Benefiting from a European 'fiscal union'? Redistribution vs. stabilization

Dirk Neumann

4th SEEK Conference

Mannheim, May 16, 2014

- $\bullet\,$ Current debt crisis EU $\Rightarrow\,$ debate about deeper fiscal integration
- Herman van Rompuy (2012):
 - "Strengthening discipline alone is [...] not sufficient. In the longer term, there is a need to explore the option to go beyond the current steps to strengthen economic governance by developing gradually a fiscal capacity for the EMU. Such a fiscal capacity could take several forms and various options would need to be explored."
- Main point existing literature: **monetary union** cannot survive unless complemented by a **fiscal union**

Potential elements of a 'fiscal union' in the current debate:

- Q Rules for fiscal policy (Fiscal Pact, Stability and Growth Pact...)
- Orisis mechanism: EFSF/ESM, ECB (OMT)
- Joint liability for government debt (Debt Redemption Fund...)
- European fiscal equalization mechanism
- Sextended EU budget and European taxes

Expected **gains**: improved macroeconomic stabilization against asymmetric shocks

Widespread concerns about 'fiscal union':

- **1** Redistribution from high to low income countries/households
- Adverse effects on incentives to work (higher transfers or higher tax burdens)
- Many other concerns like e.g. unequal compliance with tax law or administrative issues

Simulation experiment: Euro area (EA) integrated tax-transfer system that replaces 10% of national systems

- Closely related to Bargain et al. (2013), Economic Policy
 - $\bullet~2001$ data for 11 eurozone members +~simulated~shock
 - Separate analysis of redistributive effects and income stabilization
- This paper:
 - $\bullet~2007$ data for EA17 + simulated shock
 - What is the integrated (individual) welfare effect of redistributive and stabilization effects?
 - Expected utility approach + equivalent variation (EV)
 - Pareto improving reform possible?

Framework

・ロト ・聞 ト ・ ヨト ・ ヨト

How to design a 'fiscal union'?

- Overall revenue: neutrality
- **②** Design: "average" of national tax-transfer systems Level of integration: 10% ($\approx 3\%$ of EA net taxes, 1.5% of EA GDP)
- Solution Straight Straight

• Individuals with CRRA utility function:

- < A

• Individuals with CRRA utility function:

•
$$U(C_i)=rac{C_i^{1-
ho}}{1-
ho};
ho>0,
ho
eq 1$$

Image: A math a math

- Individuals with CRRA utility function:
- $U(C_i)=rac{C_i^{1ho}}{1ho};
 ho>0,
 ho
 eq 1$
- Two situations: no shock $(C_i^0 = X_i^0 T_i^0)$, negative income shock with probability α $(C_i^1 = X_i^1 T_i^1)$

•
$$U(C_i) = \frac{C_i^{1-\rho}}{1-\rho}; \rho > 0, \rho \neq 1$$

- Two situations: no shock $(C_i^0 = X_i^0 T_i^0)$, negative income shock with probability α $(C_i^1 = X_i^1 T_i^1)$
- Expected utility: $E_i[U(C_i)] = (1 \alpha)U(C_i^0) + \alpha U(C_i^1)$

•
$$U(C_i) = \frac{C_i^{1-\rho}}{1-\rho}; \rho > 0, \rho \neq 1$$

- Two situations: no shock $(C_i^0 = X_i^0 T_i^0)$, negative income shock with probability α $(C_i^1 = X_i^1 T_i^1)$
- Expected utility: $E_i[U(C_i)] = (1 \alpha)U(C_i^0) + \alpha U(C_i^1)$
- Certainty equivalent: $U(E_i[C_i]) > E_i[U(C_i)] = U(CE_i)$

•
$$U(C_i) = \frac{C_i^{1-\rho}}{1-\rho}; \rho > 0, \rho \neq 1$$

- Two situations: no shock $(C_i^0 = X_i^0 T_i^0)$, negative income shock with probability α $(C_i^1 = X_i^1 T_i^1)$
- Expected utility: $E_i[U(C_i)] = (1 \alpha)U(C_i^0) + \alpha U(C_i^1)$
- Certainty equivalent: $U(E_i[C_i]) > E_i[U(C_i)] = U(CE_i)$
- Risk premium: $CE_i = E_i[C_i] RP_i$

•
$$U(C_i) = \frac{C_i^{1-\rho}}{1-\rho}; \rho > 0, \rho \neq 1$$

- Two situations: no shock $(C_i^0 = X_i^0 T_i^0)$, negative income shock with probability α $(C_i^1 = X_i^1 T_i^1)$
- Expected utility: $E_i[U(C_i)] = (1 \alpha)U(C_i^0) + \alpha U(C_i^1)$
- Certainty equivalent: $U(E_i[C_i]) > E_i[U(C_i)] = U(CE_i)$
- Risk premium: $CE_i = E_i[C_i] RP_i$
- ightarrow For national systems k (baseline) and integrated system EA

