own

actions as well as those of rival firms:

∂2πi

∂Oi∂Fi

= V
∂ω

∂fi

p

F
−

∂L

∂fi

p

F
− pCa = 0 (5)

Notice that this expression must be zero as it can be transformed to the first order condition

(4) for the optimal number of facets by multiplication withOi. Next consider effects of rivals’

actions on firms’ own actions:

∂2πi

∂Oi∂Oj

= V
∂ω(fi)

∂fi

Fi

F

∂p

∂Oj

−
∂L(fi)

∂fi

Fi

F

∂p

∂Oj

− FiCa

∂p

∂Oj

= 0 , (6)

∂2πi

∂Oi∂Fj

= V
∂ω(fi)

∂fi

Fi

F

∂p

∂Fj

−
∂L(fi)

∂fi

Fi

F

∂p

∂Fj

− FiCa

∂p

∂Fj

= 0 , (7)

∂2πi

∂Fi∂Oj

=
[

V
∂ω

∂fi

− Oi

∂L

∂fi

− FCa

]Oi

F

∂p

∂Oj

+
[

OiV
∂2ω

∂fi
2
− Oi

∂2L

∂fi
2

]pFi

F 2

∂p

∂Oj

> 0 , (8)

∂2πi

∂Fi∂Fj

=
[

V
∂ω

∂fi

−
∂L

∂fi

− FCa

]Oi

F

∂p

∂Fj

+
[

OiV
∂2ω

∂fi
2
− Oi

∂2L

∂fi
2

]pFi

F 2

∂p

∂Fj

> 0 , (9)

where the first two conditions are transformations of the first order condition for the optimal

number of facets (4). In case of the lower two conditions notice that the first term in square

brackets is zero as it is just that same first order condition.The terms in the second set of

brackets are negative if:

i) the share of value of a technological opportunity which a firm can appropriate with

additional facets is decreasing as firms’ share of facets on atechnological opportunity

increases:∂
2ω

∂fi
2 ≤ 0;
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ii) legal costs fall at a decreasing rate as firms’ share of facets on a technological opportu-

nity increases:∂
2L

∂fi
2 ≥ 0.

At least one of these two conditions must be fulfilled for the game outlined above to be smooth

supermodular.

Condition(i) indicates that as a firm’s share of patents on a technologicalopportunity in-

creases, the marginal value of additional patents is decreasing. This assumption will hold if

a firm holding some patents on a technological opportunity isable to make use of the tech-

nology covered to some extent in the face of blocking patents.5. In contrast if any one patent

on a technological opportunity blocks the use of the technology entirely, the assumption is

violated.6

Condition(ii) indicates that firms’ legal costs of appropriating a share ofthe value of a

technology opportunity fall if they own a larger share of patents on that technology opportu-

nity. This assumption reflects the widespread belief that larger patent portfolios are beneficial

to firms operating in technology areas that fall within complex technologies because they pro-

vide firms with bargaining chips (Hall and Ziedonis(2001)).

Note that the game will not be smooth supermodular if the technology is not complex. By

definition in that case there is only one facet(F = 1) per technological opportunity. Then

firms appropriate the whole value of the technological opportunity with one patent and the

second derivatives in (8) and (9) are zero. We will return to this case below.

Now we turn to the comparative statics effects of an increasein technological opportunity

on firms’ actions. We show that:

Proposition 2

Increased technological opportunity reduces firms’ patenting efforts in a complex technology.

To determine the effects of an increase in technological opportunity O we investigate the

following cross-partial derivatives:

∂2πi

∂Oi∂O
=

[

V
∂w

∂fi

−
∂L

∂fi

− FCa

] ∂p

∂O

Fi

F
= 0 (10)

∂2πi

∂Fi∂O
=

[

V
∂ω

∂fi

−
∂L

∂fi

− FCa

]Oi

F

∂p

∂O
+

(

OiV
∂2ω

∂fi
2
− Oi

∂2L

∂fi
2

)pFi

F 2

∂p

∂O
< 0 (11)

The terms in square brackets in both expressions above are zero by the first order condition

(4) for the optimal number of facets. The term in round bracketsin equation (11) is negative

if the game is smooth supermodular, i.e. if the technology iscomplex.

Therefore, greater technological opportunity lowers firms’ overall investments in patent-

ing. It reduces the intensity of competition to dominate individual technological opportunities

which lowers investments in facets and the number of new technologies which firms invest in.

Now we turn to the question how an increase in the complexity of a technology affects

firms’ incentives to patent. We find that the effect is ambiguous and depends on the relative

5Such a setting is modelled inSiebert and von Graevenitz(2008, 2006)
6Clark and Konrad(2005) make such an assumption.
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strength of two effects: the costs of administering more patents and the marginal benefits of

additional patents. Only if these marginal benefits are highenough will the term be positive.

To see this consider the following cross-partial derivatives:

∂2πi

∂Oi∂F
=

[

V
∂w

∂fi

−
∂L

∂fi

− FCa

] ∂p

∂O

∂fi

∂F
= 0 (12)

∂2πi

∂Fi∂F
=

[

V
∂ω

∂fi

−
∂L

∂fi

− FCa

]Oip
2

FO
+

(

V
∂2ω

∂fi
2

∂fi

∂F
−

∂2L

∂fi
2

∂fi

∂F
− Ca

)Oi

Fi

fi (13)

Here the terms in square brackets are zero by the first order condition (4) for the optimal

number of facets. The term in round brackets in equation (13) is positive if the costs of

administration of patentsCa are insignificant.

This shows that:

Proposition 3

Increased complexity of a technology will increase firms’ patenting efforts if the costs of

administering patents are low relative to their value as bargaining chips.

