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Abstract

We model a two-stage R&D project with an abandonment option.
Two types of uncertainty influence the decision to start R&D. Demand
uncertainty is modelled as a lottery between a proportional increase and
decrease in demand. Technical uncertainty is modelled as a lottery be-
tween a decrease and increase in the cost to continue R&D. Both lotteries
become more divergent when the difference between the outcomes of the
lottery increases. A potential entrant is endowed with a superior technol-
ogy and threatens to drive the incumbent out of the market. The incum-
bent has a time lead over the entrant and can obtain the same superior
technology by completing the R&D project before the entrant can enter
the market. We derive under which lottery probabilities more divergent
demand and supply lotteries positively or negatively affect the decision to
start R&D. We test the derived hypotheses using a unique dataset con-
taining proxies for demand and technical uncertainty as well as perceived
entry threat for about 4000 German firms in manufacturing and services
(CIS IV). Strongly confirming our model predictions, we find that for
firms facing lotteries where the good outcome is more likely to prevail (i)
a 10% increase in the degree of divergence of the demand lottery increases
the likelihood of undertaking R&D by 1.3% and (ii) a 10% increase in
the degree of divergence of the supply lottery increases the likelihood of
undertaking R&D by 1.5%. For firms facing a demand lottery where the
bad outcome is more likely to prevail, a more divergent demand lottery
decreases the probability of undertaking R&D significantly.
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1 Introduction

The decision to start a Research and Development (R&D) project is one of the
most challenging firm decision problems. R&D projects usually take time to
complete, their investments are irreversible and therefore represent sunk costs
and above all, they are highly uncertain. Models of investment decisions in an
uncertain environment have permeated different parts of the investment litera-
ture, ranging from the neoclassical theory of investment, over the real options
approach to oligopolistic settings explicitly accounting for strategic interaction.

The neoclassical theory of investment postulates that an investment project
should be undertaken whenever its net present value (NPV ) is positive (Jor-
genson, 1963; Eiser and Nadiri, 1968). This theory assumes that the project is
either completely reversible or a now-or-never investment opportunity. However,
the values of most projects evolve dynamically over time as they are contingent
on fluctuating input and output prices. Hence, the opportunity to change the
timing of the investment carries an intrinsic value. This observation laid the
foundation of the real options approach.

The main insight of the real options approach is that it is only optimal to invest
when the present value of the expected cash flow exceeds the cost of investment
by a strictly positive amount to compensate for the loss of the option value to
delay (we refer to Dixit and Pindyck, 1994 for an excellent survey). The first
papers in this field focus on individual discrete projects (Brennan and Schwartz,
1985; McDonald and Siegel, 1985; McDonald and Siegel, 1986). The seminal
paper of Pindyck (1988) studies incremental capacity investment, followed by
Bertola and Caballero (1994) and Dixit (1995). By modelling the effect of
two types of frictions, adjustment costs and irreversibility, on firms’ investment
decisions, Abel and Eberly (1994) and Abel et al. (1996) link the adjustment
cost approach and the real options approach in a unified framework.

The neoclassical as well as the real options theory consider optimal investment
behavior of a firm in isolation from its competitors. Typically, competitive inter-
actions in the product market are prevalent. Contributions linking the frame-
work of irreversible investment to the competitive equilibrium with industry-
wide uncertainty are Leahy (1993) and Pindyck (1993a). However, many mar-
kets are characterized by a relatively small number of firms. In such oligopolistic
settings, strategic interaction must be explicitly accounted for. Grenadier (2000)
summarizes studies combining game theoretical analysis with the real options
methodology.

While most of the literature considers uncertainty in input and output prices,
for R&D projects other sources of uncertainty are possible. Grenadier and Weiss
(1997) and Farzin et al. (1998) focus on uncertainty in the technological progress.
Besides input cost uncertainty, Pindyck (1993b) also considers a second type of
cost uncertainty, namely technical uncertainty. It implies that, although the
input prices are known, the firm does not know at the beginning the amount
of time, effort and materials ultimately needed to complete the project. Impor-
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tantly, this type of cost uncertainty can only be solved by starting the R&D
project. Market uncertainty is related to the future value of the innovation
which is strongly determined by market demand (Tyagi, 2006). For example,
if firms have successfully developed the new product or production technology,
uncertainty still exists about market acceptance and hence innovation rents.

Empirical studies focusing on the effect of uncertainty on aggregate investment
use the unconditional standard deviation of a time series –such as past changes
in inflation, in real exchange rates or in the risk premium– or a more compli-
cated prediction model as uncertainty proxies (see among others Ferderer, 1993b
[US]; Episcopos, 1995 [US]; Darby et al., 1999 [France, Germany, US]; Calcagnini
and Saltari, 2000 [Italy]; Goel and Ram, 2001 [9 OECD countries]).

Empirical work examining the impact of uncertainty on investment using in-
dustry data include Goldberg (1993) [US], Huizinga (1993) [US], Caballero and
Pindyck (1996) [US], Ghosal and Loungani (1996) [US], Bell and Campa (1997)
[EU, US], Ghosal and Loungani (2000) [US] and Temple et al. (2001) [UK]. For
example, Caballero and Pindyck (1996) measure uncertainty by the variance of
the marginal revenue product of capital. They find that increased uncertainty
positively affects the investment threshold that spurs irreversible investment but
the quantitative effect is modest. Ghosal and Loungani (1996) provide evidence
of price uncertainty exerting a negative effect on investment in the relatively
competitive industries. Huizinga (1993) finds that wage and material cost un-
certainty adversely affects investment while price uncertainty has the opposite
effect.

Empirical evidence on the impact of uncertainty on firm-level investment is
given by Dorfman and Heien (1989) [US], Ferderer (1993a) [US], Leahy and
Whited (1996) [US], Guiso and Parigi (1999) [Italy], Pattillo (1998) [Ghana],
Ogawa and Suzuki (2000) [Japan], Green et al. (2001) [Poland], Peeters (2001)
[Belgium, Spain], Henley et al. (2003) [UK], Bloom et al. (2007) [UK] and
Czarnitzi and Toole (2008) [Germany]. In general, the uncertainty variable is
measured in three ways: (i) as a forward-looking indicator based on objective
data, (ii) as a measure of the subjective perception of risk of the entrepreneur
or (iii) as a measure based on the firm’s past experience. Among others, Leahy
and Whited (1996) belong to the first group. They use the variance of the
firm’s daily stock returns as a measure of uncertainty, arguing that this variance
captures higher demand or factor price volatility. The authors find that higher
uncertainty lowers investment. Guiso and Parigi (1999) belong to the second
group. They use survey data on managers’ subjective distributions of future
demand growth to estimate the variance of firm-level demand shocks. The
authors find that the negative effect of uncertainty on investment is stronger for
firms with more irreversible investment and for firms with substantial market
power. Czarnitzki and Toole (2008) belong to the third group. They proxy
uncertainty by the variance of the share of the firm’s sales with new products in
a pre-sampled period. The authors find that product market uncertainty reduces
R&D investments with the negative effect being dampened if firms receive R&D
subsidies.
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Our paper contributes theoretically and empirically to the literature reviewed
above. From a theoretical point of view, we study R&D decisions in the presence
of entry threat under two types of uncertainty, demand uncertainty and technical
uncertainty. Our model is a generalization of Lukach et al. (2007). We model a
R&D project as a two-stage game where the incumbent must decide at the first
stage to start and at the second stage to continue R&D. The decision to start
is influenced by on the one hand demand uncertainty modelled as a lottery
between a proportional increase (=good state) and decrease (=bad state) in
demand and on the other hand technical uncertainty modelled as a lottery
between a decrease (=good state) and increase (=bad state) in the cost to
continue R&D. In comparing two lotteries, a lottery is more favorable (more
unfavorable) than another lottery if the probability of the good state of the
former is higher (lower) than the probability of the good state of the latter.
In comparing two lotteries with equal probabilities, a lottery is more divergent
(less divergent) than another lottery if the difference between the good and the
bad state is larger (smaller) in the former than in the latter. A potential entrant
is endowed with a superior technology and threatens to drive the incumbent out
of the market. The incumbent has a time lead over the entrant and can obtain
the same technology by completing the R&D project before the entrant can
enter the market. Strategic interaction takes the form of preemptive behavior,
where the investment of the incumbent discourages the entrant to enter the
market. In our model, two forces weaken the incumbent’s option to delay the
investment: the incumbent’s option to abandon R&D in the second stage (see
also Bar-Ilan and Strange, 1996; Alvarez and Keppo, 2002) and preemptive
competition (see also Kulatilaka and Perotti, 1998; Cottrel and Sick, 2002).
We derive under which lottery probabilities more divergent demand and supply
lotteries positively or negatively affect the decision to start R&D. We find that a
more divergent demand (supply) lottery cannot negatively affect the probability
of starting R&D when the lotteries are such that an increase in demand or
a decrease in the cost are more likely to prevail than a decrease in demand
or an increase in the cost respectively. Under mild assumptions, relating (in
the absence of technical uncertainty) the cost of starting R&D to the cost of
continuing R&D and the total cost of the R&D project to the profit gain, we
find that the more unfavorable the lotteries become, i.e. the more likely it is
that the firm experiences a decrease in demand or an increase in the cost, the
more divergent the demand (supply) lottery must be in order to positively affect
the probability of starting R&D.

From an empirical point of view, we test the hypotheses derived from the theo-
retical model using data from the fourth Community Innovation Survey (CIS)
data in Germany. The uniqueness of our data lies in the availability of proxies
for the degree of divergence of the demand and supply lotteries as well as per-
ceived entry threat for about 4000 firms to explain actual and planned R&D
investments. We strongly believe that exploiting this kind of firm heterogeneity
is the only way to credibly provide empirical evidence of the uncertainty-R&D
investment relationship at the firm level. This belief is motivated by the ob-
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servation that the results about the effect of uncertainty on investment, both
quantitatively and qualitatively, greatly vary across studies as soon as the anal-
ysis is performed using more aggregated data or taking less firm heterogeneity
regarding uncertainty into account. To the best of our knowledge, there is no
large-scale econometric study analyzing the effect of two types of uncertainty,
one on the demand side and one on the supply side, on the decision to invest
in R&D projects. Our main results, strongly confirming our model predictions,
are that for firms facing lotteries where the good state is more likely to prevail
(i) a 10% increase in the degree of divergence of the demand lottery increases
the likelihood of undertaking R&D by 1.3% and (ii) a 10% increase in the de-
gree of divergence of the supply lottery increases the likelihood of undertaking
R&D by 1.5%. For firms facing a demand lottery where the bad state is more
likely to prevail, a more divergent demand lottery decreases the probability of
undertaking R&D significantly.

The remaining part of the paper is organized as follows. Section 2 provides
a theoretical analysis of R&D decisions under uncertainty. The comparative
statics of section 3 allow us to derive testable hypotheses on the relation between
demand and technical uncertainty and the decision to start R&D. Section 4
presents the empirical analysis. Section 5 concludes.

2 A theoretical analysis of R&D decisions under
uncertainty

2.1 The model

The incumbent is producing a homogeneous good at unit cost c ∈ [0, P ], where
P ∈ [0, 1] denotes the normalized output price. A potential entrant is endowed
with a superior technology that, for simplicity, allows him to produce at a zero
unit cost. He faces an entry cost equal to ω ∈ R++. Upon entry, both firms
engage in Bertrand competition.

We model a R&D project as a two-stage game where the incumbent must de-
cide at the first (second) stage to start (continue) R&D. This captures more
realistically R&D outcomes as a sequence of successive decisions rather than as
a result of an irreversible one-shot decision. Furthermore, by allowing the in-
cumbent to abandon the R&D project in the second stage, we are able to study
the effect of an abandonment option on optimal investment decisions. In our
model, two types of uncertainty, one on the demand side and one on the supply
side, influence the decision to start. The incumbent has a time lead over the
potential entrant. When the incumbent starts and continues R&D, he obtains
the same superior technology as the potential entrant before the latter can enter
the market. Figure 1 illustrates the game tree.
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Figure 1 Game tree. At t=0, the incumbent decides whether to start R&D. Before

t=1, nature (N) reveals the good/bad state (G/B) on the demand and supply side

(the true state on the supply side is of no influence when the incumbent decides not

to start R&D). At t=1, the incumbent decides whether to continue R&D. At t=2, the

potential entrant, fully informed about the incumbent’s decisions, decides whether to

enter. At t=3, final outcomes are realized.

At time zero, the incumbent has to decide whether to start R&D at a known
cost I0 ∈ R++ but under an unknown state of the world. There are four possible
states of the world, depending on the combination of a good/bad state on the
demand and supply side. On the demand side, the good/bad state manifests
itself as a proportional increase or decrease in demand, parameterized by θ ∈
[0, 1]. A priori, true demand is a lottery, i.e. the inverse market demand function
D(P, θ) equals (1 + θ) (1− P ) with probability pθ ∈ [0, 1] and (1− θ) (1− P )
with probability (1− pθ). On the supply side, the good/bad state manifests
itself as a decrease or an increase in a known cost I1 ∈ R++ to continue R&D,
parameterized by λ ∈ [0, I1]. A priori, the true cost to continue R&D is a lottery,
i.e. equal to (I1 − λ) with probability pλ ∈ [0, 1] and (I1 + λ) with probability
(1− pλ). We assume that all parameters are known beforehand and that both
lotteries are independent. Before time one, nature (N) reveals the true state of
the world.

At time one, the incumbent makes the decision whether to continue R&D.

At time two, the incumbent obtains the superior technology if he continued
R&D. Having perfect knowledge about the incumbent’s decisions, the potential
entrant makes his entry decision. Upon a positive entry decision, the entrant
enters the market, producing at a zero unit cost.

At time three, the final market structure is realized and the game ends.

2.2 Optimal entry decision and payoffs

Optimal entry decision

The final market structure is never a duopoly. Indeed, if the incumbent does not
possess the superior technology, the potential entrant can push the incumbent
out of the market by setting the price slightly under the incumbent’s unit pro-
duction cost. However, entry is only optimal when monopoly profits are higher
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than or equal to the entry cost. If the potential entrant does not enter, the
incumbent stays a monopolist. If the incumbent does possess the superior tech-
nology, entry is never optimal. The potential entrant knows that in equilibrium
price equals marginal cost and hence profits equal zero, which does not cover
the entry cost.

Payoffs

In equilibrium, the monopolist sets P (c) = 1+c
2 and the corresponding profits

are π(c) = (1−c)2
4 for all c ∈ [0, P ].

In order to characterize the optimal R&D decisions of the incumbent, we present
the incumbent’s payoffs that correspond with the bottom row outcomes of Figure
1.

Under scenarios 1, 3, 5 and 7, the incumbent possesses the superior technology
and entry is never optimal. Therefore, we only present the incumbent’s payoffs
under b, which equal:

1b : (1 + θ)π(0)− I0 − (I1 − λ) 5b : (1− θ)π(0)− I0 − (I1 − λ)
3b : (1 + θ)π(0)− I0 − (I1 + λ) 7b : (1− θ)π(0)− I0 − (I1 + λ)

Under scenarios 2, 4, 6, 8, 9 and 10, the incumbent does not possess the superior
technology. Hence, entry can be optimal. Therefore, we present the incumbent’s
payoffs valid under a (when entry is optimal (π(0) ≥ ω)) and b (when entry is
not optimal (π(0) < ω)).

2a : −I0 2b : (1 + θ)π(c)− I0
4a : −I0 4b : (1 + θ)π(c)− I0
6a : −I0 6b : (1− θ)π(c)− I0
8a : −I0 8b : (1− θ)π(c)− I0
9a : 0 9b : (1 + θ)π(c)
10a : 0 10b : (1− θ)π(c)

2.3 Optimal R&D decisions

We determine the optimal R&D decisions of the incumbent by backward induc-
tion. We start at t = 1. We denote the four possible states of the world by
{GG,GB,BG,BB}, where the first character reflects the good (G) or bad (B)
demand state and the second character reflects the good (G) or bad (B) supply
state. Let the incumbent’s profit gain from innovation be ∆π = π(0) − π(c).
This profit gain is higher when the entrant enters the market than when the
entrant does not enter the market, since π(c) = 0 for the incumbent in the
former case, whereas π(c) > 0 for the incumbent in the latter case. For each
possible state of the world s ∈ {GG,GB,BG,BB}, we calculate ∆s

NPV , i.e. the
difference between the net present value (NPV ) of continuing R&D and the
NPV of not continuing R&D:

∆GG
NPV = (1 + θ)∆π − (I1 − λ)

∆GB
NPV = (1 + θ)∆π − (I1 + λ)
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∆BG
NPV = (1− θ)∆π − (I1 − λ)

∆BB
NPV = (1− θ)∆π − (I1 + λ).

