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1 Introduction

Social networks influence a broad range of economic behavior and phenomena, including
workplace productivity (Bandiera, Barankay and Rasul, 2009), student achievement (Calvó-
Armengol, Patacchini and Zenou, 2009), social learning (Conley and Udry, 2010), welfare
participation (Bertrand, Luttmer and Mullainathan, 2010), obesity (Christakis and Fowler,
2007), and product demand (Farrell and Klemperer, 2007), among others. Because networks
are a crucial medium through which economic agents interact, understanding the incentives
responsible for the formation of networks is valuable. Toward this end, this paper develops
a method to estimate a general class of models of network formation.

Such models are useful for the empirical study of networks for several reasons. First, the
determinants of network formation have intrinsic economic significance. For instance, it has
long been recognized that homophily, the principle that “similarity breeds connection,” is
pervasive in social networks (McPherson, Smith-Lovin and Cook, 2001). That is, an agent
i is more likely to link with another agent j if the two share similar attributes. However, it
is also possible that i wishes to link with j because she anticipates that many other agents
will also link with j. Disentangling such endogenous determinants of network structure,
so called because they depend on the linking decisions of other agents, from exogenous
determinants that depend solely on agent characteristics, such as homophily, cannot be
accomplished using experimental variation and requires a model-based approach, as proposed
here. Second, to the extent that networks matter for economic outcomes, it is important to
understand how policy interventions might reshape networks in order to improve outcomes.
A key advantage of model-based approaches is that they permit researchers to simulate the
impact of counterfactual policies. Third, many studies of the effect of networks on economic
outcomes treat networks as exogenous when in reality agents often choose to form networks
in anticipation of their future economic benefits. Formally modeling the incentives that give
rise to networks is a step toward credibly controlling for network endogeneity.

This paper develops a computationally simple two-step estimation strategy to estimate
strategic models of network formation under incomplete information. We assume that agents
simultaneously form links to maximize utility, given beliefs about the anticipated state of
the network. For a given application, the task of the researcher is to specify a form for
the utility function that governs the incentives agents face when deciding with whom to
link. We propose the following estimation approach: agents’ beliefs about the state of the
network are nonparametrically estimated in the first step, and structural parameters are
estimated in the second step using maximum likelihood, replacing the unknown beliefs with
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their estimates (other methods, such as GMM, are possible). A key assumption that makes
the first step possible is anonymity of beliefs, meaning that in equilibrium, identical agents
choose identical linking strategies ex-ante, prior to their draws of unobserved heterogeneity.
This assumption solves a curse of dimensionality problem. As we discuss below, network-
formation models can induce likelihoods that are computationally intractable, precluding
the possibility of maximum likelihood. In our model, the likelihood is tractable due to
separability restrictions on the utility function analogous to assumptions made in dyadic
regression models. Our estimation strategy effectively utilizes each of the O(n2) linking
decisions as individual observations. Consequently, the estimator converges at the rate n
for the case of discrete attributes. When attributes are continuous, convergence occurs at a
slower nonparametric rate nhd+c/2, where h is the kernel smoothing parameter, and c and d
are constants related to the number of possible agent characteristics.

We apply our approach to study the formation of risk-sharing networks in villages in
southern India. In these networks, a link from i to j exists if i trusts j enough to lend her a
substantial amount of money. We find that the key determinants of whether or not a person
i trusts j are whether or not j also trusts i (reciprocal trust), the number of individuals who
trust both i and j (supported trust), and whether or not i and j are relatives. In contrast,
the popular dyadic regression approach a priori rules out the possibility of the first two
determinants.

Related Literature. Estimation of network formation models has been a recent topic of
interest in statistics and economics. The challenge of developing network formation models is
that the space of possible networks is enormous, with 2n(n−1)/2 possible undirected networks
on n nodes.1 For n = 30 the number of possible networks already exceeds the number of
elementary particles in the universe. This fact often creates a curse of dimensionality problem
for estimating network-formation models. Perhaps the most common approach in applied
economics is dyadic or pairwise regression, which is a discrete choice model with network
links as the dependent variable (see e.g. Bramoullé and Fortin, 2010; Fafchamps and Gubert,
2007). Such models assume that an agent i’s decision to form a link with an agent j only
depends on the characteristics of i and j and not, for instance, on which agents choose to
link with j. This avoids the curse of dimensionality by ruling out strategic interactions.
Most of the statistics and econometrics literature on network formation are concerned with
estimation methods when strategic interactions are permitted.

1A network is undirected if an agent i is linked to an agent j if and only if agent j is linked to agent i.
Otherwise it is directed.
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The leading class of models in the statistics literature is the class of exponential random
graph models (Snijders, 2002). Such models directly specify a probability distribution over
the space of networks based on network statistics deemed relevant by the researcher, such as
the prevalence of dyads.2 See Robbins, Pattison, Kalish and Lusher (2007) for a review of
exponential random graph models. The computational complexity of the likelihood in such
models has led to the adoption of Markov Chain Monte Carlo (MCMC) methods, but this
approach may not be a panacea. Bhamidi, Bresler and Sly (2011) demonstrate that the rate
of convergence for MCMC is fast only when the model is indistinguishable from a Poisson
random graph, in which case the problem is trivial since links are i.i.d., and that otherwise
the rate is O(en

2
). This rate suggests that MCMC may be infeasible even for networks with

as few as 30 agents, since one would need an extremely large number of simulation draws
on the order of en2 to achieve convergence.3 Chandrasekhar and Jackson (2012) provide
simulation evidence that this translates to poor performance in practice.

In the econometrics literature, network formation is typically modeled as a game in which
agents form links to maximize payoffs that can generally depend on the linking decisions of
others. The first pioneering attempts in this literature model the network-formation process
as a dynamic game in which a subset of the agents can form or break links each period
(Christakis, Fowler, Imbens and Kalyanaraman, 2010; Mele, 2011). In these models, links
are formed myopically, so that agents form links without anticipating consequent changes to
the network. This guarantees equilibrium uniqueness and simplifies computation. Because
these models induce likelihoods that are computationally intractable, estimation is done using
MCMC. Unfortunately, while MCMC avoids the computation of intractable likelihoods, the
curse of dimensionality can reappear as an O(en

2
) rate of convergence (Hsieh and Lee, 2012;

Mele, 2011). That is, dynamic models often suffer from the same computational problem
faced by exponential random graph models. The essential problem is that when MCMC is
used to crawl the space of all possible networks, which contains O(en

2
) elements, this requires

a prohibitively large number of simulation draws to ensure convergence.4

An alternative method is to model network formation as a static game, which is the
approach we take. Static network-formation models are often estimable using standard fre-

2A dyad consists of two nodes that are linked.
3However, recent work by Chandrasekhar and Jackson (2012) outlines a new, computationally feasible,

frequentist estimation approach that can consistently estimate a broad class of ERGMs (as well as other
random graph models) as the number of nodes goes to infinity.

4Christakis et al. (2010) appear to avoid the Bhamidi et al. (2011) exponential bound because they do not
simulate a distribution over the space of networks. The rate of convergence for their algorithm is presently
unknown.
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quentist techniques. For instance, Boucher and Mourifié (2012) provide a model that can be
estimated using maximum likelihood, using a novel approach viewing networks as random
fields in attribute space. Sheng (2012) studies partially identified network-formation models,
drawing on the set estimation literature for inference. The difference between these two
approaches lies in the fact that Boucher and Mourifié (2012) assume there exists a unique
equilibrium, while Sheng (2012) permits multiple equilibria and derives identification pri-
marily from the direct implications of pairwise stability. Because network-formation models
often admit many equilibria (Sheng, 2012), uniqueness is a strong assumption.

As far as we are aware, all strategic models proposed thus far have assumed complete
information. Our estimation strategy differs markedly from these papers because we assume
incomplete information, which brings several advantages. For example, unlike Boucher and
Mourifié (2012), our model can admit multiple equilibria, and unlike Sheng (2012), the
parameters of our model are point-identified, even without strong support assumptions.5

Moreover, we consider estimation under a sequence of sampling experiments in which the
number of agents goes to infinity, while Sheng assumes instead that the number of network
observations goes to infinity. We argue below that this is more useful for network data (also
see the discussion in Chandrasekhar and Jackson, 2012).

This paper contributes to the literature on estimating games of incomplete informa-
tion (e.g. Aradillas-Lopez, 2010; Aguirregabiria and Mira, 2007; Bajari, Hong, Kraimer and
Nekipelov, 2010) by providing a computationally feasible model for which the action space is
large and multidimensional and that can be estimated consistently as the number of players
in the game goes to infinity. A multidimensional action space is a difficult case to handle
because of the potential enormity of this space, as even with k binary actions, its cardinality
is 2k. Indeed, in our case, the dimension of the action space grows with the network size
(k = n − 1), which appears to add to the computational complexity. We use this to our
advantage by treating each linking decision as an observation. Whereas most papers in this
literature assume that the econometrician observes a large number of independent games,
we assume she instead observes a small number of large games.6 In other words, we send

5Achieving point identification for games of complete information often requires large-support assumptions
on covariates. See e.g. Kline (2012).