Finally, consider again the case of a discrete technology opportunity. HereF = Fi = 1 by

definition. Therefore firms’s payoffs are defined as:

πi = OiV p − Oico − OipCa − Cc(Oi) . (14)

We have already noted that a game with this payoff function isno longer supermodular. How-

ever we can show that under the slightly stronger assumptionthat costs of coordinating tech-

nological opportunities (Cc(Oi)) are strictly convex in the number of opportunities firms invest

in, we obtain a unique equilibrium for the game. We can then demonstrate that:

Proposition 4

Greater technological opportunity increases firms’ patenting efforts in a discrete technology.

To see that this is true consider the first and second order derivatives of the payoff function

with respect to technological opportunities invested in:

∂π

∂Oi

= (V − Ca)p −
∂Cc

∂Oi

= 0
∂2π

∂Oi
2

= −
∂2Cc

∂Oi
2

. (15)

If we assume that costs of coordianting technological opportunities are strictly convex:∂
2Cc

∂Oi
2 >

0, then Proposition4 can be proved with the help of the implicit function theorem:

∂Oi

∂O
= −

∂2π

∂Oi∂O

/

∂2π

∂Oi
2

> 0 , (16)

where ∂2π
∂Oi∂O

= (V − Ca)
∂p

∂O
> 0.

This concludes our analysis of the model.
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3 Description of the dataset and of important patenting trends

In this section we discuss the data used to test our theoretical model. In particular, a new

measure of complexity of a technology is discussed. Next, weprovide descriptive evidence

supporting the theoretical model. Discrete and complex technology areas are compared with

regard to selected patent indicators. Using our measure of complexity we show that descriptive

evidence on patenting provides support for the theoreticalmodel.

3.1 Dataset and derivation of variables

Our empirical analysis is based on the PATSTAT database (“EPO Worldwide Patent Statisti-

cal Database”) provided by the EPO.7 This database includes data on about 56 million patent

applications filed at more than 65 patent offices world-wide.It contains procedural and bib-

liographic information on patents including information on referenced documents (patent ci-

tations). We analyse all patent applications filed at the EPObetween 1980 and 2003 – more

than 1,5 million patent applications with about 4.5 millionreferenced documents.

We classify patents using the IPC classification which allows us to analyse sectoral dif-

ferences in patenting activities. The categorisation usedis based on an updated version of

the OST-INPI/FhG-ISI technology nomenclature.8 This classification divides the domain of

patentable technologies into 30 distinct technology areas.9 We also classify selected tech-

nology areas as discrete or complex using to the classification of Cohen et al.(2000). This

classification received additional support inHall (2005).

Below we show that there are clear differences between complex and discrete technologies

on the basis of this distinction. However, we also provide a new continuous variable that

captures the degree of complexity of technologies. We show that there are some differences

between this variable and the classification suggested byCohen et al.(2000).

In the following we discuss our measures of patenting, technological opportunity and com-

plexity. These are the most important variables needed to test the theoretical model. Addition-

ally, we discuss several variables that will be used as control variables in the empirical model

of section4. These describe additional influences on firms’ patenting intensity.

Measures of patenting, complexity and technological opportunity

Number of patent applications We compute the number of patent applicationsAiat filed

by applicanti separately for all OST-INPI/FhG-ISI 30 technology areasa on an annual (t)

basis. To aggregate patent applications to the firm level twochallenges must be overcome:

firm names provided in PATSTAT are occasionally misspelled and subsidiaries of larger firms

are not identified in the dataset. Therefore, we devoted a considerable amount of resources to

7We currently use the September 2006 version of PATSTAT.
8SeeOECD(1994), p. 77
9These are listed in Table6 in the appendix

10



clean applicant names and to consolidate ownership structures.10 The aggregation of patent

applications are based on these consolidated applicants’ identities. The variables discussed

below are also based on this consolidation.

Due to the skew distribution of patent applications we transform the variable logarithmi-

cally to derive a dependent variable for estimation. Table2 shows the transformed variable is

much closer to a normally distributed variable than the raw measure of patent applications.

Technological opportunity In our model, we establish a clear relationship between firms’

patenting levels in complex technologies and the emergenceof new technological opportuni-

ties. Unfortunately, a direct measure of existence or emergence of new technological oppor-

tunities does not exist. Instead, we use a construct that is based on the strength of the link

between R&D firms conduct within a technology area and relevant basic research as an indi-

rect measure of the emergence of new technological opportunities. This construct is based on

the assumption that basic research is more likely to open up new technological opportunities

than applied research which predominantly refines existingtechnologies.

Early stages of the evolution of a technology are characterised by a large share of basic

research often conducted in publicly-funded labs. In laterstages of a technology industry

driven development of existing technological opportunities will dominate basic research. Then

the focus is on refining existing opportunities rather than creating new ones. While there is

no perfect measure for the position of a technology area in the stylised cycle of technology

evolution, the share of references listed on a patent which point to non-patent literature (mostly

scientific publications) can be used as a good proxy for the strength of the science link of a

technology (Meyer(2000); Narin and Noma(1985); Narin et al.(1997)).

Therefore, we use the share of non-patent references relative to all references contained on

a patent as a proxy for a patent’s position in the technology cycle and hence as a measure for

the creation of new technological opportunities. As we are interested in the characterisation

of technological areas with regard to the existence of new technological opportunities, we

compute the average of the share of non-patent references relative to all references on a patent

on the level of OST-INPI/FhG-ISI areaa and yeart for our multivariate analyses.

Complexity of technology areas The distinction between discrete and complex technolo-

gies is widely accepted in the literature (Cohen et al.(2000), Kusonaki et al.(1998), Hall

(2005)). Discrete technologies are characterised by a relatively strong product-patent link,

e.g. in pharmaceuticals or chemistry, whereas in complex industries products are likely to

build upon technologies protected by a large number of patents held by various parties. It is

often held that patent filing strategies vary largely between discrete and complex industries.

10The aggregation of patenting activities on the firm levels involved great efforts consolidating subsidiaries of
large corporations. Detailed information on the cleaning and aggregation algorithms can be obtained from the
authors upon request. We would like to thank Bronwyn Hall forproviding us with software for this purpose. We
used this and undertook additional efforts to consolidate firm names.

