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Abstract

Two pervasive features of industries experiencing rapid technologi-
cal progress are uncertainty (with regard to the technological feasibility
and marketabilility of an innovation) and networks (the dense web of
research alliances and joint ventures linking firms to each other). This
paper connects the two disparate phenomena using the notion of real
options. It visualizes firms as nodes and the links connecting them as
call options that give each pair of interlinked firms the right, but not
the obligation, to sink additional resources into a project at some fu-
ture date conditional on favorable technical/market information. The
formation of networks is endogenous as firms establish links with oth-
ers by appraising their value using option pricing methods. Our model
explains the following: why networks are particularly ubiquitous in
industries that are subject to high uncertainty; why networks some-
times display an interconnected “hubs and spokes” architecture; why
small (or peripheral spoke) firms often sink resources into relatively
higher risk higher return investment projects (and those too with only
large, or hub firms); and why so many research alliances are contin-
uously formed and dissolved. Our paper also outlines the conditions

∗We would like to thank Wally Mullin and Anthony Yezer for many helpful comments
and suggestions. We would also like to thank the seminar participants at the International
Industrial Organization Conference in Boston and at George Washington University.
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under which ex-ante symmetric firms end up ex-post forming complex
asymmetric networks.

1 Introduction

There are two pervasive features of industries experiencing rapid techno-
logical progress. The first is uncertainty, both technological (uncertainty
regarding whether the investment will yield a successful innovation) and
market (uncertainty regarding the marketability of the innovation). The
second feature is networks which refers to the linkages among firms in the
form of strategic alliances and joint ventures to jointly conduct R&D activ-
ities and share the benefits of cooperation. Recent examples of networks in
such industries include the strategic partnerships of Sony, IBM and Toshiba
to produce the sophisticated chips at the heart of Blu-ray and HD DVD
formats, the partnerships of Boeing and of Airbus with multiple suppliers
and buyers in developing their new, composite material airplanes, and the
partnerships of large pharmaceutical companies with smaller biotechnology
firms. This paper examines the relation between uncertainty and networks
using the concept of real options.

There is already a significant literature that examines the endogenous for-
mation of research networks (for e.g. Bloch 1995, Yi 1998, Yi and Shin
2000, Goyal and Moraga 2001 and Goyal and Joshi 2003). This literature
casts network formation in an exclusively deterministic framework in which
research alliances stimulate product/process innovations that reduce costs
of production for participants non-randomly as a function of the alliance’s
size. The tension between the benefits from cost-reduction and the costs of
enlarging the size of the alliance shapes the strategic incentives of firms and
determines the equilibrium architecture of networks. Such a deterministic
formulation however misses a number of important empirical facts:1

1Examples of technology-intensive alliance strategies across various sectors that ex-
hibit such phenomena include the following: the alliance between Hewlett-Packard and
Microsoft that pools the companies’ systems integration and systems software skills, re-
spectively, to create technology solutions for small and big customers; the alliance between
the biotechnology firm Abgenix and the pharmaceuticals company AstraZeneca that com-
bines the strengths of the former in discovering new drugs and the familiarity of the latter
with the FDA approval process; Pfizer’s alliance with Warner-Lambert for the cholesterol
decreasing drug Lipitor in the mid-1990s, the first step of a buy-out; the FreeMove alliance
between T-Mobile, Telefonica Moviles, Telecom Italia Mobile and Orange announced in
2003 for a “unified service offering” to both their business and consumer customers; the
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1. High-tech fast-evolving competitive environments, such as those of
biotechnology/pharmaceuticals and information technology, are char-
acterized by uncertainties regarding both the technical feasibility of
ideas for new products/processes and their economic viability in the
market.

2. Research networks are particularly ubiquitous in industries character-
ized by such uncertainty.2

3. Firms choose projects that differ widely with respect to their risk char-
acteristics. Firms that are smaller and more peripheral than larger and
more central firms often pursue higher risk projects.

4. Research networks are characterized by a high degree of link formation
and link destruction activity as the uncertainty resolves.

These empirical facts suggest that the incentives shaping the network archi-
tecture in industries characterized by rapid technological progress depend
in a fundamental way on the underlying uncertainty. This link between
uncertainty and network architecture is a priori excluded in the received
deterministic literature on endogenous research networks.

The simple model of network formation that we propose captures the main
empirical facts quite nicely. The prevalence of networks in an environment
of high uncertainty is explained by viewing research networks as a set of real
options among firms. In the presence of uncertainty, a firm cannot be sure
whether any one investment in a new product/process will be successful.
Firms diversify the risk by making relatively small initial investments in a
number of R&D projects and then waiting to commit significant resources
only into those projects that are deemed favorable on the basis of new in-
formation. This flexibility increases the ability of firms to better allocate
scarce resources to profitable projects. Firms typically identify and enter
promising new fields quickly, thus jumping early on the learning curve. All

Starmap alliance between O2, Amena, One, Pannon GSM, Sunrise, Telenor Mobile, and
Wind to provide seamless, enhanced voice and data solutions for business and consumers
across Europe; the joint ventures Alcatel Alenia Space and Telespazio Holding between
Alcatel and Finmeccanica in 2005 to consolidate leadership in the telecommunication satel-
lite systems and services, and to acquire a strong position in the most important European
programmes such as Galileo and GMES.

2For example see Ahuja (2000), Ebers and Jarillo (1998), Gulati (1998), Gulati et al.
(2000), Kogut (2000), Nohria and Eccles (1992), Powell et al. (1996), and Walker et al.
(1997).

3



firms are, of course, limited in their ability to realize these objectives by
internal resource constraints. This is precisely where networks play an im-
portant role. In high-tech sectors, research partnerships serve as technology
search engines: firms unable to justify heavy investments in fluid, high-risk,
high-potential technological areas can form multiple research partnerships
to explore the field and create opportunities for more investment there in the
future (Hemphill and Vonortas, 2003). In addition to learning about new
opportunities, research partnerships also help share research costs, share
technological and market risk, access complementary resources, access mar-
kets, and increase strategic flexibility.3 In sum, networks allow firms to
diversify and expand their technology search space collectively in terms of
pursuing multiple and bolder (high risk, high return) research projects than
what they otherwise could by operating alone due to paucity of resources.

In the uncertainty framework therefore, an alliance between any two firms
may not actually reduce the costs of either. Rather, the alliance can be
perceived as an agreement to pursue an R&D project jointly by making
an initial investment and retaining the option of revisiting the project at
a later date to sink more resources on the basis of new information. This
view of two firms forging an alliance is analogous to two firms agreeing to
buy a call option. By making an initial joint investment, the two firms have
the right, but not the obligation, to commit to a joint R&D project (i.e.
exercise the option) at some future date and buy the entitlement to the
future stream of profits from this project. These call options, when applied
to investment in new products/processes are called real options. The novel
feature of our analysis is to combine uncertainty and networks by viewing
the firms as nodes in a network and the links (or alliances) connecting them
as real options. The value of a link to a firm is then appraised by the use of
option-pricing methods.4

3For surveys of this literature see Caloghirou et al. (2004), Gomes-Casseres (1996),
Hagedoorn et al. (2000), Jankowski et al. (2001), Nooteboom (1999), and Vonortas (1997).
This networking view is also supported by the strategies of some leading companies. For
example, in the ten years to 2004, Cisco had entered into more than 100 alliances (and had
acquired 36 companies). Internal development of products, acquisitions and alliances are
considered alternatives. When there is a high degree of uncertainty around technologies,
or when they aren’t critical, Cisco uses alliances. Moreover, Procter & Gamble Co. has
transformed its traditional in-house R&D process into an open-source innovation strategy
it calls “connect and develop”. The new method can be described as embracing the
collective brains of the world. It has made it a goal that 50% of the new products come
from outside P&G’s labs. For this purpose, it taps networks of inventors, scientists and
suppliers for new products that can be developed in-house.

4See, for example, Berk et al. (2004), Childs and Triantis (1999), Davis and Owens
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The underlying uncertainty dictates the option value of each link. Each link
between two firms also requires an initial (relatively small as compared to the
exercise price) precommitment of resources to the project. The difference
between the option value of a link and its initial investment cost dictates
the architecture of research networks. Significant evidence exists indicating
that collaboration networks have a self-organizing architecture with highly
uneven distribution of links among firms. In particular, a large number of
firms have relatively few links whereas a minority of firms have a dispro-
portionately large number of links. This more or less universal network
feature is captured in our model through the notion of interlinked stars net-
works. This network architecture is composed of asymmetrically-sized hubs
and spokes with the property that the hubs are connected to each other and
to the spokes while the spokes are only connected to hubs but not to each
other.

