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Abstract

We introduce a new strategy for the identification of social interaction effects from
grouped transition data exploiting information on the timing of transitions, with appli-
cations including starting to smoke/use drugs for the first time within a group of peers.
In our approach, we jointly model the transition hazards of all members of a peer group,
allowing for two sources of dependence: (1) Once a group member transitions, this di-
rectly affects the subsequent transition hazard of their peers (social interaction effect).
Such effects may differ across group members, covariates and over successive transi-
tions in the group; (2) Group members may have similar unobserved characteristics
(correlated effect). This duration framework allows overcoming the reflection problem
(Manski, 1993) in the presence of correlated effects, without making use of an exclusion
restriction or instrument. An identification result of our model is presented, constituting
an extension of the timing of events approach. We apply our model to the first-time use
of marijuana among siblings growing up together in American households, using data
from the NLSY79 and find that first-time drug use by the oldest sibling has a significant
positive effect on the subsequent drug use behavior of the younger siblings.
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1 Introduction

The study of social interactions has been of constant interest in health and labor economics

over the past two decades, with the main difficulty in the identification of social interactions

laid out in the seminal work by Manski (1993). Labeled the reflection problem, in a reduced

form linear model in which the reference group’s average outcome measures the behavior

of peers, it is difficult to determine if a person’s behavior affects their peers or vice versa.1

In this paper, we introduce a new strategy for the identification of social interaction effects

from grouped transition data, using a multivariate duration framework. We jointly model

the transition hazards of all members of a peer group, allowing for two sources of dependence

conditional on observable characteristics: (1) Once a group member transitions, this may di-

rectly affect the subsequent transition hazards of the other group members (’social interaction

effect’); (2) Group members may have similar unobserved characteristics (’correlated effect’).

This definition of social interactions in terms of a lagged2 effect in time allows overcoming

the reflection problem in the presence of correlated effects without making use of an instru-

ment (see Case and Katz, 1991; Monstad et al., 2011) or exclusion restriction, as suggested

by Moffitt (2001). Furthermore, our approach allows studying social interactions in natural

peer groups such as a circle of friends, work colleagues or neighborhoods, which are often the

result of a self-selection process based on similar observable and unobservable characteristics.

Additionally, social interaction effects are highly flexible within our model, and may differ

across different group members, covariates and over successive transitions in the group.

In many applications of social interactions, the behavior of interest is characterized by a

transition at a particular point in time following some entry point. Examples include the time

at which a person purchases a new product following its release, or the age at which a person

first has sexual intercourse, moves out of the neighborhood or starts/stops using drugs. In our

empirical application, we study social interaction effects in the use of marijuana/hashish by

siblings growing up together in American households3. Substance use is considered a highly

1Different versions of this model have been widely used in applications estimating peer effects (see Gaviria
and Raphael, 2001; Sacerdote, 2001; Cohen-Cole and Fletcher, 2008; Brock and Durlauf, 2000).

2As we use a continuous time framework, the period between transition and response is practically zero in
our identification result.

3In our application, instead of classical peer groups, we study teenagers growing up in the same household.
Here, ’correlated effects’ do not arise due to selection effects but rather to similar genetic factors and childhood
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social behavior (see Gaviria and Raphael, 2001; Kawaguchi, 2003). When a teenager uses

drugs for the first time, this could directly affect the subsequent behavior of their siblings

in several different ways. This transition may cause their siblings to copy this behavior.

