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Abstract

This paper estimates the diffusion and obsolescence of technological knowledge by technologi-

cal field, country and type of institution using patent citations. We estimate patent citation-lag

distributions from the U.S. Patent and Trademark Office (USPTO) and from the European

Patent Office (EPO). We show that absorptive capacity, and not only technological opportu-

nities, is an important determinant of the rate of diffusion and decay of technical knowledge.

Moreover we show that the citation-lag distribution is crucially affected by the different rules

governing citation practices at the USPTO and EPO.
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1 Introduction

In the last two decades a large body of theoretical research has focused upon the relationship

between knowledge capital, knowledge spillovers and aggregate growth. The nature and scope of

knowledge spillovers play a prominent role in determining the equilibrium growth path (Rivera-

Batiz and Romer, 1991; Grossman and Helpman, 1991). In parallel the empirical research on

R&D spillovers has shown that research productivity of firms and regions depends not only upon

intra-muros R&D expenditures but also on external R&D spending of other firms, regions and

industries. The empirical research on R&D spillovers recognizes that patents are a fundamental

empirical source to measure research productivity. Moreover patent citations are increasingly

used to evaluate the value of patents (e.g. to evaluate companies’ patent portfolios) and to

track knowledge flows between different applicants or inventors (e.g. intensity and geographical

and technological scope of knowledge spillovers)1.

In order to understand the impact of knowledge accumulation on aggregate and industrial

growth it is important to ask questions such as: how long does new technical knowledge spill

over for ? how much time is needed for a new piece of technical knowledge to become obsolete ?

Patents and patent citations have been increasingly used to measure knowledge spillovers from

R&D activity but relationships have been often assumed contemporary and the time dimension

tends to be unexplored (Caballero and Jaffe, 1993). Accordingly this paper focuses on the time

dimension of knowledge spillovers and uses patent citations to estimate the process of diffusion

1There is an enormous number of articles that use patent and patent citations. Griliches (1990) provides

a path-breaking and renowned survey. On patent citations and the value of innovations Hall et al. (2005),

Lanjouw and Shankermann, (2004), Haroff et al. (1999), Trajtenberg (1990) are fundamental references. On

patent citations and knolwledge spillovers there is a recent survey by Breschi et al. (2005). Jaffe et al. (1993),

Verspagen (1997), Maruseth and Verspagen (2002) and Malerba and Montobbio (2003) provide evidence on the

nature and types of knowledge spillovers using patent citations.
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and obsolescence of technical knowledge by technological fields. In order to account for the speed

of diffusion and obsolescence of technical knowledge we put forward two explanations. The

first one suggests that the level of technological opportunities (i.e. the likelihood of innovating

conditional to the amount of money invested in research, Breschi et al. 2000) give the possibility

to potential innovators to reach frequent and important discoveries and therefore accelerates

the process of diffusion and decay of the related knowledge. The second explanation suggests

that the process of diffusion and obsolescence of technical knowledge depends upon the firms’

absorptive capacity. A higher level of absorptive capacity generates also faster spillovers because

less time is needed to learn from external sources.

According to the first explanation we should observe that the pace of diffusion and decay

mainly varies across technological fields assuming that the variance of technological opportu-

nities is due to the given characteristics of the technology and its knowledge base. According

to the second explanation we should observe also variations across geographical areas for the

same technology because firms differ in their absorptive capacity, which depends upon the ac-

cumulated prior knowledge, which, in turn, depends upon relative past R&D expenditures and

the level of human capital.

The empirical exercise is based upon patent citations from two distinct datasets from the

US Patent and Trademark Office (USPTO) and the European Patent Office (EPO). In order to

study the process of diffusion and decay of technological knowledge we estimate the citation-lag

distribution for six different technological fields and eight countries using separately the data

from the two patent offices. In doing so it’s necessary to take into account many features of the

citation process. In particular we underline a "patent office" effect due to the different specific

institutional practices that generate the citations to previous patents in the two different offices

and the truncation bias: recent cohorts of patents are less likely to be cited then the older

3



ones, because the pool of potentially citing patents is smaller. This issue is addressed with a

quasi-structural model as proposed by Caballero and Jaffe (1993) and discussed in Jaffe and

Trajtenberg (1996) and Hall et al. (2001). This model provides a flexible empirical tool to

adjust raw citation counts.

Our results give support to the idea that not only technological opportunities are important

for the process of diffusion and decay of technological knowledge but also firms’ absorptive

capacity play a prominent role. On the methodological side our results show that the choice of

the patent office deeply affects the distribution of the citation lags: at the USPTO there are

more citations per patent due to the different rules governing citation practices and that their

approx. median lag is twice as large relatively to the citations at the EPO.

The paper is organized into six sections. The following section explains the background

and motivation of the paper, Section 3 describes our data and shows some of the differences

between the USPTO and the EPO data. Section 4 describes the model and the econometric

specification and Section 5 shows the results and explores possible explanations. Section 6

provides concluding observations.

2 Background and Motivation

Recent macroeconomic modelling has underlined the importance of knowledge spillovers and

externalities suggesting that the equilibrium path of productivity growth may differ according

to the extent of the diffusion of knowledge. In general endogenous growth is guided by dis-

embodied knowledge spillovers and the possibility (and ability) to re-use existing knowledge

may produce increasing returns and long-run welfare effects. These knowledge driven macroe-

conomic models bring the attention to the different effects on growth rates of the different

types of knowledge flows and push the empirical research to enquire more in depth the pro-
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cesses of knowledge accumulation and decay and the different channels along which ideas may

be transferred (Rivera-Batiz and Romer, 1991; Grossman and Helpman, 1991; Griffith et al.

2003).