It is well known that the option value of a project increases with the riskiness
of the project. It is also generally true that R&D investment is characterized
by economies of scale (at least over some initial range). R&D projects within
the same technological area have fairly similar requirements in terms of
fixed inputs such as research facilities, laboratories, and specialized capital.
Once a firm has made these basic investments for one project, then they
do not have to be duplicated (at least not to the same scale) for additional
projects. If the potential partner has also made similar investments, then
it allows even more possibilities to effect cost reduction through an efficient
sharing of resources. These considerations help explain why hub firms often
choose to engage in higher risk (and higher return) projects with smaller, or
more peripheral, spoke firms as compared to their projects with other hub
firms. Consider a project between a hub firm and a small spoke firm. This
project is relatively costly for the spoke firm because it has yet to realize the
full benefits of its research investments from economies of scale. It is also
relatively costlier for a hub firm than the same project with another hub
because the opportunity to share fixed resources is smaller with a spoke.
Thus both firms need to be compensated for their higher cost with a project
that has greater option value.

A deterministic framework cannot explain how a large number of links or
alliances can dissolve in equilibrium. If firms form links knowing exactly
what benefits will accrue from each alliance, there is no incentive to form

(2003), Dixit and Pindyck (1994), Lee and Paxson (2001), Perlitz et al. (1999), Schwartz
and Moon (2000), and Trigeorgis (1996).
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or dissolve links in an equilibrium network. The options view of a link, on
the other hand, explains this phenomenon quite easily. In any equilibrium
network, there is a positive probability that a link that was formed will have
zero option value at the exercise date. The dissolution of links in equilib-
rium is therefore the result of firms continuously adjusting their research
“portfolios” in the light of new information.

We model the formation of networks as a link formation game that is similar
to Dutta et al (1998). Firms announce links with other firms and only those
links that are reciprocated are formed. Each link between a pair of firms is an
agreement to pursue jointly a research project. We consider Nash networks
in which no firm has an incentive to delete any subset of its links. We further
refine the set of Nash networks by considering a strong stability concept due
to Jackson and Nouweland (2001). This requires that no coalition of firms
in a Nash network have any incentive to rearrange their links. We then
attempt to characterize the architecture of strongly stable Nash networks.
The technical methods that we employ are standard and follows the method
of proof developed in Goyal and Joshi (2003, 2006).5 The contribution of
our paper rests mainly on providing a framework that unifies two relatively
disparate fields: the theory of real options with the strategic formation of
networks.

The paper is organized as follows. Section 2 describes the model and the
evaluation of network links as real options. Section 3 describes the inter-
linked star architecture. Section 4 offers a characterization of the equilibrium
networks. Section 5 describes the choice of projects of hub and spoke firms.
Section 6 discusses the dissolution of links in an equilibrium network. Sec-
tion 7 concludes with avenues for future research. The longer mathematical
proofs are relegated to an Appendix.

5There are some important differences however. In our framework, the marginal profit
of a firm from forming a link depends on all the links that the firm has formed thus far.
Further, all the partners of the firm in question are affected by the new link. Therefore,
unlike other papers that consider the pairwise stability criterion of Jackson and Wolinsky
(1996), we have had to consider the stronger notion of strong stability. This stronger
concept creates problems of existence. Our subsequent characterization results therefore
should be interpreted as what architectures would emerge if the set of strongly stable
networks is non-empty. We also offer a numerical example in Section 4 showing the
existence of an equilibrium star network.
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2 The Model

Let N = {1, 2, ..., N} denote a set of ex-ante identical firms who wish to ex-
plore new opportunities within the same technological area. These technical
opportunities are represented by a menu of R&D projects, parametrized by
θ, where θ is drawn from a technology set Θ. The set Θ could either be
discrete (with cardinality of at least N(N − 1)/2) or continuous (a subset
of the real line). In either case, let Θ = [θ, θ], 0 < θ < θ <∞, and it will be
clear from the context whether Θ is discrete or continuous. The technology
set Θ allows firms to explore a variety of product/process innovations. We
make this assumption in order to focus as clearly as possible on the link
between uncertainty and networks via the pricing of real options.6

Each project θ has a value V θ which is uncertain. The initial value at date
0 is V θ

0 and the instantaneous volatility is σθ. The cost of pursuing the
project to completion, (the exercise price) is denoted by Kθ. We would
like to capture the notion that networks permit high return high volatility
(or risk) projects. Therefore it is assumed that projects in Θ are ranked
in increasing order of returns and volatility, i.e V θ

0 and σθ are continuously
differentiable and strictly increasing in θ. In addition, Kθ is non-decreasing
in θ. Let P θ denote the option value of project θ at date 0. We will maintain
that:

(A.1) The option value P θ is strictly increasing in θ.

We now present three examples of stochastic processes that illustrate the
conditions under which (A.1) is satisfied.

Example 2.1: (General stochastic process, exogenous exercise date) The
present value V θ

t of the project follows a general stochastic process with
an instantaneous volatility parameter σθ and initial value at date 0, V θ

0 .
Suppose the exercise date, T , is exogenously given and the exercise price

6Consider the other extreme where there is only one technology available and those
firms who adopt late get a lower payoff. In this case we would have to incorporate the
possibility of preemption and therefore the issue of timing (for example see Fudenberg and
Tirole 1985). Further, the pricing of the real options would be quite complicated due to
these strategic considerations (Grenadier 2000a, 2000b, Huisman and Kort 1999). This
would distract us from the main objective of this paper, which is to draw a simple link
between uncertainty and networks. We therefore leave issues of preemption and timing to
a future paper.
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of pursuing the project to completion is independent of θ, the particular
project that is chosen. From general option theory the option value always
increases with the intial value, V θ

0 , and the volatility, σ
θ. Therefore (A.1) is

satisfied. ¥

Example 2.2: (Brownian motion process, exogenous exercise date, T ) The
present value V θ

t of the project follows a geometric Brownian motion with
an instantaneous volatility parameter σθ and initial value at date 0, V θ

0 .
Assuming risk-neutral probability, its dynamics can be described as:

dV θ
t

V θ
t

= rdt+ σθdWt (1)

where r is the instantaneous risk-free rate, assumed constant, and Wt is
a standard Brownian motion. Suppose that V θ

0 and Kθ are proportional
(i.e. the ratio V θ

0 /K
θ is constant). From the Black-Scholes formula, the real

option value can be written as:

P θ = V θ
0N (d1)−Kθe−rTN (d2) (2)

where N(x) denotes the cumulative normal distribution of x and:

dθ1 =
log
³
V θ
0

Kθ

´
+
³
r + (σθ)2

2

´
T

σθ
√
T

dθ2 = dθ1 − σθ
√
T (3)

depend only on the ratio V θ
0 /K

θ which is assumed constant. Then the option
value is strictly increasing in θ and (A.1) is satisfied. ¥

Example 2.3: (Brownian motion process, endogenous exercise date) The
value of the project θ is given by the geometric Brownian motion process:

dV θ
t

V θ
t

= αθdt+ σθdWt (4)

where αθ represents the drift and is continuously differentiable and strictly
increasing in θ. Let δ denote the discount rate. Then the option value is
given by (see Dixit and Pindyck, 1994, for details):

P θ =

⎧⎪⎨⎪⎩
1

βθ1(δ−αθ)
(V θ)

βθ1

(V θ
τ )

βθ1−1
, V θ < V θ

τ

V θ

δ−αθ −Kθ, V θ ≥ V θ
τ

(5)
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where βθ1 is the positive (and greater than 1) root of the quadratic equation¡
σθ
¢2
β(β − 1) + 2αθβ − δ = 0 and V θ

τ is the trigger value:

V θ
τ =

βθ1
βθ1 − 1

(δ − αθ)Kθ (6)

The option is exercised at time T = inf {t : V θ
t ≥ V θ

τ }.

