▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Fair and efficient taxation under partial control

Erwin Ooghe & Andreas Peichl

ivation	Model 00000	Results 00000
Intivation		

• *Fairness* plays a role in redistribution:

Moti

• the more an outcome is determined by 'luck' (resp. 'effort')

• the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]

M	otiv	zati	on
	0	- cuc	

▲□▶▲□▶▲□▶▲□▶ □ のQで

- *Fairness* plays a role in redistribution:
 - the more an outcome is determined by 'luck' (resp. 'effort')
 - the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- *Non-income information* important in tax-benefit schemes:
 - non-income information (49%)
 - income information (30% + 5%)
 [several reasons ~ efficiency & equity]

NO	tiva	tion

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- *Fairness* plays a role in redistribution:
 - the more an outcome is determined by 'luck' (resp. 'effort')
 - the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- *Non-income information* important in tax-benefit schemes:
 - non-income information (49%)
 - income information (30% + 5%)
 [several reasons ~ efficiency & equity]
- Information differs in the *degree of control*

M	011	ratio	n
	our	cite in	

- *Fairness* plays a role in redistribution:
 - the more an outcome is determined by 'luck' (resp. 'effort')
 - the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- *Non-income information* important in tax-benefit schemes:
 - non-income information (49%)
 - income information (30% + 5%)
 [several reasons ~ efficiency & equity]
- Information differs in the *degree of control*
- Aim of this paper is to study
 - a fair and efficient tax-benefit scheme
 - based on income and non-income factors
 - under partial control

NO	tiva	tion

- *Fairness* plays a role in redistribution:
 - the more an outcome is determined by 'luck' (resp. 'effort')
 - the more (resp. less) redistribution is preferred [evidence, political economy, fair income taxation]
- *Non-income information* important in tax-benefit schemes:
 - non-income information (49%)
 - income information (30% + 5%)
 [several reasons ~ efficiency & equity]
- Information differs in the *degree of control*
- Aim of this paper is to study
 - a fair and efficient tax-benefit scheme
 - based on income and non-income factors
 - under partial control [and lots of assumptions]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Individual preferences/constraints

• Utility *U*(*c*, **x**, **e**) is a function of

- consumption c
- non-income factors $\mathbf{x} = (x_1, x_2, \dots, x_J)$

• effort
$$\mathbf{e} = (e_0, e_1, \dots, e_J)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Individual preferences/constraints

- Utility *U*(*c*, **x**, **e**) is a function of
 - consumption *c*
 - non-income factors $\mathbf{x} = (x_1, x_2, \dots, x_J)$
 - effort $\mathbf{e} = (e_0, e_1, \dots, e_J)$
- Consumption *c* is gross income *y* minus taxes $\tau(y, \mathbf{x})$

Individual preferences/constraints

- Utility *U*(*c*, **x**, **e**) is a function of
 - consumption *c*
 - non-income factors $\mathbf{x} = (x_1, x_2, \dots, x_J)$
 - effort $\mathbf{e} = (e_0, e_1, ..., e_J)$
- Consumption *c* is gross income *y* minus taxes $\tau(y, \mathbf{x})$
- A production function *f* maps effort **e** into (*y*, **x**)

Individual preferences/constraints

- Utility *U*(*c*, **x**, **e**) is a function of
 - consumption *c*
 - non-income factors $\mathbf{x} = (x_1, x_2, \dots, x_J)$
 - effort $\mathbf{e} = (e_0, e_1, ..., e_J)$
- Consumption *c* is gross income *y* minus taxes $\tau(y, \mathbf{x})$
- A production function *f* maps effort **e** into (*y*, **x**)
- Individuals solve

$$\max_{\mathbf{e}} U(c, \mathbf{x}, \mathbf{e}) \text{ s.t. } c \leq y - \tau(y, \mathbf{x}) \And (y, \mathbf{x}) = f(\mathbf{e}).$$

・ロト・日本・日本・日本・日本・日本

Motivation

Model ○●○○○

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Simplifying assumptions

• quasi-linear & additive structure on utility:

•
$$U(c, \mathbf{x}, \mathbf{e}) = c + \sum_{j=1}^{J} \beta_j x_j - h(\mathbf{e})$$
, with
• $h(\mathbf{e}) = \sum_{j=0}^{J} \frac{\delta_j}{\exp \gamma_j} \exp(\frac{e_j}{\delta_j})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Simplifying assumptions

• quasi-linear & additive structure on utility:

•
$$U(c, \mathbf{x}, \mathbf{e}) = c + \sum_{j=1}^{J} \beta_j x_j - h(\mathbf{e})$$
, with
• $h(\mathbf{e}) = \sum_{j=0}^{J} \frac{\delta_j}{\exp \gamma_j} \exp(\frac{e_j}{\delta_j})$.