Alternatively, a transition may reduce the stigma attached to the use of drugs, or simply raise

curiosity. Besides these classical channels of social interaction or peer effects, a response could

also be triggered by an information effect or the accessibility of drugs. In particular, the first

transition within a group often constitutes a release of new information, and additionally,

in the case of drug use, an effect of accessibility. As our approach allows distinguishing4

between the effects of the first transition and subsequent transitions within a group, we can

to some extend detect the existence of accessibility and information effects versus classical

peer effects.5

In the model by Manski (1993), social interaction effects are assumed to be homogeneous

across group members, i.e. the action of every group member has the same effect on any other

member. In this paper, we show that the joined observation of transition times within a group

allows identifying additional dynamics in a group of socially interacting individuals. Firstly,

the degree to which a transition of a group member j affects the behavior of another member

k may depend on the degree of social status/reputation of both members j and k within the

group, as well as the combination of their observable characteristics xj and xk. For example,

the oldest sibling may have a unique social role within the household, increasing the degree

to which his behavior affects the younger siblings. At the same time, the oldest sibling may

not be as strongly influenced by the behavior of his younger siblings. In our application, we

find evidence for a significant influence of the behavior of the oldest sibling, but no evidence

for an effect of a transition by a younger sibling.6 Similarly, peers may more strongly affect

each other if they have the same gender or belong to the same age group. Secondly, the

strength of an effect may strongly depend on how many transitions have been experienced

within the group up to this point. Since social interactions may exhibit different degrees of

effects.
4In our empirical analysis we have not implemented this distinction at this point.
5Although we are aware that our definition of ’social interaction effects’ in this paper does not only capture

classical peer effects/social interaction effects, we will use this terminology throughout this paper.
6A different application constitutes a supervisor who has a unique social role at their workplace, increasing

the degree to which their behavior may affect his employees. At the same time, the behavior of employees
may strongly influence other co-workers but not necessarily the supervisor.
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contagiousness, we allow for the strength of the effect to increase/decrease or follow any other

pattern with each additional transition experienced within the group.7 This also captures the

extreme case when no transitions have any effect, apart from the first. In our example of first

time drug use, this pattern could arise if interaction effects are purely driven by the effect of

new information or accessibility.

The identification of such patterns facilitates a deeper understanding of how social inter-

action effects evolve over time, depending on the composition of the peer group. It enables

policy makers to intervene more effectively by targeting the key members of groups. If we

consider a policy aimed at preventing the early drug use of teenagers, our model can be used

to predict how drug use spreads throughout the group over time and how this pattern depends

on the group member whose behavior is initially altered by such a policy.

Individuals often enter a (peer) group at different calendar dates. For example, new

co-workers are hired, teenagers join a circle of friends/social network or new children are

born in a household. The key members are often those who enter the group first, such as

the oldest sibling being the first child in the household. In our main model specification,

group members are labeled according to their order of entry.8 Varying entry points play a

crucial role in many applications, because they determine the different starting points of an

underlying risk process faced by all individuals in the sample. In the case of siblings, this

process represents the dependence of the risk to start using drugs on age. We also consider

the case of a common entry point for all group members. One such example is the release of

a new product, whereby after the day of release, all members of a peer group simultaneously

start to face a certain risk of purchasing the new product.

In this paper, we present a multivariate mixed (proportional)9 hazard type model that

uses the information in the timing of transitions to identify social interaction effects in the

presence of correlated unobserved characteristics. The idea of exploiting the timing of events

7Our model also includes the possibility of a negative interaction effect i.e. a transition of a group member
decreases the probability of subsequent transitions within the group.

8This restricts the variation in entry dates to a setting with a predefined entry order, which complicates
identification. In our main model specification, we focus on this case of ordered entry dates. The case of
unrestricted variation in entry times is also discussed briefly. Our results can be extended to this case in a
straightforward manner.

9In Section 2.3, we discuss conditions under which the proportionality assumption can be dropped, leading
to a multivariate mixed hazard model.
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to disentangle a causal effect from a selection effect is introduced by Abbring and Van den

Berg (2003b), in the context of the evaluation of labor market programs. An extension to

two full spells10 is used in Van den Berg and Drepper (2011) in studying bereavement effects

within twin pairs. In the special case of a group with two spells sharing a common entry

date, our model reduces to this setting. An extension to multiple parallel spells raises several

new issues that are not encountered in this two-spell setting, such as differences of interaction

effects across different combinations of group members and how effects may change over

subsequent transitions within the group. Furthermore, we account for different entry dates

across members and discuss the relaxation of the proportionality assumption. In the following

section, we present our identification results for this extended model.