Now assume that Kθ does not vary with the project θ and normalize it to
unity. Choose the parameters αθ, βθ, and δ such that:

V θ
τ =

βθ1
βθ1 − 1

(δ − αθ) ≤ βθ1

βθ1 − 1
(δ − αθ) < 1

Consider the continuation range where the option is not exercised. Following
Dixit and Pindyck (1994, pages 142-144), an increase in αθ and σθ (following

an increase in θ) decreases βθ1 and increases
βθ1

βθ1−1
. Since V θ < V θ

τ < 1 in

the continuation range,
¡
V θ
¢βθ1 is increasing with θ. It can be verified that:

1

βθ1(δ − αθ)

1

(V θ
τ )

βθ1−1
=

¡
βθ1 − 1

¢βθ1−1¡
βθ1
¢βθ1 (δ − αθ)β

θ
1

is decreasing in βθ1 (and therefore increasing in θ). Under these parametric
restrictions, (A.1) is satisfied. ¥

The fact that the option value is sensitive to the choice of a project θ will be
exploited later when we put a joint restriction on this variation and the non-
specific project costs in (A.1)∗. The model of research networks begins in
period 0 when firms form a network of research alliances. Every firm makes
an announcement of both intended links and the project it intends to pursue
with each link. An announcement by firm i is of the form si = (aij , θij)j 6=i.
The intended link aij ∈ {0, 1}, where aij = 1 means that i intends to form a
link with j, while aij = 0 means that i intends no such link. The intended
project is θij ∈ Θ if aij = 1. Let Si denote the set of announcements, or
strategies, of player i. A link between two players i and j is formed if and
only if aij = aji = 1. This assumes that the two firms also agree on the
choice of a project, i.e. θij = θji. We denote the formed link by gij = 1
and the absence of a link by gij = 0. A strategy profile s = {s1, s2, ..., sn},
consisting of a strategy for each firm, therefore induces a network g(s). To
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simplify the notation we shall often omit the dependence of the network on
the underlying strategy profile. Note that gij = gji and gii = 1. A network
g = (gij) is a formal description of the pairwise links that exist between the
firms. We also let Ni(g) = {j ∈ N : j 6= i, gij = 1} be the neighborhood of
firm i; it is composed of the set of firms with whom firm i has a direct link
in the network g. We will let ni(g) = |Ni(g)| denote the cardinality of this
set.

A path in g connecting players i and j is a distinct set of players {i1, . . . , in}
such that gii1 = gi1i2 = gi2i3 = · · · = ginj = 1. We say that a network is
connected if there exists a path between any pair i, j ∈ N . A network, g0, is
a component of g if for all i, j ∈ g0, i 6= j, there exists a path in g0 connecting
i and j , and for all i ∈ g and j ∈ g, gij = 1 implies gij ∈ g0. A component is
essentially a self-contained sub-network within the larger network. We will
say that a component g0 is complete if gij = 1 for all i, j ∈ g0. An empty
network ge is one in which there are no links among firms. A complete
network gc is one in which a link exists between every pair of firms. We will
let g+ gij denote the network obtained by replacing gij = 0 in g by gij = 1.
Similarly, g − gij will denote the network obtained by replacing gij = 1 in
network g by gij = 0.

Each link/project θ requires an initial (small) investment with the option
of revisiting the investment and incurring the set-up cost Kθ to move the
project further. Alternatively, this investment can be interpreted as the cost
of link formation. It is given by a function C : Z2+ × Θ −→ R+ which is
allowed to depend on the number of links of the two collaborating firms as
well as the choice of project. In particular, the cost incurred by i to pursue
a project θ with j is assumed to be of the additively separable form:

C(ni, nj , θ) = c(ni, nj) + ψ(θ), ∀i, j ∈ N (7)

The assumption here is that there are two seperable components to the
initial cost of investing in a project. The first component is the cost to firm
i of expanding the existing core R&D capability of a firm to accommodate
a new project. This cost is not project-specific and would be incurred with
any project. The second component is the additional investment by firm
i which is specific to pursuing project θ. It seems reasonable to assume
that this component is non-decreasing in θ since high return (and high risk)
projects also generally require greater initial investment. The investment
that is not project-specific is allowed to depend on the number of links of
the participants. It is assumed that for all i, j ∈ N :
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(A.2) c(ni+1, nj) < c(ni, nj), c(ni, nj+1) < c(ni, nj), 1 ≤ ni, nj < N−1.

(A.3) c(ni, nj) is concave in ni for each nj ≥ 0 and 0 < ni < N − 1, i.e.
2c(ni, nj) > c(ni − 1, nj) + c(ni + 1, nj).

(A.4) c(ni, nj + 1) − c(ni + 1, nj + 1)) > c(ni, nj) − c(ni + 1, nj) for 1 ≤
ni, nj < N − 1.

The rationale behind these assumptions is as follows. All projects within
the same technological area (narrowly defined) generally have fairly similar
requirements in terms of core research facilities and equipment. Once a firm
has already made an initial investment in core R&D facilities and equipment
for one project, then additional projects will usually not require the same
duplication of fixed inputs. Firms can buy real options to more technological
opportunities by making smaller initial investments. Therefore non-specific
investment costs are assumed to be decreasing in the number of links of
the participants in (A.2). A similar reasoning applies to (A.3). From the
concavity property, c(ni, nj)−c(ni+1, nj) > c(ni−1, nj)−c(ni, nj) indicating
that the marginal cost of an additional link is falling with the number of
links. These could be due to economies of scale that can be harnessed by
forming more links as well as knowledge spillovers from existing projects
that can be applied to new projects (economies of scope). A firm could also
gain from the economies of scale and knowledge spillovers of its partners.
This is captured by (A.4) which is the well-known property of increasing
differences. It states that the reduction in cost from an additional link is
greater when the potential partner is more connected.

An important motive behind network formation is diversification: forming
links allows a firm to simultaneously explore a number of diverse projects
— above and beyond those it would have explored on its own — thereby in-
creasing the probability of having at least one successful project. In the
presence of a technology space allowing numerous technological opportu-
nities, it would seem intuitive that a firm will not limit itself to choosing
the same project with all partners. In the case of a continuous technology
space, a simple continuity argument establishes that a firm will choose dif-
ferent projects with different partners. With a discrete technology space,
however, there could be some overlap of projects. In either case, since all
firms are ex-ante symmetric, it seems reasonable to suppose that the option
value of a joint project will be equally shared by the participating firms.
Formally:
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(A.5) Consider a network g and let j1, j2, ..., jl ∈ Ni(g). If θij1 = θij2 =
· · · = θijl = θ, then the option value of θ for each of these l + 1 firms
is given by P θ

l+1 .

We can now establish:

Lemma 1 Suppose Θ is continuous. Consider a network g and let j, k ∈
Ni(g). Under (A.5), θij 6= θik.

In the discrete case, it is possible that P θ0

3 −μ(θ
0) > P θ

2 −μ(θ) for all θ 6= θ0.
Thus it is possible for a firm to engage in the same project with more than
one partner. Note that it is also possible that two or more distinct pairs
of firms finance the same project. In this case, given the ex-ante symmetry
of firms, we assume that the monopoly right to the future stream of profits
from the project is randomly allocated to one pair. Therefore, if h distinct
pairs of firms pursue the same project θ, then the option value to a firm in
any one of the pairs is assumed to be 1

h

³
P θ

2

´
. Now suppose that any two

firms choose a project θ0 in a network g. Let ξ(θ0, g) denote the total number
of distinct firms that pursue project θ0. Then the option value of θ0 to each

participating firm in the network g is P θ0

ξ(θ0,g)
. In the following discussion we

will let:

λ(θ0, g) =
P θ0

ξ(θ0, g)
− ψ(θ0), θ0 ∈ Θ (8)

where ψ(θ) is the project-specific cost of θ. With a continuous technology
space we know from Lemma 1 that firms will choose different projects in
equilibrium and there will be no miscoordination. Therefore (8) takes the
following form when Θ is continuous:

λ(θ0, g) ≡ P θ0

2
− ψ(θ0), θ0 ∈ Θ (9)

since ξ(θ0, g) = 2. We will refer to λ(θ0, g) as the net option value of θ0 in
the network g.

We are now ready to look at a firm’s payoffs. Consider a network g and any
firm i. Then:

πi(g) =
X

j∈Ni(g)

[λ(θij , g)− c (ni(g), nj(g))] (10)

12



where θij denotes i’s project with j. Recall that the network g is a function
of the underlying strategy profile s = {s1, s2, ..., sN}. A strategy profile s∗ =
{s∗1, s∗2, ..., s∗n} is Nash if and only if πi(g(s∗i , s∗−i) ≥ πi(g(si, s

∗
−i)), ∀si ∈ Si,

∀i ∈ N , where s−i is the strategy profile of all firms other than i. The
corresponding network is referred to as a Nash network. The Nash criterion
is however not discriminating enough. For this purpose we will employ a
strong stability property due to Jackson and Nouweland (2001) to refine the
Nash equilibrium. Let S ⊂ N denote a coalition of firms. A network g0 can
be obtained from a network g through deviations by a coalition S ⊂ N if:

1. gij = 1 in g0 and gij = 0 in g implies that i, j ∈ S. In words, any new
links added in the movement from g to g0 can only be formed by firms
in the coalition S.

