Efficient Labor and Capital Income Taxation over the Life Cycle

Sebastian Findeisen¹ Dominik Sachs²

¹University of Mannheim

²University of Cologne

May 16, 2014, SEEK Mannheim

- Labor income: non-linear schedules with changing marginal tax rates
- Based on current, annual earnings
- \square Tax capital income in addition (capital income tax revenue/total tax revenue \approx 15-30% USA and EU)

Approaches to optimal income taxation in public economics

- 1. Labor income taxation: Diamond (AER '98), Saez (ReStud '01)
- 2. Life cycle model: Atkinson and Stiglitz (JpubE '76)
- 3. NDPF: Farhi and Werning (ReStud '13), Kocherlakota (Ecma '05)

- Labor income: non-linear schedules with changing marginal tax rates
- Based on current, annual earnings
- \square Tax capital income in addition (capital income tax revenue/total tax revenue \approx 15-30% USA and EU)

Approaches to optimal income taxation in public economics

- 1. Labor income taxation: Diamond (AER '98), Saez (ReStud '01)
 - Builds on Mirrlees (71)
 - Link to data (where possible) sufficient statistics.
 - No explicit capital income taxation, however.

- □ Labor income: non-linear schedules with changing marginal tax rates
- Based on current, annual earnings
- \square Tax capital income in addition (capital income tax revenue/total tax revenue \approx 15-30% USA and EU)

> Approaches to optimal income taxation in public economics

- 1. Labor income taxation: Diamond (AER '98), Saez (ReStud '01)
- 2. Life cycle model: Atkinson and Stiglitz (JpubE '76)
 - ▶ Influential benchmark. Plausible case for zero capital tax.
 - One dimension of heterogeneity, labor tax sufficient
 - ► Data ≠ A-S model: changes in (within cohort) inequality over life cycle

- Labor income: non-linear schedules with changing marginal tax rates
- Based on current, annual earnings
- \square Tax capital income in addition (capital income tax revenue/total tax revenue \approx 15-30% USA and EU)

> Approaches to optimal income taxation in public economics

- 1. Labor income taxation: Diamond (AER '98), Saez (ReStud '01)
- 2. Life cycle model: Atkinson and Stiglitz (JpubE '76)
- 3. NDPF: Farhi and Werning (ReStud '13), Kocherlakota (Ecma '05)
 - Risk and changes in inequality
 - Do not characterize taxes (only wedges)
 - Tax interpretation would require arbitrary amount of sophistication in tax systems
 - ► n^{t-1} tax schedules. \neq current practice of taxing on annual

current earnings

Sebastian Findeisen (Mannheim)

Mo

DEL

- Tractable life cycle model, government uses policy instruments as is current practice (surprisingly little work)
- ► Key ingredients:
 - Government has "realistic" policy instruments at disposal: linear taxes on current capital income and non-linear taxes on current labor income
 - □ Wages change over the life cycle
 - □ Key question I: does government want to tax capital income?
 - □ Key question II: what shapes optimal labor income taxation in dynamic environments?
 - □ Also explore age-dependency as potential middle ground

- Tractable life cycle model, government uses policy instruments as is current practice (surprisingly little work)
- ► Key ingredients:
 - Government has "realistic" policy instruments at disposal: linear taxes on current capital income and non-linear taxes on current labor income
 - □ Wages change over the life cycle
 - □ Key question I: does government want to tax capital income?
 - □ Key question II: what shapes optimal labor income taxation in dynamic environments?
 - Also explore age-dependency as potential middle ground

- ▶ Key question I: does government want to tax capital income?
- Yes.
 - Derive new formula: very simple and intuitive equity-efficiency relationship.
 - $\hfill\square$ Quantitative exercises: 15% tax rate on capital income
 - $\ensuremath{\,\square}\xspace\neq$ conventional Atkinson-Stiglitz-Chamely-Judd wisdom of $\tau^k=0$
- Key question II: optimal labor income taxation in dynamic environments versus static environments?