11



Despite the widely acknowledged notion of a technology’s complexity there is no direct

measure of it nor is there an indirect construct related to complexity. Kusonaki et al.(1998)

andCohen et al.(2000) (footnote 44) provide schemes which classify industries as discrete or

complex based on ISIC codes. These classification schemes are based on qualitative evidence

gathered by the authors from various sources in order to separate different industrial sectors

into complex or discrete areas. A major drawback of a classification based on prior informa-

tion from industry codes is that is does not allow to analyse the influence of different levels of

complexity but only to distinguish the binary cases discrete and complex.

To improve on this, we measure complexity of a technology area through firms’ patenting

activities. Our measure is derived from to the degree of overlap between firms’ patent portfo-

lios. Such overlap leads to blocking dependencies among firms. If existing patents containing

prior art critical to the patentability of new inventions ina field are held by both firms, each

firm can block its rival’s use of innovations. Then, a firm can only commercialise a technology

if it gets access to a rival’s patented technology. In areas where products draw on technologi-

cal opportunities protected by numerous firms (complex technologies) we expect to observe a

large number of such dependencies. In discrete technologies the inverse should be true.

We capture blocking dependencies among firms by analysing the references contained in

patent documents. References to older patents or to non-patent literature are included in EPO

patents in order to document the extent to which inventions satisfy the criteria of patentability

(Harhoff et al.(2006)). Often, existing prior art limits patentability of an invention. For ex-

ample, the existence of an older but similar invention can reduce the patentability of a newer

invention. In these casescritical documents containing conflicting prior art are referenced in

patent documents and are classified as X or Y references by thepatent examiner at the EPO

during the examination of the patent application.11 If the patentability of a firm A’s inventions

is frequently limited by existing patents of another firm B, it is reasonable to assume that the

R&D of A is blocked by B to a certain degree. If the inverse is also true, A and B are in a mu-

tual blocking relationship which we call a blocking pair. Ifmore than two firms own mutually

blocking patents the complexity of blcoking relationshipsincreases and resolution of blocking

becomes increasingly costly. To capture more complex structures of blocking we compute the

numberTriples in which three firms mutually block each other’s patents. Figure2 provides a

graphical example of our complexity measure.

From a computational perspective, pairs and triples are identified using the following ap-

proach: For each firmi we analyse all critical patent references contained in firmi’s patents

applied for in a technology areaa over the current and the two preceding years (t − 2 to t)

and identify the owners of the referenced patent documents.In the next step we keep the most

frequently referenced firms (top 20) yielding annual lists of firms which are blocking firmi in

11A patent contains various different types of references – not all of them are critical. Often, related inventions
which are not critical for the patentability of the invention seeking patent protection are also included in the
patent document. The EPO provides a full classification of the references included in patent documents allowing
us to identify critical references which are classified as X or Y. TableA contains an overview of different types
of references contained in patents.
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Figure 2: Identification of our measures of a technology field’s complexity.

yeart.12 Pairs are then established if firmA is on firmB’s list of most frequently referenced

firms and, at the same time, firmB is on firm A’s list of most frequently referenced firms.

Finally, triples are formed if firmA and firmB, firm A and firmC and firmB and firmC

form pairs in the same year. We include the total number of existing triplesat in areaa and

yeart in our regression in order to analyse how the complexity of a technology area influences

firms patenting behaviour in this area.

Control variables

Fragmentation of prior art Ziedonis (2004) showed that semiconductor firms increase

their patenting activities in situations where patent holdings are largely fragmented across

different parties. Ziedonis’ fragmentation index has predominantly been studied in complex

industries (Ziedonis(2004), Schankerman and Noel(2006)) where increasing fragmentation

has been found to increase the number of firms’ patent applications. This has been attributed to

firms’ efforts to reduce potential hold-up by opportunisticpatentees owning critical or block-

ing patent rights – a situation which is often associated with the existence ofpatent thickets.

We construct an index of fragmentation of patent ownership for each firm based on the

fragmentation index proposed byZiedonis(2004):

Fragiat = 1 −

n
∑

j=1

sijt (17)

wheresijt is firm i‘s share of critical references pointing to patents held by firm j. Small

12The threshold of keeping only the 20 most frequently referenced patent owners is an arbitrary choice. Our
results are robust to different choices of the threshold level.
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values of this fragmentation index indicate that prior art referenced in a firm’s patent portfolio

is concentrated among few rival firms and vice versa.

Unlike previous studies of patenting in complex technologies relying on USPTO patent

data (Ziedonis(2004),Schankerman and Noel(2006)) we base the computation of the frag-

mentation index solely on critical references which are classified as limiting the patentability

of the invention to be patented (X and Y references). This distinction is not available in the

USPTO data. Computing the fragmentation index based on critical references should yield a

more precise measure of the hold up potential associated with fragmentation of patent holdings

in a technology area.

Technological diversity of R&D activities A firm’s reaction to changing technological or

competitive characteristics in a given technology area might be influenced by its opportunities

to strengthen its R&D activities in other fields. For example, if a firm is active in two tech-

nology areas it might react by a concentration of its activities in one area if competition in

the other area is increasing. If a firm is active in only one technology area, it does not similar

possibilities to react to increases in competitive pressure. In order to control for potential ef-

fects of opportunities to shift R&D resources we include thetotal number of technology areas

(Areasi,t) with at least one patent application filed by firmi in yeart.

Size dummies. While we do not explicitly model the influence of firm size on patenting

behaviour, it seems reasonable to assume that the cost of obtaining and upholding a patent

depends on the size of a firm. In particular, larger firms mightface lower legal cost due

to economies of scale, increased potential to source in legal services and accumulation of

relevant knowledge which in turn might lead to a different patenting behaviour than smaller

firms. For instanceSomaya et al.(2007), find that the size of internal patent departments

positively influences firms’ patenting propensity.