2. gij = 1 in g and gij = 0 in g implies that {i, j} ∩ S 6= ∅. In words, if
any links are deleted in the movement from g to g0, then at least one
of the firms severing the link should be from the coalition S.

A network g is said to strongly stable if for any coalition S and any g0 that
can be obtained from g through deviations by S, πi(g0) > πi(g) for some
i ∈ S implies that πj(g0) < πj(g) for some j ∈ S. We are now ready to
define:

Definition 1 A network g is an equilibrium network if:

1. There is a Nash strategy profile supporting g.

2. The network g is strongly stable.

In the network setting, each firm can unilaterally sever links. However form-
ing a link is a bilateral decision requiring agreement by both firms. The
equilibrium property of a network g states that no firm has any incentive to
delete any subset of links and, for any coalition of firms, the member firms
have no incentive to bilaterally form links that did not exist in g. 7

In an equilibrium network there could be isolated firms, i.e. those who do
not form any link. We will normalize the payoffs of isolated firms to zero
and assume:

7Please see Jackson and Nouweland (2001) on the existence and characterization of
such strongly stable networks.
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(A.6) c(0, 0) + ψ(θ) > P θ for all θ ∈ Θ.

The term c(0, 0) is the cost component that is not project-specific to a firm
with no links. We are assuming that these costs (plus any specific costs)
are sufficiently high to preclude firms from pursuing any project in isolation.
This is in keeping with the rationale behind networks as a means to collab-
oratively explore technological opportunities that are otherwise impossible
due to individual resource constraints. We also note that this normalization
is mainly to streamline the exposition and does not entail any essential loss
of generality.

3 Interlinked Stars

In this section we describe the interlinked stars architecture. Consider a
partition of firms H = {H1(g),H2(g), ...,Hm(g)} according to increasing
number of links. In particular, if i, j ∈ Hh(g), then i and j have the same
number of links. We will also sometimes refer to differences among firms
in the number of links as differences in their size. Note that h denotes the
ordering in the partition according to the number of links and does not mean
that the two firms have h number of links. An interlinked star network g is
characterized by “hub” and “spoke” firms of different sizes. Let us consider
the spoke firms first arranged in increasing order of size. Assume for the
sake of argument that m is even. If not, then the largest set of spoke firms
is Hm+1

2
.

Table 1: Spoke Firms

Spoke Firms In Linked to Firms In
H1(g) Hm(g)

H2(g) Hm(g),Hm−1(g)
H3(g) Hm(g),Hm−1(g),Hm−2(g)
· · · · · ·

Hm
2
(g) Hm(g),Hm−1(g),Hm−2(g), · · ·,Hm

2
+1(g)

The set of firms in H1(g) are the smallest, or most “peripheral”, of the spoke
firms. If they have any links at all, then they are only connected to firms in
Hm(g). The largest set of spoke firms, or the most connected, are those in
Hm

2
(g). They are connected to all the hub firms. In between are spoke firms
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in increasing order of connectedness. Let us now consider the hub firms in
decreasing order of size:

Table 2: Hub Firms
Hub Firms In Linked to Firms In

Hm(g) H1(g),H2(g), · · ·,Hm(g)

Hm−1(g) H2(g),H3(g), · · ·,Hm(g)

Hm−2(g) H3(g),H4(g), · · ·,Hm(g)

· · · · · ·
Hm

2
+1(g) Hm

2
(g),Hm

2
+1(g), · · ·,Hm(g)

Firms in Hm(g) form the largest, or the most central, hubs who are con-
nected to all the firms. The smallest hubs are firms in Hm

2
+1(g). A feature

shared by all spoke firms is that they are only connected to hub firms and
not to each other. Hub firms, on the other hand, are connected to all other
hub firms. They differ only with regard to the spoke firms to whom they
are connected. The largest hubs in Hm(g) are connected to all the spoke
firms, the next smaller hubs in Hm−1(g) are connected to all but spokes in
H1(g) and so on. A special case is the star network, H = {H1(g),H2(g)},
in which H1(g) consists of N−1 spoke firms that have one link each with the
single hub in H2(g). The empty network corresponds to the extreme case
H = {H1(g)} where H1(g) = {1, 2, ..., N} is the set of all singleton spokes
and there are no hubs; the complete network H = {H1(g)} corresponds to
the case where H1(g) = {1, 2, ..., N} is the set of all interconnected hubs and
there are no spokes.

The following figures illustrate the structure of some interlinked stars.

— Figures 1 and 2 somewhere here —

In Figure 1 we see networks of the form H = {H1(g),H2(g)}. The set H1(g)
is that of spoke firms and the set H2(g) is that of hub firms. The hubs are
connected to other hubs and the spokes while the spokes are only connected
to the hubs. In the first network, H2(g) = {1}, indicating that firm 1 is the
only hub and the remaining firms are spokes. This is referred to as the star
network. In the next network, H2(g) = {1, 2}, indicating that we have two
symmetrically sized hubs and the remaining firms are spokes. Therefore we
have an interlinked star network, i.e. one in which two star networks are
connected by a link between the hubs and links between hubs and spokes.
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The remaining two networks show symmetric hubs that are increasing in
size with H2(g) = {1, 2, 3} and H2(g) = {1, 2, 3, 4} respectively.

In Figure 2 we see interlinked stars with asymmetric hubs and spokes. The
first network has an architecture of the form H = {H1(g),H2(g),H3(g)}.
The set H1(g) = {5, 6} are the spoke firms connected only to the largest
hub H3(g) = {1}. The set H2(g) = {2, 3, 4} is an intermediate-sized hub
of firms connected to each other and to firm 1 but not to the two spokes.
Firm 1 constitutes the largest hub. The second network is of the form
H = {H1(g),H2(g),H3(g),H4(g)}. Firm 1 in H4(g) is once again the largest
hub that is connected to all firms. The set H3(g) = {4, 5} consist of smaller
hubs who, in addition to firm 1, are connected to each other and the larger
spoke firms in H2(g) = {6, 7, 8}. The smallest spoke firms are H1(g) =
{2, 3} who are only connected to the largest hub. It is worth reiterating
the distinguishing characteristic of interlinked stars: hub firms are always
connected to all other hubs (whether small or large) and sufficiently large
spokes; spoke firms, on the other hand, are never connected to other spokes
and are linked to only sufficiently large hubs.

4 Equilibrium Networks

In this section we show that equilibrium networks take the form of interlinked
stars. We start with an important property of equilibrium networks: if firm
i has fewer links than j in an equilibrium network, then all firms who are
connected to i are also connected to j.

Lemma 2 Assume (A.1) − (A.3) and (A.5) − (A.6) hold. Suppose g is a
non-empty equilibrium network. If ni(g) ≤ nj(g), then Ni(g) ⊆ Nj(g).

Proof: See Appendix. ¥

The intuition behind this result is fairly simple and exploits the assumptions
on costs. Suppose some firm k finds it profitable to link with firm i for a
project θik. Then k should also find it profibable to link up with firm
j who has more links than i. The cost to k of linking with j is lower
than that of linking to i. The same is true of j because if the higher cost
firm i could profitably link up with k, then the lower cost firm j certainly
can. Moreover we show that both can find a project θjk that is mutually
profitable. Therefore all partners of i will be partners of j as well.
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With the help of Lemma 2 we can now show the interlinked stars charac-
terization. We start with the following result showing that if firms have at
least one link (they are not isolated), then they must have a link with the
largest hub firms in Hm(g).

Proposition 1 Assume (A.1) − (A.3) and (A.5) − (A.6) hold. If the equi-
librium network is non-empty and connected (there are no isolated firms),
then for each j ∈ Hm(g), Nj(g) = {1, 2, ..., N}. Thus the largest hubs are
connected to each other and all other firms.

