Fair and efficient taxation under partial control

Erwin Ooghe \& Andreas Peichl

Motivation

- Fairness plays a role in redistribution:
- the more an outcome is determined by 'luck' (resp. 'effort')
- the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]

Motivation

- Fairness plays a role in redistribution:
- the more an outcome is determined by 'luck' (resp. 'effort')
- the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- Non-income information important in tax-benefit schemes:
- non-income information (49\%)
- income information ($30 \%+5 \%$)
[several reasons ~ efficiency \& equity]

Motivation

- Fairness plays a role in redistribution:
- the more an outcome is determined by 'luck' (resp. 'effort')
- the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- Non-income information important in tax-benefit schemes:
- non-income information (49\%)
- income information ($30 \%+5 \%$)
[several reasons ~ efficiency \& equity]
- Information differs in the degree of control

Motivation

- Fairness plays a role in redistribution:
- the more an outcome is determined by 'luck' (resp. 'effort')
- the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- Non-income information important in tax-benefit schemes:
- non-income information (49\%)
- income information ($30 \%+5 \%$) [several reasons ~ efficiency \& equity]
- Information differs in the degree of control
- Aim of this paper is to study
- a fair and efficient tax-benefit scheme
- based on income and non-income factors
- under partial control

Motivation

- Fairness plays a role in redistribution:
- the more an outcome is determined by 'luck' (resp. 'effort')
- the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- Non-income information important in tax-benefit schemes:
- non-income information (49\%)
- income information ($30 \%+5 \%$) [several reasons ~ efficiency \& equity]
- Information differs in the degree of control
- Aim of this paper is to study
- a fair and efficient tax-benefit scheme
- based on income and non-income factors
- under partial control [and lots of assumptions]

Individual preferences / constraints

- Utility $U(c, \mathbf{x}, \mathbf{e})$ is a function of
- consumption c
- non-income factors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{J}\right)$
- effort $\mathbf{e}=\left(e_{0}, e_{1}, \ldots, e_{J}\right)$

Individual preferences / constraints

- Utility $U(c, \mathbf{x}, \mathbf{e})$ is a function of
- consumption c
- non-income factors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{J}\right)$
- effort $\mathbf{e}=\left(e_{0}, e_{1}, \ldots, e_{J}\right)$
- Consumption c is gross income y minus taxes $\tau(y, x)$

Individual preferences / constraints

- Utility $U(c, \mathbf{x}, \mathbf{e})$ is a function of
- consumption c
- non-income factors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{J}\right)$
- effort $\mathbf{e}=\left(e_{0}, e_{1}, \ldots, e_{J}\right)$
- Consumption c is gross income y minus taxes $\tau(y, x)$
- A production function f maps effort \mathbf{e} into (y, \mathbf{x})

Individual preferences / constraints

- Utility $U(c, \mathbf{x}, \mathbf{e})$ is a function of
- consumption c
- non-income factors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{J}\right)$
- effort $\mathbf{e}=\left(e_{0}, e_{1}, \ldots, e_{J}\right)$
- Consumption c is gross income y minus taxes $\tau(y, x)$
- A production function f maps effort \mathbf{e} into (y, \mathbf{x})
- Individuals solve

$$
\max _{\mathbf{e}} U(c, \mathbf{x}, \mathbf{e}) \text { s.t. } c \leq y-\tau(y, \mathbf{x}) \&(y, \mathbf{x})=f(\mathbf{e})
$$

Simplifying assumptions

- quasi-linear \& additive structure on utility:
- $U(c, \mathbf{x}, \mathbf{e})=c+\sum_{j=1}^{J} \beta_{j} x_{j}-h(\mathbf{e})$, with
- $h(\mathbf{e})=\sum_{j=0}^{J} \frac{\delta_{j}}{\exp \gamma_{j}} \exp \left(\frac{e_{j}}{\delta_{j}}\right)$.

Simplifying assumptions

- quasi-linear \& additive structure on utility:
- $U(c, \mathbf{x}, \mathbf{e})=c+\sum_{j=1}^{J} \beta_{j} x_{j}-h(\mathbf{e})$, with
- $h(\mathbf{e})=\sum_{j=0}^{J} \frac{\delta_{j}}{\exp \gamma_{j}} \exp \left(\frac{e_{j}}{\delta_{j}}\right)$.
- linear production function f :
- $y=\alpha_{0} e_{0}+\left(1-\alpha_{0}\right) \theta_{0}$, and
- $x_{j}=\alpha_{j} e_{j}+\left(1-\alpha_{j}\right) \theta_{j}, j=1,2, \ldots, J$.