The incumbent continues R&D if and only if this difference is positive under
the true state of the world, taking the entrant’s entry decision into account.

Optimal decision to continue r&d: For each possible state of the world
s ∈ {GG,GB,BG,BB}, the incumbent continues R&D if and only if ∆s

NPV ≥
0.

Let ψ = (ψGG, ψGB , ψBG, ψBB), where ψs = 1 when ∆s
NPV ≥ 0 and ψs = 0

when ∆s
NPV < 0 for all s ∈ {GG,GB,BG,BB}, be the vector that comprises

the optimal decision to continue R&D under every possible state of the world.
Notice that ∆GG

NPV ≥ ∆s
NPV ≥ ∆BB

NPV for s ∈ {GB,BG}. Therefore ψ ∈ Ψ =
{ (1, 1, 1, 1) , (1, 1, 1, 0) , (1, 1, 0, 0) , (1, 0, 1, 0) , (1, 0, 0, 0) , (0, 0, 0, 0) }.
At t = 0, for every ψ ∈ Ψ, we calculate ∆ψNPV , i.e. the difference between the
NPV of starting R&D and the NPV of not starting R&D. For every ψ ∈ Ψ,
we determine the NPV of starting R&D by calculating the weighted sum of
the incumbent’s payoffs when starting R&D in every possible state of the world
(using the probabilities of a good/bad state on the demand and supply side
as weights). We determine the NPV of not starting R&D by calculating the
weighted sum of the incumbent’s payoffs when not starting R&D (using the
probabilities of a good/bad state on the demand and supply side as weights).
The NPV of not starting R&D is the same for every ψ ∈ Ψ.
Hence, we get:

∆
(1,1,1,1)
NPV = pθpλ [(1 + θ)π(0)− I0 − (I1 − λ)]

+pθ (1− pλ) [(1 + θ)π(0)− I0 − (I1 + λ)]

+ (1− pθ) pλ [(1− θ)π(0)− I0 − (I1 − λ)]

+ (1− pθ) (1− pλ) [(1− θ)π(0)− I0 − (I1 + λ)]

− [pθ [(1 + θ)π(c)] + (1− pθ) [(1− θ)π(c)]]

= pθpλ∆
GG
NPV + pθ (1− pλ)∆

GB
NPV + (1− pθ) pλ∆

BG
NPV

+(1− pθ) (1− pλ)∆
BB
NPV − I0.

From this, we calculate:

∆
(1,1,1,0)
NPV = ∆

(1,1,1,1)
NPV − (1− pθ) (1− pλ) [(1− θ)π(0)− I0 − (I1 + λ)]

+ (1− pθ) (1− pλ) [(1− θ)π(c)− I0]

= ∆
(1,1,1,1)
NPV − (1− pθ) (1− pλ)∆

BB
NPV

= pθpλ∆
GG
NPV + pθ (1− pλ)∆

GB
NPV + (1− pθ) pλ∆

BG
NPV − I0.

Similarly, we get:

∆
(1,1,0,0)
NPV = pθpλ∆

GG
NPV + pθ (1− pλ)∆

GB
NPV − I0,
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∆
(1,0,1,0)
NPV = pθpλ∆

GG
NPV + (1− pθ) pλ∆

BG
NPV − I0,

∆
(1,0,0,0)
NPV = pθpλ∆

GG
NPV − I0,

∆
(0,0,0,0)
NPV = −I0.

Clearly, ∆
(0,0,0,0)
NPV < 0 and the incumbent does not start R&D.

The incumbent starts R&D if and only if there exists a positive ∆ψNPV for

ψ ∈ Ψ\{ (0, 0, 0, 0) }. Note that these ∆ψNPV ’s cannot be ordered. For ex-

ample, take ∆
(1,1,1,1)
NPV and ∆

(1,1,1,0)
NPV . We can write ∆

(1,1,1,1)
NPV = ∆

(1,1,1,0)
NPV +

(1− pθ) (1− pλ)∆
BB
NPV . If ∆

BB
NPV > 0, then ∆

(1,1,1,1)
NPV > ∆

(1,1,1,0)
NPV and it is

possible to have ∆
(1,1,1,1)
NPV > 0, while ∆

(1,1,1,0)
NPV < 0. On the other hand, if

∆BB
NPV < 0, then ∆

(1,1,1,1)
NPV < ∆

(1,1,1,0)
NPV and it is possible to have ∆

(1,1,1,1)
NPV < 0,

while ∆
(1,1,1,0)
NPV > 0. A similar argument can be made for any other comparison.

Therefore, let Φ = max{∆(1,1,1,1)NPV ,∆
(1,1,1,0)
NPV ,∆

(1,1,0,0)
NPV ,∆

(1,0,1,0)
NPV ,∆

(1,0,0,0)
NPV }.

Optimal decision to start r&d: The incumbent starts R&D if and only if
Φ ≥ 0.

3 Comparative statics

3.1 Motivation

In the previous section, we derive that it is optimal for the incumbent to start
R&D if and only if Φ ≥ 0 in a model incorporating both demand and tech-
nical uncertainty. This R&D decision depends on the vector of parameters
(c, I0, I1, θ, pθ, λ, pλ).

In this section, we investigate how changes in demand and technical uncertainty,
i.e. changes in demand and supply lotteries, affect the incumbent’s decision to
start R&D. We therefore assume that entry is not optimal, because if entry were
optimal, the entrant would drive the incumbent out of the market (cfr. section
2.2). Throughout the remaining analysis, we use the following terminology. A
lottery is defined to be favorable (unfavorable) if the probability of the good
state is higher than or equal to (lower than) the probability of the bad state. In
comparing two lotteries, a lottery is defined to be more favorable (more unfa-
vorable) than another lottery if the probability of the good state of the former
is higher (lower) than the probability of the good state of the latter. However,
we do not only distinguish between lotteries in terms of probabilities but also in
terms of outcomes. In comparing two lotteries with equal probabilities, a lottery
is defined to be more divergent (less divergent) than another lottery if the differ-
ence between the good and the bad state is larger (smaller) in the former than in
the latter. In our model, the degree of divergence depends on θ and λ: a demand
(supply) lottery becomes more divergent than another demand (supply) lottery
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when, ceteris paribus, θ (λ) increases and a demand (supply) lottery becomes
less divergent than another demand (supply) lottery when, ceteris paribus, θ (λ)
decreases.

Our motivation to focus explicitly on changes in demand and technical uncer-
tainty is twofold. Theoretically, embedding θ and λ in a model explaining R&D
decisions distinguishes our work from previous contributions (cfr. introduction)
and allows a richer description of the firm’s R&D decision problem. Empirically,
the firm heterogeneity in our unique dataset is exactly reflected by proxies for
the variables θ and λ. The comparative statics of this section allow us to derive
testable hypotheses for the empirical analysis of the next section.

3.2 Approach

We show that a more divergent lottery influences the probability to start R&D
differently depending on whether the lottery is favorable or unfavorable. We
explicitly focus on how the effect of an increase in θ depends, ceteris paribus,
on pθ. A completely similar reasoning, here omitted for reasons of parsimony,
holds for how the effect of an increase in λ depends, ceteris paribus, on pλ.

An increase from θ to θ0 can, ceteris paribus, either have one of the three effects
on the decision to start:

(i) a positive effect, i.e. when Φ(θ) < 0 and Φ(θ0) ≥ 0,
(ii) a negative effect, i.e. when Φ(θ) ≥ 0 and Φ(θ0) < 0 or
(iii) no effect, i.e. when Φ(θ) < 0 and Φ(θ0) < 0 or Φ(θ) ≥ 0 and Φ(θ0) ≥ 0.

Our approach aims at comparing Φ(θ) and Φ(θ0) for any θ, θ0 ∈ [0, 1] where
θ < θ0. We want to make explicit which effects are found for every pθ ∈ [0, 1],
while restricting the parameter space of (c, I0, I1, λ, pλ) as little as possible.

Ceteris paribus, it is impossible to compare Φ(θ) and Φ(θ0) for any θ, θ0 ∈ [0, 1]
where θ < θ0 and never find no effect, since Φ(θ) is a continuous function in θ.

Our first proposition states that a more divergent demand lottery never posi-
tively affects the decision to start R&D as long as the demand lottery is most un-
favorable. In other words, when we compare Φ(θ) and Φ(θ0) for any θ, θ0 ∈ [0, 1]
where θ < θ0, we never find a positive effect if pθ = 0. Our second proposition
states that a more divergent demand lottery never negatively affects the decision
to start R&D when the demand lottery belongs to the set of favorable demand
lotteries. In other words, when we compare Φ(θ) and Φ(θ0) for any θ, θ0 ∈ [0, 1]
where θ < θ0, we never find a negative effect if pθ ∈ [12 , 1]. Remember that the
same results are obtained by replacing pθ and θ by pλ and λ respectively. All
proofs are relegated to Appendix A.

Proposition 1: If pθ = 0, there does not exist a θ, θ0 ∈ [0, 1], where θ < θ0,
such that Φ(θ) < 0 and Φ(θ0) ≥ 0 for all (c, I0, I1, λ, pλ) ∈ [0, 1]×R3++ × [0, 1].
Proposition 2: If pθ ∈ [12 , 1], there does not exist a θ, θ0 ∈ [0, 1], where θ < θ0,
such that Φ(θ) ≥ 0 and Φ(θ0) < 0 for all (c, I0, I1, λ, pλ) ∈ [0, 1]×R3++ × [0, 1].

10



Both Propositions 1&2 hold over the complete parameter space of (c, I0, I1, λ, pλ).
The intuition behind Propositions 1&2 is straightforward. For a demand lot-
tery that excludes the good state to happen, an increase in θ corresponds to
a worsening of the bad state, which can never positively affect the decision to
start. For demand lotteries where the good state is more likely to happen than
the bad state, an increase in θ a priori increases the attractiveness of the R&D
project and hence never affects the decision to start negatively.

However, it remains to show how more divergent demand lotteries affect the
decision to start R&D when the demand lottery is unfavorable. From Proposi-
tion 1, the open question is from which value of pθ on, it is possible to find a
positive effect. Similarly, from Proposition 2, the question remains from which
value of pθ on, it is not possible to find a negative effect. In other words, we
aim at extending Propositions 1&2 by respectively finding the minimal values
x ∈ (0, 1] and y ∈ [0, 12 ] such that the following results hold:
If pθ ∈ [0, x), there does not exist a θ, θ0 ∈ [0, 1], where θ < θ0, such that
Φ(θ) < 0 and Φ(θ0) ≥ 0.
If pθ ∈ [y, 1], there does not exist a θ, θ0 ∈ [0, 1], where θ < θ0, such that
Φ(θ) ≥ 0 and Φ(θ0) < 0.

Answering these questions give us the following additional insights. If x were
between 0 and 1

2 , we would determine the subset of unfavorable demand lotteries
(namely those demand lotteries with pθ ∈ [0, x)) for which a more divergent
demand lottery never positively affects the decision to start R&D. If x were
between 1

2 and 1, we would conclude that for all unfavorable demand lotteries a
more divergent demand lottery never positively affects the decision to start R&D
and we would determine the subset of favorable demand lotteries (namely those
demand lotteries with pθ ∈ [12 , x)) for which a more divergent demand lottery
always has no effect on the decision to start R&D. In determining y, we identify
the subset of unfavorable demand lotteries (namely those demand lotteries with
pθ ∈ [y, 12 ]) for which a more divergent demand lottery never negatively affects
the decision to start R&D. If x were smaller than y, we would identify the subset
of unfavorable demand lotteries (namely those demand lotteries with pθ ∈ [x, y))
for which a more divergent demand lottery could have a positive or a negative
effect on the decision to start.

The additional question becomes over which domains these extensions of Propo-
sitions 1&2 hold. Necessary conditions to obtain a positive (negative) effect are
that, ceteris paribus, there exists a θ ∈ [0, 1] such that Φ(θ) ≥ (<)0. Obvi-
ously, these necessary conditions cannot be fulfilled over the complete parameter
space of (c, I0, I1, λ, pλ). The intuition is that if the total cost of undertaking
the R&D project –which depends on (I0, I1, λ, pλ)– exceeds by far (is much
smaller than) the total gain of the R&D project –which depends on (c, θ, pθ)–,
then Φ will always be negative (positive).

In the following section we extend Propositions 1&2 by determining x and y un-
der a restricted parameter space of (c, I0, I1, λ, pλ). In relating different demand
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lotteries to the decision to start the R&D project, we deliberately do not want
to restrict the set of lotteries on the supply side. In other words, in determin-
ing x and y, we choose from the total set of supply lotteries (i) that particular
lottery for which we obtain the smallest interval pθ ∈ [0, x) of demand lotteries
for which a more divergent demand lottery cannot positively affect the decision
to start R&D and (ii) that particular lottery for which we obtain the smallest
interval pθ ∈ [y, 1] of demand lotteries for which a more divergent demand lot-
tery cannot negatively affect the decision to start R&D. Larger intervals than
[0, x) and [y, 1] would be obtained if one excluded these particular supply lot-
teries from the total set. All results also hold for any strictly positive value of
c. When c equals zero, the incumbent never starts the R&D project. Summing
up, we only restrict the parameter space of (I0, I1) and all results hold over the
complete parameter space of (c, λ, pλ).

A completely similar exercise is performed to relate changes in λ and values
of pλ to changes in Φ under the complete parameter space of (c, θ, pθ). More
specifically, we aim at finding respectively the minimal values v ∈ (0, 1] and
w ∈ [0, 12 ] such that the following results hold:
If pλ ∈ [0, v), there does not exist a λ, λ0 ∈ [0, 1], where λ < λ0, such that
Φ(λ) < 0 and Φ(λ0) ≥ 0 for all (c, θ, pθ) ∈ [0, 1]3.
If pλ ∈ [w, 1], there does not exist a λ, λ0 ∈ [0, 1], where λ < λ0, such that
Φ(λ) ≥ 0 and Φ(λ0) < 0 for all (c, θ, pθ) ∈ [0, 1]3.

3.3 Extending Propositions 1 & 2

Benchmark case

In the benchmark case, we impose two assumptions on the model, relating (in
the absence of technical uncertainty) the cost of starting R&D to the cost of
continuing R&D and the total cost of the R&D project to the profit gain. The
impact of each of these two assumptions is discussed in the sensitivity analysis.
We assume that (i) the two cost components of R&D would be the same in the
two periods when λ = 0 and (ii) the total cost of R&D would equal the profit
gain of R&D when λ = 0.

Assumption 1: I0 = I1 = I.
Assumption 2: I0 + I1 = ∆π.

Under Assumptions 1-2, we obtain Propositions 3a&3b for the minimal values
x, v and Proposition 4 for the minimal values y, w respectively; all proofs are
relegated to Appendix A:

Proposition 3a: Under Assumptions 1-2, if pθ ∈ [0, 14), there does not exist a
θ, θ0 ∈ [0, 1], where θ < θ0, such that Φ(θ) < 0 and Φ(θ0) ≥ 0 for all (c, λ, pλ) ∈
[0, 1]× R++ × [0, 1].
Proposition 3b: Under Assumptions 1-2, if pλ ∈ [0, 0.28), there does not
exist a λ, λ0 ∈ [0, 1], where λ < λ0, such that Φ(λ) < 0 and Φ(λ0) ≥ 0 for all
(c, θ, pθ) ∈ [0, 1]3.
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Proposition 4: Under Assumptions 1-2, Proposition 2 is not extended: both y
and w equal 12 for all (c, λ, pλ) ∈ [0, 1]×R++×[0, 1] and for all (c, θ, pθ) ∈ [0, 1]3
respectively.