Proof: Let j ∈ Hm(g) and assume to the contrary that there exists a firm k
such that gjk = 0. Since the network is connected, k must have a link with
at least one firm l, i.e. k ∈ Nl(g). Since j belongs to the set of the largest
hubs, nj(g) ≥ nl(g). It follows from Lemma 2 that k ∈ Nl(g) ⊆ Nj(g)
contradicting gjk = 0. ¥

Consider the spoke firms with the fewest links in an equilibrium network.
Note that spoke firms must have at least one link or otherwise they would
be isolated. The next result shows that these firms can only be linked to
the largest hub firms in Hm(g). An example is the star network in which
N − 1 spoke firms have links with one hub only but not with each other.

Proposition 2 Assume (A.1)− (A.3) and (A.5)− (A.6) hold and consider
a non-empty equilibrium network g. For each i ∈ H1(g), the neighborhood
of i is Ni(g) = ∅ or Ni(g) = {j : j ∈ Hm(g}.

Proof: From Proposition 1, {j : j ∈ Hm(g)} ⊆ Ni(g). Since firm i is the
smallest spoke in the sense of having the smallest number of links, every
other firm l satisfies nl(g) ≥ ni(g). From Lemma 2 it follows that Ni(g) ⊆
Nl(g) for each l. Now suppose that k ∈ Hh(g), h 6= m, and gik = 1. In
other words, the smallest spoke i has a link with k who does not belong
to the set of the largest hubs. Then k ∈ Nl(g) for each l, i.e. k belongs
to the neighborhood of each firm. But then k ∈ Hm(g), contradicting the
hypothesis that k is not the largest hub. ¥

Note that if Ni(g) = ∅ for all i ∈ H1(g), then H1(g) is the set of isolated
firms and H2(g) must be the set of spoke firms with the fewest links. In this
case, the statement of Proposition 2 applies to firms in H2(g). Having dealt
with the smallest spokes and the largest hubs, we now turn attention to the
intermediate-sized spokes and hubs and a characterization of their partners.
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Proposition 3 Assume (A.1)− (A.3) and (A.5)− (A.6) hold and consider
a non-empty equilibrium network g. For any i ∈ Hh+1(g), 1 ≤ h < m

2 (if m
is odd, then for any h < m+1

2 ), the neighborhood of i is:

Ni(g) = Hm−h(g) ∪Hm−h+1(g) ∪ · · · ∪Hm−1(g) ∪Hm(g) (11)

For any j ∈ Hm−h(g):

Nj(g) = Hh+1(g) ∪Hh+2(g) ∪ · · · ∪Hm−1(g) ∪Hm(g) (12)

Proof: See Appendix. ¥

According to Proposition 3, corresponding to each spoke firm of a given
size, there exists a threshold size for hub firms so that the spoke firm is
linked to all hubs whose size is at least as great as the threshold. This
threshold is decreasing in the size of the spoke firm. Thus larger spokes
are distinguished from smaller spokes in that they are connected to a larger
range of asymmetrically sized hubs. We can equivalently view this result
from the perspective of the hub firms. For each hub of a given size, there is
a threshold size for spoke firms so that the hub firm is connected to all those
spokes whose size exceeds the threshold. This threshold is decreasing in the
size of the hub firms. Therefore, as the size of hub firms increase, they have
an incentive to connect with spokes of smaller size. We can now collect all
the results to prove the following:

Proposition 4 Assume (A.1) − (A.3) and (A.5) − (A.6) hold and g is an
equilibrium network. In the class of connected networks, an equilibrium net-
work is either complete or an interlinked star. In the class of unconnected
networks, an equilibrium network can be empty or have at most one non-
singleton component; further, this component is either complete or an inter-
linked star.

Proof: The interlinked star characterization follows from Propositions 1-3.
We only have to show that an unconnected network can have at most one
non-singleton component. If P θ

2 − ψ(θ) > c(1, 1) for some θ ∈ Θ, then the
equilibrium network will be non-empty. Let us suppose that there are two
non-singleton components in g. The above arguments imply that they must
be complete or interlinked stars. In either case we can identify players i, j, k
such that gij = 1, gik = gjk = 0 and nk(g) ≥ ni(g). However, from Lemma
2, j ∈ Ni(g) ⊆ Nk(g) contradicting gjk = 0. ¥
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We now provide an example to show that a star equilibrium network exists.

Example 4.1: Assume that N = {1, 2, 3, 4} and Θ is given by a discrete
set with the following net option values:

Project θ1 θ2 θ3 θ4 θ5 θ6
P θ 6 7 8 9 10 11

Assume that ψ(θ) = 0 for all θ. Non-specific costs are given by:

(ni, nj) (0, 0) (1, 1) (2, 1) (3, 1) (1, 2) (1, 3) (2, 2) (3, 2) (2, 3) (3, 3)

c(ni, nj) 12 6 5.25 4.2 5.75 4.25 5 4.1 4.15 4

Non-specific costs satisfy all the assumptions maintained in this section. It
can be checked that the only equilibrium network is the star gs where (say)
firm 1 is the hub who engages in projects θ6, θ5, and θ4 respectively with
firms 2, 3, and 4. The payoffs are π1(gs) = 2.4, π2(gs) = 1.25, π3(gs) = 0.75,
and π4(gs) = 0.25. No firm has an incentive to delete any of its links (recall
that an isolated firm has a payoff of 0). It can be checked that no coalition
of firms can do better by reorganizing their links. For example, if the two
spokes, firms 2 and 3, add a link to the star by choosing project θ3, then
π2(g

s + g23) = 0.5 < π2(g
s) and similarly for firm 3. Suppose the spoke

firms delete their link with 1 and form a link among themselves (network
g0) with firm 2 choosing projects θ6 and θ4 with firms 1 and 3 while the
latter two firms choose θ5. It suffices to see that firm 3 is worse off since
π3(g

0) = 0.5 < π3(g
s). Similarly, it can be verified that if all the firms

formed a complete network, then at least one firm is worse off relative to the
star. For example, consider the allocation of projects under gs and allocate
projects that give the highest payoff to firm 4. In particular, suppose firm
4 is connected to firm 3 through the project θ3 and to firm 2 through the
project θ6. Note that P θ6

3 = 3.67 > 3.5 so it is better for firm 4 to share
θ6 with two other firms rather than engage in θ2 with one other firm. Then
π4(g

c) = 0.17 < π4(g
s). ¥

5 Choice of Projects

We now turn to a characterization of the research projects that are chosen
by hub firms with the spoke firms. The main result of this section is as
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follows. When comparing the projects of a hub with two spokes, one small
and the other large, the hub firm chooses projects with higher returns and
higher risk with the smaller spoke. Similarly, when comparing the project
of a hub with another smaller hub and a spoke, the hub chooses a higher
return and higher variance project with the spoke. In general smaller, or
more peripheral, spokes engage in riskier investments with hub firms than
relatively larger spokes or other hubs.

If more than one pair of firms pursue the same project, then it is difficult
to characterize the risk characteristics of these projects. We therefore limit
ourselves in this section to the case of a continuous technology space. By
virtue of Lemma 1 we know that each pair of firms will choose a distinct
project. This means that, as long as we explicitly state the project that is
chosen, we can drop reference to the network g in the net option value func-
tion. If any two firms choose the same project θ in networks g and g0, then
λ(θ, g) = λ(θ, g0). We now replace (A.1) by putting a joint restriction on
the net option value and non-specific project costs. Recall that the option
value increases as we choose projects with a higher index θ because returns
and variance are increasing with θ. However, since project-specific invest-
ment cost is also non-decreasing with θ, it is not clear how net option value
changes with θ. Moreover, the net option values have to be compared to
non-specific costs. The following assumption simply requires net option val-
ues in the case of a continuous technology space to be sufficiently responsive
to a change in θ.

(A.1)∗ For any 3-tuple (n, n0, θ), where 1 ≤ n, n0 < N − 1 and θ ∈ Θ, there
exists θ0 ∈ Θ such that:

λ(θ0)− λ(θ) ≥ c(n+ 1, n0)− c(n, n0 + 1) (13)

In other words, the above assumption places some (minimum) bounds on
the variation in the net option value.8

Proposition 5 Assume (A.1)∗ − (A.6) hold and g is an equilibrium in-
terlinked star network. Consider a hub firm j ∈ Hq(g) which has links
with spoke firms i ∈ Hq00(g) and k ∈ Hq0(g) where q00 < q0 < q. Then
λ(θij) > λ(θkj), i.e. j chooses a project with a greater net option value with
i relative to its project with k.

8Note that this assumption does not state that λ(θ0) > λ(θ). Since no assumption is
placed on the RHS of (13), it is possible that λ(θ0) ≤ λ(θ).
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Corollary 1 Suppose that project-specific costs are constant, or small, so
that net option value is strictly increasing in θ. Under the assumptions of
Proposition 5, θij > θkj.