6Other papers considering large-market asymptotics in game-theoretic settings include Brock and Durlauf
(2001), Bisin, Moro and Topa (2011), Fox (2010), Menzel (2012), Shang and Lee (2011), and Song (2012).
These papers do not accommodate network-formation games. Chandrasekhar and Jackson (2012) consider
large-market asymptotics for exponential random graph models, and Boucher and Mourifié (2012) analyze
strategic network-formation models for large markets. Our estimation strategy bears some resemblance
to that of Shang and Lee (2011), who estimate a peer effects model that admits multiple equilibria by
conditioning on groups to eliminate correlation between agents’ actions.
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the size of the network to infinity (“large-market” asymptotics), rather than the number of
network observations (“multi-market” asymptotics). In network data, researchers typically
observe only a small number of networks, but these networks tend to have many agents.
Hence, what we would like to say is that having a large number of agents is akin to having a
large number of observations. Deriving consistency under large-market asymptotics provides
a formal justification for this idea.

In the incomplete-information setting, the multi-market approach requires that the same
equilibrium is played in games with identical agents (e.g. Aguirregabiria and Mira, 2007).
Our assumption that the equilibrium in the data is anonymous plays an analogous role in
the large-market context. Interestingly, when attributes are continuous, we need not impose
smoothness assumptions on the equilibrium selection mechanism, unlike the multi-market
case (Bajari et al., 2010).

The paper is structured as follows. Section 2 presents an overview of our estimation
strategy as it relates to the popular dyadic regression approach. In section 3, we develop
the model and derive the likelihood. We outline our estimation strategy in section 4 and
derive the asymptotic properties of our estimator. In section 5, we apply our model to study
the formation of risk-sharing networks in Indian villages. We provide a method for simulat-
ing counterfactuals in section 6. Section 7 extends the model to accommodate undirected
networks. Finally, section 8 concludes.

2 Overview

Consider the formation of a friendship network among n students. Assume a student i’s
vector of attributes Xi is two-dimensional, consisting of her race and her parents’ income,
so that Xi = (Ri,Mi), where Ri is a race indicator (assume two races for simplicity) and
Mi is parental income. Suppose a researcher is interested in whether or not friendships are
homophilous in race. A common approach is to estimate a dyadic regression model. This is
a binary-choice model in which the dependent variable is a potential link Gij that evaluates
to one if i is friends with j and zero otherwise.7 The right-hand side variables are Mi, Mj,
and |Ri−Rj|, the latter capturing homophily. The model can be microfounded by assuming
that i receives utility

uij(Xi, Xj; θ) + εij = θ0 +Miθ1 +Mjθ2 + |Ri −Rj|θ3 + εij (1)
7We assume here that friendships are directed. This is actually consistent with the Add Health data on

high school friendship networks in which we see that friendships are not necessarily reciprocated.
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from linking with j, so she forms a link if and only if uij(Xi, Xj; θ) +εij ≥ 0. In other words,
the model assumes an agent i’s decision to form a link with an agent j only depends on
the characteristics of agents i and j and not, for instance, on which agents choose to link
with j. This assumption of zero network externalities is attractive because it tremendously
simplifies the problem by ruling out any strategic considerations. However, it also assumes
away potentially crucial incentives in the network-formation process.

Now suppose that student i also wishes to link with popular students. Let G be the
network adjacency matrix and G−i be the matrix with row i removed. Then we might model
payoffs as

uij(G−i, Xi, Xj; θ) = θ0 +Miθ1 +Mjθ2 + |Ri −Rj|θ3 + θ4

∑
k 6=i,j

Gkj. (2)

Popularity in this model is measured by j’s in-degree, i.e. the number of links to j. This
new model cannot be estimated using dyadic regression because including popularity creates
a simultaneity problem: an agent’s linking decisions now depend on other agents’ linking
decisions. This creates new challenges for estimation because the model may have no reduced
form; it may be incomplete or incoherent, meaning there may be multiple equilibria or no
equilibria for certain values of Xi, Xj, and εij (see Tamer, 2003).

We provide an estimation approach that can handle these complications. In our model,
as for e.g. Brock and Durlauf (2001) and Bajari et al. (2010), the realization of εij is private
information for agent i. Hence, agents form links by maximizing expected utility given
beliefs about the state of the network, replacing network links Gkj in (2) with conditional
probabilities σkj(X) ≡ P(Gkj = 1 |X1, ..., Xn). We say a network is in equilibrium if the
beliefs coincide with the actual linking probabilities. Let

(
(σkl(X)

)
k 6=i, be the analog of G−i,

where we replace each entry Gkj in G−i with σkj(X). The likelihood of our model turns out
to be

P(G |X) =
∏
ij:i 6=j

Φ
(
uij
(
(σkl(X))k 6=i, Xi, Xj; θ

))Gij
(
1− Φ

(
uij
(
(σkl(X))k 6=i,l, Xi, Xj; θ

)))1−Gij ,

where Φ is the CDF of εij. This likelihood is identical to the likelihood of the dyadic
regression model if uij is given by (1). In general, however, uij can depend on the network
G, as in specification (2), in which case the likelihood is a function of unknown nuisance
parameters σkl(X). An equilibrium always exists in our model but is not necessarily unique,
so the model is incomplete. Nonetheless, we show that when the size of the network is large,
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a separability restriction on payoffs and the assumption of anonymous beliefs allow us to
consistently estimate the structural parameters θ by standard methods, after replacing the
nuisance parameters with nonparametric estimates. Thus, our model generalizes the dyadic
regression approach by permitting strategic externalities at the cost of adding an additional
estimation step.

Estimating σkl(X) for all k, l ∈ {1, ..., n} is nontrivial when n → ∞, since the number
of such functions goes to infinity and their dimensions go to infinity, as well. Nevertheless,
we show that this curse of dimensionality problem can be avoided if we assume that equi-
librium linking probabilities are the same for pairs of agents with identical characteristics,
i.e. σkl(X) = σij(X) if Xi = Xk and Xj = Xl. Estimating the nuisance parameters is
then possible using simple frequency or kernel estimators. This is the assumption of equi-
librium anonymity or symmetry theorists commonly impose due to the natural symmetry
of the game-theoretic environment. The idea is that if agents are similar and all possess
the similar information, as in our setting, then they should act similarly from an ex-ante
perspective. Notice that it does not imply that identical agents form the same links because
observationally equivalent agents still possess different draws of εij.

3 Model

We model the formation of a directed network as a static game of incomplete information.8

Agents are endowed with exogenous attributes, which are common knowledge. An agent’s
payoff from forming a particular link depends on a random utility component that is private
information. Given beliefs over the linking decisions of others, agents simultaneously form
links. Formally, the model is as follows.

Players. There are n agents, each endowed with an exogenous vector of attributes Xi ∈ X.
Components of Xi can include attributes such as race and income. We assume that X is a
bounded subset of Rd and let X = (X ′1 ... X

′
n), which we call the profile.

Each pair of agents is endowed with a pair-specific characteristic Zij that lies in some
bounded set Z ⊂ Rc. We arbitrarily set Zii equal to the zero vector for all i. In general,
Zij can be a vector, so we collect them in a three-dimensional array Z. For instance, in
our application we consider the formation of risk-sharing networks, controlling for family
relationships. Such relationships are modeled as a network, so that Zij denotes whether

8We later discuss how to extend our approach to accommodate undirected networks.
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or not i and j are relatives. Zij can also include variables such as the geographic distance
between i and j.

Actions. Any directed network on n nodes G ≡ Gn is formally a matrix with ijth compo-
nent Gij ≡ Gn,ij, such that Gij = 1 if agent i links to agent j and Gij = 0 otherwise. Then
agents select actions Gi = (Gi1, ..., Gi,i−1, Gi,i+1, ..., Gin) ∈ Rn−1. We call Gij a potential
link. There are no self-links, so Gii = 0 for all i. Let G−i be the matrix G with the ith row
deleted. Usually we will suppress the dependence of Gn,ij on n. We will often do so similarly
for preferences uij ≡ un,ij and beliefs σij ≡ σn,ij, defined below.

Payoffs. Agent i receives a payoff that can be decomposed into a random component and
a deterministic component, πi(g,X, Z). We impose the following substantive restrictions on
payoffs.

Assumption 1. Deterministic preferences are given by

πi(g,X, Z) =
∑
j 6=i

Gijun,ij(G−i, X, Zij),

which satisfies the following restrictions.

1. (Additive Separability) As displayed above, πi(g,X, Z) is additively separable in each
Gij, and the link-specific payoff un,ij does not depend on Gi.