There is a straightforward intuition for the identification of models exploiting the timing

of events.11 The process of successive transitions and responses of the transition hazards

within a group generates distinct patterns in the data, which provides information on the

existence of ’interaction effects’ vs. ’correlated effects’. For instance, if transitions are observed

within increasingly shorter intervals, irrespective of when the first transition occurs, such

epidemics-type clustering of transitions indicates that the transitions of peers positively affect

the subsequent transition hazard of the other group members (positive interaction effect). On

the other hand, ’correlated effects’ create heterogeneity across groups in the data. 12

In the field of discrete choice models, social interaction effects are frequently captured by

a penalty term for deviating from the behavior of other group members in the utility function

(for an overview, see Blume et al., 2010; Brock and Durlauf, 2001). Honoré and De Paula

(2010) introduce a model of two durations with an endogenous effect, building on a two player

simultaneous game where the exit of one player increases the potential payoff of the other

once they also exit. In contrast to this strand in the literature using equilibrium models

with interdependent utility functions, we do not specify the underlying behavioral model of

social interactions. Rather than assuming that individuals simultaneously decide to play best

10Abbring and Van den Berg (2003b) highlight that their model can be straightforwardly extended to a
setting with two full spells, whereby the exit of each spell can affect the survival of the other (see also Abbring
and Heckman, 2007; Freund, 1961).

11Abbring and Van den Berg (2003b) provide a similar intuition for the two spell setting.
12Here, in order to disentangle ’interaction-’ from ’correlated effects’, a crucial identifying assumption is

that correlated unobservable characteristics remain constant over time.
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responses, we understand social interactions as a dynamic process of successive actions and

reactions within a group. A key feature of our approach is that the transition hazard of a

group member may directly react in response to transitions of other members.13

In order to define a social interaction effect in terms of a response in the transition hazard,

we assume that this response does not take place before the transition causing it has occurred

(’no-anticipation’ assumption, see Abbring and Van den Berg 2003b). This implies that

individuals should not anticipate the action of fellow peers, or at least should not react to

it before it is experienced. In applications where forward looking and strategic incentives

dominate the behavior of group members, equilibrium models are more suitable for capturing

such dynamics (see for example Honoré and De Paula, 2010). In contrast, our approach focuses

on applications where a transition of a group member is comparable to an unanticipated shock

that causes a systematic change in the behavior of the other members. We argue that the first-

time substance use among siblings constitutes such an event. Teenagers are often influenced

by sources outside the own household that are difficult to foresee by other household members.

If a teenager is exposed to drugs at his school, the change in his behavior may subsequently

affect his siblings at home.

We use data from the National Longitudinal Surveys (NLSY79) in our application, observ-

ing the first-time use of marijuana by 8,684 siblings in 5,810 American households, including

1,549 two-sibling households and 669 households with more than two siblings growing up

together. We find that the first-time use of marijuana by the oldest sibling in the household

has a significant positive effect on the subsequent drug use behavior of his younger siblings.

However, we do not find evidence for an effect of a transition of a younger sibling. Females

are more strongly influenced by the drug use behavior of their siblings than males.

In the next section we introduce our model of social interaction effects and present our

identification results. In Section 3 we discuss the data set, estimation method and results of

our application. We conclude in Section 4.

13This is a fundamental difference from Honoré and De Paula (2010), where this type of direct response in
the hazard rate is ruled out.
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2 A multiple-spell duration model with social

interaction effects

In the following we introduce a model of three parallel spells (J = 3). We restrict attention

to this three-spell case in this section, since all interesting dynamics occur within this setting.

The extension to more than three spells is straightforward and will not be further discussed.