Proof: Since the net option value λ(θ) = P θ

2 −ψ(θ) is strictly increasing in
θ, λ(θij) > λ(θkj) implies the result. ¥

As an illustration of Corollary 1, Table 3 shows the project chosen by the
largest hub with spoke firms of different sizes. The hub and smaller spokes
choose relatively more risky projects because the cost of linking is greater
for both firms. The cost for the hub is greater because it is linking with
a peripheral (less connected) firm and thus needs to contribute relatively
greater resources to their joint project. The cost for smaller spokes is greater
as well because they have not been able to harness the scale economies
afforded by having more links. Thus both need to be compensated with
a project with a higher option value and hence they choose higher return
higher risk projects.

Table 3: Project of Largest Hub Firm j with Spoke Firms
Project with Project
i1 ∈ H1(g) θji1
i2 ∈ H2(g) θji2 < θji1
i3 ∈ H3(g) θji3 < θji2 < θji1

· · · · · ·
im
2
∈ Hm

2
(g) θjim

2
< θjim

2 −1
< · · · < θji2 < θji1

The same argument also shows that a hub firm will choose a relatively lower
risk lower return project with another hub as compared to its project choice
with a spoke firm. This is shown next:

Proposition 6 Assume (A.1)∗ − (A.6) hold and g is an equilibrium inter-
linked network. Consider hub firms j and k and a spoke firm i such that
nj(g) > nk(g), gij = 1 and gki = 0. Then λ(θij) > λ(θkj). If the net option
value is strictly increasing in θ, then θij > θkj.

Proof: Since j and k are hub firms, it follows that gjk = 1 and nk(g) >
ni(g). The proof now follows the same argument as Proposition 5 and
Corollary 1. ¥
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6 Dissolution of Links

Finally, consider the issue of why we are likely to see many links that have
been formed in period 0 dissolving at some future time. To fix ideas, consider
the Black-Scholes pricing of real options with exogenous exercise date in
Example 2.2. Since the returns are random, there is a positive probability
that the real option will have zero value at the exercise date T . In particular,
the probability that the real option θ ends up “out of the money” (zero price
at maturity) is given by:

g (θ) = N (d2) (14)

Each pair of firms will therefore dissolve all those links whose option value
is zero at maturity.

It would have been interesting to see what kinds of links are more likely
to be dissolved. In particular, is it more likely to see dissolution of links
between hubs and spokes relative to those between hubs? Unfortunately
we were unable to obtain any concrete results in this direction. Note that
the variation in the probability of dissolving a link with respect to θ can be
determined by examining the variation of d2 with respect to θ:

∂dθ2
∂θ

=

µ
∂dθ2
∂V θ

0

× ∂V θ
0

∂θ

¶
+

µ
∂dθ2
∂Kθ

× ∂Kθ

∂θ

¶
+

µ
∂dθ2
∂σθ

× ∂σθ

∂θ

¶
However, it can be verified that:

∂dθ2
∂V θ

0

=
1

σθV θ
0

√
T

> 0,
∂dθ2
∂σθ

= − dθ1
2σθ

< 0,
∂dθ2
∂Kθ

= − 1

σθV θ
0

√
T

< 0

Therefore, no general results can be derived without additional assumptions
on the variations of V θ

0 , K
θ, and σθ.

7 Conclusion

This paper explored the incentives of firms to form networks of research
partnerships in their pursuit of new technology opportunities in contexts
of high uncertainty. Our model explained the following: why networks are
particularly ubiquitous in industries that are subject to high uncertainty;
why networks sometimes display an interconnected “hubs and spokes” ar-
chitecture; why small (or peripheral spoke) firms often sink resources into
relatively higher risk higher return investment projects with only hub firms;
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and why so many research alliances are continuously formed and dissolved.
Our paper also delineated the conditions under which ex-ante symmetric
firms ended up ex-post forming complex asymmetric networks. Firms were
assumed to view collaborative links (research partnerships) as vehicles to
create opportunities and evaluated them as real options to new technologies
and, accordingly, new markets. As such, the paper addressed the intersec-
tion of strategic networks and real options theory. It formalized a process
through which firms partnered with others to expand their technology search
space collectively in terms of pursuing bolder research projects (high risk and
high return). It therefore provided an explanation of why strategic alliances
are particularly prevalent in high uncertainty industries. The assumptions
on option values and the cost of initial investment in a project helped explain
the existence and architecture of research networks that have been observed
in industries experiencing rapid technological change. In particular, the
paper demonstrated that when the initial investment cost for any project
between two firms was falling in the number of links of the firms, then the
equilibrium network assumed a hub-and-spoke architecture. Therefore, even
though firms were ex-ante symmetric, the equilibrium network was ex-post
asymmetric. The paper further demonstrated that each hub firm chose a
relatively higher risk (and higher return) project with a more peripheral (or
smaller spoke) than with another hub or a larger spoke. Evaluating the
value of each link as a real option also helped explain why firms dissolved
links even in equilibrium.

This paper provided firms with a menu of technological opportunities so
that any pair of firms could choose a different project and assume monopoly
control over non-overlapping technological areas. An issue of great interest
is the other extreme where there is only one technological innovation possi-
ble and a partnership of firms which is the first to be successful can patent
it for monopoly use. This is the kind of framework that has been envisaged
by Huisman and Kort (2000) and Grenadier (2000a,b) who have noted that
standard option price calculations would change if the strategic behavior of
agents, and in particular the possibility of preemption, was taken into ac-
count. Their analyis is within a 2-player framework and looks at the option
value of waiting and the optimal exercise strategy under threat of preemp-
tion. Introducing the possibility of preemption and monopoly control over a
technology in the network framework could have interesting consequences.
Since the threat of preemption would affect the option value of links, it would
also then impact the architecture of the research networks. Combining real
options and strategic network formation in an environment of preemption
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should provide a fertile area for future research.

8 Appendix

Proof of Lemma 1: Suppose i and j have chosen the project θ0. If i and

k also choose θ0, then the option is only worth P θ0

3 from (A.5). Suppose
P θ

2 − ψ(θ) is non-decreasing at θ0. Then for some θ00 > θ0, P θ00

2 − ψ(θ00) ≥
P θ0

2 − ψ(θ0) > P θ0

3 − ψ(θ0). Since the non-specific cost c depends only on
ni(g) and nk(g) and is independent of θ, both i and k have an incentive
to choose θ00. If P θ

2 − ψ(θ) is non-increasing at θ0, then the same argument
applies for some θ00 < θ0. ¥

Proof of Lemma 2: Suppose to the contrary that ni(g) ≤ nj(g) in an
equilibrium network g but Ni(g)\Nj(g) 6= ∅. Index the firms such that:

1, 2, ..., L ∈ Ni(g)\Nj(g)

L+ 1, L+ 2, ...L0 ∈ Ni(g) ∩Nj(g)

L0 + 1, L0 + 2, ..., L00 ∈ Nj(g)\Ni(g)

Let g0 = g−
PL

l=1 gil denote the network in which i has deleted all the links
in Ni(g)\Nj(g). Since i has no incentive to delete any subset of links:

πi(g)− πi(g
0) =

LX
l=1

[λ(θil, g)− c (ni(g), nl(g))]

+
L0X

l=L+1

£
c
¡
ni(g

0), nl(g
0)
¢
− c (ni(g), nl(g))

¤
≥ 0

Now consider the coalition S = {j}∪Ni(g)\Nj(g) and let g00 = g0+
PL

l=1 gjl
denote the network in which each firm l ∈ Ni(g)\Nj(g) deletes its link with
i and forms a link with j by choosing the project θjl = θil, i.e. the same
project it pursued with i in g. Note that nl(g00) = nl(g) = nl(g

0) + 1 for
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l ∈ Ni(g)\Nj(g). For firm j:

πj(g
00)− πj(g) =

LX
l=1

£
λ(θjl, g

00)− c
¡
nj(g

00), nl(g
00)
¢¤

+
L0X

l=L+1

£
c (nj(g), nl(g))− c

¡
nj(g

00), nl(g
00)
¢¤

+
L00X

l=L0+1

£
c (nj(g), nl(g))− c

¡
nj(g

00), nl(g
00)
¢¤

Note from (A.2) that for l = 1, 2, ..., L, c (nj(g00), nl(g00)) < c (ni(g), nl(g))
since nj(g

00) > ni(g) and nl(g
00) = nl(g). From the choice of the project

θjl = θil, it follows that λ(θil, g) = λ(θjl, g
00). Therefore:

LX
l=1

£
λ(θjl, g

00)− c
¡
nj(g

00), nl(g
00)
¢¤

>
LX
l=1

[λ(θil, g)− c (ni(g), nl(g))]

Note that nj(g) < nj(g
00). Further nl(g00) = nl(g) for l ∈ Nj(g)\Ni(g).