2. (Linearity) uij(·, X, Zij) ≡ un,ij(·, X, Zij) is linear in each Gjk for j 6= i.

3. (Anonymity) For any i 6= j, uij is an anonymous function at the realized values of
(G−i, X, Zij), so that for any bijective function ϕ : {1, ..., n} 7→ {1, ..., n} (a “permuta-
tion” of labels),

uϕ(i)ϕ(j)

(
(Gkl)k 6=i,l, X1, ..., Xn, Zij

)
= uij

(
(Gϕ(k)ϕ(l))k 6=i,l, Xϕ(1), ..., Xϕ(n), Zϕ(i)ϕ(j)

)
.

We will discuss Assumption 1 in more detail in section 3.2. For now we make two points.
First, anonymity simply means that payoffs do not depend on agents’ identities or labels,
which is natural when the labels given to nodes are arbitrary, as in many applications.
However, it rules out models in which different agents have different roles. Anonymity
implies that we can write

uij(G−i, X, Zij) = u(Xi, Xj, X−i,−j, Gj, G−i,−j, Zij),
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where X−i,−j is the attribute profile with the attributes of agents i and j removed, and
similarly for G−i,−j. The function u is invariant with respect to permutations of indices
in X−i,j and G−i,−j. Second, the linearity assumption is without loss of generality. For
example, take a simple case where uij = f(gji, gj3). This function can be rewritten as
gij(1−gj3)f(1, 0) +gjigj3f(1, 1) + (1−gji)gj3f(0, 1) + (1−gji)(1−gj3)f(0, 0), which is linear
in each link.

We also require that payoffs satisfy certain regularity conditions. In what follows, the
derivative ∂

∂Gkl
uij is well defined by the linearity assumption above if we reinterpret each Gkl

as a continuous variable on [0, 1] with support {0, 1}.

Assumption 2. Link-specific payoffs satisfy the following conditions.

1. (Parametrization) The function un,ij(G−i, X, Zij) is known up to a finite-dimensional
parameter θ◦n ∈ Θ ⊂ Rp, so that uij(G−i, X, Zij) = ũij(G−i, X, Zij, θ

◦
n), differentiable

in θ◦n.

2. (Finiteness) Let θ◦n,m be the mth component of θ◦n. Given a fixed sequence of param-
eters {θ◦n}∞n=1, the following random variables are finite almost surely: supi,j,n un,ij,
supi,j,n

∂
∂θ◦n,m

un,ij, supi,j,n
∑

k 6=l
∂

∂Gkl

∂
∂θ◦n,m

un,ij, and supi,j,n
∑

q 6=r
∑

k 6=l
∂2

∂Gkl∂Gqr

∂
∂θ◦n,m

un,ij.

Finiteness ensures that the link-specific payoff function and its derivatives do not become
infinite as more agents are added. This condition is needed because we consider a sequence
of experiments in which the number of agents goes to infinity.

Overall utility Ui(g,X) is the sum of the deterministic component and a random compo-
nent, so that

Ui(g,X, Z) =
∑
j 6=i

Gijun,ij(G−i, X, Zij) +
∑
j 6=i

Gijεij.

The term εij is a link-specific random shock, which captures unobserved factors that influence
linking decisions. We call (Xi, εi) the type of agent i, where εi = (εi1, . . . , εi,i−1, εi,i+1, . . . , εin).

Observables. The econometrician observes the network G, attribute profile X, and pair-
specific characteristics Z. Link-specific shocks εij are unobserved.

Assumption 3 (Distribution). Shocks εij are i.i.d. with full support on R, density φ, strictly
monotonic CDF Φ, and distribution symmetric about zero and independent of X and Z.
Attributes (Xi)i and pair-specific characteristics (Zij)ij are identically distributed.
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Symmetry of the distribution is used to simplify the exposition and is inessential. It is
straightforward to allow εij to depend on n and to be correlated with (Xi, Xj, Zij). How-
ever, as with standard discrete choice models, the conditional CDF must then be known to
the researcher. The i.i.d. and independence assumptions are common in the econometric
literature on network formation (e.g. Boucher and Mourifié, 2012; Christakis et al., 2010;
Mele, 2011; Sheng, 2012). Indepenence between shocks can be relaxed to allow arbitrary
correlation between εij and εik for any j, k 6= i, in which case the potential links will be
sparsely correlated conditional on (X,Z). Then the rate of convergence in the case of dis-
crete attributes should be

√
n rather than n, since the number of independent observations is

reduced to O(n) from O(n2). Limit theorems for such data exist (see e.g. Lumley and Mayer-
Hamblett, 2003), so extending the theorems in Appendix B to allow for sparse correlation is
feasible. We leave this to future research.

Notice that the i.i.d. assumption is weaker than the usual requirement in single-agent
discrete choice models that the random utility components for each choice are mutually
independent. In this setting, an agent’s choice is a vector of n − 1 links, so for two choices
Gi, G̃i, if Gij = G̃ij = 1, then εij enters the payoffs of both choices. Hence, the random
utility components are not mutually independent across different choices.

Shocks εij can capture factors such as search costs, idiosyncratic network shocks, or
intangibles such as the disposition of agents when they first “meet” and decide whether or
not to link. The following assumption reflects the fact that agents have noisy information
about the linking decisions of others due to these shocks, a possibility that is ruled out by
complete-information models that predominate in the literature.

Assumption 4 (Information). The realization of εi = (εi1, ..., εi,i−1, εi,i+1, ..., εin)′ is private
information for agent i, and all other features of the model are common knowledge.

The model is therefore a static game of incomplete information, and our solution concept
is Bayesian equilibrium, defined below. This assumption follows the econometric literature
on discrete games of incomplete information (e.g. Bajari et al., 2010) and social interactions
(e.g. Brock and Durlauf, 2001, 2007). We further discuss Assumption 4 in section 3.2.

3.1 Anonymous Equilibrium

Let σij(X,Z) = P(Gij = 1 |X,Z) be the equilibrium belief that agent i will link with agent j
given covariates. In equilibrium, each agent i simultaneously chooses a vector of directed links
Gi that maximizes expected utility conditional on private information, commonly known
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covariates, and beliefs (σij(X,Z))i 6=j. Then agent i’s expected utility from network G, given
attributes X and pair-specific characteristics Z, is

EG−i
[Ui((Gi, G−i), X, Z) |X,Z, εi] =

∑
j 6=i

Gij [uij((σkl(X,Z))k 6=i,l, X, Zij) + εij] ,

by the linearity restriction in Assumption 1. Thus, an agent i chooses action Gi if and only
if
∑

j 6=i(Gij − G̃ij) [uij((σij(X,Z))i 6=j, X, Zij) + εij] ≥ 0 for all G̃i in i’s action space, and
therefore,

Gij = 1 if and only if uij((σkl(X,Z))k 6=i,l, X, Zij) + εij ≥ 0. (3)

This implies that agent i has a separate decision rule for each Gij. In other words, the center
agent in Figure 1 forms a direct link to a particular subtree if and only if the total expected
utility of that link is positive. Hence, the chance that agent i links to agent j is

P(Gij = 1 |X,Zij) = P
(
εij ≥ −uij((σkl(X,Z))k 6=i,l, X, Zij)

∣∣X,Zij), (4)

The system (4) defines an (ex-ante) best-response mapping Γ(·, X, Z) : [0, 1]n(n−1) →
[0, 1]n(n−1), which takes as its argument a vector of beliefs and outputs a vector of condi-
tional linking probabilities. Following Aguirregabiria and Mira (2007), we define a Bayesian
equilibrium as a vector-valued “belief function” σn(·) such that for all X and Z, σn(X,Z) =

Γ(σn(X,Z), X, Z). That is, σn(X,Z) is a fixed point in the best-response mapping Γ. The
ijth component of σn corresponds to the function σij(X,Z) defined in the previous sub-
section. In general, this Γ may have multiple fixed points, each of which corresponds to a
different equilibrium. In the following theorem, we demonstrate that for a given (X,Z) the
mapping has a fixed point that is differentiable and anonymous at (X,Z), meaning that for
a permutation of labels ϕ,

σϕ(i)ϕ(j)(X1, ..., Xn, Z12, ..., Zn,n−1) = σij(Xϕ(1), ..., Xϕ(n), Zϕ(1)ϕ(2), ..., Zϕ(n)ϕ(n−1)).
9

That is, an equilibrium is anonymous if agents with identical attributes act identically. If
the equilibrium is also differentiable, then anonymity also implies that similar agents act
similarly. Just as with anonymous preferences, anonymity of beliefs implies the existence of

9Anonymity has also been called symmetry. Our choice of name is motivated by the similarity between
the current definition and the definition of anonymous payoffs.
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a function ρ such that

σij(X,Z) = ρ(Xi, Xj, Zij, X−i,−j, Z−ij). (5)

Thus, the function does not depend on labels i and j. We discuss the plausibility of
anonymity in section 3.2.