From Proposition 3a it follows that for the subset of unfavorable demand lot-
teries with pθ ∈ [0, 14), a more divergent demand lottery never positively affects
the decision to start R&D. From the determination of y in Proposition 4 we
learn that for all unfavorable demand lotteries, we can not exclude that a more
divergent demand lottery negatively affects the decision to start R&D. From
Proposition 3b it follows that for the subset of unfavorable supply lotteries with
pλ ∈ [0, 0.28), a more divergent supply lottery never positively affects the deci-
sion to start R&D. From the determination of w in Proposition 4 we learn that
for all unfavorable supply lotteries, we can not exclude that a more divergent
supply lottery negatively affects the decision to start R&D.

For the subset of unfavorable demand lotteries for which a more divergent
demand lottery can positively or negatively affect the decision to start R&D
(namely those demand lotteries with pθ ∈ [14 , 12)), we obtain an important ad-
ditional insight. There is a trade-off between the unfavorability and the degree
of divergence of the demand lottery. The more unfavorable the demand lottery
becomes, the more divergent the demand lottery has to become in order to pos-
itively affect the decision to start R&D. For example, setting λ equal to λmax
and pλ to 1 (cfr. the proof of Proposition 3a), we derive that for pθ ∈ [14 , 12),
a positive effect on the decision to start R&D is found when we move from a
demand lottery with θ < 1

2pθ
− 1 to a demand lottery with θ ≥ 1

2pθ
− 1. Hence,

the more pθ goes to
1
4 , the more θ has to go to 1, in order to positively affect the

decision to start R&D. A similar result can be derived for the subset of unfavor-
able supply lotteries for which a more divergent supply lottery can positively or
negatively affect the decision to start R&D (namely those supply lotteries with
pλ ∈ [0.28, 12)).

Sensitivity analysis

In the sensitivity analysis, we investigate the impact of Assumptions 1-2 alter-
nately; all proofs are relegated to Appendix A.

Relaxing Assumption 1

We relax Assumption 1, setting I1 = aI0, where a ∈ R++. Hence, we assume
that, in the absence of technical uncertainty (λ = 0) the cost of continuing the
R&D project in the second period equals a times the cost of starting the R&D
project in the first period. Remember that in our benchmark case above, a = 1.
We obtain the following result. The higher (lower) the cost of continuing R&D
compared to the cost of starting R&D, the smaller (larger) the subset of unfa-
vorable demand (supply) lotteries for which a more divergent demand (supply)
lottery never positively affects the decision to start R&D. In other words, re-
laxing Assumption 1 alters the minimal values x and v. Hence, Propositions 3a
and 3b are generalized in the following way:
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Sensitivity result 1a: Under Assumption 2, if pθ ∈ [0, 1
2(1+a) ), there does not

exist a θ, θ0 ∈ [0, 1], where θ < θ0, such that Φ(θ) < 0 and Φ(θ0) ≥ 0 for all
a ∈ R++ and for all (c, λ, pλ) ∈ [0, 1]×R++ × [0, 1].
Sensitivity result 1b: Under Assumption 2, if pλ ∈ [0,min{ 1

1+a ,
−3+√9+8a

4a }),
there does not exist a λ, λ0 ∈ [0, 1], where λ < λ0, such that Φ(λ) < 0 and
Φ(λ0) ≥ 0 for all a ∈ R++ and for all (c, θ, pθ) ∈ [0, 1]3.
In Figure 2, we depict the minimal values x = 1

2(1+a) (left panel) and v =

min{ 1
1+a ,

−3+√9+8a
4a } (right panel).
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Figure 2 Relaxing Assumption 1. Depicted are the minimal values x (left panel)
and v (right panel) as a function of a.

Compared to the benchmark case, lower (higher) values of x and v are simulated
when the cost of starting R&D is relatively lower (higher) than the cost of
continuing R&D. This is because I1 never has a higher negative weight than I0
in every element of Φ (cfr. section 2.3). Intuitively, the incumbent’s decision
to start R&D is more influenced by the cost of starting R&D than by the cost
of continuing R&D. Hence, a higher cost of starting R&D necessitates a more
favorable demand/supply lottery in order to effectively start R&D.

We also provide an intuition why if a ‘goes to’ (→) zero (remember that a ∈
R++), x → 1

2 and v → 1
3 . When a → 0, I1 → 0, λmax → 0 and there is no

technical uncertainty. By Assumption 2, I0 → ∆π. Then, for any unfavorable
demand lottery pθ ∈ [0, 12) and for any θ ∈ (0, 1], the total gain of the R&D
project is lower than I0. The R&D project is never started and hence x → 1

2 .
Now suppose an infinitely small increase of λmax from zero to ε, an infinitely
small positive number. This increase will change Φ negligibly. From the proof

in Appendix A, we derive that when a → 0, Φ = ∆
(1,1,1,0)
NPV for λ = λmax and

θ ∈ [0, 1] and that an increase in λ can have a positive effect on the decision
to start if and only if pθ ≤ pλ

1−pλ . From these observations, consider the most
favorable, most divergent demand lottery, i.e. the demand lottery where θ = 1
and pθ =

pλ
1−pλ . For this demand lottery, ∆

GG
NPV = 2∆π, ∆GB

NPV → 2∆π and
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∆BG
NPV = 0. The incumbent only starts R&D when ∆

(1,1,1,0)
NPV (λmax) ≥ 0, which,

for θ = 1 and pθ =
pλ
1−pλ , implies that pλ ≥ 1

3 . Hence v → 1
3 .

An additional result is that relaxing Assumption 1 leaves the minimal values y
and w unchanged. In other words, Proposition 4 does not change:

Sensitivity result 2: Under Assumption 2, Proposition 2 is not extended: both
y and w equal 1

2 for all a ∈ R++ and for all (c, λ, pλ) ∈ [0, 1] × R++ × [0, 1]
and all (c, θ, pθ) ∈ [0, 1]3 respectively.
Sensitivity result 2 indicates for all unfavorable demand/supply lotteries, we
cannot exclude that a more divergent demand/supply lottery negatively affects
the decision to start R&D, whatever the relative importance of the two cost
components I0 and I1. We provide an intuition for this result. Start from
a situation where there is no demand uncertainty (θ = 0) and no technical
uncertainty (λ = 0). Since by Assumption 2, I0 + I1 = ∆π, it is easy to see
that in this situation Φ = 0 and the incumbent starts the R&D project. Now
suppose the demand lottery becomes more divergent (θ > 0), while there is
still no technical uncertainty. Then Φ < 0 as long as pθ < 1

2 , i.e. as long
as the demand lottery is unfavorable. Hence, y = 1

2 . Similarly, suppose the
supply lottery becomes more divergent (λ > 0), while there is still no demand
uncertainty. Then Φ < 0 as long as pλ < 1

2 , i.e. as long as the supply lottery is
unfavorable. Hence, w = 1

2 .

Relaxing Assumption 2

We relax Assumption 2 by expressing the total cost of R&D as a proportion
b ∈ R++ of the profit gain of R&D when λ = 0, i.e. I0 + I1 = b∆π. Remember
that in our benchmark case above, b = 1. We obtain the following results.
Relaxing Assumption 2 alters the minimal values x and v as well as the minimal
value y. However, relaxing Assumption 2 leaves the minimal value w unchanged
at 1

2 . Notably, x is found to be a linear function of b. Propositions 3a and 3b
are generalized in the following way:

Sensitivity result 3a: Under Assumption 1, if pθ ∈ [0,min{ b4 , 1}), there does
not exist a θ, θ0 ∈ [0, 1], where θ < θ0, such that Φ(θ) < 0 and Φ(θ0) ≥ 0 for all
b ∈ R++ and for all (c, λ, pλ) ∈ [0, 1]×R++ × [0, 1].
Sensitivity result 3b: Under Assumption 1, if pλ ∈ [0,min{max{−4+b+

√
9b2−8b+16
4b , b4}, 1}),

there does not exist a λ, λ0 ∈ [0, 1], where λ < λ0, such that Φ(λ) < 0 and
Φ(λ0) ≥ 0 for all b ∈ R++ and for all (c, θ, pθ) ∈ [0, 1]3.
In Figure 3, we depict the minimal values x = min{ b4 , 1} (left panel) and v =

min{max{−4+b+
√
9b2−8b+16
4b , b4}, 1} (right panel).
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Figure 3 Relaxing Assumption 2. Depicted are the minimal values x (left panel)
and v (right panel) as a function of b.

The intuition behind Sensitivity results 3a&3b is straightforward. The lower the
profit gain of the R&D project compared to the total cost, the more favorable
the demand/supply lottery has to become in order to start R&D. Note that if
the incumbent knows that both the demand lottery and the supply lottery are
most favorable and most divergent, the R&D project will be started as long as
the cost of starting R&D does not more than four times exceed the profit gain
of the R&D project.

Propositions 4 is generalized as follows:

Sensitivity result 4: Under Assumption 1, if pθ ∈ [min{ b
4(1−b) ,

1
2}, 1], there

does not exist a θ, θ0 ∈ [0, 1], where θ < θ0, such that Φ(θ) ≥ 0 and Φ(θ0) < 0
for all b ∈ R++ and for all (c, λ, pλ) ∈ [0, 1]×R++ × [0, 1]. Under Assumption
1, Proposition 2 is not extended for w: w equals 1

2 for all b ∈ R++ and for all
(c, θ, pθ) ∈ [0, 1]3.
In Figure 4, we depict the minimal value y = min{ b

4(1−b) , 1}.
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Figure 4 Relaxing Assumption 2. Depicted is the minimal value y as a function
of b.

We provide an intuition why if b → 0, y → 0 but w = 1
2 . When b → 0,

I0 + I1 → 0, I0 → 0, I1 → 0, λmax → 0 and there is no technical uncertainty.

16



Then Φ ≥ 0 for pθ ≥ 0 and θ ∈ [0, 1], i.e. the R&D project is always started.
Hence, y → 0. Now consider again an infinitely small increase of λmax from
zero to ε. Suppose the demand lottery is most unfavorable and most divergent
(pθ = 0 and θ = 1). Then, when λmax = 0, Φ = 0 and the R&D project is
started. However, when λmax = ε, Φ < 0 as long as pλ < 1

2 , i.e. as long as the
supply lottery is unfavorable. Hence, w = 1

2 .

4 An empirical analysis of the optimal decision
to undertake R&D under uncertainty

4.1 Data

In the previous section, we analyze under which circumstances a more divergent
demand lottery (increase in θ) or a more divergent supply lottery (increase in λ)
positively or negatively affects the incumbent’s decision to undertake R&D. To
test the derived propositions, we use data from the 2005 official innovation sur-
vey in the German manufacturing and services industries which constitute the
German part of the European-wide harmonized fourth Community Innovation
Surveys (CIS 4).1 The CIS data provide rich information on firms’ innovation
behavior. The target population consists of all legally independent firms with
at least 5 employees and their headquarters located in Germany.2 The survey is
drawn as a stratified random sample and is representative of the corresponding
target population. The stratification criteria are firm size (8 size classes accord-
ing to the number of employees), industry (22 two-digit industries according to
the NACE Rev.1 classification system) and region (East and West Germany).
The survey is performed by mail and in 2005 data on 4776 firms were collected
(total sample), corresponding to a response rate of about 20%.3 In order to
control for a response bias in the net sample, a non-response analysis was car-
ried out collecting data on 4000 additional firms. A comparison shows that the
innovation behavior of respondents and non-respondents does not differ signifi-
cantly. The share of innovators is 63.9% in the former group and 62.2% in the
latter group.4

For estimation purposes we exclude firms with incomplete data for any of the
relevant variables (which are discussed in section 4.2), ending up with a sample of
3681 firms. As illustrated in Table B.1 in Appendix B, our sample (full sample)
reflects total-sample distributional characteristics very well and does not give

1The innovation surveys are conducted by the Centre for European Economic Research
(ZEW), Fraunhofer Institute for Systems and Innovation Research (ISI) and infas Institute for
Applied Social Sciences on behalf of the German Federal Ministry of Education and Research
(BMBF). A detailed description of the data is given in Peters (2008).

2A firm is defined as the smallest combination of legal units operating as an organizational
unit producing goods or services.

3This rather low response rate is not unusual for surveys in Germany and is due to the
fact that participation is voluntary.

4The p-value of the Fisher-test on equal shares in both groups amounts to 0.108.

17



any obvious cause for selectivity concerns. About 53.8% of the observed firms
are in manufacturing.

4.2 Econometric model and testable hypotheses

Econometric model

In our theoretical model, the incumbent has to decide whether to undertake a
R&D project which aims at obtaining the same superior production technology
as the potential entrant.5 The optimal decision to undertake R&D depends,
ceteris paribus, on the degree of divergence of the demand and supply lotteries.
Empirically, we operationalize this optimal decision as follows.

Let y∗i denote firm i’s maximal difference between the NPV of undertaking
R&D and the NPV of not undertaking R&D, which cannot be observed. Ex-
ploiting the firm heterogeneity in our unique dataset, we assume that for firm
i this difference depends on θi and λi, some other observable characteristics
summarized in the row vector xi and unobservable factors captured by i:

y∗i = αθi + γλi + xiβ + i (1)

In section 2.3, we derive that it is optimal for incumbent i to undertake R&D
if and only if y∗i is larger than or equal to zero:

yi =

½
1 if y∗i ≥ 0
0 if y∗i < 0

(2)

where yi denotes the observed binary endogenous variable. We estimate equa-
tion (2) using the probit estimator.

Testable hypotheses

Table 1 gives the descriptive statistics of all variables used in the economet-
ric analysis and Table B.2 in Appendix B provides detailed definitions of all
variables. We proxy the observed binary endogenous variable (yi) by three vari-
ables. The first proxy indicates whether the firm has performed R&D in the
period 2002-2004 (R&D). Table 1 shows that 48% of the firms in the full sample
undertook R&D projects. However, over the same period, we observe θi and λi,
our measures reflecting uncertainty on the demand and the supply side respec-
tively. Due to the short time-span of our data, we cannot use lagged values as
instruments for the uncertainty measures to encounter the possible endogeneity
problem. Instead, we employ as an alternative proxy an expected decision, indi-
cating whether the firm plans to introduce a new production technology in the
next year 2005 (PROCESS). We find that 46% of the firms in the full sample
planned to introduce a process innovation. Although our theoretical model is
expressed in terms of cost-reducing process innovations, our analysis might also
apply for studying R&D decisions with respect to product innovation. Imagine
a potential entrant who is able to offer a new product of higher quality and

5In what follows, the notions firm and incumbent are used interchangeably.
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assume that only the firm producing the product with the highest quality will
stay in the market. Therefore, the third proxy denotes whether the firm plans
to introduce a product innovation in the next year 2005 (PRODUCT ). Around
55% of the firms in the full sample planned to introduce a product innovation.

<Insert Table 1 about here>

In our theoretical model, demand uncertainty stems from the two components
in the lottery on the demand side: the degree of divergence (represented by
θ) and the probability (pθ) of facing a good demand state. The variable θ is
measured by the average of the absolute percentage change in sales over the
last two years 2002-2003 and 2003-2004 (THETA). Table 1 reveals that the
absolute change in sales was on average about 14 % in the last two years. In
our benchmark estimations, we assume that pθ is the same for all firms. Our
dataset enables us to relax this assumption later on.

Similarly, technical uncertainty is represented by the two components in the
lottery on the supply side: the degree of divergence (parameterized by λ) and
the probability (pλ) of facing a good supply state. For the full sample, λ is
proxied by two dummy variables (LAMBDA1 and LAMBDA2). The first
equals 1 if an innovation project was extended due to the lack of technological
information in the period 2002-2004, while the second equals 1 if the extension
was due to high innovation costs in the period 2002-2004. The motivation for
using this information is that an unexpected delay of an innovation project is
presumably associated with unexpected higher costs. Around 5% and 19% of
the firms were confronted with a severe extension of an innovation project due
to technical or cost reasons, respectively. Alternatively, we use a third proxy for
λ (LAMBDA3) which is defined as the absolute deviation between on the one
hand the R&D expenditures for 2004 expected in 2003 and on the other hand
the realized R&D expenditures in 2004. The virtue of this measure is that it
most closely corresponds to the way we model λ in our theoretical analysis. The
defect is that we can apply it only to a subset of enterprises since we have to use
the prior wave of the innovation survey to construct this variable.6 However, this
subsample is representative for the full sample as can be inferred from Table B.1
in Appendix B. The average absolute deviation between expected and realized
innovation expenditure comes to 2.4 mill. Euro. The deviation turns out to be
highly skewed. We therefore use a logarithmic transformation of this variable
in the econometric analysis. In all our estimations, we assume that pλ is the
same for all firms. Our dataset does not allow to relax this assumption.