• linear production function *f*:

•
$$y = \alpha_0 e_0 + (1 - \alpha_0) \theta_0$$
, and

•
$$x_j = \alpha_j e_j + (1 - \alpha_j) \theta_j, j = 1, 2, ..., J.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simplifying assumptions

• quasi-linear & additive structure on utility:

•
$$U(c, \mathbf{x}, \mathbf{e}) = c + \sum_{j=1}^{J} \beta_j x_j - h(\mathbf{e})$$
, with
• $h(\mathbf{e}) = \sum_{j=0}^{J} \frac{\delta_j}{\exp \gamma_j} \exp(\frac{e_j}{\delta_j})$.

• linear production function *f*:

•
$$y = \alpha_0 e_0 + (1 - \alpha_0) \theta_0$$
, and

•
$$x_j = \alpha_j e_j + (1 - \alpha_j) \theta_j, j = 1, 2, ..., J.$$

• Unobserved abilities and tastes:

Social preferences and constraints

• Welfare is denoted $W(\tau)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Social preferences and constraints

- Welfare is denoted $W(\tau)$
- The (per-capita) tax revenue is

$$R(\tau) = \int_{\boldsymbol{\theta}} \int_{\boldsymbol{\gamma}} \tau(\boldsymbol{y}^*(\tau, \boldsymbol{\theta}, \boldsymbol{\gamma}), \mathbf{x}^*(\tau, \boldsymbol{\theta}, \boldsymbol{\gamma})) dF(\boldsymbol{\theta}) dG(\boldsymbol{\gamma}),$$

with $y^*(\tau, \theta, \gamma)$ and $\mathbf{x}^*(\tau, \theta, \gamma)$ individual choices.

Social preferences and constraints

- Welfare is denoted $W(\tau)$
- The (per-capita) tax revenue is

$$R(\tau) = \int_{\boldsymbol{\theta}} \int_{\boldsymbol{\gamma}} \tau(\boldsymbol{y}^*(\tau, \boldsymbol{\theta}, \boldsymbol{\gamma}), \mathbf{x}^*(\tau, \boldsymbol{\theta}, \boldsymbol{\gamma})) dF(\boldsymbol{\theta}) dG(\boldsymbol{\gamma}),$$

with $y^*(\tau, \theta, \gamma)$ and $\mathbf{x}^*(\tau, \theta, \gamma)$ individual choices.

• The planner solves

$$\max_{\tau} W(\tau) \text{ s.t. } R(\tau) \geq R_0,$$

with *R*⁰ an exogenous (per-capita) revenue requirement.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Simplifying assumptions

• Welfare is the 'average transformed well-being', i.e.,

$$W(\tau) = \phi^{-1} [\int_{\theta} \int_{\gamma} \phi(v(\tau, \theta, \gamma)) dF(\theta) dG(\gamma)],$$

with ϕ exponential, i.e., $\phi(x) = \exp(-rx)$.

Simplifying assumptions

• Welfare is the 'average transformed well-being', i.e.,

$$W(\tau) = \phi^{-1}[\int_{\theta} \int_{\gamma} \phi(v(\tau, \theta, \gamma)) dF(\theta) dG(\gamma)],$$

with ϕ exponential, i.e., $\phi(x) = \exp(-rx)$.

• Well-being $\hat{v} = v(\tau, \theta, \gamma)$ is a cardinalization of utility and implicitly defined as

$$V(\tau,\boldsymbol{\theta},\boldsymbol{\gamma})=V(R_0,(\widehat{v},\widehat{v},\ldots,\widehat{v}),\boldsymbol{\gamma}),$$

with *V* the indirect utility function.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Simplifying assumptions

• Welfare is the 'average transformed well-being', i.e.,

$$W(\tau) = \phi^{-1}[\int_{\theta} \int_{\gamma} \phi(v(\tau, \theta, \gamma)) dF(\theta) dG(\gamma)],$$

with ϕ exponential, i.e., $\phi(x) = \exp(-rx)$.