Theorem 1 (Existence). If X and Z are bounded, uij satisfies anonymity (Assumption 1)
and is differentiable up to order s in argument (X,Z), and the density for shocks εij is
differentiable up to order s, then there exists a Bayesian equilibrium that is anonymous at
any (X,Z) that is s-times differentiable.

Smoothness is only needed for nonparametric estimation of beliefs when attributes are con-
tinuous. Note that the theorem is stronger than what is actually needed; it demonstrates the
existence of an equilibrium that is globally anonymous, meaning anonymous at any (X,Z),
whereas we will only require that the selected equilibrium is anonymous at the realized
(X,Z). Henceforth, we refer to the latter simply as an anonymous equilibrium and drop the
reference to (X,Z).

Since an anonymous equilibrium exists, we now make the following assumption.

Assumption 5 (Sampling Experiment). Let {(Xi, εi)}∞i=1 be a sequence of types, and let
{θ◦n}∞n=1 be a sequence of parameters. In the nth experiment, the linking probabilities in the
induced network-formation game with agents 1, . . . , n are rationalized by a single anonymous
equilibrium under the parameter θ◦n.

Assumption 5 incorporates two equilibrium restrictions. First, when multiple Bayesian equi-
libria exist at the realized (X,Z), it requires that a particular equilibrium is chosen by a
degenerate equilibrium selection mechanism. This is a common assumption in the literature
on estimating games of incomplete information, as it helps ensure that beliefs are immedi-
ately identified from the data. For large-market asymptotics, this is not sufficient to ensure
identification. The second restriction is that the selected equilibrium is anonymous, which
then guarantees identification of beliefs. Notice we need not assume that this selection
mechanism is known, nor that it is smooth.

Anonymity “typically” imposes no restriction on the data if attributes and pair-specific
characteristics contain a continuous component. Notice that because beliefs coincide with
ex-ante strategies in equilibrium, anonymity implies that the chance that i links to j equals
the chance that k links to l, if both i and k share the same attributes and both j and l share
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Figure 1: (Additively separable utility.) The utilities from the three trees enter separately
into the central agent’s utility function. Note that the trees can have nodes in common.

the same attributes. This is the only restriction anonymity imposes on the data. Notice that
linking probabilities can be rationalized by an anonymous equilibrium generically if agents
possess a continuous attribute, simply because two agents share the same attribute vector
if their continuous attributes have the same realization, an event that has zero probability.
Therefore, anonymity generically imposes no restriction on the data in the presence of a
continuous attribute.

3.2 Discussion of Assumptions

Preferences. The additively separable form of πi(g,X, Z) implies that an agent cares
separately about each “tree” subnetwork emanating from each of her direct links. See Fig-
ure 1. Separability is assumed in dyadic regression models and is part of the reason why
they are computationally attractive. The assumption plays an analogous role in our set-
ting. Anonymity ensures the existence of an anonymous equilibrium, which is crucial for
nonparametric estimation of linking probabilities.

Many models of network formation specify utility functions that satisfy Assumption 1,
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such as the model of Mele (2011). He uses the specification

πi((Gi, G−i), X) =
n∑
j=1

Gij

[
µ(Xi, Xj) +Gjim(Xi, Xj)

+
n∑
k=1
k 6=i,j

Gjkv(Xi, Xk) +
n∑
k=1
k 6=i,j

Gkiv(Xk, Xj)

]
. (6)

Here the first term captures the direct benefit µ of a directed link, the second term the
additional benefit m of a reciprocated link, the third term the utility v derived from friends
of friends, and the fourth term what Mele calls “popularity.” The elements in the brackets
correspond to our function uij. Under our Assumption 1, utility can depend on other statis-
tics, as well, such as the number of agents who link to j (

∑
k 6=i,j Gkj), whether or not there

exists a third party linking with both i and j (
∑

k 6=i,j GkiGkj), or the number of indirect
friends who share i’s attributes (

∑
k 6=i,j Gjk1{Xi = Xj}).

The finiteness assumption simply ensures that link-specific payoffs (and its derivatives)
are Op(1), which is sensible since the shocks εij are also Op(1), and infinite utility is unde-
sirable. Specification (6) does not satisfy finiteness. However, if we assume that µ,m, and
v are bounded on their domains, then for most parametrizations (e.g. the common linear-
in-parameters specification as in Assumption 6), simply scaling (6) by some O( 1

n
) sequence

of constants ensures finiteness. Many utility functions take a form similar to (6) and can be
bounded after rescaling by either an O( 1

n
) sequence or an O( 1

n2 ) sequence.10

Our assumptions do not permit utility functions of the form in Jackson and Wolinsky
(1996) in which agent i derives utility from agent j according to some function of the net-
work distance (length of the shortest path) between the agents.11 These functions violate
separability of the components of Gij, Gik in the utility function. However, we do permit
agent i to derive utility separately from every path to an agent j, as opposed to only just
the shortest path.

Our assumptions do permit utility to depend on the existence of certain subnetwork
structures. A common structure of interest is the triangle, which consists of three linked
nodes. In our model, the link-specific payoff that i receives from linking with j can depend
on type 1 triangles (Figure 2a) but not on type 2 triangles (Figure 2b). In the former case,
uij is a function of GkiGji, while in the latter case, it is a function of GikGij, violating

10In the linear utility specification, these constants are absorbed by the parameters, which are allowed to
vary with n, so the data can determine the right scaling.

11A path between i and j on the network G is a sequence of links Gia1
, Ga1a2

, ..., Gap−1ap
, Gapj .
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k

i j
(a) Type 1 triangle

k

i j
(b) Type 2 triangle

Figure 2: To satisfy Assumption 1, agent i’s utility can depend on type 1 but not type 2
triangles.

separability. Whether or not this is restrictive depends on the application. In the context of
lending networks, in which a directed link from i to j signifies the willingness of i to link to j,
it is more sensible to have type 1 triangles enter into the utility function, since the existence
of agent k can be a credible signal to agent i regarding the trustworthiness of agent j.

Information. In a game of incomplete information, actions are unobserved, so agents in
our model do not observe the network when making their linking decisions. This is a re-
alistic assumption in many applications, as rarely is it the case that agents have complete
knowledge of the network. For example when a friendship forms, seldom do the individuals
know each others’ friends with certainty, let alone their “indirect” friends, those twice or
more times removed. People certainly have very little knowledge of the peer groups of indi-
viduals to which they are not connected. This supports a model of incomplete information.
Furthermore, if i considers j to be a friend, j may not necessarily consider i a friend. This is
indeed the case for friendship networks in the Add Health dataset in which friendships can
be unidirectional. This may be a reflection of the fact that friendships are intangible and
not fully observed, so psychologically their existence may be a matter of probabilistic degree
or belief.

Incomplete information allows for ex-post regret, meaning agents can make mistakes.
Whether or not this is reasonable depends on the context. In friendship networks, the
colloquial phenomena of “missed connections” and “third wheels” are indicative of mistakes,
and they occur in practice more frequently than not. Of course, if agents eventually receive
full information about the network and are not locked into existing relationships, allowing
for mistakes may be unreasonable. However, this depends on whether or not the current
network is in a long-run state. To the extent that the observed network is only a snapshot
of an evolving network, one might expect that some links are not optimally chosen in the
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data. Moreover, if agents do not fully observe the network at any stage of the game, it is
sensible to permit mistakes. In our application, links denote trust, which arguably is never
fully observed.

Anonymity. The idea behind anonymity is that if identities are irrelevant for utility by
anonymity of preferences, they should also be irrelevant for ex-ante equilibrium strategies
and therefore beliefs. In the theoretical literature, the focus on anonymous equilibria is
usually justified by the natural symmetry of the game-theoretic environment. In our case,
agents face the same environment prior to learning their private information, and agents
have no intrinsic preference for other particular agents given attributes. This payoff- and
informational symmetry should lead to ex-ante behavioral symmetry.

Complete informational symmetry is a strong assumption. This is a simplification used
extensively in the literature on discrete games of incomplete information, as heterogeneous
information is very difficult to analyze tractably. In our model, the largeness of the network
lends plausibility to informational symmetry. Consider a school friendship network. If the
school is large, as is required by our estimation strategy, most students likely have very little
knowledge about who the immediate friends of most students are, let alone their “indirect”
friends. In that case, violations of informational symmetry may be localized and minimal,
and anonymity is defensible.

4 Estimation

We consider a simple two-step estimation strategy utilized by Aguirregabiria and Mira
(2007), Bajari et al. (2010), and Brock and Durlauf (2001). In the first step, we esti-
mate beliefs σij(X,Z) nonparametrically. In the second step, we plug the estimated values
from the first step into (10) and then choose the parameters that maximize the resulting
pseudo-likelihood. Other estimation methods are also possible for the second step, such as
GMM.