2.1 General framework

The three group members j = 1, 2, 3 enter into the origin state at member specific entry

dates dj. In our empirical example of first-time drug use, dj denotes the calendar date at

which sibling j reaches the threshold age after which he will be exposed to the risk of using

drugs. To have a compact notation, we introduce the vector d = (d1 d2 d3)
′
. Next, we denote

by Tj the duration of member j until he transitions to the new state (e.g. the state of

having used drugs). Furthermore, we introduce the µ-dimesnional vector x ∈ X ⊆ Rµ which

holds all relevant observed covariates, member- and group-specific, that affect the realization

of the duration variables. Additionally, the behavior of all group members is affected by

unobservable influences denoted by the random vector V = (V1 V2 V3)
′

drawn from the non-

degenerate trivariate cumulative density function G which does not depend on x and has

support V ⊆ R3
+.

We define our model in terms of conditional transition hazards of each duration Tj given

the realization of the other two durations Tk, Tl, entry dates d, observable influences x and

unobservable influences Vj

θj(t|Tk, Tl, d, x, Vj) =



λj,0(t, d, x)Vj

λj,k(t|Tjk, d, x)Vj

λj,l(t|Tjl, d, x)Vj

λj,kl(t|Tjk, Tjl, d, x)Vj

if t ≤ min{Tjk, Tjl},

if Tjk < t ≤ Tjl,

if Tjl < t ≤ Tjk,

if max{Tjk, Tjl} < t.

(1)

with Tjk := Tk + dk − dj for j , k , l = 1 , 2 , 3 such that k 6= j 6= l 6= k and k < l .

The stochastic variable Tjk denotes the elapsed time between the entry of member j into

the risk process and the transition of member k into the state of interest. In particular, if
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its value is negative (positive) then the transition of member k takes place before (after) the

entry of member j.

The above model suggests a straightforward definition of the interaction effect functions

as ratios of the conditional hazard rates in (1)

δj,k(t|Tjk, d, x) :=
λj,k(t|Tjk, d, x)

λj,0(t, d, x)
(2)

δj,kl(t|Tjk, Tjl, d, x) :=
λj,kl(t|Tjk, Tjl, d, x)

λj,q(t|Tjq, d, x)
for q = arg min

k,l
{Tjk, Tjl} (3)

with (2) representing the effect of the exit of member k on the hazard of member j and (3)

the additional effect of the second exit on the hazard of member j. Note that, since the

interaction effect functions are defined in terms of hazard rates conditional on the realization

of Vj, they have a causal interpretation. The unobservable terms Vj drop in the ratios in (2)

and (3). The functions λj,k and λj,kl are not directly observable from the data, since they are

components of the conditional hazard rates θj(t|Tk, Tl, d, x, Vj). This poses an identification

problem for the interaction or the functions δj,k and δj,kl which we will address in this section.

The identification results in this section build on the assumptions implied by the struc-

ture of model (1). Firstly, the unobservable influences (V1 V2 V3)
′

that are a source of the

dependence between the three durations are assumed to be time-constant and enter the haz-

ard rate multiplicatively, reflecting a reinforcing effect between observable and unobservable

influences. The resulting mixed hazard structure is a popular choice in duration models . Sec-

ondly, in model (1) the effect of a transition of a member k enters the hazard rate of member

j only after it occurs (for all t > Tjk). This assumption restricts the dependence structure

between the three transitions T1, T2 and T3 and is known as the ’no-anticipation’ assumption

(see Abbring and Van den Berg, 2003b). It plays a crucial role for the identification and

estimation of model (2) as it allows to express the joint distribution of {T1, T2, T3}|{d, x, V }

in terms of conditional distributions {Tj}|{Tk, Tl, d, x, Vj}. This allows to indirectly specify

the joint distribution {T1, T2, T3}|{d, x} by specifying the conditional hazard rates in (1).