• Well-being $\hat{v} = v(\tau, \theta, \gamma)$ is a cardinalization of utility and implicitly defined as

$$V(\tau,\boldsymbol{\theta},\boldsymbol{\gamma})=V(R_0,(\widehat{v},\widehat{v},\ldots,\widehat{v}),\boldsymbol{\gamma}),$$

with *V* the indirect utility function.

• Taxation is linear, so

$$\tau(y,\mathbf{x})=T+t_0y+\sum_{j=1}^Jt_jx_j.$$

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

• Pareto: higher utilities are reflected in higher welfare

▲□▶▲□▶▲□▶▲□▶ □ のQで

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

- Pareto: higher utilities are reflected in higher welfare
- Compensation (for abilities): a PD transfer between individuals with the same tastes improves social welfare

... but 'defendable' assumptions

The choice of ϕ and v guarantee that $W(\tau)$ satisfies

- Pareto: higher utilities are reflected in higher welfare
- Compensation (for abilities): a PD transfer between individuals with the same tastes improves social welfare
- Responsibility (for tastes): if all individuals have the same ability, then the laisser-faire should result ($\tau^* = R_0$)

Tax up to the point where:

```
marginal efficiency cost = r \times marginal fairness gain,
```

with fairness gain = compensation gain – responsibility cost.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tax up to the point where:

marginal efficiency $\cos t = r \times \text{marginal fairness gain}$, with fairness gain = compensation gain – responsibility cost. In addition:

• if $r \to 0$ or $\Sigma^{\theta} \to \mathbf{0}$ then $(T^*, \mathbf{t}^*) \to (R_0, \mathbf{0})$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tax up to the point where:

marginal efficiency cost = $r \times$ marginal fairness gain,

with fairness gain = compensation gain – responsibility cost. In addition:

- if $r \to 0$ or $\Sigma^{\theta} \to \mathbf{0}$ then $(T^*, \mathbf{t}^*) \to (R_0, \mathbf{0})$
- tendency towards lower income taxes caused by
 - taste heterogeneity & responsibility
 - the possibility of taxing non-income factors

Tax up to the point where:

marginal efficiency cost = $r \times$ marginal fairness gain,

with fairness gain = compensation gain – responsibility cost. In addition:

- if $r \to 0$ or $\Sigma^{\theta} \to \mathbf{0}$ then $(T^*, \mathbf{t}^*) \to (R_0, \mathbf{0})$
- tendency towards lower income taxes caused by
 - taste heterogeneity & responsibility
 - the possibility of taxing non-income factors

We focus on two special cases—income only & adding a tag to income—before discussing the general case in more detail.

Income only

The optimal tax rate t_0^* on income

• lies in between 0 and 1,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Income only

- lies in between 0 and 1,
- decreases with the elasticity of effort δ_0 ,

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Income only

- lies in between 0 and 1,
- decreases with the elasticity of effort δ_0 ,
- increases with inequality aversion *r*,

▲□▶▲□▶▲□▶▲□▶ □ のQで

Income only

- lies in between 0 and 1,
- decreases with the elasticity of effort δ_0 ,
- increases with inequality aversion *r*,
- increases with ability heterogeneity σ_{00}^{θ} ,

▲□▶▲□▶▲□▶▲□▶ □ のQで

Income only

- lies in between 0 and 1,
- decreases with the elasticity of effort *δ*₀,
- increases with inequality aversion *r*,
- increases with ability heterogeneity σ_{00}^{θ} ,
- decreases with taste heterogeneity σ_{00}^{γ} , [lower than the Mirrleesian case]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Income only

- lies in between 0 and 1,
- decreases with the elasticity of effort *δ*₀,
- increases with inequality aversion *r*,
- increases with ability heterogeneity σ_{00}^{θ} ,
- decreases with taste heterogeneity σ_{00}^{γ} , [lower than the Mirrleesian case]
- decreases with the degree of control α_0 .