The probabilities pθ and pλ are determined as follows. To calculate pθ using the
full sample, we derive that 56.9% of the firms experienced a positive growth in
sales between 2002 and 2003 and 61.8% between 2003 and 2004. No informa-
tion is available to calculate pλ from the full sample. However, we are able to

6In Germany, the innovation surveys are conducted annually and they are designed as a
panel (so called Mannheim Innovation Panel). Unfortunately, the overlap between the 2004
and 2005 survey only amounts to almost 40% due to a major refreshment and enlargement of
the gross sample.
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determine pλ from the subsample. More specifically, we observe that for 59.4%
of the firms, realized innovation expenditure in 2004 turns out to be lower than
expected in 2003. Given the representativeness of the subsample, we assume
that the calculated pλ is also valid for the full sample.

Assuming that pθ and pλ are the same for all firms and given that pθ and pλ are
calculated to be larger than 1

2 , we postulate from Proposition 2 the following
hypotheses.

Hypothesis 1: The probability of undertaking R&D does not decrease with a
more divergent demand lottery.

Hypothesis 2: The probability of undertaking R&D does not decrease with a
more divergent supply lottery.

In our theoretical model, the incumbent is challenged by a potential competitor.
Our data reveal that about 91% of the firms perceive a threat of its own market
position due to the potential entry of new competitors. In the estimations, we
therefore control for potential entry by including 3 dummy variables indicating
whether the firm perceives a high, medium or low threat.

We also control for the following factors found to be important in the literature.
Two main determinants explaining innovation activities go back to Schumpeter
(1942), who states that large firms in concentrated markets have an advantage
in innovation. Therefore, we include firm size (SIZE) and market structure
(NUMCOMP ). Firm size is measured by the logarithm of the number of
employees in 2003 and we expect a positive relationship. Market structure is
captured by 3 dummy variables indicating the number of competitors. Schum-
peter stresses a negative relationship between competition and innovation. His
argument is that ex ante product market power on the one hand increases
monopoly rents from innovation and on the other hand reduces the uncertainty
associated with excessive rivalry. Recently, Aghion et al. (2005) find evidence for
an inverted U -relationship between competition and innovation. For low initial
levels of competition an escape-competition effect dominates (i.e. competition
increases the incremental profits from innovating, and, thereby, encourages in-
novation investments) whereas the Schumpeterian effect tends to dominate at
higher levels of competition.

The incentive to engage in R&D may further depend on the type of competition
(COMP ). We include 5 dummy variables indicating whether firms primarily
compete in prices, product quality, technological lead, product variety or prod-
uct design.

The innovation literature stresses that certain firm characteristics –such as the
degree of product diversification, the degree of internationalization, the avail-
ability of financial resources and technological capabilities– are likewise crucial
for explaining innovation (see, e.g., the references cited in Peters, 2008). More
diversified firms possess economies of scope in innovation. As they have more
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opportunities to exploit new knowledge and complementarities among their di-
versified activities, they tend to be more innovative. We measure product diver-
sification by the share of turnover of the firm’s most important product in 2004
(DIV ERS). Therefore, we expect a negative coefficient since more diversified
firms exhibit lower values for this proxy.

The more a firm is exposed to international competition, the more likely the
firm engages in R&D activities. The degree to which a firm is exposed to
international competition is captured by a dummy variable taking the value of
1 if the firm sells its products to international markets (EXPORT ).

The availability of financial resources is proxied by an index of creditworthiness
(RATING). A lower creditworthiness implies less available and more costly
external funding to finance R&D projects. Since the index ranges from 1 (best
rating) to 6 (worst rating), we expect a negative coefficient for this proxy.

Innovative capabilities are determined by the skills of employees. We take into
account the share of employees with a university degree (HIGHSKILLED),
a dummy variable being 1 if the firm has not invested in training its em-
ployees (NOTRAIN) and the amount of training expenditure per employee
(TRAINEXP ) if the firm has invested in training. Since information on train-
ing expenditure is missing for 11.3% of the firms, we do not drop these obser-
vations but rather set the expenditure to zero and include a dummy variable
indicating the missing value status (MV TRAIN).

We also include variables reflecting whether the firm is located in East Germany
(EAST ) and whether the firm is part of an enterprise group (GROUP ). A
priori, the effect of these variables is unclear. Finally, industry dummies are
included in all regressions.

4.3 Results

4.3.1 Firms facing equal lottery probabilities

Table 2 reports the marginal effects of the probit estimates for the full sample,
assuming that all firms face the same probabilities in the demand and supply
lotteries. For each of the three endogenous variables, the first column reports
the results for a parsimonious specification –including only SIZE and industry
dummies in addition to demand uncertainty, technical uncertainty and entry
threat– whereas the second column employs the full set of control variables
described in the previous section.

<Insert Table 2 about here>

Hypothesis 1, postulating that the probability of undertaking R&D does not
decrease with an increase in θ, is strongly confirmed for our two main endoge-
nous variables (R&D and PROCESS). Focusing on our preferred specification
(R&D (2)), our results indicate that a 10% increase in θ increases the likelihood
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of undertaking R&D by 1.3%. The positive effect of demand uncertainty is not
significant for planned product innovations (PRODUCT ) in the specification
including all control variables.

Hypothesis 2, postulating that the probability of undertaking R&D does not
decrease with an increase in λ, is strongly confirmed. This result is robust across
the different endogenous variables and holds when additional control variables
are incorporated. We estimate that a 10% increase in λ increases the likelihood
of undertaking R&D by 1.5%.

Entry threat does not significantly influence the decision to undertake R&D.
As R&D and THREAT are measured over the same period, an endogeneity
problem might arise as the decision to perform R&D could reduce the perceived
entry threat. This explanation is supported by the fact that entry threat does
significantly positively affect the decision to undertake process innovations in
the next year. A similar result is, however, not found for planned product inno-
vations.

Regarding the impact of the other control variables, most results are in line with
expectations. Firm size exerts a significantly positive impact. Market structure
has a non-linear effect on innovation. Firms in oligopoly markets have a higher
likelihood of undertaking R&D or introducing new products compared to mo-
nopolists or firms with more competitors. Hence, our results support evidence
in favor of the inverted U -relationship between competition and innovation as
suggested by Aghion et al. (2005). Another striking and robust finding is that
firms acting on markets where competition is mainly settled through prices are
less likely to innovate. On the contrary, innovation activities are stimulated if
competitive advantage can be achieved by technological leadership. Firms be-
ing exposed to international competition as well as more diversified firms have a
higher likelihood of undertaking R&D and introducing new products. There is,
however, no significant impact on process innovation. Finally, the results high-
light the important role of innovative capabilities. Firms employing a higher
share of high-skilled workers or firms investing in training are likely to be more
innovative.

For the subsample, Table 3 presents in columns (2), (4) and (6) the estimates us-
ing our preferred measure for technical uncertainty (LAMBDA3). For reasons
of comparison, columns (1), (3) and (5) show the subsample results employing
LAMBDA1 and LAMBDA2. In general, the results are very similar to the
full sample. Hypothesis 2 is also strongly confirmed using LAMBDA3. Since
we measure this variable in logarithm, a value of 0.017 implies that an increase
in the deviation of expected and actual R&D expenditure by 1 percent increases
the propensity to undertake R&D by 1.7 percent.

<Insert Table 3 about here>
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4.3.2 Firms facing different demand lottery probabilities

In this section we relax the assumption that the probability of facing a good
demand state is the same for all firms. We approximate pθ by looking at the
firms’ sales histories in the past two years. We define three groups of firms (see
Table B.2 in Appendix B for exact definitions). Group 1 (G1) comprises all
firms that experienced a decrease in sales in 2002-2003 as well as in 2003-2004.
The idea is that these firms face an unfavorable demand lottery reflected by a
low value of pθ. These firms are much more likely to face a bad demand state
than a good demand state. Group 2 (G2) consists of all firms that experienced
one yearly decrease and one yearly increase in sales during the period 2002-
2004. On the basis of this observation, we assume that these firms face equal
probabilities of a good/bad demand state and therefore have a pθ around

1
2 . All

firms in group 3 (G3) experienced an increase in sales in 2002-2003 as well as in
2003-2004. The assumption is that these firms face a favorable demand lottery
reflected by a high value of pθ.

Assuming that firms in group 1 have a pθ smaller than
1
4 , firms in group 2 have

a pθ around
1
2 and firms in group 3 have a pθ larger than

1
2 , we postulate from

Proposition 3a and Proposition 2 respectively the following hypotheses.

Hypothesis 3: For firms in group 1, the probability of undertaking R&D does
not increase with a more divergent demand lottery.

Hypothesis 4: For firms in group 2 and group 3, the probability of undertaking
R&D does not decrease with a more divergent demand lottery.

Table 4 presents the results of distinguishing the effect of a more divergent
demand lottery across groups of firms facing different demand lottery probabil-
ities. Confirming hypothesis 3, we find that for firms in group 1 the effect of
an increase in θ is significantly negative for PROCESS and negative but not
significant for R&D and PRODUCT in the specifications including all control
variables. Furthermore, the impact of THETA is significantly different for firms
in group 1 compared to firms in group 2 and group 3. Hypothesis 4 is strongly
confirmed since the impact of THETA is never significantly negative for firms
in group 2 and group 3. Moreover, in five out of six specifications, the effect
of a more divergent demand lottery is significantly positive for firms in group
3. Furthermore, the impact is significantly larger for firms in group 3 than for
firms in group 2 when process innovations are considered.

<Insert Table 4 about here>

4.3.3 Robustness checks

In this section, we investigate (i) the robustness of the results in Tables 2 and
3 by presenting specifications that include demand uncertainty, technical un-
certainty or entry threat separately and specifications that combine demand
uncertainty or technical uncertainty with entry threat, (ii) the robustness of the
results in Table 4 by making a distinction between manufacturing and services
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and (iii) the effect of a more divergent demand and supply lottery on innovation
expenditures.

Tables B.3 and B.4 in Appendix B present the robustness of the results in Tables
2 and 3 respectively. This allows us to assess whether multicollinearity between
our main independent variables affects our results in Tables 2 and 3. It might
be, for instance, that the perception of entry threat is correlated with the firm’s
past demand development. However, the results do not support this view. The
significance as well as the magnitude of the estimated marginal effects (not
shown in the tables) are very robust in both the full sample and the subsample.
A weak exception is the effect of low and high threat on process innovation in
the full sample: the marginal effects are significantly positive at the 10% level
in specifications 5 and 6.

Table 5 illustrates the effect of an increase in θ and λ across groups of firms
facing a different pθ in manufacturing on the one hand and services on the other
hand. Regarding the impact of an increase in θ, the derived hypotheses 3 and
4, i.e. a more divergent demand lottery does not increase (decrease) the likeli-
hood of undertaking R&D in G1 (G2 and G3), are confirmed in both samples.
However, there are some notable differences between manufacturing and ser-
vices. While the effect of an increase in θ is significantly negative for group
1 in manufacturing across the different endogenous variables, this effect looses
significance for group 1 in services. On the contrary, the effect of an increase in
θ is significantly positive for group 3 in services across the different endogenous
variables whereas this effect looses significance for group 3 in manufacturing
in 2 out of 3 specifications. Hypothesis 2, postulating that the probability of
undertaking R&D does not decrease with an increase in λ, is confirmed in manu-
facturing as well as in services. The marginal effects are significantly positive for
LAMBDA1 and LAMBDA2 in manufacturing. In services, only LAMBDA2
has a significantly positive impact. The latter is estimated to be higher than in
manufacturing.

<Insert Table 5 about here>

Finally, Table 6 investigates the impact of a more divergent demand and sup-
ply lottery on the amount of resources committed to the planned innovation
project. More specifically, we measure this variable as the logarithm of planned
expenditures for innovation activities in 2005 (INEXP ). In general, our tobit
results strongly confirm our probit findings (as illustrated in Tables 4 and 5).
The amount of money spent for innovation projects is negatively affected by an
increase in θ for group 1, whereas the opposite effect holds for group 3. Con-
cerning an increase in λ, especially LAMBDA2 is strongly significantly positive
across both manufacturing and services.

<Insert Table 6 about here>
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5 Conclusion

This article contributes to the theoretical as well as the empirical literature on
R&D decisions under uncertainty.

From a theoretical point of view, we study R&D decisions in the presence of
entry threat under two types of uncertainty, demand uncertainty and technical
uncertainty. We model a R&D project as a two-stage game with an abandon-
ment option. Two types of uncertainty influence the decision to start R&D.
Demand uncertainty is modelled as a lottery between a proportional increase
and decrease in demand. Technical uncertainty is modelled as a lottery between
a decrease and increase in the cost to continue R&D. A potential entrant is en-
dowed with a superior technology and threatens to drive the incumbent out of
the market. The incumbent has a time lead over the entrant and can obtain the
same technology by completing the R&D project before the entrant can enter
the market. Strategic interaction takes the form of preemptive behavior, where
the investment of the incumbent discourages the entrant to enter the market.
We derive under which lottery probabilities more divergent demand and supply
lotteries positively or negatively affect the decision to start R&D. We find that
a more divergent demand (supply) lottery cannot negatively affect the proba-
bility of starting R&D when the lotteries are such that an increase in demand
or a decrease in the cost are more likely to prevail than a decrease in demand
or an increase in the cost respectively. Under mild assumptions, relating (in
the absence of technical uncertainty) the cost of starting R&D to the cost of
continuing R&D and the total cost of the R&D project to the profit gain, we
find that the more unfavorable the lotteries become, i.e. the more likely it is
that the firm experiences a decrease in demand or an increase in the cost, the
more divergent the demand (supply) lottery must be in order to positively affect
the probability of starting R&D.