In fact, recent works have shown the usefulness of patent citations for exploring knowledge

flows across regions, countries and technologies (see footnote 1). In the patent documents

citations are used by examiners and applicants to show the degree of novelty and inventive step

of the claims of the patent. They are located in the patent text, usually by either the inventor’s

attorneys or by patent office examiners (depending upon national regulations, see below for the

details about EPO and USPTO) and, once published, provide a legal delimitation of the scope of

the property right. Therefore citations identify the antecedents upon which the invention stands

and, for this reason, they are increasingly used in economic research to gauge the intensity and

geographical extent of knowledge spillovers and to measure the economic value of innovations

(Griliches, 1990, pp. 1688—1689). Typically both citations from USPTO and EPO patents are

used in economic analysis.

The use of patent citations as an index of knowledge flow has been validated by a survey of

inventors (Jaffe et al. 2000, for the USPTO) and corroborates substantial evidence on the type

and nature of knowledge spillovers (e.g. Maruseth and Verspagen, 2002; Jaffe et al. 1993, Piga

and Vivarelli, 2004). Moreover patent citations are correlated with the value of patents and,

in particular, recent work has shown that patent citations increase the market value of firms

(Hall et al. 2005) and that the number of citations is correlated with the reported value of the

inventors and with the payment of patent renewal fees (Haroff et al. 1999).

If patent citations are an important track of knowledge spillovers and if forward citations2

2The citations received by a patent are called ”forward citations”. Forward measures are typically informative

of the subsequent impact of an invention. Conversely the ”backward citations” are the citations included in a

patent that refer to an antecedent body of knowledge.
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are an important indicator of the economic value of innovative activity, the timing of the flow

of citations and, in particular the citation-lag distribution, becomes extremely relevant. This

is because the citation-lag distribution indicates for how long new technical knowledge spills

over (identifying therefore a process of knowledge diffusion and obsolescence) and the time is

needed to observe a sufficient number of forward citations and, consequently, to evaluate the

importance of the invention.

The available empirical evidence regarding the citation-lag distribution is mainly based on

USPTO data and shows that the modal lag is about five years, that intra-industry citations

are much more likely then inter-industry ones and that citations tend to be localized but the

degree of localization fades away over time (Jaffe and Trajtenberg, 1996, 1999). This evidence

suggests also that there are important technological and country variations.

Jaffe and Trajtenberg (1996) and Hall et al. (2001) show that obsolescence and diffusion

of technical knowledge vary across technological fields. In particular they show that patents

in Electronics, Computers and Communications are more highly cited than the other sectors

of the economy during the first few years after grant and, at the same time, they decay much

faster. Jaffe and Trajtenberg (1996) interpret this result in the following terms: "...this field is

extremely dynamic, with a great deal of ’action’ in the form of follow up developments taking

place during the first few years after an innovation is patented, but also with a very high

obsolescence rate "(p. 12676).

Also patents in Drug andMedical are more highly cited than patents in the other sectors, but

knowledge, in this case, has a slower pace of decay. This is explained in terms of long lead times

in pharmaceutical research (and in approval procedures by the Federal Drug Administration).

Therefore this field is not evolving as fast as Electronics, Computers and Communications and

new products arrive at a slower rate in the market (Jaffe and Trajtenberg, 1996 and Hall et al.
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2001).

These authors, in their interpretative framework, refer to differences in the "technological

dynamism" and level of "action" among technological fields. We suggest that there are differ-

ent explanations of these sectoral differences that are implicit in the interpretation of Jaffe and

Trajtenberg. One explanation relates to the intrinsic nature of the knowledge underpinning

firms’ innovative activity and, in particular, to the exogenously given set of technological op-

portunities. The second explanation relates to firms’ ability to re-use existing knowledge and

create new products and processes, and therefore, is related to their absorptive capacity.

The first explanation of the sectoral differences in the observed citation-lag distribution

points at the properties of the knowledge base of a technological field and, in particular, at the

technological opportunities to quickly create new product and process developments. Techno-

logical opportunities are defined as the likelihood of innovating conditional to the amount of

money invested in research (Breschi et al. 2000). With high technological opportunities we ex-

pect potential innovators to reach frequent and important discoveries3. We call this hypothesis

’technological opportunity’ (TO) hypothesis.

Moreover knowledge flows more quickly if companies are able to absorb it more quickly.

Economists have shown that the use of external knowledge is costly and depends on the firms’

learning and absorptive capacity (Cohen and Levinthal, 1989; Griffith et al. 2003; Kneller

Stevens, 2006). Absorptive capacity is a fundamental component of firms’ capacity to innovate

and includes the firm’s ability to imitate new processes and products and to exploit basic and

applied research findings. Firms’ absorptive capacity is the result of the value of the stock of

3We are aware that technological opportunities may vary considerably along products and industries life

cycles. As in Jaffe and Trajtenberg (1996) in this paper we will estimate the citation lag distribution over very

broad industries. At the aggregate industry level we expect that this issue does not affects dramatically our

results.
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accumulated prior knowledge, which, in turn depends upon relative past R&D expenditures and

the level of human capital. This paper argues that a higher level of absorptive capacity generates

faster spillovers, and smaller average and median values of the citation-lag distribution. This is

because in case of higher absorptive capacity, less time is needed to learn from external sources

and the entire innovative process is quicker4. We assume as in many diffusion models that

diversity between firms in their learning and absorptive abilities is a fundamental characteristic

of industries undergoing technical change (Silverberg et al. 1988). We call this hypothesis

’absorptive capacity’ (AC) hypothesis.

This paper tries to assess the weight of the TO and AC hypotheses, that may coexist

because they do not provide alternative explanations, using data from two different patent

offices: the USPTO and the EPO. Writers in the economics of innovation field have emphasized

that within each industry the nature of the knowledge base and the level of technological

opportunities are similar across the advanced countries (Dosi, 1997). As a result, if the TO

hypothesis is correct, and the process of technological diffusion and decay depends only upon

the nature of the technology, the relative speed of knowledge diffusion and decay in the different

technological fields should be the same, independently from whether we use patents and patents’

citations at the EPO or at the USPTO. If this is not the case, we expect a quicker process of

diffusion where there is a higher level of absorptive capacity. In this respect we can qualify

the broad interpretation of Jaffe and Trajtenberg (1996) and Hall et al. (2001); ’more action’

and ’technological dynamism’ at industry level would depend not only upon the existence of

technological opportunities but also upon firms’ ability to assimilate and re-use the available

stock of knowledge.