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
 - may have a direct effect on well-being, and
 - may correlate with unobserved earnings ability.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
 - may have a direct effect on well-being, and
 - may correlate with unobserved earnings ability.
- In the presence of a tag, the optimal tax rate t_0^* on *income*
 - will be even lower compared to before,
 - satisfies the same comp. stat. as before [+ new; see paper]

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
 - may have a direct effect on well-being, and
 - may correlate with unobserved earnings ability.
- In the presence of a tag, the optimal tax rate t_0^* on *income*
 - will be even lower compared to before,
 - satisfies the same comp. stat. as before [+ new; see paper]
- The optimal tax *on the tag* t_1^* should satisfy

$$t_1^* = \beta_1 + (1 - t_0^*)(1 - \alpha_0)\sigma_{01}^{\theta} / \sigma_{11}^{\theta},$$

so,

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Tax rates when adding a tag

- A tag is an observable exogenous non-income factor that
 - may have a direct effect on well-being, and
 - may correlate with unobserved earnings ability.
- In the presence of a tag, the optimal tax rate t_0^* on *income*
 - will be even lower compared to before,
 - satisfies the same comp. stat. as before [+ new; see paper]
- The optimal tax *on the tag* t_1^* should satisfy

$$t_1^* = \beta_1 + (1 - t_0^*)(1 - \alpha_0)\sigma_{01}^{\theta} / \sigma_{11}^{\theta},$$

so, it should be higher

- the higher the direct effect β₁ of the tag on well-being
- the higher the signal σ_{01}^{θ} . [+ other; see paper]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Towards testable conditions

• Recall that the optimal tax on the tag t_1^* should satisfy

$$t_1^* = \beta_1 + (1 - t_0^*)(1 - \alpha_0)\sigma_{01}^{\theta} / \sigma_{11}^{\theta},$$

but this equation is not testable (α_0 and σ_{01}^{θ} not observed).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Towards testable conditions

• Recall that the optimal tax on the tag t_1^* should satisfy

$$t_1^* = \beta_1 + (1 - t_0^*)(1 - \alpha_0)\sigma_{01}^{\theta} / \sigma_{11}^{\theta}$$

but this equation is not testable (α_0 and σ_{01}^{θ} not observed).

• However, it can be rewritten as

$$t_1^* = \beta_1 + (1 - t_0^*) cov(x_1, y) / cov(x_1, x_1),$$

in which all terms are observable.

Towards testable conditions

• Recall that the optimal tax on the tag t_1^* should satisfy

$$t_1^* = \beta_1 + (1 - t_0^*)(1 - \alpha_0)\sigma_{01}^{\theta} / \sigma_{11}^{\theta},$$

but this equation is not testable (α_0 and σ_{01}^{θ} not observed).

• However, it can be rewritten as

$$t_1^* = \beta_1 + (1 - t_0^*) cov(x_1, y) / cov(x_1, x_1),$$

in which all terms are observable.

- In particular, $cov(x_1, y) / cov(x_1, x_1)$ is an OLS estimate, so
 - β_1 is the direct effect of the tag on well-being, and
 - $(1 t_0^*) \times cov(x_1, y) / cov(x_1, x_1)$ is *E*[indirect effect].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Testable conditions

- Consider income and non-income factors, partitioned into
 - non-controllable non-income factors $N = \{j | \alpha_j \rightarrow 0\}$
 - partially controllable non-income factors P = {j|α_j > 0}.

Testable conditions

- Consider income and non-income factors, partitioned into
 - non-controllable non-income factors $N = \{j | \alpha_j \rightarrow 0\}$
 - partially controllable non-income factors P = {j|α_j > 0}.
- Consider data collected in:
 - a *n* × 1 vector *y* for gross incomes,
 - a $n \times |N|$ matrix X_N for the non-controllable factors,
 - a $n \times |P|$ matrix X_P for the partially controllable factors.

Testable conditions

- Consider income and non-income factors, partitioned into
 - non-controllable non-income factors $N = \{j | \alpha_j \rightarrow 0\}$
 - partially controllable non-income factors $P = \{j | \alpha_j > 0\}$.
- Consider data collected in:
 - a *n* × 1 vector *y* for gross incomes,
 - a $n \times |N|$ matrix X_N for the non-controllable factors,
 - a $n \times |P|$ matrix X_P for the partially controllable factors.
- We obtain that the optimal tax rates t_i^* , for *j* in *N*, are

$$\boldsymbol{t}_N^* = \boldsymbol{\beta}_N + (1 - t_0) (\boldsymbol{X}_N' \boldsymbol{X}_N)^{-1} \boldsymbol{X}_N' \boldsymbol{y} + (\boldsymbol{X}_N' \boldsymbol{X}_N)^{-1} \boldsymbol{X}_N' \boldsymbol{X}_P (\boldsymbol{\beta}_P - \boldsymbol{t}_P).$$

[implementation + link with 'EoP'-literature]