Therefore from (A.2):

L00X
l=L0+1

£
c (nj(g), nl(g))− c

¡
nj(g

00), nl(g
00)
¢¤

> 0

Finally, note that nl(g) = nl(g
0) = nl(g

00) for l ∈ Ni(g) ∩Nj(g) and:

c (nj(g), .)− c
¡
nj(g

00), .
¢
= [c (nj(g), .)− c (nj(g) + 1, .)]

+[c (nj(g) + 1, .)−c (nj(g) + 2, .)]+···+[c (nj(g) + L− 1, .)−c
¡
nj(g

00), .
¢
]
(15)

c
¡
ni(g

0), .
¢
− c (ni(g), .) = [c

¡
ni(g

0), .
¢
− c

¡
ni(g

0) + 1, .
¢
]

+[c
¡
ni(g

0) + 1, .
¢
−c
¡
ni(g

0) + 2, .
¢
]+···+[c

¡
ni(g

0) + L− 1, .
¢
−c (ni(g), .)]

(16)

From (A.3):

c (nj(g) + x, .)− c (nj(g) + x+ 1, .) > c (nj(g) + x− 1, .)− c (nj(g) + x, .)

> · · · > c
¡
ni(g

0) + x, .
¢
− c

¡
ni(g

0) + x+ 1, .
¢
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Therefore each term within the square parentheses in (15) is strictly greater
than the corresponding term in (16). It follows that:

L0X
l=L+1

£
c (nj(g), nl(g))− c

¡
nj(g

00), nl(g
00)
¢¤

>

L0X
l=L+1

£
c
¡
ni(g

0), nl(g
0)
¢
− c (ni(g), nl(g))

¤
and we have shown that πj(g00) − πj(g) > πi(g) − πi(g

0) ≥ 0. Therefore j
has an incentive to form links with all the firms in Ni(g)\Nj(g) and move
from g to g00.

We now show that each firm k in Ni(g)\Nj(g) has an incentive to reciprocate
the link with j. From the equilibrium property of g, k would not delete the
link with i:

πk(g)− πk(g
0) = λ(θik, g)− c (nk(g), ni(g))

+
X

l∈Nk(g0)

£
c
¡
nk(g

0), nl(g
0)
¢
− c (nk(g), nl(g))

¤
≥ 0 (17)

Recall that each k ∈ {1, 2, ..., L} forms a link with j by choosing a project
θkj = θik.

πk(g
00)− πk(g

0) = λ(θkj , g
00)− c

¡
nk(g

00), nj(g
00)
¢

+
X

l∈Nk(g0)

£
c
¡
nk(g

0), nl(g
0)
¢
− c

¡
nk(g

00), nl(g
00)
¢¤

(18)

From (A.2) and the fact that ni(g00) < ni(g), c (nk(g00), nj(g00)) < c (nk(g), ni(g)).
Therefore λ(θkj , g00) − c (nk(g

00), nj(g00)) > λ(θik, g) − c (nk(g), ni(g)). Note
that for l ∈ Nk(g

0)\S we have nl(g) = nl(g
00) = nl(g

0) while for l ∈ Nk(g
0)∩S

we have nl(g00) = nl(g) = nl(g
0)+1. Therefore, the last terms on the RHS of

(17) and (18) are the same. It follows that πk(g00)−πk(g0) > πk(g)−πk(g0) ≥
0. Therefore, from the network g0, all k ∈ Ni(g)\Nj(g) are strictly better off
forming a link with j than with i. Thus these firms will jointly delete their
links with i and form a link with j. Since j does better as well by recip-
rocating these links (relative to g), this contradicts the starting hypothesis
that g is an equilibrium network. ¥

Proof of Proposition 3: In the following proof it will be convenient to let
l1, l2, ..., lm denote a representative firm from the setsH1(g),H2(g), ...,Hm(g)
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respectively. Consider l2 ∈ H2(g). From Proposition 1, Hm(g) ⊂ Nl2(g). It
is a proper subset because from Proposition 2 Hm(g) is the neighborhood
for the smallest spoke firms in H1(g) and l2 has strictly more links than
the smallest spokes. We now argue that the additional links of l2 must
be with hub firms in Hm−1(g). Suppose not and let k ∈ Nl2(g) but k /∈
Hm−1(g) ∪Hm(g). Then nk(g) < nlm−1(g). From Lemma 2, k ∈ Nl2(g) ⊆
Nl3(g) ⊆ · · · ⊆ Nlm(g) and therefore Nk(g) = H2(g) ∪H3(g) ∪ · · · ∪Hm(g).
From Proposition 2, Nlm−1(g)∩H1(g) = ∅ and thereforeNlm−1(g) ⊆ H2(g)∪
H3(g) ∪ · · · ∪Hm(g) = Nk(g). Thus nlm−1(g) ≤ nk(g), a contradiction. It
follows that (11) and (12) hold for h = 1.

Now suppose that (11) and (12) are true for any h0 ≥ 1. We will show
that they hold for h0 + 1. By induction, Hm−h0(g) ∪ Hm−h0+1(g) ∪ · · · ∪
Hm(g) ⊂ Nlh0+2(g). We now show that the additional links of lh0+2 must
be with firms in Hm−h0−1(g). Suppose not and let j ∈ Nlh0+2(g) but j /∈
Hm−h0−1(g) ∪ Hm−h0(g) ∪ · · · ∪ Hm(g). Then nj(g) < nlm−h0−1(g). From
induction, Nlm−h0−1(g) ⊆ Hh0+2(g) ∪ Hh0+1(g) ∪ · · ∪Hm(g). From Lemma
2, j ∈ Nlh0+2(g) ⊆ Nlh0+3(g) ⊆ · · · ⊆ Nlm(g) and thus Nj(g) = Hh0+2(g) ∪
Hh0+1(g) ∪ · · ∪Hm(g). But then nj(g) ≥ nlm−h0−1(g), a contradiction. ¥

Proof of Proposition 5: Since i does not want to delete a link with j in
an equilibrium network g:

πi(g)− πi(g − gij) = λ(θij)− c(ni(g), nj(g))

+
X

l∈Ni(g−gij)
[c(ni(g)− 1, nl(g))− c(ni(g), nl(g))] ≥ 0 (19)

Consider k and note that gik = 0 since i and k are spoke firms. Both spokes
belong to Nj(g). Consider a coalition S = Nj(g)\{i} and connect each pair
of unlinked firms l, h ∈ S with some project θlh. Each firm in S now has
nj(g)− 1 links. Extend the coalition to S ∪ {i} and connect i to k through
some project θik. Call the network obtained from g by the stated deviations
of the coalition S ∪ {i} as g0. Note that nj(g) = nk(g

0) > nl(g
0) > ni(g

0) for
all l ∈ S\{k}. We now claim the following:

Claim: If πi(g0) ≥ πi(g), then πl(g
0) > πl(g) for all l ∈ S.

In words, suppose firm i with the lowest number of links in g0 finds it prof-
itable through a suitable project to move from g to g0. Then all other firms
in S who have more links than i in g0 will be able to find suitable projects
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that makes this move profitable as well. We prove by contradiction. Suppose
there exists a project θik such that πi(g0) ≥ πi(g), i.e.