Simplifying assumptions

- quasi-linear \& additive structure on utility:
- $U(c, \mathbf{x}, \mathbf{e})=c+\sum_{j=1}^{J} \beta_{j} x_{j}-h(\mathbf{e})$, with
- $h(\mathbf{e})=\sum_{j=0}^{J} \frac{\delta_{j}}{\exp \gamma_{j}} \exp \left(\frac{e_{j}}{\delta_{j}}\right)$.
- linear production function f :
- $y=\alpha_{0} e_{0}+\left(1-\alpha_{0}\right) \theta_{0}$, and
- $x_{j}=\alpha_{j} e_{j}+\left(1-\alpha_{j}\right) \theta_{j}, j=1,2, \ldots, J$.
- Unobserved abilities and tastes:
- $\boldsymbol{\theta}=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{J}\right)$ is $N\left(\boldsymbol{\mu}^{\theta}, \boldsymbol{\Sigma}^{\theta}\right)$
- $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{J}\right)$ is $N\left(\boldsymbol{\mu}^{\gamma}, \boldsymbol{\Sigma}^{\gamma}\right)$

Social preferences and constraints

- Welfare is denoted $W(\tau)$

Social preferences and constraints

- Welfare is denoted $W(\tau)$
- The (per-capita) tax revenue is

$$
R(\tau)=\int_{\boldsymbol{\theta}} \int_{\gamma} \tau\left(y^{*}(\tau, \boldsymbol{\theta}, \gamma), \mathbf{x}^{*}(\tau, \boldsymbol{\theta}, \gamma)\right) d F(\boldsymbol{\theta}) d G(\gamma)
$$

with $y^{*}(\tau, \boldsymbol{\theta}, \gamma)$ and $\mathbf{x}^{*}(\tau, \boldsymbol{\theta}, \gamma)$ individual choices.

Social preferences and constraints

- Welfare is denoted $W(\tau)$
- The (per-capita) tax revenue is

$$
R(\tau)=\int_{\boldsymbol{\theta}} \int_{\gamma} \tau\left(y^{*}(\tau, \boldsymbol{\theta}, \gamma), \mathbf{x}^{*}(\tau, \boldsymbol{\theta}, \gamma)\right) d F(\boldsymbol{\theta}) d G(\gamma)
$$

with $y^{*}(\tau, \boldsymbol{\theta}, \gamma)$ and $\mathbf{x}^{*}(\tau, \boldsymbol{\theta}, \gamma)$ individual choices.

- The planner solves

$$
\max _{\tau} W(\tau) \text { s.t. } R(\tau) \geq R_{0}
$$

with R_{0} an exogenous (per-capita) revenue requirement.

Simplifying assumptions

- Welfare is the 'average transformed well-being', i.e.,

$$
W(\tau)=\phi^{-1}\left[\int_{\boldsymbol{\theta}} \int_{\gamma} \phi(v(\tau, \boldsymbol{\theta}, \gamma)) d F(\boldsymbol{\theta}) d G(\boldsymbol{\gamma})\right]
$$

with ϕ exponential, i.e., $\phi(x)=\exp (-r x)$.

Simplifying assumptions

- Welfare is the 'average transformed well-being', i.e.,

$$
W(\tau)=\phi^{-1}\left[\int_{\boldsymbol{\theta}} \int_{\gamma} \phi(v(\tau, \boldsymbol{\theta}, \gamma)) d F(\boldsymbol{\theta}) d G(\gamma)\right]
$$

with ϕ exponential, i.e., $\phi(x)=\exp (-r x)$.

- Well-being $\widehat{v}=v(\tau, \boldsymbol{\theta}, \gamma)$ is a cardinalization of utility and implicitly defined as

$$
V(\tau, \boldsymbol{\theta}, \gamma)=V\left(R_{0},(\widehat{v}, \widehat{v}, \ldots, \widehat{v}), \gamma\right)
$$

with V the indirect utility function.

Simplifying assumptions

- Welfare is the 'average transformed well-being', i.e.,

$$
W(\tau)=\phi^{-1}\left[\int_{\theta} \int_{\gamma} \phi(v(\tau, \boldsymbol{\theta}, \gamma)) d F(\boldsymbol{\theta}) d G(\gamma)\right]
$$

with ϕ exponential, i.e., $\phi(x)=\exp (-r x)$.

- Well-being $\widehat{v}=v(\tau, \boldsymbol{\theta}, \gamma)$ is a cardinalization of utility and implicitly defined as

$$
V(\tau, \boldsymbol{\theta}, \gamma)=V\left(R_{0},(\widehat{v}, \widehat{v}, \ldots, \widehat{v}), \gamma\right)
$$

with V the indirect utility function.

