The Redistributive Benefits of Progressive Labor and Capital Income Taxation, Or: How to Most Efficiently Screw the Top 1%

Fabian Kindermann Dirk Krueger

University of Wuerzburg and Netspar University of Pennsylvaina, CEPR, NBER and Netspar

> 4th SEEK conference May 2014

Motivation

Top 1 Percent Income Share in the United States

Source: Source is Piketty and Saez (2003) and the World Top Incomes Database.

Motivation

Top Marginal Income Tax Rates, 1900-2011

Source: Piketty and Saez (2013, figure 1).

Motivation

Insights from Diamond and Saez JEP 2011

Optimal marginal tax rate at the top: Saez (2001)

$$\tau_h = \frac{1}{1 + a * e}$$

- Empirical estimates: a = 1.5 and e = 0.25 yields $\tau_h = 0.73$
- Also argue for positive capital income tax
- Assumptions:
 - Static optimal tax model
 - Earnings distribution Pareto
 - Elasticity of earnings roughly invariant to policy

Aim of this project

- Take Diamond, Piketty and Saez seriously
- Incorporate their key model elements in a dynamic incomplete markets general equilibrium model
- Derive optimal marginal tax rate on earnings at the top
- ▶ Key challange: realistic earnings and wealth distribution → We use labor productivity to generate this
- Preliminary finding: Diamond, Piketty and Saez are right...

Aim of this project

- Take Diamond, Piketty and Saez seriously
- Incorporate their key model elements in a dynamic incomplete markets general equilibrium model
- Derive optimal marginal tax rate on earnings at the top
- ▶ Key challange: realistic earnings and wealth distribution → We use labor productivity to generate this
- Preliminary finding: Diamond, Piketty and Saez are right...
 - ... but probably for the wrong reason

Overview

- Large-scale overlapping generations model in the spirit of Auerbach and Kotlikoff
- Endogenous consumption-savings and labor supply decisions
- Idiosyncratic labor productivity risk
- Benevolent government that implements progressive labor earnings and flat capital income tax code (and can fully commit to time path of policies)

Households: Decision making

At each point in time households choose

- \blacktriangleright consumption c
- $\blacktriangleright \text{ labor supply } n$
- \blacktriangleright savings in the risk free asset a with tight borrowing constraint

Preferences

$$U(c,n) = \frac{c^{1-\gamma}}{1-\gamma} - \lambda \frac{n^{1+\chi}}{1+\chi}$$

Households: Labor productivity

- Households are ex-ante and ex-post heterogeneous w.r.t. labor productivity
- Wage is given by $w \cdot e(j, s, \alpha, \eta)$:
 - \blacktriangleright Wage rate of the economy w
 - Deterministic eduction level $s \in \{n, c\}$ determined at birth
 - Deterministic age component $\epsilon_{j,s}$
 - Fixed effect α following $\phi_s(\alpha)$ determined at birth
 - Stochastic component η following education specific Markov chain with states $\eta \in \mathcal{E}_s$ and transition matrix $\pi_s(\eta, \eta')$.

Government

- Revenue from
 - consumption taxes τ_c
 - flat capital income tax τ_k
 - progressive labor earnings tax $T(\cdot)$
- ► Expenditure stream G exogenous
- Interest payments on debt B
- Runs a PAYG progressive social security system

Calibration of initial equilibrium

Overview

- Standard calibration for household demographics, preferences and technology
- One exception: calibration of labor productivity process
- Goal: realistic earnings and wealth distribution
- Procedure to determine $w \cdot e(j, s, \alpha, \eta)$
 - Normalize w = 1
 - Use $\epsilon_{j,s}$ and α estimates from PSID
 - ► Estimate baseline Markov chain {η_{s,1},...,η_{s,5}} from PSID → normal labor earnings (roughly bottom 95-97%)
 - Augment with very high earnings realizations $\{\eta_{s,6}, \eta_{s,7}\}$ \rightarrow follows Castaneda/Diaz-Jimenez/Rios-Rull (JPE, 2003)

Calibration

Stochastic Productivity Process

No college education

College education

Earnings and Wealth Distribution

	Quintiles				Top (%)			Gini			
	1st	2nd	3rd	4th	5th	90-95	95-99	99-100			
Share of total sample (in %)											
Model	0.0	5.8	11.0	17.6	65.6	11.7	18.9	21.4	0.642		
US Data	-0.1	4.2	11.7	20.8	63.5	11.7	16.6	18.7	0.636		

The Labor Earnings Distribution

The Wealth Distribution

	Quintiles					Top (%)			Gini		
	1st	2nd	3rd	4th	5th	90-95	95-99	99-100			
Share of total sample (in %)											
Model	0.0	0.8	4.1	11.6	83.6	14.6	23.3	31.8	0.810		
US Data	-0.2	1.1	4.5	11.2	83.4	11.1	26.7	33.6	0.816		

The thought experiment

Income tax schedule

Initial equilibrium:

$$ar{y}_l = 0.35 \cdot y^{\text{med}}, \quad au_l = 12.2\% \ ar{y}_h = 4.0 \cdot y^{\text{aver}}, \quad au_h = 39.6\%$$

The thought experiment

Policy induced transition paths

- Start from initial steady state with current US tax system and earnings and wealth distribution
- Unannounced one time change in tax policy
 - Set \bar{y}_h to the top 1% labor earnings threshold
 - Change in top marginal tax rate τ_h
 - Change in capital income tax rate τ_k
- ▶ Reform (τ_h, τ_k) induces transition path to new long-run equilibrium
- Government budget balance:
 - Set τ_l to balance intertemporal budget
 - Sequence of government debt balances sequential budget

The thought experiment

Measuring Social Welfare

- Measure the present discounted value of transfers necessary to make all current and future generations indifferent between status quo and policy induced transition
- Current generations:

$$v_1(i, j, \alpha, \eta, a - \Psi_1(j, s, \alpha, \eta, a)) = v_0(j, s, \alpha, \eta, a)$$

Future generations

$$Ev_t(1, s, \alpha, \bar{\eta}, -\Psi_t) = Ev_0(1, s, \alpha, \bar{\eta}, 0)$$

Total transfers

$$W = \int \Psi_1(j, s, \alpha, \eta, a) \ d\Phi_1 + \mu_1 \sum_{t=1}^{\infty} \left(\frac{1+n}{1+r_0}\right)^t \Psi_t$$

Optimal tax system maximizes W

Results Social Welfare

Optimal top marginal tax rate:

 $\tau_h = 0.89$ (total welfare W) $\tau_h = 0.95$ (long run welfare only)

Upper bend point and lower tax rate

Marginal and average tax schedule before and after

Results Transitional Dynamics

Results Transitional Dynamics

Where do welfare gains come from?

Where do welfare gains come from?

Where do welfare gains come from?

Sensitivity Analysis

High Earnings Dispersion is Key for Optimal Tax Result

Sensitivity Analysis

Optimal Capital Income Tax is Positive

Conclusion

- Life Cycle general equilibrium model with realistic earnings and wealth inequality
- Very high optimal marginal tax rate on top 1% labor earnings is optimal
- Efficiency gains come from ex post consumption insurance, not from ex ante redistribution like in Diamond/Saez/Piketty
- Potential problematic assumption: labor productivity invariant to tax system
 - human capital accumulation (Badel/Huggett 2014)
 - entrepreneurial activity (Cagetti/de Nardi, 2007)