4.1 Estimating Beliefs

Nonparametric estimation of σij(X,Z) is a trivial problem if one observes many independent
repetitions of the network-formation game, since the probability that i links to j can be
consistently estimated using the empirical frequency with which i links to j (assuming each
repetition plays the same equilibrium). However, motivated by the fact that a large number
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of network observations is rare in practice, we assume that we observe only a single network.
Under Assumption 5, we have at our disposal a large number of links Gij from the same
market, all of which depend on (X,Z), a vector whose dimension is grows quickly with n.
This requires a new estimation approach.

Anonymity of beliefs implies that the chance that i links to j is just the chance that an
Xi agent links to an Xj agent, ignoring pair-specific characteristics for simplicity. Moreover
if the equilibrium is smooth, if x is “near” Xi and x′ is “near” Xj, then the probability that
an x agent links to an x′ agent is close to the probability that i links to j. The key insight is
that we can then approximate the latter probability by the empirical frequency with which
x agents link to x′ agents using x near Xi and x′ near Xj.

Define the probability that an x agent links to an x′ agent given pair-specific character-
istics z when the set of covariates is X = (X,Z) as the function

τX (x, x′, z) :=

{
σij(X,Z) if x = Xi, x

′ = Xj, z = Zij

β otherwise
. (7)

That is, the function is defined to be equal to the conditional probability that i links to j if
agent i has attributes x, agent j has attributes x′, and Zij = z. If (x, x′, z) corresponds to no
observed pair of agents, e.g. there is no i such that Xi = x, then the function is arbitrarily
defined to be some value β. This is well defined by anonymity of beliefs by (5).

Let x̄ = (x, x′, z), x = (x, x′, X−i,−j, z, Zij) an unordered random vector,12 and Xij =

(Xi, Xj, Zij). To motivate our proposed estimators, consistency for the second-stage estima-
tor will eventually require a convergence rate for

sup
i 6=j
|τ̂X (Xij)− τX (Xij)| ≤ sup

x,x′,z
|τ̂x(x, x′, z)− τx(x, x′, z)|, (8)

as usual for two-step estimators with nonparametric nuisance parameters. Note the supre-
mum on the right-hand side is taken with respect to both the arguments in the parentheses
and the relevant components of x. If the realization of Xij is x̄, we show that we can find uni-
formly consistent estimates for the parameter τx(x̄). Notice that this is a random function,
since it depends on X .13 If the joint support of attributes and pair-specific characteristics is

12That is, x is the equivalence class of all vectors that are component-wise permutations of
(x, x′, X−i,−j , z, Zij). Technically when we write τX , we treat X as an unordered random vector.

13Estimation of random parameters has precedent in the econometrics literature; for instance, Abadie, Im-
bens and Zheng (2011) study the estimation of conditional best linear predictors, defined by the minimization
of an objective that depends on the sample distribution of covariates.
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discrete, we show consistency can be achieved with a simple frequency estimator.

Proposition 1. Let xi be the realization of Xi and zij the realization of Zij, for all i, j.
Assume the following.

(i) The support of (Xi, Xj, Zij) is finite.

(ii) 1
n2

∑
k 6=l 1{Xkl = x̄} p−→ α ∈ (0, 1].

Define the frequency estimator for τx(x̄) as

τ̂(x̄) :=

{ ∑
k 6=lGkl1{Xk=x,Xl=x

′,Zkl=z}∑
k 6=l 1{Xk=x,Xl=x′,Zkl=z}

if ∃ i, j : (xi, xj, zij) = x̄

β otherwise
.14 (9)

Then supx̄ |τ̂(x̄)− τx(x̄)| p−→ 0 at rate 1
n
.

That is, to estimate the high-dimensional function σij(X ) at X = x̄, we can use a frequency
estimator that averages over all links fromXi agents toXj agents with pair-specific covariates
Zij.

If covariates have continuous support, we show that beliefs can be nonparametrically
estimated using a kernel estimator, provided the equilibrium is smooth.15

Proposition 2 (Kernel Rate of Convergence). Let x be the realization of the attribute profile
and z the realization of pair-specific characteristics. Assume the following holds for any i, j.

(i) The support of Xi is a convex subset of Rd, and the support of Zij is a convex subset
of Rc.

(ii) The density of (Xi, Xj, Zij) is bounded away from zero on its support.

(iii) σn,ij(X ) is s-times differentiable at (x, z), and supn σ
(s)
n,ij(X ) <∞ a.s.

(iv) The kernel K(·) has bounded range and satisfies
∫
urK(u) du = 0 for all r < s;∫

|us|K(u) du <∞; and supuK(u) <∞.

(v) For any t ∈ {0, 1, . . . , s}, 1
n(n−1)

∑
k 6=l

1
hq
K
(
x̄−Xkl

h

)
btkl converges in probability to its

expectation, where bkl is a vector defined in the proof that includes Xkl.16,17

14The choice of β is arbitrary. This definition emphasizes that estimating out of sample is meaningless.
15For the case of mixed discrete and continuous attribute components, one can use the approach of Racine

and Li (2004).
16A sufficient condition for this is Xi ⊥⊥ Xj if i 6= j, and Zij ⊥⊥ Zkl if i 6= k.
17Powers of vectors, e.g. btkl, are defined using standard multi-index notation. See the definitions immedi-

ately preceding the proof of this proposition in Appendix A.
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Define the kernel estimator for τx(x̄) as

τ̂(x̄) :=


∑

k 6=lK
(

x̄−Xkl
h

)
Gkl∑

k 6=lK
(

x̄−Xkl
h

) . if ∃ i, j : (xi, xj, zij) = x̄

β otherwise
.

Then |τ̂(x̄)− τx(x̄)| p−→ 0 at rate hs +
√

logn
n2hc+2d .

Assumption (iii) is an equilibrium restriction, requiring that the sequence of equilibria chosen
by the equilibrium selection mechanism satisfy the stated smoothness and finiteness condi-
tions. Recall that the existence of a smooth equilibrium is guaranteed by Theorem 1. This
assumption imposes no smoothness conditions on the equilibrium selection mechanism itself,
which distinguishes this result from the multi-market setup.

4.2 Consistency and Asymptotic Normality

We next provide conditions under which the second-stage estimator is consistent and asymp-
totically normal under a sequence of experiments that sends the number of agents to infinity.
The form of the likelihood provides the intuition behind these results. By independence of
the εij shocks and symmetry of the distribution (Assumption 3), using (4), the log-likelihood
is

logP(G |X,Z) =
∑
ij:i 6=j

log Φ

(
(−1)1−Gijuij

(
(σkl(X,Z))k 6=i,l, X, Zij

))
(10)

This is a sum over all possible n(n − 1) potential links in the network, and computing this
sum is tractable. By (3), linearity and additive separability imply that each agent i has a
separate decision rule for each potential link Gij she may form, and the rule does not depend
on any of the other links Gik for k 6= j. This essentially transforms the game between n

agents into a game between n(n − 1) agents, where each agent is a pair ij (with agent ij
distinct from agent ji) that takes a binary action, whether or not to form a directed link.
Viewed in this way, the form of the likelihood is reminiscent of the standard discrete choice
setting in which n(n − 1) agents choose binary actions, the difference being that the index
function includes nonparametric nuisance parameters.

The presence of strategic interactions creates additional complications, as (X,Z) appears
in each summand of the likelihood and each action Gij is a function of the entire matrix
(X,Z). Notice, however, that if (X,Z) are fixed regressors, then the summands are fully
independent, since shocks εij are independent. By studying the asymptotic behavior of our
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estimator conditional on (X,Z), we effectively fix covariates. Toward this end, we employ
and develop extensions of standard limit theory to accommodate triangular arrays with
conditionally independent row elements (see Appendix B).

The next theorems will require some notation. Let X = (X,Z), whose dimension depends
on n, and let (x, z) be the realization of X . As defined in (7), τX is the anonymous belief
function when covariates are X , and τ̂ is its nonparametric estimate. For convenience, we
will suppress the subscript in τX . Denote the true parameter for the game with n agents by
θ◦n. Further define

• mij(Gij, τ, θ
◦
n) ≡ mn,ij(Gij, τ, θ

◦
n) = ∇θ log Φ

(
(−1)1−Gij ũij (τ, θ◦n)

)
, the summands of

the first derivative of the log-likelihood, abbreviating ũij (τ, θ◦n) = ũij ((τ(Xkl))k 6=l, X, Zij, θ◦n),

• m̄n(τ, θ◦n) = 1
n(n−1)

∑
i 6=jmij(Gij, τ, θ

◦
n), the first derivative of the average log-likelihood,

• Mθ(X ) = limn→∞
1

n(n−1)

∑
i 6=j

φ(ũij(τ,θ◦n))2

τ(Xij)(1−τ(Xij))
∇θũij(τ, θ

◦
n)∇θũij(τ, θ

◦
n)′.

The finiteness restriction on preferences ensures that Mθ(X ) is finite almost surely, if this
limit exists.