•
$$U(C_i) = \frac{C_i^{1-\rho}}{1-\rho}; \rho > 0, \rho \neq 1$$

- Two situations: no shock $(C_i^0 = X_i^0 T_i^0)$, negative income shock with probability α $(C_i^1 = X_i^1 T_i^1)$
- Expected utility: $E_i[U(C_i)] = (1 \alpha)U(C_i^0) + \alpha U(C_i^1)$
- Certainty equivalent: $U(E_i[C_i]) > E_i[U(C_i)] = U(CE_i)$
- Risk premium: $CE_i = E_i[C_i] RP_i$
- \rightarrow For national systems k (baseline) and integrated system EA

$$\Rightarrow \text{ Equivalent variation:}$$

$$U(CE_{ik} + EV_i) - U(CE_{iEA}) = 0$$

EV has a "redistribution" and an "insurance" component:

$$\underbrace{CE_{EA} - CE_{k}}_{=EV_{T}} = E[C_{EA}] - RP_{EA} - (E[C_{k}] - RP_{k})$$
$$= \underbrace{E[C_{EA}] - E[C_{k}]}_{- \to EV_{R}} \underbrace{+RP_{k} - RP_{EA}}_{- \to EV_{l}}$$

Image: A matrix

Key importance: credit constraint at country level

Dirk Neumann (CORE, IZA & ZEW)

Fiscal union

Empirical strategy

Image: A math black

æ

- European tax-benefit calculator EUROMOD: simulates household disposable income, taxes, cash benefits and SIC
- 2007 (before crisis) data and systems for EA17
- Additionally: EA12, EA "North", EA "South"
- Working age population 18-59
- \bullet Unit: individual \rightarrow household equivalized disposable income
- Focus:
 - a) median voter (ightarrow political feasibility?)
 - b) income deciles within countries

- EUROMOD: extract household net taxes T_{ik} = f_k(X_i, z_i) with gross income X, vector of non-income factors z
- **2** Predict national systems using OLS $T_{ik} = \tilde{f}_k(X_i, \mathbf{z}_i) + \epsilon_i$ with highly flexible \tilde{f}
- **3** Estimation of the average system using same specification $\hat{T}_{ik} = \omega_i \tilde{f}_{EU}(X_i, \mathbf{z}_i) + \epsilon_i$ with population weight ω
- Predict \hat{T}_{ik} and \hat{T}_{iEU} (and accordingly for simulated shocks to gross income X_i) \Rightarrow key ingredients to analysis

- EUROMOD: extract household net taxes T_{ik} = f_k(X_i, z_i) with gross income X, vector of non-income factors z
- **2** Predict national systems using OLS $T_{ik} = \tilde{f}_k(X_i, \mathbf{z}_i) + \epsilon_i$ with highly flexible \tilde{f}
- **3** Estimation of the average system using *same* specification $\hat{T}_{ik} = \omega_i \tilde{f}_{EU}(X_i, \mathbf{z}_i) + \epsilon_i$ with population weight ω
- Predict \hat{T}_{ik} and \hat{T}_{iEU} (and accordingly for simulated shocks to gross income X_i) \Rightarrow key ingredients to analysis

Parameter specification baseline:

- EUROMOD: extract household net taxes T_{ik} = f_k(X_i, z_i) with gross income X, vector of non-income factors z
- Predict national systems using OLS $T_{ik} = \tilde{f}_k(X_i, \mathbf{z}_i) + \epsilon_i$ with highly flexible \tilde{f}
- **3** Estimation of the average system using same specification $\hat{T}_{ik} = \omega_i \tilde{f}_{EU}(X_i, \mathbf{z}_i) + \epsilon_i$ with population weight ω
- Predict \hat{T}_{ik} and \hat{T}_{iEU} (and accordingly for simulated shocks to gross income X_i) \Rightarrow key ingredients to analysis

Parameter specification baseline:

 $\alpha = 0.5$ (average of states 0 and 1)

- EUROMOD: extract household net taxes T_{ik} = f_k(X_i, z_i) with gross income X, vector of non-income factors z
- **2** Predict national systems using OLS $T_{ik} = \tilde{f}_k(X_i, \mathbf{z}_i) + \epsilon_i$ with highly flexible \tilde{f}
- **3** Estimation of the average system using *same* specification $\hat{T}_{ik} = \omega_i \tilde{f}_{EU}(X_i, \mathbf{z}_i) + \epsilon_i$ with population weight ω
- Predict \hat{T}_{ik} and \hat{T}_{iEU} (and accordingly for simulated shocks to gross income X_i) \Rightarrow key ingredients to analysis

Parameter specification baseline:

$$lpha = 0.5$$
 (average of states 0 and 1)
 $\Delta X = -5\%$ (EA17 average of 2008-09 GDP drop)

