The Redistributive Benefits of Progressive Labor and Capital Income Taxation, Or:

How to Most Efficiently Screw the Top 1\%

Fabian Kindermann Dirk Krueger

University of Wuerzburg and Netspar
University of Pennsylvaina, CEPR, NBER and Netspar

4th SEEK conference
May 2014

Motivation

Top 1 Percent Income Share in the United States

Source: Source is Piketty and Saez (2003) and the World Top Incomes Database.

Motivation

Top Marginal Income Tax Rates, 1900-2011

Source: Piketty and Saez (2013, figure 1).

Motivation

Insights from Diamond and Saez JEP 2011

- Optimal marginal tax rate at the top: Saez (2001)

$$
\tau_{h}=\frac{1}{1+a * e}
$$

- Empirical estimates: $a=1.5$ and $e=0.25$ yields $\tau_{h}=0.73$
- Also argue for positive capital income tax
- Assumptions:
- Static optimal tax model
- Earnings distribution Pareto
- Elasticity of earnings roughly invariant to policy

Aim of this project

- Take Diamond, Piketty and Saez seriously
- Incorporate their key model elements in a dynamic incomplete markets general equilibrium model
- Derive optimal marginal tax rate on earnings at the top
- Key challange: realistic earnings and wealth distribution \rightarrow We use labor productivity to generate this
- Preliminary finding: Diamond, Piketty and Saez are right...

Aim of this project

- Take Diamond, Piketty and Saez seriously
- Incorporate their key model elements in a dynamic incomplete markets general equilibrium model
- Derive optimal marginal tax rate on earnings at the top
- Key challange: realistic earnings and wealth distribution \rightarrow We use labor productivity to generate this
- Preliminary finding: Diamond, Piketty and Saez are right...
... but probably for the wrong reason

The Model

- Large-scale overlapping generations model in the spirit of Auerbach and Kotlikoff
- Endogenous consumption-savings and labor supply decisions
- Idiosyncratic labor productivity risk
- Benevolent government that implements progressive labor earnings and flat capital income tax code (and can fully commit to time path of policies)

The Model

Households: Decision making

- At each point in time households choose
- consumption c
- labor supply n
- savings in the risk free asset a with tight borrowing constraint
- Preferences

$$
U(c, n)=\frac{c^{1-\gamma}}{1-\gamma}-\lambda \frac{n^{1+\chi}}{1+\chi}
$$

The Model

Households: Labor productivity

- Households are ex-ante and ex-post heterogeneous w.r.t. labor productivity
- Wage is given by $w \cdot e(j, s, \alpha, \eta)$:
- Wage rate of the economy w
- Deterministic eduction level $s \in\{n, c\}$ determined at birth
- Deterministic age component $\epsilon_{j, s}$
- Fixed effect α following $\phi_{s}(\alpha)$ determined at birth
- Stochastic component η following education specific Markov chain with states $\eta \in \mathcal{E}_{s}$ and transition matrix $\pi_{s}\left(\eta, \eta^{\prime}\right)$.

The Model

- Revenue from
- consumption taxes τ_{c}
- flat capital income tax τ_{k}
- progressive labor earnings tax $T(\cdot)$
- Expenditure stream G exogenous
- Interest payments on debt B
- Runs a PAYG progressive social security system

Calibration of initial equilibrium

Overview

- Standard calibration for household demographics, preferences and technology
- One exception: calibration of labor productivity process
- Goal: realistic earnings and wealth distribution
- Procedure to determine $w \cdot e(j, s, \alpha, \eta)$
- Normalize $w=1$
- Use $\epsilon_{j, s}$ and α estimates from PSID
- Estimate baseline Markov chain $\left\{\eta_{s, 1}, \ldots, \eta_{s, 5}\right\}$ from PSID \rightarrow normal labor earnings (roughly bottom 95-97\%)
- Augment with very high earnings realizations $\left\{\eta_{s, 6}, \eta_{s, 7}\right\}$ \rightarrow follows Castaneda/Diaz-Jimenez/Rios-Rull (JPE, 2003)