- Taxation is linear, so

$$
\tau(y, \mathbf{x})=T+t_{0} y+\sum_{j=1}^{J} t_{j} x_{j} .
$$

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

- Pareto: higher utilities are reflected in higher welfare

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

- Pareto: higher utilities are reflected in higher welfare
- Compensation (for abilities): a PD transfer between individuals with the same tastes improves social welfare

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

- Pareto: higher utilities are reflected in higher welfare
- Compensation (for abilities): a PD transfer between individuals with the same tastes improves social welfare
- Responsibility (for tastes): if all individuals have the same ability, then the laisser-faire should result $\left(\tau^{*}=R_{0}\right)$

In general

Tax up to the point where: marginal efficiency cost $=r \times$ marginal fairness gain,
with fairness gain $=$ compensation gain - responsibility cost.

In general

Tax up to the point where: marginal efficiency cost $=r \times$ marginal fairness gain,
with fairness gain $=$ compensation gain - responsibility cost. In addition:

- if $r \rightarrow 0$ or $\boldsymbol{\Sigma}^{\theta} \rightarrow \mathbf{0}$ then $\left(T^{*}, \mathbf{t}^{*}\right) \rightarrow\left(R_{0}, \mathbf{0}\right)$

In general

Tax up to the point where:
marginal efficiency cost $=r \times$ marginal fairness gain,
with fairness gain $=$ compensation gain - responsibility cost.
In addition:

- if $r \rightarrow 0$ or $\boldsymbol{\Sigma}^{\theta} \rightarrow \mathbf{0}$ then $\left(T^{*}, \mathbf{t}^{*}\right) \rightarrow\left(R_{0}, \mathbf{0}\right)$
- tendency towards lower income taxes caused by
- taste heterogeneity \& responsibility
- the possibility of taxing non-income factors

In general

Tax up to the point where:
marginal efficiency cost $=r \times$ marginal fairness gain,
with fairness gain $=$ compensation gain - responsibility cost.
In addition:

- if $r \rightarrow 0$ or $\boldsymbol{\Sigma}^{\theta} \rightarrow \mathbf{0}$ then $\left(T^{*}, \mathbf{t}^{*}\right) \rightarrow\left(R_{0}, \mathbf{0}\right)$
- tendency towards lower income taxes caused by
- taste heterogeneity \& responsibility
- the possibility of taxing non-income factors

We focus on two special cases-income only \& adding a tag to income-before discussing the general case in more detail.

Income only

The optimal tax rate t_{0}^{*} on income

- lies in between 0 and 1 ,

Income only

The optimal tax rate t_{0}^{*} on income

- lies in between 0 and 1 ,
- decreases with the elasticity of effort δ_{0},

Income only

The optimal tax rate t_{0}^{*} on income

- lies in between 0 and 1 ,
- decreases with the elasticity of effort δ_{0},
- increases with inequality aversion r,

Income only

The optimal tax rate t_{0}^{*} on income

- lies in between 0 and 1,
- decreases with the elasticity of effort δ_{0},
- increases with inequality aversion r,
- increases with ability heterogeneity σ_{00}^{θ},

Income only

The optimal tax rate t_{0}^{*} on income

- lies in between 0 and 1 ,
- decreases with the elasticity of effort δ_{0},
- increases with inequality aversion r,
- increases with ability heterogeneity σ_{00}^{θ},
- decreases with taste heterogeneity σ_{00}^{γ},
[lower than the Mirrleesian case]

Income only

The optimal tax rate t_{0}^{*} on income

- lies in between 0 and 1 ,
- decreases with the elasticity of effort δ_{0},
- increases with inequality aversion r,
- increases with ability heterogeneity σ_{00}^{θ},
- decreases with taste heterogeneity σ_{00}^{γ},
[lower than the Mirrleesian case]
- decreases with the degree of control α_{0}.

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
- may have a direct effect on well-being, and
- may correlate with unobserved earnings ability.

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
- may have a direct effect on well-being, and
- may correlate with unobserved earnings ability.
- In the presence of a tag, the optimal tax rate t_{0}^{*} on income
- will be even lower compared to before,
- satisfies the same comp. stat. as before [+ new; see paper]

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
- may have a direct effect on well-being, and
- may correlate with unobserved earnings ability.
- In the presence of a tag, the optimal tax rate t_{0}^{*} on income
- will be even lower compared to before,
- satisfies the same comp. stat. as before [+ new; see paper]
- The optimal tax on the tag t_{1}^{*} should satisfy

$$
t_{1}^{*}=\beta_{1}+\left(1-t_{0}^{*}\right)\left(1-\alpha_{0}\right) \sigma_{01}^{\theta} / \sigma_{11}^{\theta},
$$

so,

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
- may have a direct effect on well-being, and
- may correlate with unobserved earnings ability.
- In the presence of a tag, the optimal tax rate t_{0}^{*} on income
- will be even lower compared to before,
- satisfies the same comp. stat. as before [+ new; see paper]
- The optimal tax on the tag t_{1}^{*} should satisfy

$$
t_{1}^{*}=\beta_{1}+\left(1-t_{0}^{*}\right)\left(1-\alpha_{0}\right) \sigma_{01}^{\theta} / \sigma_{11}^{\theta},
$$

so, it should be higher

- the higher the direct effect β_{1} of the tag on well-being
- the higher the signal σ_{01}^{θ}. [+ other; see paper]