If the economies-of-scale argument holds, the cost of patenting should not be directly

related to size characteristics such as a firm’s number of employees, its total revenues or sales.

Rather, the cost of patenting can be assumed to be a function of the total amount of patents

filed by a firm. Therefore, we include a ’size dummy’ variable based on the number of patents

filed by a firm in a technology area in a given year in our regressions. We distinguish between

small and large patentees. These size categories are based on annual patent applications in a

given areaa. Firms belonging to the upper half of the distribution of patentees in a given year

are coded as large firms.

3.2 Descriptive analysis of patenting in Europe

In this section we provide descriptive aggregate statistics on patenting trends at the EPO. We

establish several stylized facts which provide support forour modelling approach.

Figure3 presents annual patent applications filed at the EPO between1978 and 2003. We

distinguish applications filed in complex and discrete technology areas using the categorisation
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Figure 3: Annual number of patent applications filed at the EPO by priority year. Note:
Blue line indicates total patent applications. Red line indicates patent applications in complex
technology areas. Green line indicates patent applications in discrete technology areas.

of Cohen et al.(2000). The Figure shows patenting grew strongly over this period, with the

main contribution coming from technology areas classified as complex. This development

is comparable to trends at the USPTO.Hall (2005) shows that the strong increase in patent

applications is is driven by firms patenting in the electrical, computing and instruments area

all of which are complex technology areas by the classification ofCohen et al.(2000).
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Figure 4: Average fragmentation index. Note: Blue line indicates average level of fragmen-
tation index in complex technology areas. Red line indicates average level of fragmentation
index in discrete technology areas.

Now we turn to explanations for the strong growth in patenting. First, consider a leading

explanation for increased patenting in complex technologyareas: the fragmentation of patent

rights in a complex technology area is likely to raise firms’ transactions costs as they must bar-

gain with increasing numbers of rivals in order to prevent hold up of their products.Ziedonis

(2004) andSchankerman and Noel(2006) show that increased fragmentation of patents leads
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to greater patenting efforts in the semiconductor and software industries respectively. Figure4

provides annual averages of the fragmentation index at the EPO for the years 1980 to 2003.13

Two observations derived from Figure4 are striking: First, fragmentation of ownership rights

fell steadily before 1995 and then increased gradually thereafter. Second, the difference in the

fragmentation index in complex and discrete technology areas is negligible.

Both observations raise the question whether the growth in patent applications can be at-

tributed to fragmentation alone. While the development of fragmentation in complex and

discrete areas is almost identical we observe striking differences in the growth of patent appli-

cations between complex and discrete technology areas.
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Figure 5: Average number of triples identified. Note: The blue line indicates average number
of triples in complex technology areas. The red line indicates average number of triples in
discrete technology areas.

Next we explore two explanations for the increase in patenting at the EPO that build on

the theoretical model developed above: firstly firms build patent portfolios to strengthen their

bargaining positions if complex bargaining situations aremore likely to arise and secondly the

pressure to obtain patents becomes more intense as technological opportunity declines. The

first of these explanations is similar to the explanation forpatenting derived from fragmenta-

tion of property rights: it also emphasises transactions costs increases derived from bargaining

over blocking patents. However, we believe that transactions costs also rise if a small number

of firms own patent rights that depend on the rights of other firms that also block each other.

Then, bargaining will become increasingly complex as blocking cannot be resolved through a

series of bilateral negotiations. Our measure of mutual blocking between three and more firms

(Triples) captures the degree to which complex blocking arises.

In Figure6 this measure is presented. The Figure presents annual averages of the number

of Triples in complex and in discrete areas.14 We observe very different developments of the

count of Triples in these two fields. The number of Triples remains largely stable at values

13The precise definition of this measure is given in Section3.1above.
14We distinguish complex and discrete using the classification suggested byCohen et al.(2000) here.
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well under 10 in discrete technology areas, while it increases strongly in complex technology

areas. It is reassuring to see that our measure of complex bargaining situations is greater in

complex technologies as previously defined byCohen et al.(2000).
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Figure 6: The left panel presents average non patent references per patent for complex (blue
line) and discrete (red line) technology areas. The right panel presents average non patent
references per patent for several complex technology areas. This panel focuses only on the
sample period we use for our regressions below.

This shows that blocking intensities almost certainly contributed to the strong increases in

patenting that we observe in Figure3. Next we turn to the development of technological op-

portunity. In our theoretical model Proposition2 indicates greater technological opportunity

in a complex technology should lower the pressure to patent.As noted in Section3.1we mea-

sure technological opportunity using changes in the rate ofreferences to non patent literature

within a technology area. This measure will provide information about variation in technolog-

ical opportunity between and across technology areas. The left panel of Figure3.2shows that

technological opportunity was generally greater in discrete technology areas after 1990, than

in complex technology areas. The right hand panel of the Figure shows that the average level

of non patent references in complex technology areas masks considerable variation across and

especially within complex technologies over time.

Note that the level of non patent references in the complex technology areas began to de-

cline just after 1992, which coincides with the date at whichthe growth in patent applications

at the EPO picked up as Figure3 shows. These descriptive results suggest that a multivariate

analysis of patenting levels based on the theoretical modelpresented above will prove to be

interesting.