In this section, we discuss different sets of assumptions under which the interaction effect

functions (2) and (3) in model (1) can be identified. We first consider the case of proportion-

ality of the covariate effects leading to the popular mixed proportional hazard specification.

7



Model A: Transition hazard of member j given Tk, Tl, d, x and Vj

θj(t|Tk, Tl, d, x, Vj) = λj(t)φj(x)δj(t|Tk, Tl, d, x)Vj

with social interaction effect functions

δj(t|Tk, Tl, d, x) := δj,k(t|Tjk,Nk, x)Ij,k(t)δj,l(t|Tjl,Nl, x)Ij,l(t)δj,kl(t|Tjk, Tjl,Nkl, x)Ij,kl(t),

where Nj :=
∑3

s=1 I(dj +Tj > ds), Nkl :=
∑3

s=1 I(dq +Tq > ds) with q = arg maxk,l{Tjk, Tjl},

Ij,k(t) := I(Tjl ≥ t > Tjk), Ij,kl(t) := I(max{Tjk, Tjll} < t) with j , k , l = 1 , 2 , 3 such that

k 6= j 6= l 6= k and k < l.

Here, I(.) is the indicator function. The variables Nk and Nkl are used to capture the size

of the group at the calendar dates dk + Tk and max{dk + Tk, dl + Tl}, respectively. Namely,

the above specification allows the interaction effects to depend on the time of occurrence of

the corresponding transition. In particular, Nj specifies the number of members who have

entered the risk process at calendar date dj + Tj at which member j transitions. Similarly,

Nkl gives the number of the members who have entered the risk process at the calendar date

max{dk + Tk, dl + Tl}, that is, when the second transition of member k or l occurs.

Before the first transition takes place, the hazard rates of the three durations are of the

mixed proportional form. The function λj(t) captures the duration dependence and φj(x)

reflects the influence of observable member- and group-specific characteristics.

Figure 1: Example of three parallel spells in Model A: The first transition T1 = t1 occurs
after the other two members have entered the risk process (d1 = 0 < d2 < d3 < t1). Member
2 is the second to transition at age t2 and member 3 transitions last at age t3.
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To provide some intuition for model (1), we consider a concrete example in Figure 1. Here,

the individual who is labeled as 1 (i.e. individual who enters the risk process first) transitions

into the state of interest (e.g. use of drugs) first at calendar date t1 (T1 < min{d2+T2, d3+T3},

with T1 = t1). By then, individuals labeled as 2 and 3 have both passed their threshold

calendar date (d2 and d3, respectively, with d2 < d3 < t1) and are at risk of transitioning into

the state of interest.

Before the first transition has taken place at calendar date t1, the transition hazard of

member j is given by λj(t)φj(x)Vj, for j = 1, 2, 3. After the first transition at calendar time

t1, the interaction effect functions δ2,1(t|t1−d2, 3, x) and δ3,1(t|t1−d3, 3, x) appear in the hazard

rates of the two remaining durations T2 and T3 for all t > t1 − dj for j = 2, 3 respectively.

Next, we look at the effect of the second transition. Specifically, we have T2 = t2 with t2+d2 >

t1 > d3. In this case, an additional interaction effect term δ3,12(t|t1 − d3, t2 + d2 − d3, 3, x)

appears in the hazard of the surviving duration T3 for all t > t2 + d2 − d3. The interaction

effect functions δj,k and δj,kl reflect that the transition of a group member affects the behavior

of his fellow peers resulting in a potential change in their subsequent transition hazards.

To identify Model A, we will employ a set of certain assumptions that we formalize

below.

Assumption A.1 The function φj : X→(0,∞) is such that it attains all values in an open

connected subset of (0,∞) and also φj(x
∗) = 1 for some x∗ ∈ X, and j = 1, 2, 3.

Assumption A.2 The function λj : R+→(0,∞) is measurable and the integrated baseline

hazard rate Λj(t) :=
∫ t

0
λj(ω)dω exists and is finite for all t > 0 with Λj(t

∗) = 1 for some

particular t∗ > 0, j = 1, 2, 3.