The following theorems require assumptions 1, 2, 3, 4, and 5. The first result is that the
second-stage estimator is consistent.

Theorem 2. Under the following conditions, θ̂ − θ◦n
p−→ 0.

(i) For all θ 6= θ◦n, lim infn
1

n(n−1)

∑
i 6=j 1

{
ũij(τ, θ) 6= ũij(τ, θ

◦
n)
}
> 0 for a.s. all X .

(ii) supx̄ |τ̂(x̄)− τ(x̄)| p−→ 0.

(iii) {Θn}∞n=1 is a sequence of compact subsets of Θ compact, with θ◦n ∈ Θn for each n.

Assumption (ii) merely requires a consistent first-stage estimator. Assumption (i) is an
identification condition that assumes sufficient variation in agents’ payoffs. As we show in
the proof, the assumption implies that the log likelihood is identifiably unique (see Theorem
7 in Appendix B). Proposition 3 provides a sufficient rank condition for this assumption
under a linear utility specification.

The following theorem establishes asymptotic normality under the assumption that co-
variates have finite support and beliefs are estimated using a frequency estimator.

Theorem 3. Assume the following.

(i) The assumptions in Proposition 1 hold.
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(ii) θ̂ − θ◦n
p−→ 0.

(iii) Mθ(X ) has full rank a.s., and the limits Mθ(X ) and S(X ) (below) exist a.s.

Then
n(θ̂ − θ◦n)

X−d−→ N
(
0,Mθ(X )−1 +Mθ(X )−1S(X )Mθ(X )−1

)
,

where

S(X ) = lim
n→∞

Sn(X ) = lim
n→∞

Λn(X )Ψn(X )Λn(X )′,

Λn(X ) =
1

n(n− 1)

∑
i 6=j

φ(ũij(τ, θ
◦
n))2

τ(Xij)(1− τ(Xij))
∇θũij(τ, θ

◦
n)∇τ ũij(τ, θ

◦
n)′,

and the (ij-kl)th element of the n(n− 1)× n(n− 1) matrix Ψn(X ) is zero if Xij 6= Xkl and
otherwise equal to

τ(Xij)(1− τ(Xij))
1

n(n−1)

∑
q 6=r 1{Xqr = Xij}

.

We show in the proof that if the limits in (iii) exist, then they must be finite. By X−d−→ we
mean the convergence in distribution occurs conditional on X (see Definition 1). The rate
of convergence is the parametric rate, which is n rather than

√
n because each observation

is a potential link, not an agent, and there are O(n2) links in a network of n agents.
The next theorem establishes asymptotic normality under the assumption that covariates

have continuous support.

Theorem 4. Assume the following.

(i) The assumptions in Proposition 2 hold.

(ii) The kernel smoothing parameter h = o
(
n−

2s
2s+(c+2d)

)
.

(iii) θ̂ − θ◦n
p−→ 0.

(iv) Mθ(X ) has full rank a.s., and the limits Mθ(X ) and Ω(X ) (below) exist a.s.

Then
nhc+2d(θ̂ − θ◦n)

X−d−→ N
(
0,Mθ(X )−1Ω(X )Mθ(X )−1

)
,

where
Ω(X ) = lim

n→∞
Ωn(X ) = lim

n→∞
Λn(X )Σn(X )Λn(X )′
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and the (ij-kl)th element of the n(n− 1)× n(n− 1) matrix Σn(X ) is given by

n2hc+2d
∑
q 6=r

τ(Xqr)(1− τ(Xqr))
K
(
Xij−Xqr

h

)
K
(
Xkl−Xqr

h

)
(∑

s 6=tK
(
Xij−Xst

h

))2 .

We show in the proof that if the limits in (iv) exist, then they must be finite. Assumption
(ii) simply says that we choose h to undersmooth in order to eliminate a bias term. In
this theorem, convergence occurs slower than the parametric rate because we condition on
covariates. Semiparametric estimators that converge at the parametric rate typically need to
average over covariates, meaning the estimators need to be full means, in order to achieve the
parametric rate (see Newey, 1994). In our model, because there are n(n−1) link observations
but only n independent attribute vectors, kernel estimators for the density of (Xi, Xj, Zij)

converge at a
√
n rate, rather than

√
n2. Due to a lack of averaging over covariates, this

divergence in rates leads to a violation of Newey’s mean-square continuity condition needed
to achieve a parametric

√
n2 rate of convergence.

We lastly provide a primitive condition for assumption (i) of Theorem 2 when the utility
function satisfies a commonly used linearity restriction.

Assumption 6. The function ũij(G−i, X, Zij, θ◦n) is linear in θ◦n ∈ Θ ⊂ Rp, so that there ex-
ists a vector-valued function Hij(G−i, X, Zij), with range in Rp such that ũij(G−i, X, Zij, θ◦n) =

Hij(G−i, X, Zij)
′θ◦n.

An example of this is if preferences take the form in (6) with µ,m, and v linear in parameters,
i.e. for w ∈ {µ,m, v}, wij =

∑p
q=1 θwqH

wq(Xi, Xj).

Proposition 3 (Identification in the Linear Case). Under the following conditions, assump-
tion (i) of Theorem 2 is satisfied.

(i) Preferences satisfy Assumption 6.

(ii) Let H be a p × n(n − 1) matrix with (q, ij)th entry Hq
ij

(
(τ(Xkl))k 6=l)k 6=i,l, X, Zij

)
for

q ∈ {1, ..., p}. For any n, H has full rank for a.s. all X .

The rank condition also ensures that Mθ(X ) is invertible.
The asymptotic variances can be consistently estimated by replacing θ◦n and τ with their

estimators (because the nonparametric estimator is uniformly consistent) and expectations
with their sample analogs. Consistency for these estimators follows from arguments made
in the proof of Theorem 2.
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Finite-Sample Bias. Two-step estimators for games of incomplete information can have
large finite-sample bias in the first-step estimator when the attribute space X is high-
dimensional. These concerns can be addressed through the use of various smoothing esti-
mators, as we do in our application (see e.g. Delgado and Mora, 1995; Racine and Li, 2004).
The parameter estimates we find are fairly robust across a reasonable range of smoothing
parameters, despite the inclusion of many covariates. In fact the frequency estimator without
smoothing yields quite similar estimates to the smoothed estimators. Another alternative
is the nested pseudo-likelihood method proposed by Aguirregabiria and Mira (2007). This
method has been shown to have finite-sample advantages over the two-step estimator in some
contexts.

Sampled Networks. Most models of network formation require data on the full network,
which is seldom the case in practice. Our estimation strategy can allow for sampled link data
but not sampled covariate data. That is, we need to know the characteristics of all agents
in the network, but we only need to observe a subset of the links. Consistent estimation is
then possible using only the observed subset of links because linking probabilities for pairs
of agents whose links are unobserved can be estimated from the first stage using the linking
probabilities of similar pairs of agents.

Suppose network links are sampled as follows. A researcher chooses m agents to survey
and asks each agent to name her social connections to any agents in the network. In this
case, we observe all links Gij such that i is a surveyed agent. Treating the sampled network
as the full network creates bias because if Gij is unobserved, then it is coded as Gij = 0. Such
bias can be avoided by computing the first-stage estimates for all pairs of agents using only
the set of observed links and forming the second-stage likelihood only using this observed
set.

5 Application: Risk-Sharing Networks

We examine the formation of risk-sharing networks in rural villages in southern India. In
particular, we study the extent to which such networks are homophilous in caste, religion, and
gender and the extent to which they depend on endogenous signals of trustworthiness such
as the number of agents who trust the borrower and the number of agents that the borrower
trusts to lend money. We use data on risk-sharing networks from 75 rural villages in India
collected in 2006 (Banerjee, Chandrasekhar, Duflo and Jackson, 2012; Jackson, Rodriguez-
Barraquer and Tan, 2012). Household characteristics were collected in full village censuses,
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while individual and network data were collected from random samples of individuals in each
village. We assume networks are closed societies and that we observe the full network of
lending relations. In our model, direct links are obtained from the survey question, “Whom
do you trust enough that if he or she needed to borrow Rs. 50 for a day you would lend it
the him or her?”18 Hence, a direct link from i to j exists if, in the survey, i names j as an
individual who i trusts enough to lend a substantial amount of money. A link is therefore a
social relation, rather than an indication of an actual monetary transfer.

Villages are mostly homogeneous along linguistic and religious lines with the majority
being Hindu, although there are some Muslim and Christian minorities. Villages are quite
heterogeneous in caste. Because we are interested in homophily in religion, we use villages
that are at least 10 percent non-Hindu to avoid collinearity problems, so we only use nine
of the 75 villages. Despite the small sample of networks, our actual sample size is large
because there are 492690 link observations. Table 1 presents summary statistics on these
nine villages, and Figure 3 displays one such village with nodes colored by caste.