From an empirical point of view, we test the hypotheses derived from the theo-
retical model using data from the fourth Community Innovation Survey (CIS)
data in Germany. The uniqueness of our data lies in the availability of proxies
for demand and technical uncertainty as well as perceived entry threat for about
4000 firms to explain actual and planned R&D investments. Our main results,
strongly confirming our model predictions, are that for firms facing lotteries
where the good state is more likely to prevail (i) a 10% increase in the degree of
divergence of the demand lottery increases the likelihood of undertaking R&D
by 1.3% and (ii) a 10% increase in the degree of divergence of the supply lot-
tery increases the likelihood of undertaking R&D by 1.5%. For firms facing a
demand lottery where the bad state is more likely to prevail, a more divergent
demand lottery decreases the probability of undertaking R&D significantly.
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Table 1
Descriptive Statistics - Full Sample

Variable Unit Mean SD Median Skewness Min Max

Dependent variables
R&D [0/1] 0.484 0.500 0 — 0 1
PROCESS [0/1] 0.460 0.498 0 — 0 1
PRODUCT [0/1] 0.546 0.498 1 — 0 1

Independent variables
Demand uncertainty
THETA % 0.141 0.152 0.094 2.777 0 1.242
G1 [0/1] 0.199 — — — — —
G2 [0/1] 0.412 — — — — —
G3 [0/1] 0.389 — — — — —

Technical uncertainty
LAMBDA1 [0/1] 0.051 0.219 0 — 0 1
LAMBDA2 [0/1] 0.193 0.395 0 — 0 1
LAMBDA3 Mill. Euro 2.425 12.769 0.098 10.101 0 207.318

Additional control variables
THREAT: no [0/1] 0.093 0.291 0 — 0 1
THREAT: low [0/1] 0.447 0.497 0 — 0 1
THREAT: medium [0/1] 0.310 0.463 0 — 0 1
THREAT: high [0/1] 0.150 0.357 0 — 0 1
SIZE # Empl. 587.179 5495.988 45 27.059 1 232700
NUMCOMP: 0 [0/1] 0.021 0.142 0 — 0 1
NUMCOMP: 1-5 [0/1] 0.578 0.494 1 — 0 1
NUMCOMP: 6-15 [0/1] 0.211 0.408 0 — 0 1
NUMCOMP: >15 [0/1] 0.191 0.393 0 — 0 1
COMP: PRICE [0/1] 0.527 0.499 1 — 0 1
COMP: QUAL [0/1] 0.418 0.493 0 — 0 1
COMP: LEAD [0/1] 0.110 0.313 0 — 0 1
COMP: VARIETY [0/1] 0.052 0.222 0 — 0 1
COMP: DESIGN [0/1] 0.033 0.180 0 — 0 1
DIVERS [0-100] 71.312 23.427 75 -0.502 0.5 100
EXPORT [0/1] 0.527 0.499 1 — 0 1
RATING [1-6] 2.15 0.817 2.19 0.571 1 6
HIGHSKILLED [0-100] 20.314 24.013 10 1.633 0 100
TRAINEXP Mill. Euro 0.001 0.001 0 7.852 0 0.025
NOTRAIN [0/1] 0.120 0.325 0 — 0 1
MVTRAIN [0/1] 0.113 0.317 0 — 0 1
EAST [0/1] 0.322 0.467 0 — 0 1
GROUP [0/1] 0.579 0.494 1 — 0 1

Values for LAMBDA3, SIZE and TRAINEXP are not log-transformed. For estimation purposes,

however, a log-transformation of these variables is used to take into account the skewness of the distribution.
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Table 2
Effect of demand and technical uncertainty on innovation - Full Sample

Dep. variables R&D PROCESS PRODUCT

(1) (2) (3) (4) (5) (6)

Demand uncertainty
THETA 0.229∗∗∗ 0.134∗∗∗ 0.123∗∗ 0.108∗∗ 0.120∗∗ 0.057

(0.047) (0.046) (0.055) (0.055) (0.052) (0.051)

Technical uncertainty
LAMBDA1 0.155∗∗∗ 0.148∗∗∗ 0.119∗∗∗ 0.103∗∗ 0.104∗∗∗ 0.083∗∗

(0.042) (0.039) (0.040) (0.039) (0.039) (0.038)
LAMBDA2 0.255∗∗∗ 0.203∗∗∗ 0.193∗∗∗ 0.171∗∗∗ 0.241∗∗∗ 0.200∗∗∗

(0.020) (0.021) (0.023) (0.023) (0.021) (0.021)

Additional control variables
THREAT: low 0.009 0.006 0.044 0.038 0.010 -0.001

(0.025) (0.024) (0.030) (0.030) (0.027) (0.027)
THREAT: medium -0.021 -0.006 0.059∗ 0.063∗∗ -0.009 -0.001

(0.026) (0.025) (0.031) (0.031) (0.029) (0.028)
THREAT: high -0.022 0.029 0.014 0.040 -0.037 0.003

(0.029) (0.028) (0.035) (0.035) (0.032) (0.031)
SIZE 0.061∗∗∗ 0.051∗∗∗ 0.069∗∗∗ 0.061∗∗∗ 0.048∗∗∗ 0.035∗∗∗

(0.004) (0.005) (0.005) (0.006) (0.005) (0.005)
NUMCOMP: 0 — 0.017 — -0.018 — -0.070

(0.049) (0.063) (0.059)
NUMCOMP: 1-5 — 0.039∗∗ — -0.009 — 0.054∗∗∗

(0.018) (0.022) (0.020)
NUMCOMP: 6-15 — -0.009 — -0.030 — 0.031

(0.021) (0.025) (0.023)
COMP: PRICE — -0.055∗∗∗ — -0.066∗∗∗ — -0.041∗∗

(0.016) (0.019) (0.017)
COMP: QUAL — -0.007 — -0.005 — 0.011

(0.015) (0.018) (0.017)
COMP: LEAD — 0.134∗∗∗ — 0.000 — 0.112∗∗∗

(0.023) (0.027) (0.026)
COMP: VARIETY — -0.041 — -0.002 — 0.066∗∗

(0.031) (0.039) (0.033)
COMP: DESIGN — -0.001 — 0.037 — -0.024

(0.037) (0.045) (0.039)
DIVERS — -0.115∗∗∗ — -0.056 — -0.149∗∗∗

(0.029) (0.035) (0.033)
EXPORT — 0.141∗∗∗ — 0.017 — 0.127∗∗∗

(0.017) (0.020) (0.019)
RATING — 0.003 — -0.011 — -0.001

(0.009) (0.011) (0.009)
HIGHSKILLED — 0.003∗∗∗ — 0.001 — 0.002∗∗∗

(0.000) (0.000) (0.000)
TRAINEXP — 0.049∗∗∗ — 0.043∗∗∗ — 0.039∗∗∗

(0.007) (0.008) (0.007)
NOTRAIN — -0.439∗∗∗ — -0.417∗∗∗ — -0.423∗∗∗

(0.031) (0.034) (0.044)
MVTRAIN — -0.342∗∗∗ — -0.346∗∗∗ — -0.271∗∗∗

(0.031) (0.037) (0.051)
EAST — 0.039∗∗∗ — 0.016 — 0.007

(0.015) (0.018) (0.017)
GROUP — 0.011 — 0.030∗ — 0.003

(0.014) (0.017) (0.016)

LogL -1944.3 -1765.4 -2062.0 -2007.1 -1877.8 -1748.7
R2
MF 0.237 0.308 0.098 0.122 0.177 0.234

R2
MZ 0.429 0.525 0.200 0.244 0.341 0.424

Count R2 0.732 0.766 0.653 0.669 0.701 0.728
LMhet (p-value) 0.019 0.001 0.653 0.588 0.349 0.073
LMnorm (p-value) 0.421 0.864 0.329 0.563 0.187 0.579

# Obs. 3681 3681 3314 3314 3314 3314

Average marginal effects of the probit estimations are reported. Robust standard errors in parentheses.
∗∗∗Significant at 1%; ∗∗Significant at 5%; ∗Significant at 10%. Industry dummies are included but not reported.
LogL: log likelihood value of the model with regressors. R2

MF (likelihood ratio index): McFadden (1974) Pseudo

R2, comparing the likelihood of an intercept-only model to the likelihood of the model with regressors. R2
MZ : McKelvey

and Zavoina (1976) R2, measuring the proportion of variance of the latent variable accounted for by the model. Count

R2: proportion of accurate predictions. LMhet: Davidson and MacKinnon (1984) test statistic for heteroskedasticity.

LMnorm: Shapiro and Wilk (1965) test statistic for normality.
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Table 3
Effect of demand and technical uncertainty on innovation - Subsample

Dep. variables R&D PROCESS PRODUCT

(1) (2) (3) (4) (5) (6)

Demand uncertainty
THETA 0.275∗∗∗ 0.224∗∗ 0.216∗ 0.154 0.016 -0.039

(0.107) (0.101) (0.129) (0.122) (0.109) (0.103)

Technical uncertainty
LAMBDA1 0.112∗ — 0.126∗ — 0.064 —

(0.063) (0.070) (0.061)
LAMBDA2 0.168∗∗∗ — 0.138∗∗∗ — 0.123∗∗∗ —

(0.035) (0.043) (0.037)
LAMBDA3 — 0.017∗∗∗ — 0.023∗∗∗ — 0.018∗∗∗

(0.002) (0.003) (0.002)

Additional control variables
THREAT: low -0.025 0.001 0.001 0.018 0.024 0.039

(0.039) (0.039) (0.054) (0.054) (0.043) (0.041)
THREAT: medium -0.016 -0.000 0.014 0.031 0.064 0.074∗

(0.041) (0.040) (0.056) (0.055) (0.043) (0.040)
THREAT: high -0.026 0.004 -0.067 -0.042 0.013 0.036

(0.046) (0.045) (0.064) (0.065) (0.050) (0.048)
SIZE 0.058∗∗∗ 0.042∗∗∗ 0.059∗∗∗ 0.037∗∗∗ 0.042∗∗∗ 0.025∗∗∗

(0.009) (0.009) (0.011) (0.011) (0.010) (0.009)
NUMCOMP: 0 -0.079 -0.037 0.086 0.118 -0.065 -0.040

(0.082) (0.073) (0.126) (0.110) (0.107) (0.090)
NUMCOMP: 1-5 0.079∗∗∗ 0.052∗ -0.020 -0.040 0.108∗∗∗ 0.085∗∗∗

(0.030) (0.030) (0.042) (0.040) (0.034) (0.032)
NUMCOMP: 6-15 0.026 0.024 0.013 0.009 0.019 0.014

(0.035) (0.034) (0.048) (0.047) (0.038) (0.037)
COMP: PRICE -0.100∗∗∗ -0.089∗∗∗ -0.089∗∗ -0.079∗∗ -0.049 -0.041

(0.027) (0.026) (0.035) (0.034) (0.030) (0.029)
COMP: QUAL -0.048∗∗ -0.061∗∗∗ -0.012 -0.024 -0.007 -0.017

(0.024) (0.023) (0.034) (0.033) (0.028) (0.026)
COMP: LEAD 0.130∗∗∗ 0.096∗∗∗ -0.001 -0.026 0.188∗∗∗ 0.150∗∗∗

(0.034) (0.033) (0.048) (0.045) (0.041) (0.040)
COMP: VARIETY -0.014 -0.052 -0.009 -0.061 -0.036 -0.066

(0.051) (0.046) (0.076) (0.074) (0.059) (0.054)
COMP: DESIGN -0.063 -0.097∗ 0.128 0.092 -0.027 -0.062

(0.061) (0.055) (0.092) (0.085) (0.076) (0.068)
DIVERS -0.050 -0.051 -0.022 -0.022 -0.136∗∗ -0.140∗∗∗

(0.049) (0.046) (0.066) (0.065) (0.054) (0.051)
EXPORT 0.162∗∗∗ 0.162∗∗∗ -0.019 -0.031 0.164∗∗∗ 0.147∗∗∗

(0.032) (0.032) (0.041) (0.040) (0.037) (0.035)
RATING -0.002 -0.001 -0.015 -0.016 0.012 0.013

(0.015) (0.015) (0.019) (0.018) (0.015) (0.015)
HIGHSKILLED 0.002∗∗∗ 0.002∗∗∗ 0.001 0.001 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
TRAINEXP 0.068∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.029∗ 0.041∗∗∗ 0.020∗

(0.012) (0.012) (0.015) (0.015) (0.012) (0.012)
NOTRAIN -0.546∗∗∗ -0.476∗∗∗ -0.421∗∗∗ -0.302∗∗∗ -0.448∗∗∗ -0.259∗∗

(0.039) (0.067) (0.063) (0.104) (0.087) (0.117)
MVTRAIN -0.461∗∗∗ -0.388∗∗∗ -0.417∗∗∗ -0.339∗∗∗ -0.295∗∗∗ -0.119

(0.041)) (0.070) (0.052) (0.085) (0.098) (0.114)
EAST 0.010 0.002 -0.009 -0.027 0.026 0.014

(0.025) (0.024) (0.036) (0.034) (0.028) (0.028)
GROUP 0.016 -0.001 0.070∗∗ 0.056∗ 0.021 0.007

(0.025) (0.023) (0.034) (0.033) (0.029) (0.027)

LogL -399.5 -376.8 -555.7 -531.9 -415.7 -389.0
R2
MF 0.425 0.458 0.134 0.172 0.333 0.375

R2
MZ 0.660 0.685 0.264 0.326 0.555 0.591

Count R2 0.811 0.825 0.674 0.695 0.780 0.805
LMhet (p-value) 0.732 0.472 0.913 0.929 0.989 0.958
LMnorm (p-value) 0.240 0.679 0.265 0.417 0.008 0.018

# Obs. 1009 1009 929 929 929 929

Average marginal effects of the probit estimations are reported. Robust standard errors in parentheses.
∗∗∗Significant at 1%; ∗∗Significant at 5%; ∗Significant at 10%. Industry dummies are included but not reported.
For notes on goodness-of-fit and specification tests: see Table 2.
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Table 4
Effect of demand uncertainty on innovation across groups of firms facing a different pθ - Full Sample

Dep. variables R&D PROCESS PRODUCT

(1) (2) (3) (4) (5) (6)

Demand uncertainty
THETA*G1 -0.188 -0.140 -0.395∗∗∗ -0.308∗∗ -0.290∗∗ -0.214

(0.122) (0.118) (0.142) (0.143) (0.131) (0.131)
THETA*G2 0.208∗∗∗ 0.144∗∗ 0.010 0.021 0.084 0.050

(0.061) (0.059) (0.072) (0.072) (0.065) (0.064)
THETA*G3 0.290∗∗∗ 0.153∗∗∗ 0.280∗∗∗ 0.233∗∗∗ 0.201∗∗∗ 0.096

(0.060) (0.058) (0.069) (0.068) (0.064) (0.062)

αθ∗G1 >= αθ∗G2 (p-value) 0.001 0.008 0.002 0.011 0.002 0.022
αθ∗G1 >= αθ∗G3 (p-value) 0.000 0.007 0.000 0.000 0.000 0.010
αθ∗G2 >= αθ∗G3 (p-value) 0.127 0.445 0.001 0.005 0.065 0.271

Technical uncertainty
LAMBDA1 0.156∗∗∗ 0.148∗∗∗ 0.116∗∗∗ 0.102∗∗∗ 0.103∗∗∗ 0.082∗∗

(0.042) (0.039) (0.039) (0.039) (0.039) (0.038)
LAMBDA2 0.252∗∗∗ 0.202∗∗∗ 0.190∗∗∗ 0.170∗∗∗ 0.238∗∗∗ 0.199∗∗∗

(0.020) (0.021) (0.022) (0.023) (0.021) (0.021)

Entry threat
THREAT: low 0.008 0.005 0.043 0.038 0.009 -0.001

(0.025) (0.024) (0.030) (0.030) (0.027) (0.026)
THREAT: medium -0.023 -0.007 0.055∗ 0.060∗ -0.011 -0.002

(0.026) (0.025) (0.031) (0.031) (0.028) (0.028)
THREAT: high -0.018 0.032 0.019 0.044 -0.032 0.007

(0.029) (0.028) (0.035) (0.035) (0.032) (0.031)

LogL -1935.7 -1761.7 -2048.1 -1998.3 -1870.2 -1745.6
R2
MF 0.241 0.309 0.104 0.126 0.181 0.235

R2
MZ 0.432 0.527 0.210 0.250 0.345 0.426

Count R2 0.735 0.770 0.654 0.672 0.702 0.731
LMhet (p-value) 0.005 0.000 0.614 0.718 0.252 0.051
LMnorm (p-value) 0.220 0.783 0.236 0.952 0.241 0.480
# Obs. 3681 3681 3314 3314 3314 3314

Average marginal effects of the probit estimations are reported. Robust standard errors in parentheses.
∗∗∗Significant at 1%; ∗∗Significant at 5%; ∗Significant at 10%. In columns (1), (3) and (5) SIZE and

industry dummies are included as control variables but not reported. In columns (2), (4) and (6) the full set

of control variables including industry dummies is used but not reported (see Table 2). For notes on

goodness-of-fit and specification tests: see Table 2.
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Table 5
Effect of demand uncertainty on innovation across groups of firms facing a different pθ - Manufacturing and Services

Sample Manufacturing Services

Dep. variables R&D PROCESS PRODUCT R&D PROCESS PRODUCT

(1) (2) (3) (4) (5) (6)

Demand uncertainty
THETA*G1 -0.387∗∗ -0.668∗∗∗ -0.326∗ -0.008 -0.100 -0.168

(0.178) (0.231) (0.174) (0.149) (0.176) (0.182)
THETA*G2 0.041 -0.031 0.058 0.228∗∗∗ 0.062 0.058

(0.083) (0.107) (0.091) (0.081) (0.099) (0.094)
THETA*G3 0.021 0.273∗∗ 0.014 0.228∗∗∗ 0.188∗∗ 0.164∗∗

(0.085) (0.112) (0.096) (0.076) (0.086) (0.079)