To complete this section Table1 provides additional information on the distribution of

Triples across all 30 technology areas. This shows how significant the hold up potential mea-

sured by Triples is in the ICT technologies. The number of Triples is between five and six

times as large there as it is in other industries such as Handling, Printing which still exhibit

significant complexity.
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Table 1: The Distribution of Triples Between 1987 and 2002

Technology area Mean Median Std. dev. Minimum Maximum

Electrical machinery, Electrical energy24.23 20 8.99 10 42

Audiovisual technology 116.48 120 17.68 74 148

Telecommunications 99.64 93 39.17 27 166

Information technology 57.16 59 10.71 28 73

Semiconductors 62.84 63 17.89 26 91

Optics 57.30 58 12.02 42 77

Analysis, Measurement, Control 6.61 4 6.31 0 21

Medical technology 4.10 3 2.16 1 8

Nuclear engineering 0.95 1 1.17 0 4

Organic fine chemistry 3.77 2 4.03 0 15

Macromolecular chemistry, Polymers 16.00 14 8.17 4 32

Pharmaceuticals, Cosmetics 3.47 4 2.68 0 8

Biotechnology 0.00 0 0.00 0 0

Agriculture, Food chemistry 0.07 0 0.26 0 1

Chemical and Petrol industry 11.16 10 5.49 4 22

Chemical engineering 1.35 1 0.87 0 3

Surface technology, Coating 3.48 3 2.82 0 9

Materials, Metallurgy 2.41 2 2.12 0 6

Materials processing, Textiles, Paper 3.92 3 2.73 1 9

Handling, Printing 20.26 16 13.55 4 50

Agricultural and Food processing, 0.35 0 0.71 0 2

Environmental technology 3.23 0 4.73 0 15

Machine tools 1.91 1 1.57 0 5

Engines, Pumps and Turbines 21.72 15 21.10 3 69

Thermal processes and apparatus 0.37 0 0.62 0 2

Mechanical elements 2.33 2 2.14 0 7

Transport 16.54 14 12.00 2 50

Space technology, Weapons 0.00 0 0.00 0 0

Consumer goods 0.72 0 1.05 0 4

Civil engineering, Building, Mining 0.00 0 0.00 0 0
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4 An Empirical analysis of patenting behaviour

In this section we derive an empirical model with which to test the theory advanced in Section

2. Then, we describe the sample and provide results.

4.1 An empirical model of patenting behaviour

Building on the results of section2 we estimate a model predicting the level of patent applica-

tions filed by a firm in a given year at the EPO. It is well known that firms’ patent applications

are highly persistent, reflecting long term investments in R&D capacity. To deal with this we

include a lagged dependent variable in our model and estimate the following relationship:

Ai,t = β0 + βAAi,t−1 + βOOi,t + βCCi,t + βX
′X i,t

+ βACAi,t−1Ci,t + βOCOi,tCi,t + βOCLOi,tCi,tLi,t + βOLOi,tLi,t (18)

+ χi + ζit , where:

Ai,t − Patent Applications Oi,t − Technological Opportunity: Non Patent References

Ci,t − Complexity: Triples X i,t − Control variables: Fragmentation, Area count, Size(L)

This specification allows us to control for effects of technological opportunityβO and com-

plexity βC in discrete technologies as well as in complex technologiesthrough the interaction

terms. We also include interaction terms that allow us to distinguish the patenting behaviour

of large and small firms in complex and discrete technologies. We do this as our theoretical

model indicates that firms’ patenting behaviour will dependon the share of patents they expect

to receive on a given technological opportunity.

The empirical model allows us to test the following hypotheses that reflect the predictions

derived from the theoretical model:

H1 : Increased technological opportunity lowers the level of patent applications in complex

technologies (Proposition2);

H2 : Increased complexity of a technology raises the level ofpatent applications in a com-

plex technologies (Proposition3);

H3 : Increased technological opportunity raises the level of patent applications in discrete

technologies (Proposition4).

Hypothesis 1 implies thatβO + βOC × Ci,t < 0, hypothesis 2 implies thatβC + βOC ×

Oi,t + βAC × Ai,t > 0 and hypothesis 3 implies thatβO > 0.

4.2 Data and descriptive statistics

Our dataset consists of173, 448 observations of firms patenting in specific technology areas

in a given year. Our data covers the period between 1978 when the EPO began operating
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and 2003. We excluded patentees from the sample in two steps:first, we excluded all those

patentees with fewer than10 patent applications in a given technology area over the entire

period, second we excluded those patentees who had fewer than three years of positive patent

applications in a technology area in the fifteen years after 1987. These steps were necessary to

exclude firms that cannot be considered to have a long term patenting strategy. Only patentees

with a longer patenting horizon will be affected by changes in technological opportunity, or

the degree of blocking over time.

Table2 shows that most firms remaining in the sample have a low annuallevel of patent

applications per area (5.43) but are active in 8 or 9 different technology areas. The large

dummy splits firms almost exactly into the largest and smallest firms in the sample. The

median technology area contained 5 Triples in a given year. The level of non patent references

in the average technology area is 1.151. The table also contains information about sample

statistics for the year 1992, after which patent applications increased markedly as Figure3

shows.

A comparison of sample means and means for 1992 shows that firms patent in more areas,

face more Triples and generate fewer non patent references after 1992 than before. This

confirms what we have shown graphically in the previous section.

Table 2: Descriptive statistics for the sample (1987-2002)

Variable Aggregation Mean Median Standard Mini- Maxi-

level deviation mum mum

Patent applications Firm 5.431 1.000 18.594 0.000 752.000

log Patent applications Firm 1.051 0.693 1.052 0.000 6.624

Areas Firm 8.751 7.000 6.027 0.000 30.000

Large dummy Firm 0.504 1.000 - 0.000 1.000

Non Patent References Area 1.151 0.894 0.827 0.174 4.532

Triples Area 18.480 5.000 30.085 0.000 166.000

Fragmentation Area 0.001 0.000 0.006 0.000 0.355

Observations= 173,448

Sample statistics for 1992

Patent applications Firm 4.235 1.000 14.024 0.000 387.000

log Patent applications Firm 0.923 0.693 0.990 0.000 5.961

Areas Firm 7.746 6.000 5.563 0.000 27.000

Large dummy Firm 0.438 0.000 - 0.000 1.000

Non Patent References Area 1.205 0.970 0.747 0.290 3.554

Triples Area 15.761 3.000 25.348 0.000 104.000

Fragmentation Area 0.001 0.000 0.006 0.000 0.168

Observations= 11,325
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Table3 provides additional information about the structure of thepanel which we employ.