Calibration

Stochastic Productivity Process

No college education

College education

Earnings and Wealth Distribution

Model and Data

The Labor Earnings Distribution

	Quintiles						Top (\%)			Gini
	1st	2nd	3rd	4th	5th	90-95	$95-99$	$99-100$		
Model	0.0	5.8	11.0	17.6	65.6	11.7	18.9	21.4	0.642	
US Data	-0.1	4.2	11.7	20.8	63.5	11.7	16.6	18.7	0.636	

The Wealth Distribution

	Quintiles							Top (\%)				Gini
	1st	2nd	3rd	4th	5th	90-95	95-99	99-100				
Model	0.0	0.8	4.1	11.6	83.6	14.6	23.3	31.8	0.810			
US Data	-0.2	1.1	4.5	11.2	83.4	11.1	26.7	33.6	0.816			

The thought experiment

Income tax schedule

Initial equilibrium: $\quad \bar{y}_{l}=0.35 \cdot y^{\text {med }}, \quad \tau_{l}=12.2 \%$

$$
\bar{y}_{h}=4.0 \cdot y^{\text {aver }}, \quad \tau_{h}=39.6 \%
$$

The thought experiment

Policy induced transition paths

- Start from initial steady state with current US tax system and earnings and wealth distribution
- Unannounced one time change in tax policy
- Set \bar{y}_{h} to the top 1% labor earnings threshold
- Change in top marginal tax rate τ_{h}
- Change in capital income tax rate τ_{k}
- Reform $\left(\tau_{h}, \tau_{k}\right)$ induces transition path to new long-run equilibrium
- Government budget balance:
- Set τ_{l} to balance intertemporal budget
- Sequence of government debt balances sequential budget

The thought experiment

Measuring Social Welfare

- Measure the present discounted value of transfers necessary to make all current and future generations indifferent between status quo and policy induced transition
- Current generations:

$$
v_{1}\left(i, j, \alpha, \eta, a-\Psi_{1}(j, s, \alpha, \eta, a)\right)=v_{0}(j, s, \alpha, \eta, a)
$$

- Future generations

$$
E v_{t}\left(1, s, \alpha, \bar{\eta},-\Psi_{t}\right)=E v_{0}(1, s, \alpha, \bar{\eta}, 0)
$$

- Total transfers

$$
W=\int \Psi_{1}(j, s, \alpha, \eta, a) d \Phi_{1}+\mu_{1} \sum_{t=1}^{\infty}\left(\frac{1+n}{1+r_{0}}\right)^{t} \Psi_{t}
$$

- Optimal tax system maximizes W

Results

Social Welfare

Optimal top marginal tax rate: $\quad \tau_{h}=0.89 \quad$ (total welfare W)

$$
\tau_{h}=0.95 \quad \text { (long run welfare only) }
$$

Results

Upper bend point and lower tax rate

Results

Marginal and average tax schedule before and after

Results

Transitional Dynamics

Results

Transitional Dynamics

Results

Where do welfare gains come from?

Results

Where do welfare gains come from?

Results

Where do welfare gains come from?

Sensitivity Analysis

High Earnings Dispersion is Key for Optimal Tax Result

Sensitivity Analysis

Optimal Capital Income Tax is Positive

Conclusion

- Life Cycle general equilibrium model with realistic earnings and wealth inequality
- Very high optimal marginal tax rate on top 1% labor earnings is optimal
- Efficiency gains come from ex post consumption insurance, not from ex ante redistribution like in Diamond/Saez/Piketty
- Potential problematic assumption: labor productivity invariant to tax system
- human capital accumulation (Badel/Huggett 2014)
- entrepreneurial activity (Cagetti/de Nardi, 2007)