In doing so it’s necessary to control for a set of confounding factors. In particular the

4We may expect both the level of technological opportunity and absorptive capacity to be related to the

intensity of competition at the industry level.
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following features of the citation process have to be taken into account: (i) "patent office"

effects, (ii) country effects, (iii) university and public laboratories effects and, finally, (iv) the

truncation bias and the changes over time in the propensity to cite.

(i) The modal and average lags between the citing and the cited patents is deeply affected

by the institutional process governing the decision (by inventors, inventors’ attorneys or patent

examiners) to include a patent citation in the patent document. In fact there are relevant

differences between citation practices at the USPTO and EPO. In the US there is the ’duty

of candor’ rule, which imposes all applicants to disclose all the prior art they are aware of.

Therefore many citations at the USPTO come directly from inventors, applicants and attorneys

and are subsequently filtered by patent examiners5.

At the European Patent Office the ’duty of candor’ rule does not exist and patent citations

are added by the patent examiners when they draft their search report6. The EPO guidelines for

patent examiners suggest to include all the technically relevant information within a minimum

number of citations and citations are, with few exceptions, added by the patent office examiners

(EPO, 2005). As a result the analysis of diffusion and obsolescence of technological knowledge

and knowledge spillovers may reveal different properties according to the patent dataset that

is used and, in particular, we expect to observe not only a much smaller number of citations

at the EPO but also a shorter lag between citing and cited patents. It is crucial therefore to

control for the different properties of the processes of obsolescence and diffusion in the two

5Alcàcer and Gittleman (2004) using a random sample of 442,839 patents granted at the USPTO over the

period 2001-2003 show that 40% of the cited-citing pairs are generated by patent examiners.
6The search report at the EPO is a document, published typically 18 months after the application date,

that has the main objective to discover the prior art relevant for determining whether the invention meets the

novelty and inventive step requirements. It represents what is already known in the technical field of the patent

application and is a source of additional relevant documents. Cited documents may be patents or scientific

bullettins and publications. Typically documents cited refer to specific patent claims.
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patent offices.

(ii) This paper controls for citing and cited country effects because firms’ patenting practices

may change according to the nationality of the inventors. For example Jaffe and Trajtenberg

(1996 and 1999) show that USPTO patents granted to US inventors are more likely to cite US

patents than patents granted to inventors of other countries. In general they show a pattern

of geographical localization with higher domestic citation rates. Moreover they also show that

Japanese patents at the USPTO tend to get more citation with a lower rate of decay than Euro-

pean ones. Finally country specificities may emerge because of different institutional practices

in writing and licensing patents: in Japan, for example, patents contain less claims and have a

narrower scope than US and European ones (Sakakibara and Branstetter, 2001).

(iii) Recent empirical evidence suggests that patents granted to universities and public

research laboratories tend to be more cited than companies’ patents (Henderson et al. 1998;

Mowery et al. 2004; Bacchiocchi and Montobbio, 2006) Therefore it is important to control for

the different institutional types of applicant. In particular we distinguish between government

and non government (corporate) patents.

(iv) Finally three issues related to the time dimension have to be considered. First there is

a citing year effect due to the increase in particular at the USPTO of the number of citations

per patent. This phenomenon of citation inflation is well known at the USPTO and is mainly

due to computerization of the search procedures and changes in the behaviors of inventors’

attorney and patent office examiners (for a detailed discussion of this issue, and of econometric

techniques to deal with it, see Hall et al. 2001). We control also for a cited year effect. This is

typically related to the different fertility of different cohorts of patents. Finally citations data

are truncated because recent cohorts of patents are less likely to be cited then the older ones,

since the pool of potentially citing patents is smaller. These issues are addressed jointly with
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a quasi-structural model as proposed by Caballero and Jaffe (1993) and discussed in Jaffe and

Trajtenberg (1996) and Hall et al. (2001). This model permits to identify separately the con-

tribution to variations in the observed citation rates of changes in the citation-lag distribution,

in the propensity to cite and in the fertility of different cohorts of patents.

3 The data

We use the publicly available NBER U.S. Patent Citations Data, which contains the 2,923,922

USPTO (granted) patents from 1963 to 1999 and 16,522,438 citations from (and to) USPTO

patents from 1975 to 1999 (Hall et al., 2001), and the EP Cespri dataset, which contains the

1,391,350 EPO patent applications from 1978 to 2001 and 1,119,761 citations from (and to)

EPO patents from 1978 to 20017. From these datasets (from now on USPTO and EPO) we

select two samples: the universe of all patents and patent citations between 1978 and 1998.

In particular we consider all the citations from patents granted between 1979 and 1998 to

patents granted between 1978 and 1997 (in the EP - CESPRI we use patent applications) in

order to have the same right and left truncation biases in the two datasets. Summary statistics

are displayed in Table 1. Each patent is characterized by a date, a country (first inventor’s

address) a technological field (based on the International Patent Classification for EP - CESPRI

and the USPTO classification system for the NBER - USPTO) and the institutional type of

the applicant (government or non government) (Details for both datasets are provided in the

Appendix).