Assumption A.3 The G is does not depend on x and d. Moroever, for j = 1, 2, 3, E(Vj) <∞

.

Assumption A.4 For j , k , l = 1 , 2 , 3 such that k 6= j 6= l and k < l. Let q = arg mink,l{Tjk, Tjl}

and π(s, y) = max{0,min{s, y}}. The functions δj,k : R+ × R × {1, 2, 3} × X→(0,∞), and
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δj,kl : R+ × R2 × {1, 2, 3} × X→(0,∞) are measurable, ii) the quantities

Υj,k(t|s,Nk, x) :=

∫ t

max{0,s}
λj(ω)δj,k(ω|s,Nk, x)dω,

∆j,k(t|s,Nk, x) :=

∫ t

0

δj,k(ω|s,Nk, x)dω,

Υj,kl(t|s, y,Nk, x) :=

∫ t

π(s,y)

λj(ω)δj,q(ω|min{s, y},Nq, x)δj,kl(ω|s, y,Nkl, x)dω,

and ∆j,kl(t|s, y,Nkl, x) :=

∫ t

0

δj,kl(ω|s, y,Nkl, x)dω

exist and are finite, and iii) ∆j,k(t|s,Nk, x) and ∆j,kl(t|s, y,Nkl, x) are either cadlag or caglad

in s and in (s, y), respectively.

Assumption A.1 states that there has to be sufficient variation of the covariate effects

for each member. A sufficient condition for this assumption to be true is the existence of

a continuous group-level characteristic and continuity of the function φj. It also imposes

some innocuous normalization. Assumption A.2 is not restrictive as it allows for several

parametric choices for the baseline hazard. Additionally, it normalizes the integrated baseline

hazard for some particular value. Assumption A.3 is common in the analysis of the mixed

proportional hazard model (Elbers and Ridder, 1982) and is needed to ensure identification14.

Finally, Assumption A.4 give some (rather) weak finiteness conditions about the underlying

interaction effects functions.

Let the statement dj = ∞ imply that the corresponding subject never enters the risk

process.15 Define also R̄+ := R+∪{∞}.

Proposition 1 Let d1 = 0, (d2, d3) ∈ {R̄2
+ : d3 ≥ d2}. Under Assumptions A.1-A.4, the set

of functions {Λj, φj,∆j,∆j,kl : j, k, l = 1, 2, 3, k 6= j 6= l, k < l} and G in Model A are

identified from the joint distribution of {T1, T2, T3}|{d, x}.

So far we have considered the case of varying entry dates across members and groups.

In our empirical application this reflects the fact that siblings usually pass a fixed threshold

14Ridder and Woutersen (2003) discuss identification of the conventional mixed proportional hazard model
by not imposing any conditions on the first moment of the unobserved term. We do not consider this case as
it would be beyond the scope of this paper.

15Note that, for a maximal group size of M , all groups in the sample of size J < M may be expressed by
setting dJ+1 = ... = dM =∞.
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age, after which they become at risk of using drugs, at different calendar dates. It should be

pointed out here, that we do not exploit full variation in dj across members here.16 Instead

we only exploit variation across entry dates following a certain order 0 ≤ d2 ≤ d3. The first

born sibling is never born after the second and so forth.

On the one hand, different entry dates complicate the identification of Model A. With

different entries the time until the first transition occurs within a group, can not be expressed

in terms of a competing risk model for which standard identification results exist (see Heck-

man and Honoré, 1989; Abbring and Van den Berg, 2003a). On the other hand, varying

entry dates provide an additional source of exogenous variation which allows to reduce the

required variation in covariate effects to one dimension (see Assumption A.1). In the following

subsection we discuss the special case of a common entry date for all members within a group.