Table 1: Summary statistics

mean sd min max
# villagers 226 67 98 303
average age 38.5 1.4 35.8 40.6

% female .56 .02 .55 .59
% Hindu .79 .11 .58 .92
% OBC .62 .13 .43 .76

% Scheduled .30 .09 .21 .44
Note: Scheduled castes are at the bottom of the caste hierarchy,
and OBC castes are just above them. All other castes fall into a
general category at the top of the hierarchy.

We use a linear utility specification for uij (Assumption 6) and include controls for char-
acteristics of i and j, including age, gender, religion, caste, education level, spoken languages,
and whether or not they are heads of their households. Individuals can either be Hindu or
non-Hindu, the latter including Muslims and Christians; there are very few Christians in the
sample. Individuals can belong to one of three possible caste categories; see Table 1.

We also assume uij depends on whether or not i and j share the same religion, gender,
spoken languages, or caste and also whether or not they are related; these factors capture
homophily. We include the following endogenous determinants of lending: number of people
j trusts (

∑
k 6=i,j Gjk), number of people i trusts; whether or not j trusts i (Gji); number

18Rs. 50 is roughly a dollar, and per capita income in India is around three dollars per day (Jackson et al.,
2012).
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Figure 3: Homophily in caste: scheduled castes are at the bottom of the caste hierarchy, and
OBC castes are just above them. All other castes fall into a general category at the top of
the hierarchy.

of people who trust both i and j (
∑

k 6=i,j GkiGkj); and the number of people who trust j
(
∑

k 6=i,j Gkj). We also allow uij to depend on the number of people j trusts or who trust j
and additionally share i’s caste or religion (e.g.

∑
k 6=i,j Gjk1{Ci = Ck}, where Ci is i’s caste).

The random utility component is assumed to be normally distributed. To deal with
finite-sample bias in the first stage, we use a smoothed frequency estimator proposed by
Racine and Li (2004).19 The amount of smoothing is controlled by a weighting parameter λ.

19In the case of purely categorical data, this estimator is given by

τ̂(x̄) =

∑
k 6=lGklλ

d(Xkl, x̄)∑
k 6=l λ

d(Xkl, x̄)
,
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The case of no smoothing is λ = 0, in which case the smoothed frequency estimator coincides
with the standard frequency estimator, while the case of λ = 1 corresponds to placing full
weight on all observations: 1

n(n−1)

∑
i 6=j Gij.

Table 2 presents coefficient estimates for the homophily parameters and the constant
term across a range of smoothing parameters. The constant is negative and large because
networks are sparse; most potential links do not form. It is clear from the table that the
estimates are highly robust across a range of smoothing parameters and that homophily
in religion, caste, gender, and family are always statistically significant. By far the most
important determinant among these four is whether or not i and j are relatives.

Table 2: Estimates for homophily parameters.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3
cons -4.0282∗∗∗ -4.1258∗∗∗ -4.2342∗∗∗ -4.366∗∗∗

(0.10864) (0.11399) (0.12208) (0.13781)
related 1.3984∗∗∗ 1.3836∗∗∗ 1.3899∗∗∗ 1.415∗∗∗

(0.045419) (0.046387) (0.047299) (0.049006)
same caste 0.23882∗∗∗ 0.24055∗∗∗ 0.24336∗∗∗ 0.24842∗∗∗

(0.027907) (0.029973) (0.033053) (0.03965)
share language 0.020824 0.020124 0.019208 0.01761

(0.015689) (0.01601) (0.016505) (0.017675)
same religion 0.44888∗∗∗ 0.44072∗∗∗ 0.4323∗∗∗ 0.42244∗∗∗

(0.037424) (0.040643) (0.045682) (0.054691)
same gender 0.69143∗∗∗ 0.69527∗∗∗ 0.70167∗∗∗ 0.71072∗∗∗

(0.024763) (0.024923) (0.025075) (0.02529)
Note: Standard errors are in parentheses. (*) denotes significance at the 10% level, (**) the 5% level, and
(***) the 1% level.

Table 3 presents coefficient estimates for some endogenous determinants of lending. These
point estimates are less robust to different smoothing parameters. However, all coefficients
in the table are always highly statistically significant. The largest magnitudes are the coef-
ficients for reciprocal trust (whether or not j trusts i) and what might be called supported
trust (the number of individuals willing to lend to both i and j; see figure 4). The latter is
likely important because the willingness of k to lend to j is a positive signal for i regarding

where λ ∈ [0, 1] and d(Xkl, x̄) is the number of disagreeing components between Xkl and x̄. The standard
frequency estimator divides the links into bins according to the covariates of the lender and the lendee and
averages links only within bins. For instance, τ̂(x, x′, z) is computed by averaging all links from x agents
to x′ agents when the pair-specific characteristic is z. In contrast, the smoothed frequency estimator places
positive weight on all observations, with more weight placed on links that have covariates similar (i.e. having
fewer disagreeing components) to the covariates (Xi, Xj , Zij) that define the bin.
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j’s trustworthiness. Agent k’s trust in j may be a more credible signal for i than other
lenders because she also trusts i. The importance of reciprocal trust is intuitive: if j trusts
i, then i is more likely to trust j. The remaining coefficient estimates and standard errors
can be found in Appendix C.

Overall we find that the most important determinants of trust-in-lending relations are
reciprocal trust, supported trust, and the existence of family ties. A dyadic regression
approach would miss the first two determinants because such methods cannot control for
endogenous determinants of network structure.20

Table 3: Estimates for endogenous determinants.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3
# lendees of j -0.20424∗∗∗ -0.23549∗∗∗ -0.27069∗∗∗ -0.32916∗∗∗

(0.036231) (0.042925) (0.053407) (0.074983)
j lends to i 1.4085∗∗∗ 1.5732∗∗∗ 1.7686∗∗∗ 2.0752∗∗∗

(0.046862) (0.05674) (0.071177) (0.098348)
# lenders to i -0.04664∗∗∗ -0.045534∗∗∗ -0.040353∗∗∗ -0.032367∗∗∗

(0.0081956) (0.0091383) (0.010327) (0.012265)
# lenders to i and j 0.73392∗∗∗ 0.92516∗∗∗ 1.0882∗∗∗ 1.2695∗∗∗

(0.069765) (0.099101) (0.14493) (0.24224)
# lenders to j 0.3845∗∗∗ 0.45108∗∗∗ 0.54373∗∗∗ 0.69565∗∗∗

(0.017494) (0.022379) (0.031274) (0.049119)
Note: Standard errors are in parentheses. (*) denotes significance at the 10% level, (**) the 5% level, and (***) the 1% level.

k

i j

Figure 4: Supported trust: k supports the link Gij.

20We have often received the comment that our results invalidate the incomplete-information assumption
because the significance of these coefficients demonstrates that villagers do in fact know who trusts (links
with) whom. This comment confuses restrictions on information with restrictions on preferences. In any
game of incomplete information, actions are necessarily unobserved, which is why agents must form beliefs
about the actions of others. This clearly does not preclude the possibility that an agent cares about the
actions of other agents, as this possibility is precisely what defines the model as a game rather than a single-
agent decision problem. Thus, while a villager may not know with certainty who trusts whom, she forms
beliefs about the trust network and accordingly decides who she trusts based on these beliefs. See section
3.2 for more discussion of the incomplete-information assumption.
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6 Simulating Counterfactuals

When there are multiple equilibria, counterfactual simulation requires some way to choose
among them. One method is to select the equilibrium that maximizes the likelihood. In
this case, simulation will require finding a solution to a system of equations that maximizes
the likelihood, a program that may impose a higher computational burden than estimation.
Once the program has been solved, however, simulation is computationally simple, since
each link is just a Bernoulli random variable with known success probability. If one wishes
to simulate counterfactuals for other equilibria, other methods are needed. See for example
Bajari et al. (2010).

Recall that in equilibrium, beliefs satisfy

σn,ij(X,Z) = Φ(ũij(σn, X, Zij, θ
◦
n)
)
. (11)

When simulating counterfactuals, the variables θ◦n (or its estimate), X, and Z are given, so
the only unknown is the n(n− 1)× 1 dimensional vector σn(X,Z). In this case, (11) defines
a system of n(n − 1) equations in n(n − 1) unknowns. If these equations have multiple
solutions, as they do in general, one possible choice is the equilibrium solution with the
highest likelihood. We can compute this solution by solving the following program:

max
{σij}i6=j

∑
ij:i 6=j

log
(
σij
)

subject to (11).

This is a constrained optimization problem with a smooth, concave objective and smooth,
nonlinear constraints, which can be solved by KNITRO (Byrd, Nocedal andWaltz, 2006). We
also need to require that the equilibrium is anonymous, which means we need an additional
constraint that the belief functions are the same for agents who share the same attributes.
With a solution in hand, we can simulate networks by setting Gij = 1 with probability σ̂ij
given by the selected solution.

