Inherited wealth over the path of development: Sweden, 1810-2010

Henry Ohlsson (Uppsala University), Jesper Roine (SITE) and Daniel Waldenström (Uppsala University)

Presentation at SEEK, 16 May 2014

Outline

- Introduction
- The inheritance flow in Sweden
- International comparisons
- Inherited wealth as a share of total wealth in Sweden
- Conclusions

Introduction

Equality of opportunity
Wealth mobility - intergenerational and intragenerational
Two ways to become wealthy:
Savings out of one's income - new wealth
Transfers from others - old wealth
Differences over time and space

The inheritance flow in Sweden

- Economic inheritance flow (main specification)
- B = Flow of inherited wealth at current market-values (estimated)
- Y = National income
- W = Private wealth
$-\beta=$ Wealth-income ratio (W/Y)
- m = Population mortality
$-\mu=$ Ratio of average wealth of deceased to average wealth of living
$-\mu^{*}=\mu$ corrected for inter vivos gifts ($+5-20 \%$)
The inheritance-income ratio defined as (Piketty, 2011):

$$
\mathbf{b}_{\mathbf{Y}}=\mathrm{B} / \mathbf{Y}=\mathbf{m} \cdot \mu^{*} \cdot \boldsymbol{\beta}
$$

- Fiscal inheritance flow
- Observed estates at death, usually from estate tax returns
- Only observed for a few years between 1873 and 2005

m

- The population mortality rate is defined as the number of adult (18+) deaths, M, divided by the adult living population, N, as follows:

$$
\mathrm{m}=\mathrm{M} / \mathrm{N}
$$

- Data on mortality come from the Human Mortality Database (www.mortality.org).
- We use historical information about age-wealth distributions and age-specific mortality rates in age classes a for the living (I) and deceased (d) populations:

$$
\mu=\frac{\bar{W}_{d}}{\bar{W}_{l}}=\sum_{a} \frac{\bar{W}_{l, a} \cdot M_{a} / M}{\bar{W}_{l, a}}=\sum_{a} \frac{M_{a} / M}{\bar{W}_{l, a} / \bar{W}_{l}}
$$

- We observe $\left(\bar{W}_{l, a} / \bar{W}_{l}\right)$ from age-wealth distributions of the living reported by Censuses and a few previous Swedish studies of probate records (Lindgren 2002; Perlinge, 2005).
- We observe M_{a} in Human Mortality Database

Estimated μ

- We estimate annual $\left(\bar{W}_{l, a} / \bar{W}_{l}\right)_{t}$ using simulation approach.
- Run regressions of observed historical data onto age and year polynomials:

- Then fit annual age-wealth distributions for 1810-2010

Attaining μ^{*}

- Next, multiply $\bar{W}_{l, a} / \bar{W}_{l}$ with age-specific mortality M_{a}
- Divide by population mortality M to get:

$$
\sum_{a} \frac{M_{a} / M}{\bar{W}_{l, a} / \bar{W}_{l}}=\frac{\widehat{\widehat{W}}_{d}}{\bar{W}_{l}}=\hat{\mu}
$$

- Social differentials in mortality, the wealthy live longer

Gift－correction：from $\boldsymbol{\mu}$ to μ^{*}

－Finally，correct for gifts passed on before death：$\mu \rightarrow \mu^{*}$
－Gift tax revenues（1884－）and inheritance tax revenues＇
－Smoothed moving average，adds 5－20\％

\longrightarrow Gift correction ratio，$\mu^{*} \quad$－ーーー－Unadjusted gift－inheritance ratio

$\boldsymbol{\beta}$ (Wealth-income ratio)

- General lack of historical aggregate balance sheet data
- Some scattered estimates of household balance sheets exist
- Waldenström and Ohlsson (2013) creates a new database over private wealth \mathbf{W} :
- Annual aggregate stocks of non-financial and financial assets and liabilities for 1810-2010
- Sources: Tax assessments, Banking statistics, Financial accounts, previous research and public investigations
- We use net national income as income denominator:

Net national income $=$ GDP - Depreciation + Net foreign income

- Data sources:
- GDP from Swedish historical national accounts (Edvinsson, 2005, 2012, 2014; Krantz \& Schön, 2007, 2012)
- Depreciation from Edvinsson (2005), Net foreign income (Statistics Sweden, own estimates)

The economic inheritance flow in Sweden

Components of the inheritance flow

The fiscal inheritance flow in Sweden

International comparisons

- France: Piketty (2011); UK: Atkinson (2012)

Role of components across countries

Sweden	\square France
\rightarrow United Kingdom	\rightarrow United States

Inherited wealth as a share of total wealth in Sweden

Inherited wealth as share of total wealth is approximated as (Piketty \& Zucman, 2014):

$$
\varphi=\frac{b_{Y}}{b_{Y}+(1-\alpha) s}
$$

where
$-\varphi=$ Inherited wealth as share of total wealth
$-b_{Y}=$ Inheritance flow as share of national income
$-\alpha=$ Capital share of national income
$-s=$ Net savings rate

Capital share and savings rate

φ calculated using 30 year moving averages

Laitner \& Ohlsson, 1997, unpublished

Present value of inheritances / Household wealth
3 percent real interest rate

- Sweden 1981, 3 waves of LLS

$$
\varphi=0.51
$$

- The U.S. 1984, 1 wave of PSID

$$
\varphi=0.19
$$

Conclusions

Inheritance

- was important during the 1800 s
- became less and less important during the first half of the 1900s
- has rebounded from the mid 1900s