[Table 1, about here]

7NBER-USPTO data are avilable from http://www.nber.org/patents/ and the EP-CESPRI Bibliographic

data come from the Espace Bulletin CD-R produced by the EPO, patent citations come from the REFI tape.
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As expected at the USPTO there are more patents and, in particular, much more citations

per patent due to the different institutional processes underlying the citation practices. In

Table 1 the institutional, technological and country composition of the EPO and USPTO

patent samples are compared: cc is the number of (forward) citations by technological field

and nc is the number of (potentially cited) patents by technological field. Table 1 shows the

sectoral and national shares sc = cc/c and pc = nc/n (in parenthesis) by patent office, where

c and n are respectively the total number of citations and patents. Moreover in Table 1 we

display an index of citation intensity equal to cintc = sc/pc. The value of cintc is affected by

the characteristics of the patents in the different technological fields. Typically patents in the

Mechanical sector cite and receive less citations than Biotech patents, mainly because of the

different average patent scope in the two fields. As a matter of fact the Mechanical and Others

sectors receive on average less citations than, for example, the Drugs and Medical sector in

both patent offices.

However we observe that cintc ranks differently in the two patent offices. In a particular

at the EPO we have Drugs&Medical at the top and then Chemicals, Computers and Commu-

nications and Electrical and Electronics. Conversely at the USPTO the highest value of cintc

is in Computers and Communication and then Drugs and Medical, Electrical and Electronics

and Chemicals follow. This raises the issue, discussed in the previous section, on which other

variables affect the citation intensity of a technological field beyond its technological charac-

teristics. In line with the literature that associates patent citations to the value of patents, we

interpret this index as the relative value of the stock of accumulated knowledge of the patenting

firms. Of course the meaningful comparison is for the same technological field between the two

patent offices. The sets of patenting firms at the two patent offices are different and, as long

as the value of their patent stock differs, we observe different levels of citation intensity at the
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level of the patent office.

Likewise Table 1 shows the geographical composition of the patents in the two patent offices

by country of the first inventor. If the share of total (forward) citations of a country (sp) is

higher than its fraction of total patents (pp in parenthesis), this indicates an above average

citation intensity (cintp) for that country. It’s worthwhile noting that, both at the EPO and

USPTO, the US have a higher share of citations relatively to their share in the patent sample.

This reflects their position as world wide technological leader. Of course cintc and cintp are

confounded by all the factors mentioned in the previous section. The propensity to be cited is

estimated in the following sections.

4 Model specification and econometric framework

We describe the random process underlying the generation of citations with a quasi-structural

approach. The model follows the specification in Jaffe and Trajtenberg (1996) and Hall et al.

(2001). The diffusion process is modelled as a combination of two exponential processes, one

for the knowledge diffusion and the other for the natural process of obsolescence. The general

formulation of the model is

p (k,K) = α (k,K) exp [−β1 (k,K) (T − t)]

× (1− exp [−β2 (k,K) (T − t)]) (1)

where p (k,K) is the likelihood that any particular patent k, granted at time t, is cited by

some particular patent K, granted at time T . The parameters β1 and β2 represent the rate of

obsolescence and diffusion, respectively, and both exponential processes depend on the citation

lag (T − t).

The coefficient α does represent a multiplicative factor, as the constant term in a simple
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linear regression model. However, as indicated by the dependence of α from (k,K), such

proportionality factor α (k,K) is allowed to vary with attributes of the citing and cited patents.

The estimate of a particular α (k,K), indicates the extent to which a patent k is more or less

likely to be cited, with respect to a base characteristic patent, by a patent K.

From the formulation above, β1 and β2 single out the main features of the diffusion process.

The lag at which the citation function is maximized, i.e. the modal lag, is approximately

equal to 1/β1, while the maximum value of the citation frequency is approximately equal to

β2/β1. Such features of the model have important implications for both the estimation and

interpretation of the results. In fact, an increase in β1 simply shifts the citation function to the

left, while an increase in β2, leaving β1 unchanged, increases the overall citation intensity, at

every value of (T − t). As a consequence, variations in β2 with β1 unchanged are not separately

identified from variations in the constant term α. Following Jaffe and Trajtenberg (1996), thus,

we prefer allowing variations in α leaving β2 constant for all observations.

The constant term α and the structural parameter β1 depend on k and K.This indicates

that they depend upon particular features of both cited and citing patents. From the empirical

point of view, however, modelling single pairs of patents (citing and cited), might conduct

to dealing with very small expected values. Therefore we aggregate patents in homogeneous

groups and model the number of citations to a particular group of cited patents by a particular

group of citing patents. We want to have a finer understanding of the statistical properties of

the citations received (forward citations), since this is the usual way of assessing the value of

patents. The following characteristics of the cited patent k might affect its citation frequency

(see the Appendix for relative details of the NBER - USPTO and EP - CESPRI):

• t, the application or priority date,

• p, the first inventor’s country,
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• c, the technological field,

• i, the institutional type.

Moreover the following attributes are considered for the citing patent K.

• T , the application or priority date,

• g, the first inventor’s country,

The amount of citations to a specific group of cited patents by a specific group of citing

patents is: ctpicTg. Hence a treatable formulation of the model, where the various different effects

enter as multiplicative parameters, becomes

E(ctpicTg) = (ntpic) (nTg)αtαpαiαcαTαg exp
[
− (β1)β1pβ1iβ1cβ1g (T − t)

]

× (1− exp [−β2 (T − t)]) (2)

or equivalently, in the estimable form

ptpicTg =
ctpicTg

(ntpic) (nTg)
= αtαpαiαcαTαg exp

[
− (β1)β1pβ1iβ1cβ1g (T − t)

]

× (1− exp [−β2 (T − t)]) + εtpicTg (3)

where ntpic and nTg represent the total amount of potentially cited and citing patents for each

of the particular (tpic) and (Tg) groups, respectively. The model (3) can thus be estimated by

nonlinear least squares under the well known hypotheses on the residuals terms εtpicTg.