Key difference:

- □ Redistribution and insurance can be separated in dynamic framework
- □ Taxes serve two roles
 - 1. Redistributing income between individuals to keep inequality in check
 - $2. \ \ {\rm Insurance \ against \ idiosyncratic \ wage \ risk}$
- □ Insurance puts (Pareto) lower bound on taxes

- Atkinson-Stiglitz (JPubE '76) and generalization afterwards: optimal zero capital tax in life cycle model
- NDPF: Farhi and Werning (ReStud '13), Kocherlakota (Ecma '05), Kocherlakota-Golosov-Tsyvinski (ReStud '03)
- Inheritance Taxation: Piketty and Saez (Ecma '13)

- Atkinson-Stiglitz (JPubE '76) and generalization afterwards: optimal zero capital tax in life cycle model
 - □ Only one source of heterogeneity in their model, so one instrument (labor tax) sufficient, here multiple sources as inequality changes over life cycle → τ^k > 0 as additional instrument
- NDPF: Farhi and Werning (ReStud '13), Kocherlakota (Ecma '05), Kocherlakota-Golosov-Tsyvinski (ReStud '03)
- ▶ Inheritance Taxation: Piketty and Saez (Ecma '13)

- Atkinson-Stiglitz (JPubE '76) and generalization afterwards: optimal zero capital tax in life cycle model
- NDPF: Farhi and Werning (ReStud '13), Kocherlakota (Ecma '05), Kocherlakota-Golosov-Tsyvinski (ReStud '03)
 - $\hfill\square$ Arbitrarily complex tax systems \rightarrow concerns about implementability. Here taxes on current income as common practice
 - Tax savings when income effects reduce labor supply (evidence?), but not because of wealth inequality/concentration; in general wealth inequality not well defined
 - $\hfill\square$ Here: no income effects, capital tax to insure and redistribute
- ▶ Inheritance Taxation: Piketty and Saez (Ecma '13)

- Atkinson-Stiglitz (JPubE '76) and generalization afterwards: optimal zero capital tax in life cycle model
- NDPF: Farhi and Werning (ReStud '13), Kocherlakota (Ecma '05), Kocherlakota-Golosov-Tsyvinski (ReStud '03)
- ▶ Inheritance Taxation: Piketty and Saez (Ecma '13)
 - □ Also feature breakdown of conventional Atkinson-Stiglitz-Chamely-Judd wisdom of $\tau^k = 0$
 - Two dimensional heterogeneity in their model: parental preferences and income

- 1. Model and Notation
- 2. Optimal Labor and Capital Income Taxation
- 3. Numerical Simulations

- ▶ Individuals live for T periods and are characterized by θ_t in each period
- Labor income: $y_t = \theta_t I_t$
- No income effects: $U(c_t v(l_t))$

 \rightarrow empirical literature has typically not rejected a zero income elasticity on labor supply or found very small effects (Gruber and Saez (2002), Kleven and Schultz (2013)) \rightarrow two simplifications

1. $y_t(\theta_t)$ instead of $y_t(\theta_t, a_t)$

Value function of individual

$$\begin{aligned} V_t(\theta_t, \mathbf{a}_t(\theta^{t-1})) &= \max_{\mathbf{a}_{t+1}, y_t} U\left(c_t - v\left(\frac{y_t}{\theta_t}\right)\right) \\ &+ \int_{\theta_{t+1}} V_{t+1}(\theta_{t+1}, \mathbf{a}_t) dF_{t+1}(\theta_{t+1}|\theta_t) \end{aligned}$$

► subject to budget contraint: $c_t + a_{t+1} = y_t - \mathcal{T}(y_t) + (1+r)(1-\tau)a_t(\theta^{t-1})$ Value function of individual

$$V_t(\theta_t, a_t(\theta^{t-1})) = \max_{a_{t+1}, y_t} U\left(c_t - v\left(\frac{y_t}{\theta_t}\right)\right) \\ + \int_{\theta_{t+1}} V_{t+1}(\theta_{t+1}, a_t) dF_{t+1}(\theta_{t+1}|\theta_t)$$

► subject to budget contraint: $c_t + a_{t+1} = y_t - \mathcal{T}_t(y_t) + (1+r)(1-\tau_t)a_t(\theta^{t-1})$

 \Rightarrow Taxes possibly age-dependent

The government solves

$$\max_{\tau,\mathcal{T}}\int_{\theta_1}V_1(\theta_1,0)d\tilde{F}(\theta_1)$$

- subject to present value budget constraint
- - **and** $\tau = \{\tau_2, \tau_3, ..., \tau_T\}$
 - **and** $\mathcal{T} = \{\mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_T\}$

► The government solves

$$\max_{\tau,\mathcal{T}}\int_{\theta_1}V_1(\theta_1,0)d\tilde{F}(\theta_1)$$

- subject to present value budget constraint
- where $\tilde{F}(\theta_1)$ are Pareto weights
 - **and** $\tau = \{\tau_2, \tau_3, ..., \tau_T\}$
 - $\hfill \hfill \hfill$
- Static model (Mirrlees-Diamond-Saez): anything goes (Werning 2007), can justify zero taxes for some weights
- Dynamic model: no longer true...