αθ∗G1 >= αθ∗G2 (p-value) 0.008 0.003 0.015 0.059 0.181 0.108
αθ∗G1 >= αθ∗G3 (p-value) 0.011 0.000 0.030 0.062 0.055 0.035
αθ∗G2 >= αθ∗G3 (p-value) 0.579 0.007 0.655 0.499 0.130 0.156

Technical uncertainty
LAMBDA1 0.176∗∗∗ 0.101∗∗ 0.109∗∗ 0.106 0.105 0.022

(0.048) (0.046) (0.047) (0.066) (0.072) (0.064)
LAMBDA2 0.182∗∗∗ 0.140∗∗∗ 0.170∗∗∗ 0.213∗∗∗ 0.222∗∗∗ 0.234∗∗∗

(0.024) (0.028) (0.025) (0.036) (0.038) (0.038)

Entry threat
THREAT: low 0.034 0.059 -0.018 -0.019 0.018 0.015

(0.031) (0.041) (0.034) (0.035) (0.043) (0.041)
THREAT: medium 0.017 0.082∗ -0.019 -0.029 0.037 0.011

(0.032) (0.043) (0.036) (0.037) (0.045) (0.043)
THREAT: high 0.050 0.053 -0.006 0.014 0.034 0.015

(0.036) (0.048) (0.041) (0.042) (0.051) (0.049)

LogL -890.4 -1089.4 -885.7 -851.3 -898.4 -845.1
R2
MF 0.331 0.129 0.244 0.226 0.130 0.178

R2
MZ 0.562 0.258 0.442 0.396 0.259 0.339

Count R2 0.782 0.664 0.755 0.757 0.673 0.718
LMhet (p-value) 0.077 0.860 0.842 1.000 1.000 1.000
LMnorm (p-value) 0.801 0.022 0.264 0.175 0.174 0.634
# Obs. 1979 1806 1806 1702 1508 1508

Average marginal effects of the probit estimations are reported. Robust standard errors in parentheses.
∗∗∗Significant at 1%; ∗∗Significant at 5%; ∗Significant at 10%. The full set of control variables including
industry dummies is used but not reported (see Table 2). For notes on goodness-of-fit and specification tests: see Table 2.
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Table 6
Effect of demand and technical uncertainty on innovation expenditure across groups of firms facing a different pθ
Full Sample, Manufacturing and Services

Sample Full Manuf. Services

Dep. variable INEXP INEXP INEXP

Demand uncertainty
THETA*G1 -3.164∗∗ -5.289∗∗ -1.841

(1.265) (2.104) (1.511)
THETA*G2 -0.351 -1.345 0.238

(0.657) (1.031) (0.824)
THETA*G3 2.173∗∗∗ 1.965∗ 1.908∗∗∗

(0.621) (1.051) (0.732)

αθ∗G1 >= αθ∗G2 (p-value) 0.040 0.033 0.392
αθ∗G1 >= αθ∗G3 (p-value) 0.000 0.002 0.007
αθ∗G2 >= αθ∗G3 (p-value) 0.001 0.021 0.031

Technical uncertainty
LAMBDA1 0.668∗ 0.458 1.060∗

(0.358) (0.445) (0.616)
LAMBDA2 2.200∗∗∗ 2.002∗∗∗ 2.470∗∗∗

(0.224) (0.278) (0.380)

Additional control variables
THREAT: low 0.067 -0.323 0.421

(0.275) (0.400) (0.372)
THREAT: medium -0.036 -0.411 0.311

(0.288) (0.415) (0.395)
THREAT: high -0.015 -0.545 0.432

(0.326) (0.458) (0.460)
SIZE 0.815∗∗∗ 0.891∗∗∗ 0.713∗∗∗

(0.056) (0.081) (0.076)
NUMCOMP: 0 -0.572 -0.188 -0.549

(0.542) (1.029) (0.614)
NUMCOMP: 1-5 0.432∗∗ 0.101 0.577∗∗

(0.204) (0.317) (0.260)
NUMCOMP: 6-15 0.175 -0.234 0.472

(0.246) (0.356) (0.340)
COMP: PRICE -0.578∗∗∗ -0.519∗∗ -0.605∗∗

(0.176) (0.249) (0.243)
COMP: QUAL -0.004 0.340 -0.267

(0.170) (0.241) (0.235)
COMP: LEAD 0.987∗∗∗ 0.877∗∗∗ 1.228∗∗∗

(0.264) (0.326) (0.457)
COMP: VARIETY 0.188 -0.234 0.676

(0.371) (0.493) (0.573)
COMP: DESIGN 0.268 -0.392 0.726

(0.437) (0.592) (0.639)
DIVERS -0.015∗∗∗ -0.017∗∗∗ -0.010∗∗

(0.003) (0.005) (0.005)
EXPORT 1.439∗∗∗ 1.890∗∗∗ 1.039∗∗∗

(0.186) (0.262) (0.261)
RATING -0.001 -0.003∗ 0.001

(0.001) (0.001) (0.001)
HIGHSKILLED 0.023∗∗∗ 0.040∗∗∗ 0.014∗∗∗

(0.004) (0.007) (0.005)
TRAINEXP 0.693∗∗∗ 0.689∗∗∗ 0.684∗∗∗

(0.074) (0.107) (0.102)
NOTRAIN -5.644∗∗∗ -6.251∗∗∗ -5.063∗∗∗

(0.304) (0.480) (0.389)
MVTRAIN -4.673∗∗∗ -4.884∗∗∗ -4.419∗∗∗

(0.339) (0.578) (0.388)
EAST 0.244 0.017 0.406∗

(0.173) (0.248) (0.236)
GROUP 0.436∗∗∗ 0.606∗∗∗ 0.337

(0.162) (0.234) (0.219)

LogL -7827.2 -4390.7 -3384.1
LogL0 -8612.2 -4854.0 -3664.9
R2
MF 0.091 0.095 0.077

The change in the expected value of INEXP , given INEXP is positive, is reported (at average values of

the regressors). Average marginal effects of the tobit estimations are reported. Robust standard errors in parentheses.
∗∗∗, ∗∗, ∗: Significant at 1%, 5% and 10% respectively. Industry dummies are included. R2

MF : McFadden (1974) Pseudo R
2,

comparing the likelihood of an intercept-only model (LogL0) to the likelihood of the model with regressors (LogL).
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Appendix A: Proofs

Proof of Propositions 1 & 2: Consider the partial derivatives of the five

arguments of Φ with respect to θ:
∂∆

(1,1,1,1)
NPV

∂θ = (2pθ − 1)∆π, ∂∆
(1,1,1,0)
NPV

∂θ =

(pθ − pλ + pθpλ)∆π,
∂∆

(1,1,0,0)
NPV

∂θ = pθ∆π,
∂∆

(1,0,1,0)
NPV

∂θ = pλ (2pθ − 1)∆π, ∂∆
(1,0,0,0)
NPV

∂θ =
pθpλ∆π. All five partial derivatives are either negative or equal to zero when
pθ = 0 for all pλ ∈ [0, 1]. This is a sufficient condition to obtain Proposition 1.
All five partial derivatives are either positive or equal to zero when pθ ∈ [12 , 1]
for all pλ ∈ [0, 1]. This is a sufficient condition to obtain Proposition 2. ¥

Proofs of Propositions 3a, 3b & 4: Before we prove Propositions 3a, 3b &
4 consequently, we introduce Lemma 1 and Lemma 1’. Lemma 1 identifies Φ for
different ranges of the parameters θ and λ. Lemma 1 holds over the complete
parameter space of (c, pθ, pλ).

Lemma 1:
(1) Φ = ∆

(1,1,1,1)
NPV for all θ ∈ [0, 12 ] and for all λ ∈ [0,

¡
1
2 − θ

¢
∆π].

(2) Φ = ∆
(1,1,1,0)
NPV for all θ ∈ [0, 12 ] and for all λ ∈ [

¡
1
2 − θ

¢
∆π, λmax].

(3) Φ = ∆
(1,1,0,0)
NPV for all θ ∈ [12 , 1] and for all λ ∈ [0,

¡
θ − 1

2

¢
∆π].

(4) Φ = ∆
(1,1,1,0)
NPV for all θ ∈ [12 , 1] and for all λ ∈ [

¡
θ − 1

2

¢
∆π, λmax].

Proof of Lemma 1: From Assumptions 1-2, it follows that λmax = I = ∆π
2 .

Then, ∆GB
NPV ≥ 0 when

¡
1
2 + θ

¢
∆π ≥ λ. Therefore, ∆GB

NPV ≥ 0 for all θ ∈ [0, 1]
and λ ∈ [0, λmax]. As a result, also ∆GG

NPV ≥ 0 for all θ ∈ [0, 1] and λ ∈
[0, λmax] (cfr. section 2.3). Then, ∆

BG
NPV ≥ 0 when

¡
θ − 1

2

¢
∆π ≤ λ. Therefore,

∆BG
NPV ≥ 0 for all θ ∈ [0, 12 ] and for all λ ∈ [0, λmax], ∆BG

NPV ≤ 0 for all θ ∈ [12 , 1]
and for all λ ∈ [0, ¡θ − 1

2

¢
∆π] and ∆BG

NPV ≥ 0 for all θ ∈ [12 , 1] and for all
λ ∈ [¡θ − 1

2

¢
∆π], λmax]. Then, ∆

BB
NPV ≥ 0 when

¡
1
2 − θ

¢
∆π ≥ λ. Therefore,

∆BB
NPV ≥ 0 for all θ ∈ [0, 12 ] and for all λ ∈ [0,

¡
1
2 − θ

¢
∆π], ∆BB

NPV ≤ 0 for all
θ ∈ [0, 12 ] and for all λ ∈ [

¡
1
2 − θ

¢
∆π, λmax] and ∆

BB
NPV ≤ 0 for all θ ∈ [12 , 1]

and for all λ ∈ [0, λmax]. Lemma 1 follows from noting that Φ = ∆
(1,1,1,1)
NPV when

∆GB
NPV ≥ 0, ∆BG

NPV ≥ 0 and ∆BB
NPV ≥ 0, that Φ = ∆(1,1,1,0)NPV when ∆GB

NPV ≥ 0,
∆BG
NPV ≥ 0 and ∆BB

NPV ≤ 0 and that Φ = ∆(1,1,1,0)NPV when ∆GB
NPV ≥ 0, ∆BG

NPV ≤ 0
and ∆BB

NPV ≤ 0. ¥
We use Lemma 1, where λ is expressed as a function of θ, in the determination
of x and y. For the determination of v and w, it is useful to rewrite Lemma 1 as
Lemma 1’ where we express θ as a function of λ. Again, Lemma 1’ holds over
the complete parameter space of (c, pθ, pλ).
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Lemma 1’:
(1) Φ = ∆

(1,1,1,1)
NPV for all λ ∈ [0, λmax] and for all θ ∈ [0, λmax−λ∆π ].

(2) Φ = ∆
(1,1,1,0)
NPV for all λ ∈ [0, λmax] and for all θ ∈ [λmax−λ∆π , λmax+λ∆π ].

(3) Φ = ∆
(1,1,0,0)
NPV for all λ ∈ [0, λmax] and for all θ ∈ [λmax+λ∆π , 1].

Proof of Proposition 3a: We prove that the smallest pθ for which a positive
effect of an increase in θ on the decision to start R&D is found, equals 1

4 by

showing that Φ(θ) = 0 for Φ = ∆
(1,1,0,0)
NPV , θ = 1, pθ =

1
4 , λ = λmax and pλ = 1.

First, consider the partial derivatives of ∆
(1,1,1,1)
NPV , ∆

(1,1,1,0)
NPV and ∆

(1,1,0,0)
NPV with

respect to θ when pθ ∈ [0, 12 ]. Note that
∂∆

(1,1,1,1)
NPV

∂θ = (2pθ − 1)∆π ≤ 0,
∂∆

(1,1,1,0)
NPV

∂θ = (pθ − pλ + pθpλ)∆π ≥ 0 if and only if pλ ≤ pθ
1−pθ and

∂∆
(1,1,0,0)
NPV

∂θ =
pθ∆π ≥ 0. A positive effect due to an increase in θ can only be found when
∂Φ(θ)
∂θ ≥ 0 at some subdomain of θ.
Second, from the fact that∆GG

NPV ≥ ∆s
NPV ≥ ∆BB

NPV for s ∈ {GB,BG} (cfr. sec-
tion 2.3), it follows that

∂∆
(1,1,1,1)
NPV

∂pθ
= pλ

¡
∆GG
NPV −∆BG

NPV

¢
+ (1− pλ) (∆

GB
NPV −

∆BB
NPV ) ≥ 0, ∂∆

(1,1,1,0)
NPV

∂pθ
= pλ

¡
∆GG
NPV −∆BG

NPV

¢
+(1− pλ)∆

GB
NPV ≥ 0 and ∂∆

(1,1,0,0)
NPV

∂pθ
=

pλ∆
GG
NPV + (1− pλ)∆

GB
NPV ≥ 0. From these observations and the definition of

x, it follows that when pθ = x, Φ(θ) = 0 when θ = 1.

Third, from Lemma 1, Φ(1) = 0 holds for Φ = ∆
(1,1,0,0)
NPV . Solving ∆

(1,1,0,0)
NPV (1) =

0 yields pθ =
1
2∆π

3
2∆π+(2pλ−1)λ

. We find x by solving min
λ,pλ

pθ. For λ = λmax and

pλ = 1, x =
1
4 . ¥

Proof of Proposition 3b: We prove that the smallest pλ for which a positive
effect of an increase in λ on the decision to start R&D is found, approximately

equals 0.28 by showing that Φ(λ) = 0 for Φ = ∆
(1,1,1,0)
NPV , λ = λmax, pλ = 0.28,

θ = 1, and pθ =
pλ
1−pλ .

First, consider the partial derivatives of ∆
(1,1,1,1)
NPV , ∆

(1,1,1,0)
NPV and ∆

(1,1,0,0)
NPV with

respect to λ when pλ ∈ [0, 12 ]. Note that
∂∆

(1,1,1,1)
NPV

∂λ = (2pλ − 1)∆π ≤ 0,
∂∆

(1,1,1,0)
NPV

∂λ = (−pθ + pλ + pθpλ)∆π ≥ 0 if and only if pθ ≤ pλ
1−pλ and

∂∆
(1,1,0,0)
NPV

∂λ =

pθ(2pλ − 1)∆π ≤ 0 for all pθ ∈ [0, 1]. A positive effect due to an increase in λ

can only be found when ∂Φ(λ)
∂λ ≥ 0 at some subdomain of λ.

Second,
∂∆

(1,1,1,1)
NPV

∂pλ
= pθ

¡
∆GG
NPV −∆GB

NPV

¢
+ (1− pθ)

¡
∆BG
NPV −∆BB

NPV

¢ ≥ 0 and
∂∆

(1,1,0,0)
NPV

∂pλ
= pθ

¡
∆GG
NPV −∆GB

NPV

¢ ≥ 0. Also, ∂∆(1,1,1,0)
NPV

∂pλ
= pθ

¡
∆GG
NPV −∆GB

NPV

¢
+

(1− pθ)∆
BG
NPV ≥ 0 if and only if ∆BG

NPV ≥ 0. This is the case when Φ =

∆
(1,1,1,0)
NPV . From these observations and the definition of v, it follows that when

pλ = v, Φ(λ) = 0 when λ = λmax.
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Third, from Lemma 1’, Φ(λmax) = 0 holds for Φ = ∆
(1,1,1,0)
NPV when θ ∈ [0, 1].

Solving ∆
(1,1,1,0)
NPV (λmax) = 0 yields pλ =

1
2−pθθ

1−θ+pθθ . We find v by solving min
θ,pθ

pλ

subject to pθ ≤ pλ
1−pλ . For θ = 1 and pθ =

pλ
1−pλ , v = 0.280776 ≈ 0.28. ¥

Proof of Proposition 4: We first prove that the lowest pθ for which no
negative effect of an increase in θ on the decision to start R&D can be found,

equals 12 by showing that Φ(θ) = 0 for Φ = ∆
(1,1,1,0)
NPV , θ = 1

2 , pθ =
1
2 , λ = 0 and

pλ = 1.