Variations in any particular α (k) (i.e. the multiplicative coefficients related to cited patents)

should be interpreted as differences in the propensity to be cited, with respect to the base

category8. Equivalently, estimates of multiplicative coefficients related to citing patents, α (K),

8As an example, let consider an estimated coefficient α (k=Computers and Communications) = 2.094; this

means that patents belonging to the category “Computers and Communications” have a more than double

probability (across all lags) to receive a citation in the next years vis à vis patents belonging to the base field.
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indicate differences in the propensity to cite compared to a base category. One coefficient for

each category, thus, will be omitted from the estimation procedure and will be constrained to

unity.

A similar interpretation has to be given to variations in β1 coefficients, which represent

differences in the rate of decay across categories of cited and citing patents. Higher values

of β1, with respect to the base category, means a faster obsolescence, which corresponds to a

downward and leftward shift in the citation function.

One more consideration about the specification of the model concerns the difficulties in

estimating citing and cited time effects together with the citation lag; in fact, citation lags enter

the model non-linearly and the identification of all effects is not precluded a priori. However

due to the great number of parameters to be estimated we prefer to calculate the fixed effects

grouping cited years into 5-year intervals, as in Jaffe and Trajtenberg (1996)9. We estimate the

model using weighted non-linear least squares. The weights are needed in order to deal with

heteroskedasticity. Since each observation is obtained dividing the number of citations by the

product of the total amount of potentially citing and potentially cited patents corresponding to

a given cell, it has been weighted by (ntpicnTg)
1/2, following Jaffe and Trajtenberg (1996) and

Hall et al (2001).

[Table 2, about here]

Table 2 shows the statistics for the regression variables. The data consist of one observation

for each feasible combination of values of t, p, i, c and L and g. For the cited patents we

have 20 years, 3 institutional types, 6 technological fields, and 8 countries and for the citing

patents we have 20 years and 8 countries. We consider only citations with a lag between the

9Grouping cited year is a reasonable assumption as the fertility of invention do not change substantially over

time. Estimated results, not reported in the present paper, confirm such assumption.
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citing and cited patent greater than or equal to 1. Hence the total amount of observations is:

n_obs=[(20*21)/2]*8*8*6*3=241920. In each dataset there are some cells with zero citations

and some cells with missing values. We have zeros when ctpicTg is zero and (ntpic) (nTg) is

positive. Missing values are generated when also (ntpic) (nTg) is zero. In the EP - CESPRI

144481 observations have zero citations (59%) and there are 15360 missing (6.3 %). These

are due to the scarcity of patents by universities or public research centres in Germany and

Italy between ’78 and ’82 and Sweden and Finland mainly between ’78 and ’86. In the NBER

- USPTO 81454 obs. have zero citations (33%) and 24616 observations are missing (10.1%).

Missing values come from the scarcity of patents by universities or public research centres in

Germany, Italy and Sweden and Finland.

5 Results

The results from the estimation of equation (3) are reported in Table 3. All fixed effects have

been estimated relative to a base value of unity; for each effect thus, one group is omitted from

the estimation and constrained to unity. Significant tests for the estimates of any particular

α (k), being a proportionality factor, focus on the null hypothesis H0 : coeff = 1. The null

hypothesis of significant tests for both β1 and β2, however, remains the standard H0 : βi = 0,

i = 1, 2.

Results show that citations at the EPO have shorter life and the rate of decay is twice the

one observed for USPTO (β1 = 0.396 and β1 = 0.189 for the EPO and USPTO respectively).

The modal lag is approx. 5.3 for the USPTO10 and 2.7 for the EPO. For the two datasets

average fitted values of equation (3) are plotted in Fig. 1. The likelihood that a EPO patents

10This confirms approximately the results of Jaffe and Trajtemberg (1996 and 1999) even if our estimated

β
1
= 0.189 is slightly lower.
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is cited becomes half of its estimated maximum after about 6-7 years while for the USPTO

patents this occurs after 14-15 years. Moreover after 20 years, the estimated probability for a

EPO patent to be cited is almost zero, for a USPTO patent it is one fourth of its maximum

value.

The goodness of fit of the model, measured as adj-R2, highlights the difficulty of such double-

exponential model to fit zero probabilities. The adj-R2 for the USPTO and EPO datasets

corresponds to 0.45 and 0.22 respectively. The low goodness of fit for the European data can

be easily explained by observing that the percentage of zeros is almost double with respect to

the US data (59% against 33%).

Technological Fields. Two types of variation relative to the technological fields are considered

in the model: variations in the fixed effects αc and in the obsolescence parameter β1c(see Table

3, Figure 2 and Figure 3). The base field is ’Chemicals’ for both the USPTO and the EPO

database. The estimated coefficients αc confirm the results displayed for cintc with two small

exceptions 11. The propensity to be cited is higher in Computers and Communications, Electrical

and Electronics and Drugs and Medical at the USPTO and in Drugs and Medical, Chemicals

and Computers and Communications at the EPO.

At the USPTOElectrical and Electronics, Mechanicals and Computers and Communications

have the highest rate of decay (β1c) and reach their modal lag earlier with respect to the other

technological fields. At the fourth place there is Chemicals and the lowest β1c is in Drugs and

Medical (this broadly confirm the results of Jaffe and Trajtenberg 1996 and Hall et al. 2001). At

the EPO the Chemicals sector displays the most rapid obsolescence and then in order we have

Drugs and Medical, Electrical and Electronics, Computers and Communications, Mechanicals

and, finally, Others.

11The two small exceptions are at the USPTO: Electrical and Electronics have a higher propensity to be cited

than Drugs and Medical and the Mechanical sector has a higher estimated αc than Others.
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According to the TO hypothesis we would expect the same relative sectoral patterns of

diffusion and decay in the two patent offices. In fact on the one hand we observe a positive

correlation of the estimated αc in the two patent offices. This would suggest that some invariant

technological attributes affect the likelihood to be cited across all lags. On the other hand we

observe a negative correlation between the estimated β1c
12 and, accordingly, relative sectoral

diffusion paths are different for the two datasets (see Table 3, Figure 2 and Figure 3). As a

result even if there are common technological characteristics that affect the overall number of

forward citations, invariant technological opportunities as such cannot be the only explanation

for the relative pace of knowledge diffusion and obsolescence of one sector vis à vis the other

sectors in the economy.