- Two solution methods
- 1. Optimal control (first-order approach, mechanism design)
- 2. Tax pertubation
- This talk:
 - □ Two period model now
 - □ Just age-independent taxes

• Optimal
$$T'(y) = F(\mathcal{M}, LS, \mathcal{S})$$

- 1. \mathcal{M} : mechanical effect depends on
 - Taste for redistribution
 - Income distribution
 - Insurance motives: risk-aversion, income risk
- 2. LS: labor supply distortion
 - Elasticity
- 3. S: savings effect
 - Non-zero savings taxes create fiscal externalities

$$\mathcal{S}_{1}(heta_{1}) = au \int_{ heta_{1}}^{\overline{ heta}_{1}} rac{\partial a_{2}(ilde{ heta}_{1})}{\partial \mathcal{T}'(y_{1}(ilde{ heta}_{1}))} d\mathcal{F}_{1}(ilde{ heta}_{1})$$

Optimal labor taxes:

$$egin{aligned} & \mathcal{T}'(y(heta))\ 1-\mathcal{T}'(y(heta)) = \left(1+rac{1}{arepsilon(heta)}
ight)rac{1}{\lambda heta imes f^*} imes \left[\sum_{i=1}^2\mathcal{M}_i(heta)+\mathcal{S}_i(heta)
ight].\ & f^* = f_1(heta)+rac{1}{1+r}\int_{\Theta}f_2(heta| heta_1)dF_1(heta_1) \end{aligned}$$

Can decompose

$$\mathcal{M}_i = \mathcal{M}'_i + \mathcal{M}^R_i$$

• \mathcal{M}_i^R : redistribution between θ_1 types

 \Box Governed by welfare weights \tilde{f}

- \mathcal{M}'_i : insurance for θ_2 types.
 - □ Governed by income risk and risk aversion

Sebastian Findeisen (Mannheim)

- Consider small $d\tau^k > 0$.
- Behavioral Responses (lowers wealth accumulation efficiency cost), Mechanical and Welfare effect (redistribution, insurance)

- Consider small $d\tau^k > 0$.
- Behavioral Responses (lowers wealth accumulation efficiency cost), Mechanical and Welfare effect (redistribution, insurance)

$$\frac{\tau^{k}}{1-\tau^{k}} = \frac{\int_{\theta_{1}} a\left[f_{1} - \int_{\theta_{2}} \frac{U'\tilde{f}_{1}}{\lambda} f_{2|1}\right]}{\int_{\theta_{1}} a\epsilon_{a,1-\tau^{k}}}$$

- Consider small $d\tau^k > 0$.
- Behavioral Responses (lowers wealth accumulation efficiency cost), Mechanical and Welfare effect (redistribution, insurance)

$$\frac{\tau^{k}}{1-\tau^{k}} = \frac{\int_{\theta_{1}} a\left[f_{1} - \int_{\theta_{2}} \frac{U'\tilde{f}_{1}}{\lambda} f_{2|1}\right]}{\int_{\theta_{1}} a\epsilon_{a,1-\tau^{k}}}$$

Sebastian Findeisen (Mannheim)

- Consider small $d\tau^k > 0$.
- Behavioral Responses (lowers wealth accumulation efficiency cost), Mechanical and Welfare effect (redistribution, insurance)

$$\frac{\tau^{k}}{1-\tau^{k}} = \frac{\int_{\theta_{1}} a\left[f_{1} - \int_{\theta_{2}} \frac{U'\tilde{f}_{1}}{\lambda} f_{2|1}\right]}{\int_{\theta_{1}} a\epsilon_{a,1-\tau^{k}}}$$

Optimal Capital Tax Rate

- Consider small $d\tau^k > 0$.
- Behavioral Responses (lowers wealth accumulation efficiency cost), Mechanical and Welfare effect (redistribution, insurance)