It shows that in total there are 2074 different firms in the dataset. Each firm applied for an

average of 628 patents across all areas and years included inthe sample. The lower half of the

table shows that our sample contains55.8% of all patents applied for at the EPO and24.8% of

patentees.

We treat firms operating in several technology areas as separate observations in each area.

We do this to control for area specific patenting behaviour ofindividual firms. Where we use

panel data, the panel is unbalanced due to entry and exit of firms into technology areas.

Table 3: Panel descriptives for the sample

Firm level (n=2074) Mean Median SD

Total patents 628.27 205 1944.94

Total patents (annual) 37.02 12 111.65

Technological areas (annual) 5.54 4 4.56

Area-Year level (n=650) Mean Median SD

Total patents in area 2594.23 2310 1778.87

Total patents in sample 1449.35 1012 1695.86

Total firms in area 1077.62 893 668.14

Total firms in sample 266.84 263 253.71

Triples 14.67 2 27.69

Non Patent References 0.98 0.75 0.75

Fragmentation 0.001 0 0.009

4.3 Results

In this section we set out empirical results. First, we provide results from fixed effects and

ordinary least squares estimation. These results are knownto be biased as we include a lagged

dependent variable in our model. However, they provide lower and upper bounds on the

values of the lagged dependent variable for GMMBond (2002). We also provide results

from dynamic panel estimates using the system GMM estimatorwith orthogonal deviations

as proposed byArellano and Bover(1995).

We do not reject the predictions of our theoretical model. Inparticular, we find that greater

technological opportunity reduces firms’ patenting in complex technologies. This effect is

diminished for very large firms but remains present. We also find that growing complexity of

blocking has the effect of increasing firms’ patenting activity. Additionally, we show that there

is weak evidence to suggest that fragmentation of patent ownership affects firms incentives to

patent in complex technologies once we control for effects of complexity and technological

opportunity.

We estimate OLS and fixed effects models (Table4) to provide a baseline against which
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to judge the results of our GMM models (Table5). Table4 includes simple models as well as

models that test our hypotheses through the interaction ofTriples with Non patent references

(NPR).Triples measure complexity of blocking whileNon patent references capture the level

of technological opportunity in a technology area at a giventime.

Table 4: Coefficients for Simple Models of Patent Applications

OLS models Fixed effects models

Variable OLS1 OLS2 OLS3 FE1 FE2 FE3

log Patentcountt−1 0.599*** 0.583*** 0.583*** 0.172*** 0.157*** 0.156***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

log Patentcountt−1× Triples 0.001*** 0.001*** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000)

Non Patent References (NPR)0.064*** 0.076*** 0.067*** 0.002 0.016 -0.007

(0.002) (0.002) (0.003) (0.007) (0.008) (0.009)

NPR× Triples -0.002*** -0.002*** 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

NPR× Triples× Large 0.000* 0.000

(0.000) (0.000)

NPR× Large 0.020*** 0.038***

(0.004) (0.006)

Fragmentation 29.910*** 30.332*** 30.352*** 34.246*** 33.811*** 33.825***

(0.269) (0.320) (0.320) (0.346) (0.392) (0.392)

Fragmentation× Triples -0.028*** -0.028*** 0.016 0.016

(0.007) (0.007) (0.009) (0.009)

Triples 0.000*** 0.002*** 0.002*** 0.001*** 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Areas 0.018*** 0.018*** 0.018*** 0.084*** 0.084*** 0.084***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Large 0.279*** 0.282*** 0.256*** 0.305*** 0.306*** 0.263***

(0.004) (0.004) (0.006) (0.005) (0.005) (0.009)

Year dummies YES YES YES YES YES YES

Primary area dummies YES YES YES YES YES YES

Constant 0.122*** 0.116*** 0.128*** 0.029 0.031* 0.060***

(0.011) (0.011) (0.012) (0.015) (0.016) (0.016)

R-squared 0.671 0.672 0.672 0.300 0.301 0.301

N 173448 173448 173448 173448 173448 173448

*p<0.05, ** p<0.01, *** p<0.001
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Table 5: Coefficients for System GMM Models of Patent Applications

Allowing correlation Assuming no correlation

with fixed effects with fixed effects

Variable SGMM MIN SGMM END DGMM END SGMM END2 SGMM NPR SGMM F

log Patentcountt−1 0.684*** 0.678*** 0.863*** 0.735*** 0.715*** 0.915***

(0.072) (0.068) (0.091) (0.058) (0.047) (0.039)

log Patentcountt−1× Triples -0.017*** -0.015*** -0.012*** -0.011*** -0.007*** -0.004***

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Non Patent References (NPR) 1.581*** 1.386*** 1.198*** 0.968*** 0.271*** 0.171

(0.221) (0.182) (0.164) (0.113) (0.019) (0.119)

NPR× Triples -0.038*** -0.034*** -0.028*** -0.024*** -0.008*** -0.003

(0.005) (0.004) (0.004) (0.002) (0.001) (0.003)

NPR× Triples× Large 0.006*** 0.006*** 0.006*** 0.005*** 0.004*** 0.002***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

NPR× Large -0.436*** -0.425*** -0.262*** -0.397*** -0.466*** -0.506***

(0.055) (0.052) (0.033) (0.042) (0.034) (0.032)

Fragmentation -15.234* -12.482* -13.998* -4.848 -1.448 -2.313

(6.510) (6.192) (6.123) (3.654) (1.210) (1.946)

Fragmentation× Triples 0.262** 0.247* 0.181* 0.188* 0.102* 0.156*

(0.100) (0.097) (0.091) (0.083) (0.044) (0.071)

Triples 0.063*** 0.057*** 0.042*** 0.040*** 0.015*** 0.007

(0.007) (0.006) (0.005) (0.004) (0.001) (0.004)