Therefore we suggest that firms in the two patent offices have different absorptive capabili-

ties. Consider for example Computers and Communication at the USPTO. Since we control for

a number of confounding factors as indicated above, it is possible to claim that these patents

receive coeteris paribus more citations (relative to the same sector at the EPO, note that

αUSPTOcomputer&comm > α
EPO
computer&comm) because of a their relatively higher quality. As a consequence,

we claim that firms patenting at the USPTO in Computers and Communication have a rela-

tively higher absorptive capacity that, in turn, affects positively the relative rate of obsolescence

of technological knowledge in this sector. This is particularly evident also looking at Electrical

and Electronics at the USPTO and at Chemicals and Drugs and Medical at the EPO. These

sectors display very high early citations and the most rapid obsolescence and are the sectors

in the respective patent offices with the highest (relative) values of αc (and cintc) These same

results can be expressed also in the following terms: let αEPOc ,αUSPTOc , βEPO
1c ,βUSPTO

1c be the

sectoral estimated coefficients αc and β1c in the two patent offices. Assume that the difference

12The linear and rank correlations between the coefficients in the two patent offices (6 obs.) are respectively

equal to 0.29 and 0.54 for the αcand equal to -0.27 and -0.14 for the β
1c
.
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(αEPOc − αUSPTOc ) indicates the relative quality/value of the stock of sectoral patents between

the two patent offices. It can be noted that there is a strong positive correlation between

(αEPOc −αUSPTOc ) and βEPO
1c (0.64) and a strong negative correlation between (αEPOc −αUSPTOc )

and βUSPTO1c (-0.49). As a result the rate of obsolescence and decay at the sectoral level is related

to the relative qualities of the stock of patents that we take as an indicator of the absorptive

capacity of the applicant firms13.

In sum previous work (Jaffe and Trajtenberg; 1996 and Hall et al. 2001) shows that obso-

lescence and diffusion of technical knowledge vary across technological fields. This can be inter-

preted as a result of given technological opportunities that enhance the possibility of potential

innovators to reach frequent and important discoveries. However in this case the relative speed

of knowledge diffusion and decay in the different technological fields should be the same, inde-

pendently from whether we use patents and patents’ citations at the EPO or at the USPTO. We

have shown that this is only partly the case. So the TO interpretation has to be complemented

with another interpretation. The evidence proposed here does not contradict the intuition that

a quicker process of diffusion and faster obsolescence may be determined by a higher level of

absorptive capacity that is the ability to imitate and exploit new research findings to quickly

develop new processes and products14. Few other results can be emphasized in relationship

to the following features of the citation process we have controlled for: (i) country effects, (ii)

13Note that we are considering differences in the quality of the stock of patents at the sectoral level. R&D

expenditure is the main determinant of the values of these stocks and, in turn, is the main determinant of firms’

absorptive capacity.
14In principle there may be some noise due to the different patent classifications on which the technological

fields are built. As explained in the Appendix, differences between the two datasets may emerge because the

matching between the US NBER categories and the reaggregation of 30 technological classes based on European

IPC codes may be imperfect. However we do not think this can be the only explanation of these diverging sectoral

patterns.
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university and public laboratories effects and, finally, (iii) time effects.

Country Effects. For what concerns the country effects (Tab. 3) we observe the highest

propensity to be cited (αp) for the US and Japanese patents. It’s remarkable that at the EPO

the lowest propensity to be cited is for patents originating in continental Europe: Germany,

France and Italy. Consistently with what we observed above US and Japanese patents display

very high early citations and the most rapid obsolescence (β1p). At the USPTO patents granted

to American inventors are more likely to be cited at every lags and the gap with respect to

the other countries is in the order of 30% and more. At the EPO Japanese patents have

the highest probability to be cited and the highest rate of decay. This might also reflect the

country specific patenting and citing practice as emphasized by Sakakibara and Branstetter

(2001) among others. Before recent reforms the so called “Sashimi system” was characterized

by a narrower patent scope and limited number of claims (one single independent claim before

1988). This patent structure increases the number of patents and the number of citations.

Institutional Types. For the European data, patents assigned to Universities or Public Insti-

tutions and to Companies are respectively 40% and 18% more likely to be cited than the ’Not

Assigned’ patents. For the US data instead (as in Jaffe and Trajtenberg, 1996), non government

patents are cited significantly more than government ones, although they have a slightly higher

rate of decay. These differences are probably affected by the different classifications in the two

datasets. For example a relevant role is played by university patents that seem to have higher

likelihood to be cited according to Jaffe and Trajtenberg (1996). These patents at USPTO

belong to the non government group while at the EPO they are in the non firm group. In

a companion paper we show that at the EPO the higher likelihood of citations to university

patents is mainly due to US patents in the Chemical and Drugs & Medical fields (Bacchiocchi

and Montobbio, 2006).
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Time Effects. The estimated citing year effects, at the USPTO, do not show any upward

trend. All estimated coefficients appear to be greater than one but in many cases they are not

significantly different from one. At the EPO instead, the αT display a steep downward trend.

As the amount of potentially citing and cited patents increases over time in both datasets, the

amount of citations per patent grows faster at the USPTO than the EPO. This creates the

observed decline in the coefficients for the EPO and the absence of a trend for the USPTO. To

substantiate this conjecture we calculated the differences in level and trend of the raw amount of

backward citations per citing patent in the two data sets (note that in the two datasets we have

the same left truncation bias because we do not consider citations that goes to patents granted,

or applied for, before 1978). At the EPO backward citations per patent are 1.16 in 1979, they

reach the maximum in 1994 at 2.10, declining slightly afterwards. At the USPTO backward

citations per patent are 1.26 in 1979 and they grow more steeply reaching the maximum in 1995

at 8.28. Finally for the cited time effects a substantial absence of fertility changes characterizes

both datasets.