First, a negative effect due to an increase in θ can only be found when ∂Φ(θ)
∂θ ≤ 0

at some subdomain of θ. Hence, Φ has to be equal to ∆
(1,1,1,1)
NPV or ∆

(1,1,1,0)
NPV when

pλ ≥ pθ
1−pθ at some subdomain of θ.

Second, from the observation that
∂∆

(1,1,1,1)
NPV

∂pθ
≥ 0,∂∆

(1,1,1,0)
NPV

∂pθ
≥ 0 and ∂∆

(1,1,0,0)
NPV

∂pθ
≥

0 (cfr. proof of Proposition 3a) and from the definition of y, two possibilities
arise. Either, Φ(θ) = 0 for θ = 1

2 and pθ = y, when (i) for θ ∈ [0, 12 ], Φ =
∆
(1,1,1,1)
NPV or Φ = ∆

(1,1,1,0)
NPV and pλ ≥ pθ

1−pθ and for θ ∈ [12 , 1], Φ = ∆
(1,1,0,0)
NPV

or when (ii) for θ ∈ [0, 12 ], Φ = ∆(1,1,1,1)NPV and for θ ∈ [12 , 1], Φ = ∆(1,1,0,0)NPV or

Φ = ∆
(1,1,1,0)
NPV and pλ ≤ pθ

1−pθ . Or Φ(θ) = 0 for θ = 1 and pθ = y when, for

θ ∈ [0, 12 ], Φ = ∆(1,1,1,1)NPV or Φ = ∆
(1,1,1,0)
NPV and pλ ≥ pθ

1−pθ and for θ ∈ [12 , 1],
Φ = ∆

(1,1,1,0)
NPV and pλ ≥ pθ

1−pθ .

Third, from Lemma 1, Φ( 12) = 0 holds for Φ = ∆
(1,1,1,0)
NPV for all λ ∈ [0, λmax]

when pλ ≥ pθ
1−pθ . Solving ∆

(1,1,1,0)
NPV ( 12) = 0 yields pθ =

1
2∆π−pλλ
∆π−(1−pλ)λ . We find y

by solving max
λ,pλ

pθ subject to pλ ≥ pθ
1−pθ . For λ = 0 and pλ = 1, y =

1
2 . Since y

cannot exceed 1
2 (cfr. Proposition 2), the result follows.

We now prove that the lowest pλ for which a no negative effect of an increase in
λ on the decision to start R&D can be found, equals 12 by showing that Φ(λ) = 0

for Φ = ∆
(1,1,1,0)
NPV , λ = λmax, pλ =

1
2 , θ = 0 and pθ = 1.

First, a negative effect due to an increase in λ can only be found when ∂Φ(λ)
∂λ ≤ 0

at some subdomain of λ. Hence, in order to find a negative effect, Φ has to be

equal to ∆
(1,1,1,1)
NPV , ∆

(1,1,0,0)
NPV or ∆

(1,1,1,0)
NPV when p

θ
≥ pλ

1−pλ at some subdomain of
λ.

Second, from the observation that
∂∆

(1,1,1,1)
NPV

∂pλ
≥ 0,∂∆

(1,1,1,0)
NPV

∂pλ
≥ 0 and ∂∆

(1,1,0,0)
NPV

∂pλ
≥

0 (cfr. proof of Proposition 3b) and from the definition of w, it follows that
when pλ = w, Φ(λ) = 0 when λ = λmax.

Third, from Lemma 1’, Φ(λmax) = 0 holds for Φ = ∆
(1,1,1,0)
NPV for all θ ∈ [0, 1]

when p
θ
≥ pλ

1−pλ . Solving ∆
(1,1,1,0)
NPV (λmax) = 0 yields pλ =

1
2−pθθ

1−θ+pθθ . We find w

by solving max
θ,pθ

pλ subject to pθ ≥ pλ
1−pλ . For θ = 0 and pθ = 1, w =

1
2 . Since w

cannot exceed 1
2 , the result follows. ¥

38



Proof of sensitivity analysis (relaxing Assumption 1): Relaxing As-
sumption 1, setting I1 = aI0, where a ∈ R++, we respectively prove that (i)
x = 1

2(1+a) , (ii) v = min{ 1
1+a ,

−3+√9+8a
4a } and (iii) y = w = 1

2 .

From Assumption 2, it follows that I0 =
∆π
1+a and I1 =

a∆π
1+a = λmax. Note that

the signs of the partial derivatives of the different ∆NPV with respect to θ, λ,
pθ and pλ do not depend on the value of a. As a result, in (i) Φ(θ) = 0 for θ = 1
and pθ = x and in (ii) Φ(λ) = 0 for λ = λmax and pλ = v.

(i). We show that for θ = 1, Φ(1) = 0 holds for Φ = ∆
(1,1,0,0)
NPV for all a ∈ R++.

First, ∆GG
NPV ≥ 0 when −1−θ−aθ1+a ∆π ≤ λ. Hence, ∆GG

NPV ≥ 0 for all θ ∈ [0, 1],
all a ∈ R++ and λ ∈ [0, λmax]. Then ∆GB

NPV ≥ 0 when 1+θ+aθ
1+a ∆π ≥ λ. Hence,

for θ = 1, ∆GB
NPV ≥ 0 for all a ∈ R++ and all λ ∈ [0, λmax]. Also ∆BG

NPV ≤ 0
when θ+aθ−1

1+a ∆π ≥ λ. Hence, for θ = 1, ∆BG
NPV ≤ 0 for all a ∈ R++ and

all λ ∈ [0, λmax]. From these observations, Φ(1) = 0 holds for Φ = ∆
(1,1,0,0)
NPV .

Solving ∆
(1,1,0,0)
NPV (1) = 0 when θ = 1 yields pθ =

1
1+a∆π

2+a
1+a∆π+(2pλ−1)λ

. We find x by

solving min
λ,pλ

pθ. For λ = λmax and pλ = 1, x =
1

2(1+a) .

(ii). We show that for λ = λmax, Φ(λmax) = 0 holds for Φ equal to ∆
(1,1,1,0)
NPV

or ∆
(1,0,1,0)
NPV for all a ∈ R++. Note that ∂∆

(1,0,1,0)
NPV

∂λ = pλ∆π ≥ 0 and ∂∆
(1,0,1,0)
NPV

∂pλ
=

pθ∆
GG
NPV + (1− pθ)∆

BG
NPV ≥ 0 when Φ = ∆(1,0,1,0)NPV . For λ = λmax, ∆

GB
NPV ≥ 0

when θ ≥ a−1
a+1 . Hence, for λ = λmax, ∆

GB
NPV ≥ 0 for all a ∈ (0, 1] and all

θ ∈ [0, 1], GBNPV ≥ 0 for all a ∈ [1,∞) and for θ = [a−1a+1 , 1] and
GB
NPV ≤ 0 for all

a ∈ [1,∞) and for θ = [0, a−1a+1 ]. Also, for λ = λmax, ∆
BG
NPV ≥ 0 when θ ≤ 1.

Hence, for λ = λmax, ∆
BG
NPV ≥ 0 for all a ∈ R++ and all θ ∈ [0, 1]. Also,

for λ = λmax, ∆
BB
NPV ≥ 0 when θ ≤ 1−a

1+a . Hence, for λ = λmax, ∆
BB
NPV ≥ 0

for all a ∈ (0, 1] and all θ ∈ [0, 1−a1+a ], ∆
BB
NPV ≤ 0 for all a ∈ (0, 1] and all

θ ∈ [ 1−a1+a , 1] and ∆
BB
NPV ≤ 0 for all a ∈ [1,∞) and for θ ∈ [0, 1]. From these

observations, Φ(λmax) = 0 holds for Φ = ∆
(1,1,1,0)
NPV for a ∈ (0, 1] and θ ∈ [1−a1+a , 1].

Solving ∆
(1,1,1,0)
NPV (λmax) = 0 yields pλ =

1−pθ+apθ−pθθ−apθθ
1+a−θ−pθ+apθ−aθ+pθθ+apθθ . We find

the lowest pλ by solving min
θ,pθ

pλ subject to θ ∈ [1−a1+a , 1] and pθ ≤ pλ
1−pλ . For

θ = 1 and pθ =
pλ
1−pλ , solving the quadratic equation 2az

2 + 3z − 1 = 0 yields
z = −3+√9+8a

4a . Also, Φ(λmax) = 0 holds for Φ = ∆
(1,1,1,0)
NPV for a ∈ [1,∞)

and θ ∈ [a−1a+1 , 1]. We find z as shown above. Also Φ(λmax) = 0 holds for

Φ = ∆
(1,0,1,0)
NPV for a ∈ [1,∞) and θ ∈ [0, a−1a+1 ].. Solving ∆

(1,0,1,0)
NPV (λmax) = 0

yields pλ =
1

(1+a)((1+θ)pθ+(1−θ)(1−pθ))−2apθ . We find the lowest pλ by solving
min
θ,pθ

pλ subject to θ ≤ a−1
a+1 . For θ = 0 and pθ = 0, pλ =

1
1+a . Concluding,

v = min{ 1
1+a ,

−3+√9+8a
4a } for all a ∈ R++.

(iii). We only give the proof for y. The proof for w is analogous. We show that

for θ = 1
2 , Φ(

1
2 ) = 0 holds for Φ equal to ∆

(1,1,1,1)
NPV or ∆

(1,1,1,0)
NPV for all a ∈ R++.
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For θ = 1
2 , ∆

BB
NPV ≥ 0 when 1−a

2(1+a)∆π ≥ λ. Hence, for θ = 1
2 , ∆

BB
NPV ≥ 0

for a ≤ 1
3 and λ ∈ [0, λmax]. Then, Φ( 12) = 0 holds for Φ = ∆(1,1,1,1)NPV . Setting

I0 = ∆π − I1, it is easy to check that
∂∆

(1,1,1,1)
NPV ( 12 )

∂a =
∂∆

(1,1,1,1)
NPV ( 12 )
∂I1

∂I1
∂a = 0 since

∂∆
(1,1,1,1)
NPV ( 12 )
∂I1

= 0. Solving ∆
(1,1,1,1)
NPV ( 12) = 0 yields pθ =

∆π
2 −λ−2pλλ
∆π . We find

y by solving max
λ,pλ

pθ. For λ = 0 and pλ ∈ [0, 1], y = 1
2 . Also, for θ =

1
2 ,

∆GB
NPV ≥ 0 when 3+a

2(1+a)∆π ≥ λ. Hence, for θ = 1
2 , ∆

GB
NPV ≥ 0 for a ≤ 3

and λ ∈ [0, λmax]. Also, for θ = 1
2 , ∆

BG
NPV ≥ 0 when a−1

2(a+1)∆π ≤ λ. Hence,

for θ = 1
2 , ∆

BG
NPV ≥ 0 for a ≤ 1 and λ ∈ [0, λmax]. Furthermore, for θ = 1

2 ,
∆BB
NPV ≥ 0 for a ≥ 1

3 and λ ≤ 1−a
2(1+a)∆π, while ∆

BB
NPV ≤ 0 for a ≥ 1

3 and

λ ≥ 1−a
2(1+a)∆π. From these observations, Φ(

1
2) = 0 holds for Φ = ∆

(1,1,1,1)
NPV when

a ∈ [13 , 1] and λ ≤ 1−a
2(1+a)∆π. Again,

∂∆
(1,1,1,1)
NPV ( 12)
∂I1

= 0 and the result follows as

shown above. On the contrary, Φ( 12) = 0 holds for Φ = ∆
(1,1,1,0)
NPV when a ∈ [13 , 1]

and λ ≥ 1−a
2(1+a)∆π. Then

∂∆
(1,1,1,0)
NPV ( 12)
∂I1

= 1 − pθ − pλ + pθpλ. We obtain that

∂∆
(1,1,1,0)
NPV ( 12 )
∂pλ

= (1 + pθ)λ+ (1− pθ)
∆π
2 − (1− pθ)

a∆π
1+a . Hence,

∂∆
(1,1,1,0)
NPV ( 12)
∂pλ

≥ 0
for a ∈ [13 , 1] and λ ≥ 1−a

2(1+a)∆π. Setting pλ = 1,
∂∆

(1,1,1,0)
NPV ( 12)
∂I1

= 0 and the

result follows from the proof of Proposition 4. Similarly, Φ(12 ) = 0 holds for

Φ = ∆
(1,1,1,0)
NPV when a ∈ [1, 3] and λ ≥ a−1

2(1+a)∆π and when a ≥ 3 and λ ∈
[ a−1
2(1+a)∆π,

3+a
2(1+a)∆π]. Again,

∂∆
(1,1,1,0)
NPV ( 12)
∂pλ

≥ 0 for a ∈ [1, 3] and λ ≥ a−1
2(1+a)∆π

and for a ≥ 3 and λ ∈ [ a−1
2(1+a)∆π,

3+a
2(1+a)∆π]. Setting pλ = 1,

∂∆
(1,1,1,0)
NPV ( 12)
∂I1

= 0

and the result follows from the proof of Proposition 4. ¥

Proof of sensitivity analysis (relaxing Assumption 2): Relaxing Assump-
tion 2, setting I0+I1 = b∆π, where b ∈ R++, we respectively prove that (i) x =
min{ b4 , 1}, (ii) v = min{max{−4+b+

√
9b2−8b+16
4b , b4}, 1}, (iii) y = min{ b

4(1−b) , 1}
and (iv) w = 1

2 .

From Assumption 1, it follows that I0 = I1 =
b∆π
2 = λmax. Note that the signs

of the partial derivatives of the different ∆NPV with respect to θ, λ, pθ and pλ
do not depend on the value of b. As a result, in (i) Φ(θ) = 0 for θ = 1 and
pθ = x and in (ii) Φ(λ) = 0 for λ = λmax and pλ = v.