Towards testable conditions

- Recall that the optimal tax on the tag t_{1}^{*} should satisfy

$$
t_{1}^{*}=\beta_{1}+\left(1-t_{0}^{*}\right)\left(1-\alpha_{0}\right) \sigma_{01}^{\theta} / \sigma_{11}^{\theta},
$$

but this equation is not testable (α_{0} and σ_{01}^{θ} not observed).

Towards testable conditions

- Recall that the optimal tax on the tag t_{1}^{*} should satisfy

$$
t_{1}^{*}=\beta_{1}+\left(1-t_{0}^{*}\right)\left(1-\alpha_{0}\right) \sigma_{01}^{\theta} / \sigma_{11}^{\theta},
$$

but this equation is not testable (α_{0} and σ_{01}^{θ} not observed).

- However, it can be rewritten as

$$
t_{1}^{*}=\beta_{1}+\left(1-t_{0}^{*}\right) \operatorname{cov}\left(x_{1}, y\right) / \operatorname{cov}\left(x_{1}, x_{1}\right)
$$

in which all terms are observable.

Towards testable conditions

- Recall that the optimal tax on the tag t_{1}^{*} should satisfy

$$
t_{1}^{*}=\beta_{1}+\left(1-t_{0}^{*}\right)\left(1-\alpha_{0}\right) \sigma_{01}^{\theta} / \sigma_{11}^{\theta},
$$

but this equation is not testable (α_{0} and σ_{01}^{θ} not observed).

- However, it can be rewritten as

$$
t_{1}^{*}=\beta_{1}+\left(1-t_{0}^{*}\right) \operatorname{cov}\left(x_{1}, y\right) / \operatorname{cov}\left(x_{1}, x_{1}\right),
$$

in which all terms are observable.

- In particular, $\operatorname{cov}\left(x_{1}, y\right) / \operatorname{cov}\left(x_{1}, x_{1}\right)$ is an OLS estimate, so
- β_{1} is the direct effect of the tag on well-being, and
- $\left(1-t_{0}^{*}\right) \times \operatorname{cov}\left(x_{1}, y\right) / \operatorname{cov}\left(x_{1}, x_{1}\right)$ is $E[$ indirect effect $]$.

Testable conditions

- Consider income and non-income factors, partitioned into
- non-controllable non-income factors $N=\left\{j \mid \alpha_{j} \rightarrow 0\right\}$
- partially controllable non-income factors $P=\left\{j \mid \alpha_{j}>0\right\}$.

Testable conditions

- Consider income and non-income factors, partitioned into
- non-controllable non-income factors $N=\left\{j \mid \alpha_{j} \rightarrow 0\right\}$
- partially controllable non-income factors $P=\left\{j \mid \alpha_{j}>0\right\}$.
- Consider data collected in:
- a $n \times 1$ vector y for gross incomes,
- a $n \times|N|$ matrix \boldsymbol{X}_{N} for the non-controllable factors,
- a $n \times|P|$ matrix \boldsymbol{X}_{P} for the partially controllable factors.

Testable conditions

- Consider income and non-income factors, partitioned into
- non-controllable non-income factors $N=\left\{j \mid \alpha_{j} \rightarrow 0\right\}$
- partially controllable non-income factors $P=\left\{j \mid \alpha_{j}>0\right\}$.
- Consider data collected in:
- a $n \times 1$ vector y for gross incomes,
- a $n \times|N|$ matrix \boldsymbol{X}_{N} for the non-controllable factors,
- a $n \times|P|$ matrix \boldsymbol{X}_{P} for the partially controllable factors.
- We obtain that the optimal tax rates t_{j}^{*}, for j in N, are

$$
\boldsymbol{t}_{N}^{*}=\boldsymbol{\beta}_{N}+\left(1-t_{0}\right)\left(\boldsymbol{X}_{N}^{\prime} \boldsymbol{X}_{N}\right)^{-1} \boldsymbol{X}_{N}^{\prime} \boldsymbol{y}+\left(\boldsymbol{X}_{N}^{\prime} \boldsymbol{X}_{N}\right)^{-1} \boldsymbol{X}_{N}^{\prime} \boldsymbol{X}_{P}\left(\boldsymbol{\beta}_{P}-\boldsymbol{t}_{P}\right)
$$

[implementation + link with ${ }^{\text {E }}$ © ${ }^{\prime}$ '-literature]