6 Conclusion

There is a large empirical and theoretical literature on knowledge spillovers and growth. However

important questions such as: how long does new technical knowledge spill over for ? how much

time is needed for a new piece of technical knowledge to become obsolete ? remain largely

unexplored. This paper constitutes an attempt to fill this gap in the literature building upon

the established literature that uses patents and patent citations as economic indicators. This

paper therefore focuses solely on patents and patent citations and estimates the process of

diffusion and obsolescence of technical knowledge by country and technological field using data

from two patent offices: EPO and USPTO.
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Our estimates of the citation-lag distribution show that there are remarkable differences

across technologies in the diffusion path. In parallel technological fields have different relative

properties of diffusion and decay of technical knowledge in the two patent offices. We propose

two complementary explanations. First we suggest that the level of technological opportunities

give the possibility to potential innovators to reach frequent and important discoveries and

therefore accelerates the process of diffusion and decay of the related knowledge. Secondly we

suggest that the process of diffusion and obsolescence of technical knowledge depends upon

firms’ absorptive capacity. A higher level of absorptive capacity generates faster spillovers

because less time is needed to learn from external sources. Our results give support to the idea

that not only technological opportunities are important for the process of diffusion and decay of

technological knowledge but also firms’ absorptive capacity play a prominent role. Computers

and Communications and Electrical and Electronics at the USPTO and at Chemicals and Drugs

and Medical at the EPO display very high early citations and the most rapid obsolescence

On the methodological side we show that at the USPTO there are more citations per patent

due to the different rules governing the citation practices. Moreover, citations at the USPTO

have longer life and a lower rate of decay. The approximate median lag is twice as large relatively

to the citations at the EPO.
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Appendix

In both datasets Countries are defined on the basis of the address of the first inventor in

the patent application. We have used 8 countries and country groups: 1. Germany, 2 France,

3. Italy, 4. United Kingdom, 5. Japan, 6. United States, 7. Sweden and Finland, 8.others.

The Technological Fields are the US NBER categories as in Hall et al (2000) that can be

found in the USPTO. For the EP - CESPRI we used 30 technological classes based on the Annex

III-A of OECD (1994). This classification aggregates all (primary) IPC codes (version 7 used

at the EPO) into 30 technological classes. A concordance table has been created by the authors

that reaggregates the 30 classes into the USPTO Fields The USPTO fields are: 1. Chemical, 2.

Computers & Communications, 3. Drugs & Medical, 4. Electrical & Electronic, 5. Mechanical,

6. Others. Below we report the 30 classes and, in parenthesis, the USPTO field that has been

assigned to each class by the authors: 1. Electrical engineering (4), 2. Audiovisual technology

(4), 3. Telecommunications (2), 4. Information Technology (2) 5. Semiconductors (4), 6.

Optics (5), 7. Control Technology (5), 8. Medical Technology (5), 9. Organic Chemistry (1),

10. Polymers (1), 11. Pharmaceuticals (3), 12. Biotechnology (3), 13. Materials (1), 14. Food

Chemistry (1), 15. Basic Materials Chemistry (1), 16. Chemical Engineering (1), 17. Surface

Technology (5), 18. Materials Processing (5), 19. Thermal Processes (6), 20. Environmental

Technology (6), 21. Machine Tools (5), 22. Engines (5), 23. Mechanical Elements (5), 24.

Handling (5), 25. Food Processing (6), 26. Transport (5),27. Nuclear Engineering (4), 28.

Space Technology (5), 29. Consumer Goods (6), 30. Civil Engineering (6).

The institutional nature of the assignee could not be built exactly in the same way for the

two datasets. In particular in the EP - CESPRI the group called ’firms’ includes just companies

while in the USPTO this group includes ‘non government organization’. The group called ’non

firm’ in the EP - CESPRI includes university and public research centres while in the USPTO

dataset is just ‘government’.

Finally we have chosen the closest dates available to the actual timing of invention for both

datasets. These are the priority date for the EP - CESPRI and application date for the USPTO.
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Table 1: Statistics for EP and US patent and citation samples
EP-CESPRI Dataset NBER-USPTO Dataset

Range of cited patents 1978-1997 1978-1997

Range of citing patent 1979-1998 1979-1998

Potentially cited patents 906,792 1,766,075

Potentially citing patents 984,148 1,734,687

Total citations 959,852a 8,080,276a

Citations per potentially citing patent 0.98 4.66

Citations per citing patent 1.86 5.59

Cited patents by fields,%b

and citations intensity
(potentially cited patents in parenthesis)

sc - (pc) - cintc sc - (pc) - cintc

Chemicals 27.45 - (22.1) - 1.24 17.93 - (19.3) - 0.93

Computers and Communications 10.58 - (10.1) - 1.05 17.60 - (12.6) - 1.40

Drugs and Medical 12.92 - (9.5) - 1.36 10.8 - (9) - 1.2

Electrical and Electronics 12.72 - (13) - 0.97 18 - (17.5) - 1.03

Mechanical 29.89 - (35.3) - 0.85 18.05 - (21.2) - 0.85

Others 6.43 - (9.8) - 0.66 17.62 - (20.2) - 0.87

Cited Patents by country,%

and citation intensity
(potentially cited patents in parenthesis)

sp - (pp) - cintp sp - (pp) - cintp

Germany 16.06 - (20.1) - 0.8 5.99 - (7.8) - 0.77

France 6.59 - (7.9) - 0.83 2.34 - (3) - 0.78

Italy 2.73 - (3.2) - 0.85 0.83 - (1.2) - 0.69

United Kingdom 7.57 - (6.5) - 1.16 2.64 - (2.9) - 0.91

Japan 21.82 - (18.5) - 1.18 19.6 - (19.9) - 0.98

United States 31.76 - (29.1) - 1.09 61.09 - (54.7) - 1.11

Sweden and Finland 2.17 - (2.5) - 0.87 0.94 - (1.2) - 0.78

Others 11.29 - (12) - 0.94 6.56 - (9.1) - 0.72

Cited Patents by institutional field,%c

(potentially cited patents in parenthesis, %)