λ(θik)− c(ni(g
0), nk(g

0)) +
X

h∈Ni(g)

£
c(ni(g), nh(g))− c(ni(g

0), nh(g
0))
¤
≥ 0

(20)
However for some l ∈ S, and for all choice of projects θlh, we have πl(g0) ≤
πl(g):X
h∈S\Nl(g)

£
λ(θlh)− c(nl(g

0), nh(g
0))
¤
+
X

h∈Nl(g)

£
c(nl(g), nh(g))− c(nl(g

0), nh(g
0))
¤
≤ 0

(21)
In order to show a contradiction, we will show that the LHS of (21) is strictly
greater than the LHS of (20). Note that without loss of generality we can
assume that λ(θik)− c(ni(g

0), nk(g0)) ≥ 0. There are 2 possible cases:

Case 1: Let l be such that nl(g) ≥ ni(g). Note that nh(g
0) ≤ nk(g

0),
h ∈ S\Nl(g). From (A.1)∗ there exists a θ0 such that:

λ(θ0)− λ(θik) ≥ c(nl(g
0), nh(g

0))− c(nl(g
0)− 1, nh(g0) + 1) (22)

≥ c(nl(g
0), nh(g

0))− c(ni(g
0), nk(g

0))

where the second inequality follows from (A.2). From the continuity of Θ it
is possible to choose projects θlh, h ∈ S\Nl(g), such that:

1

|S\Nl(g)|
X

h∈S\Nl(g)

λ(θlh) = λ(θ0)

Substitute in (22) and note that |S\Nl(g)|c(nl(g0), nh(g0)) ≥
P

h∈S\Nl(g)
c(nl(g

0), nh(g0))
since all firms in S\{k} have the same number of links and one less link
than k. Rearranging it follows that

P
h∈S\Nl(g)

[λ(θlh)− c(nl(g
0), nh(g0))] ≥

λ(θik)− c(ni(g
0), nk(g0)).

Note from Lemma 2 that Ni(g) ⊆ Nl(g). For each h ∈ Ni(g), write the
second term in (20) as:

[c(ni(g), nh(g))− c(ni(g) + 1, nh(g))]+
£
c(ni(g) + 1, nh(g))− c(ni(g) + 1, nh(g

0))
¤

(23)
where we have used the fact that ni(g0) = ni(g) + 1. Consider the second
term in (21). It is positive for all h ∈ Nl(g)\Ni(g) from (A.2). For all
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h ∈ Ni(g), we can write it as:

[c(nl(g), nh(g))− c(nl(g) + 1, nh(g))]+[c(nl(g) + 1, nh(g))− c(nl(g) + 2, nh(g))]

+ · · ·+
£
c(nl(g

0), nh(g))− c(nl(g
0), nh(g

0))
¤

> [c(nl(g), nh(g))− c(nl(g) + 1, nh(g))]

+
£
c(nl(g

0), nh(g))− c(nl(g
0), nh(g

0))
¤
(24)

since the intermediate terms are positive by virtue of (A.2). Consider the
first term in (24). Using (A.3) repeatedly shows that it is greater than the
first term in (23):

c(nl(g), nh(g))− c(nl(g) + 1, nh(g)) ≥ c(nl(g)− 1, nh(g))− c(nl(g), nh(g))

≥ · · · ≥ c(ni(g), nh(g))− c(ni(g) + 1, nh(g))

It now remains to compare the last terms in the two expressions. The last
term in (23) can be expanded as:£

c(ni(g
0), nh(g))− c(ni(g

0), nh(g) + 1)
¤
+
£
c(ni(g

0), nh(g) + 1)− c(ni(g
0), nh(g) + 2)

¤
+ · · ·+ [c(ni(g0), nh(g0)− 1)− c(ni(g

0), nh(g
0))] (25)

The last term in (24) can be expanded similarly:£
c(nl(g

0), nh(g))− c(nl(g
0), nh(g) + 1)

¤
+
£
c(nl(g

0), nh(g) + 1)− c(nl(g
0), nh(g) + 2)

¤
+ · · ·+ [c(nl(g0), nh(g0)− 1)− c(nl(g

0), nh(g
0))] (26)

Each term within the square parentheses in (26) dominates the correspond-
ing term in (25) by applying (A.4):

c(nl(g
0), nh(g)+x)−c(nl(g0), nh(g)+x+1) > c(nl(g

0)−1, nh(g)+x)−c(nl(g0)−1, nh(g)+x+1)
> · · · > c(ni(g

0), nh(g) + x)− c(ni(g
0), nh(g) + x+ 1)

Collecting all the above results, πl(g0) − πl(g) > πi(g
0) − πi(g) ≥ 0 contra-

dicting the hypothesis that πl(g0) ≤ πl(g).

Case 2: Let l be such that nl(g) < ni(g) so that Nl(g) ⊂ Ni(g). We can
rewrite (20) as:

λ(θik)− c(ni(g
0), nk(g

0)) +
X

h∈Ni(g)\Nl(g)

£
λ(θih)− c(ni(g

0), nh(g
0))
¤

−
X

h∈Ni(g)\Nl(g)

[λ(θih)− c(ni(g), nh(g))]−
X

h∈Nl(g)

£
c(ni(g), nh(g))− c(ni(g

0), nh(g
0))
¤
≥ 0

(27)
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Note that since g is an equilibrium network:X
h∈Ni(g)\Nl(g)

[λ(θih)− c(ni(g), nh(g))] ≥ 0

otherwise i would have an incentive to delete all links in Ni(g)\Nl(g) and
maintain the same number of links as l. Using the same argument employing
(A.1)∗ for h ∈ Ni(g)\Nl(g) as in Case 1:X

h∈S\Nl(g)

£
λ(θlh)− c(nl(g

0), nh(g
0))
¤
> λ(θik)− c(ni(g

0), nk(g
0))

+
X

h∈Ni(g)\Nl(g)

£
λ(θih)− c(ni(g

0), nh(g
0))
¤

It now remains to compare the last terms in (21) and (27). For each h ∈
Nl(g), with the help of (A.2):

c(nl(g), nh(g))− c(nl(g
0), nh(g

0))

= [c(nl(g), nh(g))− c(nl(g) + 1, nh(g))]

+ · · ·+ [c(ni(g), nh(g))− c(ni(g
0), nh(g))] + [c(ni(g

0), nh(g))

− c(ni(g
0), nh(g

0))] + [c(ni(g
0), nh(g

0))− c(nl(g
0), nh(g

0))]

> [c(ni(g), nh(g))− c(ni(g
0), nh(g))] + [c(ni(g

0), nh(g))− c(ni(g
0), nh(g

0))]

= c(ni(g), nh(g))− c(ni(g
0), nh(g

0))

Collecting all the above results, πl(g0) − πl(g) > πi(g
0) − πi(g) ≥ 0 contra-

dicting the hypothesis that πl(g0) ≤ πl(g).

We now return to the main proof. From the equilibrium property the move-
ment from g to g0 must leave at least one firm in S worse off. From the
claim above, firm i must be worse off (since πl(g0) ≤ πl(g) for some l ∈ S
implies πi(g0) < πi(g)). Then for all θ:

πi(g
0)− πi(g) = λ(θ)− c(ni(g) + 1, nk(g

0))

+
X

l∈Ni(g)

£
c(ni(g), nl(g))− c(ni(g) + 1, nl(g

0))
¤
< 0 (28)
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In particular (28) holds for θ = θkj . Then subtracting (28) from (19):

λ(θij)− λ(θkj) +
£
c(ni(g) + 1, nk(g

0))− c(ni(g), nj(g))
¤

− [c(ni(g), nj(g))− c(ni(g) + 1, nj(g))]

+
X

l∈Ni(g−gij)
[c(ni(g)− 1, nl(g))− c(ni(g), nl(g))

−c(ni(g), nl(g)) + c(ni(g) + 1, nl(g
0))
¤
> 0

Note that nk(g0) = nj(g). Therefore:

c(ni(g) + 1, nk(g
0))− c(ni(g), nj(g)) < 0

c(ni(g), nj(g))− c(ni(g) + 1, nj(g)) > 0

c(ni(g)− 1, nl(g))− c(ni(g), nl(g))− c(ni(g), nl(g)) + c(ni(g) + 1, nl(g
0)) < 0

where the first two inequalities are a consequence of (A.2). The third in-
equality follows from (A.2), (A.3) and (A.4) as follows:

c (ni(g), nl(g))− c
¡
ni(g) + 1, nl(g

0)
¢
= c (ni(g), nl(g))− c

¡
ni(g), nl(g

0)
¢

+ c
¡
ni(g), nl(g

0)
¢
− c

¡
ni(g) + 1, nl(g

0)
¢

> c
¡
ni(g), nl(g

0)
¢
− c

¡
ni(g) + 1, nl(g

0)
¢

> c
¡
ni(g), nl(g

0)− 1
¢
− c

¡
ni(g) + 1, nl(g

0)− 1
¢

> ... > c (ni(g), nl(g))− c (ni(g) + 1, nl(g))

> c (ni(g)− 1, nl(g))− c (ni(g), nl(g))

Thus λ(θij)− λ(θkj) > 0. ¥
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Figure 1: Star and Interlinked Stars Networks



Figure 2: Interlinked Stars with Asymmetrically-Sized Hubs