PROPOSITION

$$\frac{\tau^{k}}{1-\tau^{k}} = \frac{\int_{\theta_{1}} a\left[f_{1} - \int_{\theta_{2}} \frac{U'\tilde{f}_{1}}{\lambda} f_{2|1}\right]}{\int_{\theta_{1}} a\epsilon_{a,1-\tau^{k}}} \sum_{If \ redistributive} 0$$

τ^k > 0 likely, for commonly used social welfare criteria
 τ^k increasing in wealth inequality

Optimal Capital Tax Rate

PROPOSITION

$$\frac{\tau^{k}}{1-\tau^{k}} = \frac{\int_{\theta_{1}} a\left[f_{1} - \int_{\theta_{2}} \frac{U'\tilde{f}_{1}}{\lambda} f_{2|1}\right]}{\int_{\theta_{1}} a\epsilon_{a,1-\tau^{k}}} \sum_{\text{If redistributive}} 0$$

Breakdown of A-S (1976)?

- A-S looks at case where individuals retire in second period. Savings taxes superfluous and harmful.
- Suppose, labor income constant across two periods: $\tau^k = 0$.
- With non-constant labor income: multiple source of heterogeneity, multiple instruments beneficial

Optimal Capital Tax Rate

PROPOSITION

$$\frac{\tau^{k}}{1-\tau^{k}} = \frac{\int_{\theta_{1}} a\left[f_{1} - \int_{\theta_{2}} \frac{U'\tilde{f}_{1}}{\lambda}f_{2|1}\right]}{\int_{\theta_{1}} a\epsilon_{a,1-\tau^{k}}} \sum_{If \ redistributive} 0$$

- Comparison to NDPF: capital wedge > 0 because of income effects, here no income effects.
- With realistic tax instruments wealth inequality drives capital taxation (wealth distribution not well defined in NDPF model).

Numerical Exploration

► Karahan and Ozkan (2013)

$$y_a^i = f(X_a^i) + \tilde{y}_a^i$$
$$\tilde{y}_a^i = \alpha^i + z_a^i + \phi \epsilon_a^i$$
$$z_a^i = \rho_a z_{a-1}^i + \pi \eta_a^i$$

- α^i : permanent fixed-effect
- ϵ_a^i transitory: measurement error, bonuses, overtime
- η^i_a permanent: layoff, promotion
- ρ_a persistence of permanent events

- We use parameters from Karahan and Ozkan (2013) who find two structural breaks in parameters
- Simulate millions of earnings histories given parameter estimates
- ▶ We consider three period model with age classes 24-36, 37-49 and 50-62
- CRRA utility (=1.5) and constant labor supply elasticity (=1/3)

MOTIVATION

Model

NUMERICAL EXPLORATION

17

- If age-dependent: taxes on the young the lowest
- Reason: higher insurance value of taxation on the old

MOTIVATION

Model

(a) Risk-Aversion and Capital Taxes (b) Welfare Gains of Capital Taxation

FIGURE : Capital Income Taxes

- Baseline capital income tax around 15%
- Highly increasing in risk aversion

(a) Risk-Aversion and Capital Taxes (b) Welfare Gains of Capital Taxation

FIGURE : Capital Income Taxes

- Driven by desire to tax wealth of the old (like to leave young untaxed)
- Higher wealth inequality at old age

- In a framework with heterogeneous agents, there is no correct or incorrect normative objective.
- To what extent can redistributive taxation be grounded on the idea of social insurance?
- We therefore make the following thought experiment: We consider a static economy where productivities are distributed as in the first period of our dynamic economy. We then consider a static Mirrlees problem and back out the Pareto weights that would yield the laissez-faire equilibrium as the optimum.

- \blacktriangleright Social insurance tax rate around 10%>>0
- If age-dependent insurance value increasing
- Negative marginal tax rates on the young to counteract later distortions

MOTIVATION

- Capital income taxes are not superfluous in simple life cycle model (\(\neq Atkinson-Stiglitz)\)
 - Robust theoretical results
 - □ Numerical exercises: 15% on savings income
- Redistribution versus insurance distinction becomes meaningful in dynamic model
 - □ Puts lower bound on tax rates (around 10% in our exercises)
 - □ In static model, in contrast, anything goes
- Age-dependent: if feasible, suggest lowest taxes on the young
 Main driver: insurance value increases over the life cycle