- EUROMOD: extract household net taxes T_{ik} = f_k(X_i, z_i) with gross income X, vector of non-income factors z
- **2** Predict national systems using OLS $T_{ik} = \tilde{f}_k(X_i, \mathbf{z}_i) + \epsilon_i$ with highly flexible \tilde{f}
- **3** Estimation of the average system using same specification $\hat{T}_{ik} = \omega_i \tilde{f}_{EU}(X_i, \mathbf{z}_i) + \epsilon_i$ with population weight ω
- Predict \hat{T}_{ik} and \hat{T}_{iEU} (and accordingly for simulated shocks to gross income X_i) \Rightarrow key ingredients to analysis

Parameter specification baseline:

$$lpha=$$
 0.5 (average of states 0 and 1)
 $\Delta X=-5\%$ (EA17 average of 2008-09 GDP drop)
 $ho=$ 3

"EA average" vs. national systems

Results

メロト メポト メヨト メヨ

æ

EV for EA17

	EV_T	EV_R	EV_{I}
AT	-5.7	-6.2	0.3
BE	8.2	7.8	0.4
CY	-26.3	-26.4	0.1
DE	6.2	5.8	0.3
EE	23.0	22.9	0.1
EL	-3.2	-3.3	0.1
ES	-3.5	-3.7	0.2
FI	4.1	3.6	0.4
FR	9.1	8.7	0.4
IE	-50.4	-50.6	0.2
IT	7.1	6.8	0.2
LU	-52.6	-53.1	0.3
MT	-4.4	-4.5	0.1
NL	-6.8	-7.2	0.4
PΤ	2.9	2.9	0.1
SI	15.1	15.0	0.2
SK	23.6	23.5	0.1

イロト イ団ト イヨト イヨト

3

"Total" EV across deciles

May 16, 2014 18 / 24

"Insurance" EV across deciles

May 16, 2014 19 / 24

EV for different 'unions'

	$ ho=$ 3, $\Delta X=-5\%$								
	EA17		EA12		EA-N		EA-S		
	EV_T	EV_{I}	EV_T	EV_I	EV_T	EV_I	EV_T	EV_I	
AT	-5.7	0.3	-6.0	0.3	0.7	0.4			
BE	8.2	0.4	8.9	0.4	14.4	0.4			
CY	-26.3	0.1							
DE	6.2	0.3	6.9	0.3	4.8	0.4			
EE	23.0	0.1	-1.7	0.1					
EL	-3.2	0.1	-2.6	0.2			-1.1	0.1	
ES	-3.5	0.2	4.6	0.4			-2.1	0.2	
FI	4.1	0.4			5.4	0.4			
FR	9.1	0.4	9.5	0.4			5.3	0.4	
IE	-50.4	0.2	-49.7	0.2					
IT	7.1	0.2	7.7	0.2			5.8	0.2	
LU	-52.6	0.3	-53.2	0.3					
MT	-4.4	0.1							
NL	-6.8	0.4	-7.3	0.4	-3.7	0.4			
PΤ	2.9	0.1	4.3	0.1			1.2	0.1	
SI	15.1	0.2							
SK	23.6	0.1							

Dirk Neumann (CORE, IZA & ZEW)

æ May 16, 2014 20 / 24

э

Image: A match a ma

Pareto improving reform?

	$ ho=$ 5, $\Delta X=-10\%$							
	EA17		EA12		EA-N		EA-S	
	EV_T	EV_{I}	EV_T	EV_I	EV_T	EV_I	EV_T	EV_I
AT	-0.2	2.2	-0.5	2.2	6.7	2.4		
BE	13.4	2.8	14.2	2.8	20.2	3.0		
CY	-23.4	1.0						
DE	11.4	2.3	12.0	2.3	9.8	2.4		
EE	24.8	0.9						
EL	-0.9	0.9	0.3	0.9			0.9	0.8
ES	-0.5	1.2	0.4	1.2			0.6	1.2
FI	10.0	2.7	10.5	2.7	11.6	2.9		
FR	14.4	2.6	14.9	2.6			10.6	2.5
IE	-47.0	1.2	-46.2	1.2				
IT	11.1	1.5	11.5	1.5			9.5	1.4
LU	-45.8	2.2	-46.3	2.2				
MT	-2.7	0.6						
NL	-1.2	2.5	-1.5	2.5	1.7	2.6		
ΡT	5.0	0.7	6.5	0.7			3.3	0.6
SI	17.8	1.1						
SK	24.9	0.6						

Dirk Neumann (CORE, IZA & ZEW)

트▶ < ≣▶ 클 ∽ ९. May 16, 2014 21 / 24

Image: A match a ma

Conclusion

< E

・ロト ・日本・ ・ 日本

æ

Findings

- 9 of 17 countries gain (mostly Eastern, partly Southern Europe)
- Moving towards smaller + more similar fiscal unions decreases redistributive effects
- Pareto improving? Rather severe crisis scenarios, high risk aversion

Outlook/Discussion

- Use income volatility over time 2008-13
- Other forms of fiscal integration, e.g. EA unemployment insurance
- Introduce heterogeneity across countries/households
- Behavioural effects? Labour supply (*Bargain et al., 2013*), migration, tax avoidance, national policy response, administration costs...

Thank you for your attention!

dirk.neumann@uclouvain.be