Areas 0.095*** 0.096*** 0.031* 0.086*** 0.085*** 0.058***

(0.010) (0.010) (0.014) (0.008) (0.007) (0.006)

Large 0.430*** 0.409*** 0.257*** 0.325*** 0.442*** 0.412***

(0.087) (0.081) (0.053) (0.065) (0.049) (0.048)

Year dummies YES YES YES YES YES YES

Primary area dummies YES YES YES YES YES YES

Constant -1.672*** -1.515*** -1.151*** -0.597*** -0.526***

(0.198) (0.167) (0.105) (0.046) (0.106)

N 173448 173448 171380 173448 173448 173448

m1 -12.75267 -13.49454 -9.115675 -16.66536 -20.32686 -28.27661

m2 4.690134 5.564835 5.686894 9.293913 12.525 20.07668

m3 1.093296 .7390595 -.4191068 -.4131314 -1.354271 -1.478497

Hansen 2.178791 10.67657 7.067067 70.62775 184.0212 288.5185

Degrees of freedom 1 5 4 9 7 7

* p<0.05, ** p<0.01, *** p<0.001

1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses

2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It is distributed asχ2 under the null of instrument

validity, with degrees of freedom reported below.
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4. In all cases GMM instrument sets were collapsed and lags were limited.

We also report specifications that allow the effect ofNon patent references and ofTriples to vary

according to size of the firm’s patent portfolio. The OLS models support Proposition2: greater tech-

nological opportunity (Non Patent References) reduces firms’ patenting efforts in complex technology

areas. In contrast there is no clear result for3. The fixed effects models provide no clear evidence on

either Proposition. Note that in case of the fixed effects models the ratio ofσ2
η/σ

2
ν is 0.81. It has been

shown that the finite sample bias of the system GMM estimator is large if this ratio is large, which is

not the case here (Bun and Kiviet(2006),Hayakawa(2006)).

Table5 presents results of six models estimated with system and difference GMM using orthogonal

deviations (Arellano and Bover(1995)).15 The models presented differ in the number of overidentify-

ing restrictions employed as well as assumptions about the correlation of the explanatory variables with

fixed effects. The four models reported in the central part ofthe table allow for correlation between all

explanatory variables apart fromTriples with fixed effects. In the two specifications on the right side

of the table we assume that subsets of the explanatory variables are uncorrelated with fixed effects.

Note that the number of observations in our dataset implies that T/N → 0. This implies that a

systems GMM estimator (Blundell and Bond(1998)) using forward deviations is asymptotically con-

sistent (Alvarez and Arellano(2003); Hayakawa(2006)). We employ this estimator as the persistence

of the patenting series is very high in our sample: the coefficient on the lagged dependent variable in

an AR1 model with time and primary area dummies is0.92. Blundell and Bond(1998) note that a dif-

ference GMM estimator will be affected by a weak instrumentsproblem in this context. Specification

DGMM END reported in Table5, which is estimated by difference GMM, does not suggest thatthe

weak instruments problem is severe here. However, the coefficient on the lagged dependent variable

is somewhat above that reported for the comparable systems estimators. It is also significantly above

the coefficients from the OLS regressions reported in Table4. Therefore, we focus our analysis on the

results from the system estimators. Note however that the substantive results provided by the difference

estimator are the same as those from the systems estimators.

In all models reported in Table5 the instrument sets were collapsed16 and instrumenting lags were

limited as described below. This was done as the Hansen test and difference in Hansen tests rejected the

overall instrument sets as well as individual instruments where larger instrument sets were employed.

Specification SGMM END2 illustrates how sensitive the Hansen test is to the size of the instrument set

here. This specification is identical to SGMM END3, we just allow for an extra lag on the instrument

sets for the endogenous variables in this specification. Thespecification is rejected by the Hansen test

at conventional significance levels.

All models reported in Table5 contain the following explanatory variables:Non patent references,

Triples, Fragmentation, Area count, Large dummy and the lagged dependent variable as well as in-

teractions of some of these variables. We considerLarge and Area count to be endogenous as they

reflect decisions about how widely and where to engage in research which may be contemporaneous

with decisions determining the level of patent applications. We consider the remaining variables to

be predetermined since they depend in large part on the aggregated decisions of rival firms. Finally

note that we include only year and primary area dummies as well as Triples in the levels equation as

15All models were estimated withxtabond2 in Stata 9.2 . This package is described in (Roodman(2006)).
16Collapsing instrument sets reduces the number of moment conditions used for GMM (Roodman(2006)).
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it is likely that the fixed effects are correlated with differences in the remaining explanatory variables.

Triples is the only variable that reflects purely technology area specific characteristics which may be

assumed to be orthogonal to firm specific effects.

We estimate two models in which we treat Fragmentation (GMM F) and Non patent references

(GMM NPR) as uncorrelated with fixed effects. Results from the Hansen tests for both specifications

reported in Table5 show that these models are clearly rejected.

Our preferred models are reported as SGMM MIN and SGMM END in Table5. In SGMM MIN we

restrict the number of instruments such that the model is just overidentified.Hayakawa(2006) argues

that such a minimum instruments specification is unbiased insettings where T is fixed and N→ ∞.

The specification SGMM END includes one additional lag for the endogenous variables. Results from

these two specifications are statistically indistinguishable.

Focusing on these two specifications we find that all our theoretical predictions are borne out by

the data. First, we find that in discrete technologies additional technological opportunity raises firms’

patenting rates. The coefficient forNon patent references is positive and highly significant. Even in

case of large firms the overall effect remains positive. Thisshows that Hypothesis III cannot be rejected.