7 Model for Undirected Networks

Thus far we have assumed that networks are directed. With some modification, the model
and estimation strategy can accommodate undirected networks. Let G be an unobserved
latent network of directed link “proposals.” The econometrician does not observe the latent
network G. Instead, she observes an undirected network G̃ with ijth entry equal to GijGji.
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Let preferences be given by

Ui(g,X, Z) =
∑
i 6=j

GijGji

(
uij(G̃−i, X, Zij) + εij

)
.

That is, agents choose whether or not to propose links, but a link forms only if the two
agents in question propose to each other. Hence, under this model, agents receive utility
only under mutual consent; otherwise they receive the outside option of zero. Note that the
model is simply an incomplete-information version of Myerson’s link announcement model
(Myerson, 1977). Equilibria are not necessarily pairwise stable, which is sensible given the
incomplete-information environment.

We assume that the function uij satisfies Assumption 1, with the proviso that the re-
strictions apply to the observed network G̃ rather than the latent network G.

Likelihood. Let p̃kl be the belief that k proposes to l and vice versa. Notice p̃kl = pklplk

because, as in the original model, link proposals Gij are conditionally independent. Similar
to (3), G̃ij = 1 if and only if

pjiuij
(
(p̃kl)k 6=i,l, X, Zij

)
+ pjiεij ≥ 0 and pijuji

(
(p̃kl)k 6=j,l, X, Zij

)
+ pijεji ≥ 0. (12)

As in the directed link setting, (12) defines an ex-ante best-response mapping Γ(·, X, Z)

for beliefs with respect to link proposals, and an anonymous Bayesian equilibrium can be
defined accordingly and shown to exist. As in the directed model, the finiteness assumption
will bound equilibrium beliefs away from zero, so that (12) reduces to

uij
(
(p̃kl)k 6=i,l, X, Zij

)
+ εij ≥ 0 and uji

(
(p̃kl)k 6=j,l, X, Zij

)
+ εji ≥ 0. (13)

Now the best response functions only depend on beliefs about the undirected network. Thus
the log-likelihood is given by

logP(G̃ | X ) =
n−1∑
i=1

n∑
j=i+1

[
G̃ij log

(
Φ
(
uij
(
(p̃kl)k 6=i,l, X, Zij

))
Φ
(
uji
(
(p̃kl)k 6=j,l, X, Zij

)))
+(1− G̃ij) log

(
1− Φ

(
uij
(
(p̃kl)k 6=i,l, X, Zij

))
Φ
(
uji
(
(p̃kl)k 6=j,l, X, Zij

)))]
.

where the sum contains n(n−1)
2

elements. We can estimate equilibrium linking probabilities
p̃kl by the same method detailed in section 4.1 and the structural parameters by the same
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two-step estimation procedure.

8 Conclusion

This paper develops a strategic model of network formation that allows an agent’s linking
decisions to depend on the linking decisions of others. We demonstrate that preference
restrictions previously utilized in the literature lead to a simple likelihood reminiscent of
standard discrete choice models if we model the network-formation process as a static game
of incomplete information. The restriction that the observed equilibrium is anonymous allows
us to circumvent a curse of dimensionality problem and estimate the model consistently as the
number of agents goes to infinity. This is advantageous because network data often feature
a small number of large networks. Applying the model to study risk-sharing networks,
we demonstrate the importance of endogenous determinants of trust in lending, such as
reciprocated trust, which would be missed by a dyadic regression model.

We lastly note that the estimation approach proposed in this paper can be easily applied
to a broad class of discrete games with incomplete information, for example models of social
interactions with binary actions. If the action space does not grow with n, the required
restrictions on the utility function are even weaker, as we no longer need to impose additive
separability. This encompasses peer-effects models much more general than the discrete-
choice model of Brock and Durlauf (2001), allowing utility to depend on peer actions in
more general ways than as group means.

Appendix A: Proofs of Main Theorems

Appendix B: Conditional Asymptotics

Let (Ω,G,P) be a probability space and Fn ⊂ G a σ-algebra for all n ≥ 1. Unless stated
otherwise, all random variables in this section are measurable functions from (Ω,G) to (R,B),
where B is the Borel σ-algebra, and have finite expectations. We will sometimes write EFX
in place of E[X | F ] and similarly for conditional probabilities and variances. As a reminder,
for a random variable Z, E[X |Z] = E[X |σ(Z)], where σ(Z) = σ({Z−1(B) : B ∈ B}), the
smallest σ-algebra that contains {Z−1(B) : B ∈ B}. In our application, we will condition on
the sequence of σ-algebras with nth element Fn = σ(X1, ..., Xn).

We now define two notions of conditional convergence. These definitions are related to
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those of Nowak and Ziȩba (2005), but we permit the conditioning σ-algebra to depend on
n. Note that unlike conditions for martingale limit theorems, {Fn}n is not required to be a
filtration. In this respect, the results differ from those of Menzel (2012).

Definition 1. Let {bn} be a sequence of positive numbers. We denote a random variable
c(ω) on (Ω,F) by c(F).

• We say Xn strongly converges in probability to X conditionally on {Fn}n or sometimes
more simply conditionally converges in probability if P(|Xn| ≥ cn(Fn)bn | Fn)

a.s.−→ 0 for
all sequences {cn(Fn)}n such that lim infn cn(Fn) > 0 a.s. We say Xn weakly converges
in probability to X conditionally on {Fn}n if P(|Xn| ≥ cn(Fn)bn | Fn)

p−→ 0.

• Write Xn = op|Fn(bn) if Xn strongly converges in probability to zero conditionally on
{Fn}n.

• A sequence of random variables {Xn} Fn-conditionally converges in distribution to X
if for each continuity point of the distribution of X, we have PFn(Xn < x)→ P(X < x)

a.s. as n→∞. We denote this by Xn
Fn−d−→ X.

Notice that weak or strong conditional convergence in probability implies its unconditional
analog by an application of the law of total probability and the dominated convergence
theorem. Hence anything that is op|Fn(bn) is also op(bn).

Definition 2. Let (x1, ..., xn) ∈ Rn. A set of random variables X1, ..., Xn is conditionally
independent given F , or F -independent, if

E

[
n∏
i=1

1{Xi ≤ xi}
∣∣∣∣F
]

=
n∏
i=1

E [1{Xi ≤ xi} |F ] a.s.

The first result extends the weak law of large numbers to triangular arrays of random vectors
with conditionally independent rows.

Theorem 5 (Conditional Weak Law). Let Xn,t, t = 1, ..., vn be row-wise Fn-independent
and satisfy EFn|Xn,t| <∞ a.s. Define X̃n,t = Xn,t1{|Xn,t| ≤ vn}, and assume

(i)
∑vn

t=1 PFn(|Xn,t| > vn)
a.s.−→ 0, and

(ii) 1
v2
n

∑vn
t=1 VarFn(X̃n,t)

a.s.−→ 0.

Then 1
vn

(∑vn
t=1Xn,t −

∑vn
t=1 EFnX̃n,t

)
= op|Fn(1). If additionally |Xn,t| < M < ∞ for all

n, t, then we can replace X̃n,t with Xn,t in the last expression.
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The following theorem extends the Lindeberg CLT.

Theorem 6 (Conditional CLT). Let {Xn,t, t = 1, ..., vn} be Fn-independent random vectors
of dimension k with conditional mean zero satisfying

∑vn
t=1 EFnXn,tX

′
n,t = Ik, the identity

matrix. If the conditional Lindeberg condition holds, i.e. for all ε > 0,

lim
n→∞

vn∑
t=1

EFn
[
||Xn,t||21{||Xn,t|| > ε}

]
= 0,

then
∑vn

t=1 Xn,t
Fn−d−→ N(0, Ik).

The next theorem provides sufficient conditions for the conditional consistency of extremum
estimators when the objective is a random variable on (Ω,Fn) and both the objective and
the underlying parameter depend on n. For fixed ω ∈ Ω, define QFn

n : Θ 7→ R for Θ ⊂ Rp.
For a fixed θ, this is an Fn-measurable function, e.g. an expectation conditional on Fn. Let
θ̂ = arg maxθ Q̂n(θ), where Q̂n(θ) is a function of the data.

Theorem 7 (General Consistency). Let {Θ◦n} be a sequence of subsets of Θ. Under the
following assumptions, θ̂◦n − θ◦n = op|Fn(1).

(i) (Compactness) θ◦n ∈ Θ◦n compact.

(ii) (Continuity) For each n, QFn
n (·) is continuous on Θ a.s.

(iii) (Identifiable Uniqueness) For any η > 0, lim infn
{
QFn
n (θ◦n)− supθ:|θ−θ◦n|≥ηQ

Fn
n (θ)

}
> 0

a.s.

(iv) (Uniform Convergence) supθ |Q̂n(θ)−QFn
n (θ)| = op|Fn(1).
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