(i). We show that for θ = 1, Φ(1) = 0 holds for Φ equal to ∆
(1,1,0,0)
NPV or ∆

(1,0,0,0)
NPV

for b ∈ [0, 4]. Note that ∂∆
(1,0,0,0)
NPV

∂θ = pθpλ∆π ≥ 0 and ∂∆
(1,0,0,0)
NPV

∂pθ
= pλ∆

GG
NPV ≥ 0

when Φ = ∆
(1,0,0,0)
NPV . First, ∆GB

NPV ≥ 0 when 2+2θ−b
2 ∆π ≥ λ. Hence, for

θ = 1, ∆GB
NPV ≥ 0 for all b ∈ [0, 2] and all λ ∈ [0, λmax], ∆

GB
NPV ≥ 0 for

all b ∈ [2, 4] and all λ ∈ [0, (2 − b
2)∆π], ∆

GB
NPV ≤ 0 for all b ∈ [2, 4] and all

λ ∈ [(2− b
2)∆π, λmax]. Also ∆

BG
NPV ≤ 0 when 2θ+b−2

2 ∆π ≥ λ. Hence, for θ = 1,
∆BG
NPV ≤ 0 for all b ∈ R++ and all λ ∈ [0, λmax]. From these observations,
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Φ(1) = 0 holds for Φ = ∆
(1,1,0,0)
NPV when b ∈ [0, 2] and λ ∈ [0, λmax]. Solving

∆
(1,1,0,0)
NPV (1) = 0 when θ = 1 yields pθ =

b∆π
4pλλ+4∆π−b∆π−2λ . We find the lowest

pθ by solving min
λ,pλ

pθ. For λ = λmax and pλ = 1, pθ =
b
4 . Also ∆

GG
NPV ≥ 0

when b−2−2θ
2 ∆π ≥ λ. Hence, for θ = 1, ∆GG

NPV ≥ 0 for all b ∈ [0, 4] and all
λ ∈ [0, λmax]. From these observations, Φ(1) = 0 holds for Φ = ∆

(1,1,0,0)
NPV when

b ∈ [2, 4] and λ ∈ [0, (2 − b
2)∆π]. As explained above, we find the lowest pθ

by solving min
λ,pλ

pθ but now subject to λ ≤ (2 − b
2 )∆π. For λ = (2 − b

2)∆π and

pλ = 1, pθ =
b

8−2b . On the contrary, Φ(1) = 0 holds for Φ = ∆
(1,0,0,0)
NPV when

b ∈ [2, 4] and λ ∈ [(2− b
2)∆π, λmax]. Solving ∆

(1,0,0,0)
NPV (1) = 0 when θ = 1 yields

pθ =
b∆π

4pλ∆π−bpλ∆π+2pλλ . We find the lowest pθ by solving minλ,pλ
pθ subject to

λ ≥ (2 − b
2)∆π. For λ = λmax and pλ = 1, pθ =

b
4 . The result follows from

noting that b
4 ≤ b

8−2b for all b ∈ [2, 4]. Note that pθ = 1 for b = 4. Hence, we
conclude that x = min{ b4 , 1} for all b ∈ R++.
(ii). We show that for λ = λmax, Φ(λmax) = 0 holds for Φ equal to ∆

(1,1,1,0)
NPV or

∆
(1,0,1,0)
NPV for b ∈ [0, 4]. For λ = λmax, ∆

GB
NPV ≥ 0 when θ ≥ b−1. Hence, for λ =

λmax, ∆
GB
NPV ≥ 0 for all b ∈ [0, 1] and for all θ ∈ [0, 1], ∆GB

NPV ≥ 0 for all b ∈ [1, 2]
and for all θ ∈ [b− 1, 1], ∆GB

NPV ≤ 0 for all b ∈ [1, 2] and for all θ ∈ [0, b− 1] and
∆GB
NPV ≤ 0 for all b ∈ [2, 4] and for all θ ∈ [0, 1]. Also, for λ = λmax, ∆

BG
NPV ≥ 0

when (1−θ)∆π ≥ 0. Hence, for λ = λmax, ∆
BG
NPV ≥ 0 for all b ∈ R++ and for all

θ ∈ [0, 1]. Also, for λ = λmax, ∆
BB
NPV ≥ 0 when θ ≤ 1− b. Hence, for λ = λmax,

∆BB
NPV ≥ 0 for all b ∈ [0, 1] and for all θ ∈ [0, 1− b], ∆BB

NPV ≤ 0 for all b ∈ [0, 1]
and for all θ ∈ [1 − b, 1] and ∆BB

NPV ≤ 0 for all b ∈ [1, 4] and for all θ ∈ [0, 1].
From these observations, Φ(λmax) = 0 holds for Φ = ∆

(1,1,1,0)
NPV when b ∈ [0, 1]

and θ ∈ [1− b, 1]. Solving ∆
(1,1,1,0)
NPV (λmax) = 0 yields pλ =

( b2−(1+θ)pθ+bpθ)∆π
bpθ∆π+(1−θ)pθ(1−∆π) .

We find the lowest pλ by solving min
θ,pθ

pλ subject to pθ ≤ pλ
1−pλ and θ ≥ 1 − b.

For pθ =
pλ
1−pλ and θ = 1, solving the quadratic equation 2bz

2+(4− b)z− b = 0

yields z = −4+b+
√
9b2−8b+16
4b . Furthermore, Φ(λmax) = 0 holds for Φ = ∆

(1,1,1,0)
NPV

when b ∈ [1, 2] and θ ∈ [b−1, 1]. The result for z follows as shown above. On the
contrary, Φ(λmax) = 0 holds for Φ = ∆

(1,0,1,0)
NPV when b ∈ [1, 2] and θ ∈ [0, b− 1].

Solving ∆
(1,0,1,0)
NPV (λmax) = 0 yields pλ =

b
2

pθ(1+θ)+(1−pθ)(1−θ) . We find the lowest
pλ by solving min

θ,pθ
pλ subject to θ ≤ b−1. For θ = b−1 and pθ = 1, pλ = 1

2 . The

result follows from noting that 1
2 ≥ −4+b+

√
9b2−8b+16
4b for all b ∈ [1, 2]. Finally,

Φ(λmax) = 0 holds for Φ = ∆
(1,0,1,0)
NPV when b ∈ [2, 4] and θ ∈ [0, 1]. As before,

we find the lowest pλ by solving min
θ,pθ

pλ. For θ = 1 and pθ = 1, pλ =
b
4 . Note

that b
4 ≥ −4+b+

√
9b2−8b+16
4b for all b ∈ [2, 4] and that pλ = 1 for b = 4. Hence,

we conclude that v = min{max{−4+b+
√
9b2−8b+16
4b , b4}, 1} for all b ∈ R++.

(iii). A negative effect due to an increase in θ can only be found when Φ equals
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∆
(1,1,1,1)
NPV or ∆

(1,1,1,0)
NPV when pλ ≥ pθ

1−pθ . We focus on b ∈ (0, 1]. First, ∆GB
NPV ≥ 0

when 2+2θ−b
2 ∆π ≥ λ. Hence, ∆GB

NPV ≥ 0 for all b ∈ (0, 1], all θ ∈ [0, 1] and
all λ ∈ [0, λmax]. Also ∆BG

NPV ≥ 0 when 2θ+b−2
2 ∆π ≤ λ. Hence, ∆BG

NPV ≥ 0
for all b ∈ (0, 1], all θ ∈ [0, 1 − b

2 ] and all λ ∈ [0, λmax], ∆BG
NPV ≥ 0 for all

b ∈ (0, 1], all θ ∈ [1 − b
2 , 1] and all λ ∈ [2θ+b−22 ∆π, λmax] and ∆

BG
NPV ≤ 0 for

all b ∈ (0, 1], all θ ∈ [1 − b
2 , 1] and all λ ∈ [0, 2θ+b−22 ∆π]. Also ∆BB

NPV ≥ 0

when 2−2θ−b
2 ∆π ≥ λ. Hence, ∆BB

NPV ≥ 0 for all b ∈ (0, 1], all θ ∈ [0, 1 − b]

and all λ ∈ [0, λmax], ∆BB
NPV ≥ 0 for all b ∈ (0, 1], all θ ∈ [1 − b, 1 − b

2 ] and all

λ ∈ [0, 2−2θ−b2 ∆π], ∆BB
NPV ≤ 0 for all b ∈ (0, 1], all θ ∈ [1 − b, 1 − b

2 ] and all

λ ∈ [2−2θ−b2 ∆π, λmax] and ∆
BB
NPV ≤ 0 for all b ∈ (0, 1], all θ ∈ [1 − b

2 , 1] and

all λ ∈ [0, λmax]. From these observations Φ(θ) = 0 holds for Φ = ∆
(1,1,1,1)
NPV ,

θ = 1 − b, b ∈ (0, 1] and λ ∈ [0, λmax]. Solving ∆(1,1,1,1)NPV (1 − b) = 0 yields

pθ =
λ(1−2pλ)
2(1−b)∆π . We find the highest pθ by solving maxλ,pλ

pθ. For λ = λmax and

pλ = 0, pθ =
b

4(1−b) . Note that pθ =
1
2 for b =

2
3 . Also Φ(θ) = 0 holds for

Φ = ∆
(1,1,1,1)
NPV , θ = 1 − b

2 , b ∈ (0, 1] and λ = 0. Solving ∆
(1,1,1,1)
NPV (1 − b

2) = 0

yields pθ =
b

2(2−b) . Note that
b

4(1−b) ≥ b
2(2−b) for all b ∈ (0, 1]. Also, Φ(θ) = 0

holds for Φ = ∆
(1,1,1,0)
NPV , θ = 1, b ∈ (0, 1], λ = λmax and pλ ≥ pθ

1−pθ . Solving

∆
(1,1,1,0)
NPV (1) = 0 when λ = λmax yields pθ =

b
2(2−b+pλb) . We find the highest pθ

by solving max
pλ

pθ subject to pλ ≥ pθ
1−pθ . For pλ =

pθ
1−pθ , solving the quadratic

equation (4b − 4)z2 + (4 − b)z − b = 0 yields z = −4+b+√17b2−24b+16
2(4b−4) . Note

that b
4(1−b) ≥ −4+b+√17b2−24b+16

2(4b−4) for all b ∈ (0, 1]. Hence, we conclude that
y = min{ b

4(1−b) , 1} for all b ∈ (0, 1].
(iv). It is sufficient to show that Φ(λ) = 0 for Φ = ∆

(1,1,1,1)
NPV , λ = λmax, pλ =

1
2 ,

θ = 1 − b and pθ = 0. From (iii), we know that ∆BB
NPV ≥ 0 for all b ∈ (0, 1],

all θ ∈ [0, 1 − b] and all λ ∈ [0, λmax]. Solving ∆
(1,1,1,1)
NPV (λmax) = 0 yields

pλ =
3
2 b−2pθθ+θ−1

b . We find w by solving max
θ,pθ

pλ subject to θ ∈ [0, 1 − b]. For

θ = 1− b and pθ = 0, w =
1
2 . Since w cannot exceed

1
2 , the result follows. ¥
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Appendix B: Statistical annex

Table B.1
Distribution of the Total Sample, Full Sample and Subsample

Distribution by: Total Sample Full Sample Subsample

Industry
Food/tobacco 3.16 3.10 2.68
Textiles 2.97 2.77 2.48
Paper/wood/print 6.7 6.82 6.05
Chemicals 4.1 4.13 4.96
Plastic/rubber 3.62 3.83 3.67
Glass/ceramics 2.14 2.25 2.97
Metal 8.35 8.53 10.31
Machinery 5.99 6.38 7.04
Electrical engineering 4.88 5.22 6.54
Medical, precision and optical instruments 4.92 5.51 6.64
Vehicles 2.66 2.53 2.58
Furniture 2.62 2.69 2.28
Wholesale 4.38 4.18 4.06
Retail 2.35 2.06 2.18
Transport/storage/post 8.46 8.10 5.55
Banks/insurances 5.05 4.48 3.87
Computer/telecommunication 4.59 4.75 4.66
Technical services 8.79 8.88 9.81
Consultancies 3.77 3.59 2.97
Other business related services 7.06 6.93 5.95
Real estate/renting 2.07 1.98 2.28
Media 1.38 1.28 0.50

Size (Number of employees)
0-4 4.65 3.75 3.47
5-9 14.24 13.34 13.78
10-19 16.52 15.62 13.88
20-49 18.68 19.02 21.01
50-99 13.13 13.61 13.88
100-199 14.07 14.72 14.47
200-499 7.96 8.69 8.42
500-999 4.98 5.35 5.35
1000+ 5.78 5.90 5.75

Region
West Germany 66.86 67.81 64.42
East Germany 33.14 32.19 35.58

Innovation activities
Non-innovators 36.12 33.14 31.71
Innovatorsa 63.88 66.86 68.29

# Obs. 4776 3681 1009
a Innovators are defined as firms having introduced product or process innovations in the period 2002-2004.
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Table B.2
Variable definitions

Variable Type Definition

Dependent variables
R&D 0/1 1 if the firm undertook R&D activities in the period 2002-2004.
PROCESS 0/1 1 if the firm planned to undertake process innovations in 2005.
PRODUCT 0/1 1 if the firm planned to undertake product innovations in 2005.

Independent variables
Demand uncertainty
THETA c Average of the absolute percentage change in sales over the last two years

(2002/2003 and 2003/2004).
G1 0/1 1 if the firm experienced two negative demand shocks in the past two years,

i.e. a decrease in sales in 2002/2003 as well as in 2003/2004.
G2 0/1 1 if the firm experienced a positive and a negative demand shock in the past,

i.e. one decrease and one increase in sales within the last two years.
G3 0/1 1 if the firm experienced two positive demand shocks in the past two years,

i.e. a positive growth in sales in 2002/2003 as well as in 2003/2004.

Technical uncertainty
LAMBDA1 0/1 1 if the lack of technological information was of high-to medium-size impor-

tance and led to an extension of innovation projects in the period 2002-2004.
LAMBDA2 0/1 1 if high innovation costs were of high- to medium-size importance and led

to an extension of innovation projects in the period 2002-2004.
LAMBDA3 c Absolute deviation between in year 2003 expected R&D expenditure for 2004

and realized R&D expenditure in 2004, in log.

Additional control variables
THREAT 0/1 3 dummy variables indicating whether the firm perceived a high/medium/low

threat of its own market position due to the potential entry of new
competitors (reference group: firms with no entry threat).

SIZE c Number of employees in 2003, in log.
NUMCOMP 0/1 3 dummy variables indicating the number of competitors: 0, 1-5 or 6-15

(reference group: more than 15 competitors).
COMP 0/1 5 dummy variables indicating the most important factors of competition:

price, quality, technological lead, product variety or product design
(multiple factors allowed).

DIVERS 0-100 Share of turnover of most important product in 2004.
EXPORT 0/1 1 if the firm sold its products to international markets in the period 2002-2004.
RATING c Credit rating index of the firm in year 2003, ranging between

1 (highest) and 6(worst creditworthiness).
HIGHSKILLED 0-100 Share of employees with a university or college degree in 2003.
NOTRAIN 0/1 1 if the firm did not invest in training in 2004.
TRAINEXP c Training expenditure per employee (in log.) if NOTRAIN=0, otherwise 0.
MVTRAIN 0/1 1 if the information on training expenditure is missing in the data.
EAST 0/1 1 if the firm is located in East Germany.
GROUP 0/1 1 if the firm belongs to a group.

0/1 indicates a binary variable, c a continuous variable and 0− 100 describes a continuous variable with range of 0 to 100.
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Table B.3
Robustness checks - Full Sample

R&D

Specification (1) (2) (3) (4) (5) (6) (7) (8) (9)
THETA +++ +++
LAMBDA1 +++ +++ +++ +++
LAMBDA2 +++ +++ +++ +++
THREAT: low 0 0 0 0 0
THREAT: medium 0 0 0 0 0
THREAT: high 0 0 0 0 0

PROCESS

Specification (1) (2) (3) (4) (5) (6) (7) (8) (9)
THETA ++ ++
LAMBDA1 +++ ++ +++ ++
LAMBDA2 +++ +++ +++ +++
THREAT: low + + 0 0 0
THREAT: medium ++ ++ ++ ++ ++
THREAT: high + + 0 0 0

PRODUCT

Specification (1) (2) (3) (4) (5) (6) (7) (8) (9)
THETA ++ ++
LAMBDA1 +++ ++ +++ ++
LAMBDA2 +++ +++ +++ +++
THREAT: low 0 0 0 0 0
THREAT: medium 0 0 0 0 0
THREAT: high 0 0 0 0 0

+ ++ Significantly positive at 1%; ++ Significantly positive at 5%; + Significantly positive at 10%; 0 not significant.
Specifications (1) to (5) include only demand uncertainty, technical uncertainty or entry threat, respectively.

Specification (6) combines demand uncertainty and entry threat whereas specifications (7) to (9) include only

technical uncertainty and entry threat. In each regression, the full set of control variables including industry dummies

is used but not reported.

45



Table B.4
Robustness checks - Subsample

R&D

Specification (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
THETA ++ ++
LAMBDA1 +++ 0 +++ 0
LAMBDA2 +++ +++ +++ +++
LAMBDA3 +++ +++
THREAT: low 0 0 0 0 0 0
THREAT: medium 0 0 0 0 0 0
THREAT: high 0 0 0 0 0 0

PROCESS

Specification (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
THETA 0 0
LAMBDA1 +++ 0 +++ 0
LAMBDA2 +++ +++ +++ +++
LAMBDA3 +++ +++
THREAT: low 0 0 0 0 0 0
THREAT: medium 0 0 0 0 0 0
THREAT: high 0 0 0 0 0 0

PRODUCT

Specification (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
THETA 0 0
LAMBDA1 ++ 0 ++ 0
LAMBDA2 +++ +++ +++ +++
LAMBDA3 +++ +++
THREAT: low 0 0 0 0 0 0
THREAT: medium 0 0 0 0 0 0
THREAT: high 0 0 0 0 0 0

+ ++ Significantly positive at 1%; ++ Significantly positive at 5%; + Significantly positive at 10%; 0 not significant.
Specifications (1) to (6) include only demand uncertainty, technical uncertainty or entry threat, respectively. Specification (7)

combines demand uncertainty and entry threat whereas specifications (8) to (11) include only technical uncertainty and

entry threat. In each regression, the full set of control variables including industry dummies is used but not reported.
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