Second, the coefficient on the interaction ofNon patent references andTriples is negative. The overall

effect of additional Non patent references on patenting becomes negative if there are more than42

Triples in a technology area. As Table1 shows this is the case in at least one year for eight of the

technology areas in our sample. For Audiovisual technologyand Optics it is always the case! In case

of larger firms the predicted effects of complexity already arise when the number of Triples is above

4. This is always the case for9 technology areas in our sample! These findings show that Hypothesis

I cannot be rejected in our sample. Finally, the coefficient on Triples is positive and greater than that

on the sum of interactions ofTriples with Non patent references and . This shows that greater blocking

complexity and therefore greater complexity of a technology area increase firms’ levels of patenting.

Therefore, we cannot reject Hypothesis II.

Additionally, our results indicate that the persistsence of patenting decreases as technology areas

become more complex. This suggests that patentees are more responsive to their competitors’ patenting

behaviour in complex technology areas than in discrete technology areas. Finally, our results show that

fragmentation of patent portfolios increases firms’ patenting efforts in technology areas in which there

are more than50 Triples, i.e. if blocking complexity is high. This effect confirms the findings of

Ziedonis(2004). We also find that fragmentation of patent ownership in discrete technology areas has

negative effects on firms’ patenting efforts.

5 Conclusion

Patent applications have been increasing steeply at the USPTO and the EPO since 1984 and 1992

respectively. In both cases these increases have raised questions about the operations of the affected

patent offices as well as effects of these trends on economic activity more generally (F.T.C.(2003); ?

andvon Graevenitz et al.(2007)). The increases in patenting are concentrated in complex technologies

(Hall (2005) and von Graevenitz et al.(2007)) which are prone to the formation of patent thickets.

Resulting increases in transactions costs affect technologies that are central to the large productivity

increases recorded in the recent pastJorgenson and Wessner(2007).

There is a great deal of evidence that patenting has increased in response to evolution of the legal en-
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vironment, specifically in the United States, changes in themanagement of R&D and patenting, increas-

ing complexity of technology and more strategic behaviour of patent applicants (Kortum and Lerner

(1998); Hall and Ziedonis(2001); Ziedonis(2004)). The contribution of technological fecundity to

current patenting trends is less well understood.

We provide a model of patenting that encompasses discrete and complex technologies. The model

captures effects of technological opportunity and technological complexity on firms’ patenting incen-

tives in contexts in which firms’ interact strategically through the patent system. We show that greater

technological opportunity will raise patenting in discrete technologies but will lower it in complex

technologies. We also show that greater complexity of technologies will raise firms’ patenting levels.

Using data on patenting in Europe we show that our model predicts firms’ patenting behaviour well.

All predictions of the theoretical model are confirmed. We capture the dynamic aspects of patenting

behaviour by including a lagged dependent variable in our empirical specifications. In order to control

for the endogeneity this creates we estimate our models using GMM estimators (Arellano and Bover

(1995); Blundell and Bond(1998); Alvarez and Arellano(2003)).

In order to estimate our model we derive a new measure of blocking complexity which is derived

from patent data. This measure captures the extent to which patent thickets have formed in specific

technology areas. The measure also shows us how complex different technologies are. With the help

of this measure we show that patent thickets exist in nine outof thirty technology areas at the EPO.

Our data indicate that the problem of patent thickets at the EPO is getting worse in recent years. In

future work we intend to investigate whether this has measurable effects on the productivity of firms’

R&D investments.
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Appendix

A Complex and discrete technologies

Table 6: Classification of technology areas according to OST-INPI/FhG-ISI

Area Code Description Classification

1 Electrical machinery, electrical energy Complex

2 Audiovisual technology Complex

3 Telecommunications Complex

4 Information technology Complex

5 Semiconductors Complex

6 Optics Complex

7 Analysis, measurement, control technology Complex

8 Medical technology Complex

9 Nuclear engineering Complex

10 Organic fine chemistry Discrete

11 Macromolecular chemistry, polymers Discrete

12 Pharmaceuticals, cosmetics Discrete

13 Biotechnology Discrete

14 Agriculture, food chemistry Discrete

15 Chemical and petrol industry, basic materials chemistry Discrete

16 Chemical engineering Discrete

17 Surface technology, coating Discrete

18 Materials, metallurgy Discrete

19 Materials processing, textiles paper Discrete

20 Handling, printing Discrete

21 Agricultural and food processing, machinery and apparatus Discrete

22 Environmental technology Complex

23 Machine tools Complex

24 Engines, pumps and turbines Complex

25 Thermal processes and apparatus Complex

26 Mechanical elements Complex

27 Transport Complex

28 Space technology, weapons Complex

29 Consumer goods and equipments Complex

30 Civil engineering, building, mining Complex

Description of the 30 technology areas contained in the OST-INPI/FhG-ISI technology nomenclature.

We classified the 30 technology areas as complex or discrete attempting to replicate the classification

of Cohen et al.(2000).
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Type Description

X Particularly relevant documents when taken alone (a claimed invention cannot
be considered novel or cannot be considered to involve an inventive step)

Y Particularly relevant if combined with another document ofthe same category
A Documents defining the general state of the art
O Documents referring to non-written disclosure
P Intermediate documents (documents published between the date of filing and the

priority date)
T Documents relating to theory or principle underlying the invention (documents

which were published after the filing date and are not in conflict with the appli-
cation, but were cited for a better understanding of the invention)

E Potentially conflicting patent documents, published on or after the filing date of
the underlying invention

D Document already cited in the application
L Document cited for other reasons (e.g., a document which maythrow doubt on a

priority claim)

Table 7: Overview over different types of references included in the search report by the EPO.
Source: EPO Guidelines for Examination in the European Patent Office, 2003.

31


	Introduction
	Incentives to patent in discrete and complex technologies
	Costs and benefits of patenting
	Comparative statics of this model


	Description of the dataset and of important patenting trends
	Dataset and derivation of variables
	Measures of patenting, complexity and technological opportunity
	Control variables

	Descriptive analysis of patenting in Europe

	An Empirical analysis of patenting behaviour
	An empirical model of patenting behaviour
	Data and descriptive statistics
	Results

	Conclusion
	Complex and discrete technologies