not assigned 9.14 (10.6) 14.62 (16.8)

firms 87.46 (86.3) 83.93 (81.5)

non firms 3.40 (3.1) 1.45 (1.6)

a. Cells with the lag T − t < 1 have been removed (T : date of the citing patent, t: date of the

cited patent),

b. see the Appendix for the sectoral concordance between EP - CESPRI and NBER - USPTO,

c. in the EP - CESPRI the group called ’firm’ includes just companies while in the NBER - USPTO

this group includes ‘non government organization’. The group called ’non firm’ in the EP - CESPRI

includes university and public research centres while in the NBER - USPTO dataset is just ‘government’.
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Table 2. Statistics for regression variables
EP-CESPRI

Mean St. Dev Min Max

Number of citations 3.97 18.95 0 776

Potentially cited patents 262.36 579.7 1 6626

Potentially citing patents 7414.97 5843.27 277 25813

Citation Frequency (10^6) 2.61 12.58 0 1632.65

Lag in yearsa 7.33 4.82 1 20

Regression weights 907.84 1111.34 16.64 13078.11

NBER - USPTO

Mean St.Dev Min Max

Number of citations 33.4 233.86 0 13661

Potentially cited patents 588.77 1335.22 1 13433

Potentially citing patents 11903.73 17359.69 320 76976

Citation Frequency (10^6) 4.86 15.25 0 1619.43

Lag in yearsa 7.33 4.82 1 20

Regression weights 1442.3 2232.51 17.89 29690.93

a. Cells with the lag T − t < 1 have been removed.
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Table 3: Estimated results

USPTO EP-CESPRI

coeff. t− statistic
H0: coeff=1

coeff. t− statistic
H0: coeff=1

citing year effect
(base=1979)

1980 1.191 3.28 0.859 -2.28

1981 1.233 4.04 0.872 -2.19

1982 1.178 3.27 0.878 -2.14

1983 1.139 2.66 0.776 -4.44

1984 1.095 1.89 0.755 -5.02

1985 1.077 1.56 0.717 -6.09

1986 1.093 1.86 0.705 -6.44

1987 1.107 2.12 0.646 -8.42

1988 1.102 2.03 0.607 -9.93

1989 1.083 1.68 0.576 -11.23

1990 1.068 1.38 0.552 -12.29

1991 1.081 1.63 0.556 -12.04

1992 1.131 2.51 0.547 -12.40

1993 1.183 3.36 0.532 -13.09

1994 1.226 3.97 0.524 -13.44

1995 1.344 5.51 0.480 -15.89

1996 1.249 4.27 0.434 -19.02

1997 1.125 2.36 0.375 -24.02

1998 0.882 -2.80 0.292 -34.75

cited time effect
(base=1978−1982)

1983-1987 1.049 8.36 0.986 -1.24

1988-1992 1.040 4.31 0.948 -3.06

1993-1997 0.967 -2.76 0.972 -1.16

institutional nature
(base=not assigned)

companies 1.348 34.17 1.181 8.37

Univ. or public 0.839 -7.72 1.397 10.12

technological field
(base=chemical)

computer & communication 2.094 65.75 0.836 -12.46

drugs & medical 1.336 27.98 1.243 14.04

electrical & electronic 1.407 32.89 0.771 -19.43

mechanical 0.990 -1.01 0.592 -53.61

others 0.943 -6.35 0.395 -54.67
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Table 3: Estimated results, continued

cited patent country
(base=United States)

Germany 0.505 -66.47 0.544 -49.38

France 0.517 -43.71 0.602 -27.98

Italy 0.453 -30.16 0.643 -15.35

Great Britain 0.600 -36.99 0.980 -1.16

Japan 0.700 -60.55 1.281 18.70

Sweden and Finland 0.604 -21.89 0.749 -8.92

Other 0.615 -52.76 0.796 -14.86

citing patent country
(base=United States)

Germany 0.433 -156.02 0.717 -51.83

France 0.492 -88.97 0.784 -26.73

Italy 0.417 -66.31 0.711 -24.65

Great Britain 0.633 -61.14 1.052 5.62

Japan 0.607 -178.27 1.089 13.98

Sweden and Finland 0.584 -47.71 0.735 -19.74

Other 0.537 -150.18 0.873 -18.37

β1 0.189 121.67 0.396 71.77

β2 3.29E-06 21.86 9.27E-06 15.12

rate of obsolescence

by technological field
(base=Chemical)

computer & communication 1.045 7.61 0.878 -12.91

drugs & medical 0.812 -33.54 0.977 -2.48

electrical & electronic 1.140 19.89 0.924 -8.16

mechanical 1.064 8.89 0.863 -18.52

others 0.970 -4.54 0.797 -13.26

by institutional nature
(base=not assigned)

companies 1.105 16.82 1.008 0.69

univ. or public 1.052 2.88 1.069 3.40

by cited patent country
(base=United States)

Germany 0.974 -2.54 0.875 -12.56

France 0.965 -2.32 0.893 -7.51

Italy 0.964 -1.25 0.900 -4.42

Great Britain 0.940 -4.92 0.974 -2.26

Japan 1.037 6.88 1.074 8.87

Sweden and Finland 0.949 -2.42 0.902 -4.15

Other 0.984 -1.84 0.924 -7.11
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Figure 1: Fitted frequency (×106) of citation from EPO and USPTO.
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Figure 2: Fitted citation function for class of patents from the EPO dataset.
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Figure 3: Fitted citation function for class of patents from the USPTO dataset.
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