2.2 Common entry dates

With some parallel-spell data, all group members enter the risk process at the same calendar

date d1 = d2 = d3 = 0. If, for example, a new product is introduced to a market, each

member of a peer group becomes at risk of purchasing the new product at the same point in

time. Similarly, a market specific shock, can be seen as a starting point after which each firm

in the market is at risk to default. We first replace Assumption A.1 with Assumption A*.1.

Assumption A*.1 The function φj : X → (0,∞) is continuous with φj(x
∗) = 1 for some

x∗ ∈ X, and j = 1, 2, 3. Moreover, the vector-valued mapping (φ1(x), φ2(x), φ3(x);x ∈ X)

contains a nonempty open subset of R3
+.

Assumption A*.1 requires sufficient variation of the covariate effects across the three com-

peting exit durations. It is analogous to one of the required assumptions in Abbring and Van

den Berg (2003). Obviously, Assumption A∗.1 is a bit stronger than Assumption A.1. Making

use of a stronger requirement stems from the fact that in the case of common entry dates we

cannot exploit variation in the timing of entry at the risk process for the group members.

16The case of full variation in entry dates across members, that is, when d1, d2, d3 ∈ R+∪{∞}, is a straight-
forward extension of Model A.The identification of the corresponding model is trivial by making use of
Proposition 1.
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Proposition 2 Let d1 = 0, d2 = 0, d3 = 0. Under Assumptions A*.1,A.2,A.3, A.4, the set of

functions {Λ,∆j,k,∆j,kl :, k 6= j 6= l, k < l} and G in Model A are identified from the joint

distribution {T1 ,T2 ,T3}|{x}.

A simple two-spell version of Model A with d1 = 0, d2 = 0 is formally introduced in

Abbring and Heckman (2007) where an identification strategy is suggested by the authors.

2.3 Relaxing the proportionality assumption

In this subsection, we consider a set of conditions under which the proportionality assumption

in Model A may be dropped. For this purpose we require some of the covariates to vary

over time. More precisely, consider the covariate process χj : R+ → X ⊆ Rµ which is defined

as follows χj(t) := (x
′
j(t) x

′
−j(t) x

′
g(t))

′
, where x−j(t) refers to the row vector of the individual

characteristics of all members except for the j−th member and xg(t) holds all group-specific

characteristics. Following Brinch (2008), we denote by Pχ⊂R+ × X a family of this type of

paths. We study the following multiple-spell duration model

Model B Transition hazard of duration Tj given Tk, Tl, d, χj(t) and Vj

θj(t|Tk, Tl, d, χj(t), Vj) = λ̃(t, χj(t))δj(t|Tk, Tl, d, χj(t))Vj

with social interaction effect functions

δj(t|Tk, Tl, d, χ̃j(t)) = δj,k(t|Tjk,Nk, χj(t))Ij,k(t)δj,l(t|Tjl,Nl, χj(t))Ij,l(t)δj,kl(t|Tjk, Tjl,Nkl, χj(t))Ij,kl(t),

where Nk, Ij,k(t),Nkl, and Ij,kl(t) have the same interpretation as in Model A with j , k , l = 1 ,

2 , 3 such that k 6= j 6= l and k < l.

Assumption B.1 The function λ̃ : R+ ×X→(0,∞) is measurable and the integrated gener-

alized baseline hazard rate Λ̃(t, χj) :=
∫ t

0
λ̃(ω, χj(ω))dω exists and is finite for all t > 0 and

χj ∈ Pχ,and j = 1, 2, 3.

Assumption B.2 There are two distinct covariate paths χ1 ∈ Pχ and ξ1 ∈ Pχ such that

χ1(t) = ξ1(t) for some t ∈ (ta, tb) with ta < tb and Λ̃(ta, χ1) 6= Λ̃(ta, ξ1).
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Assumption B.3 The G is such that does not depend on x and d .

Assumption B.4 For j , k , l = 1 , 2 , 3 such that k 6= j 6= l and k < l . Let q = arg mink,l{Tjk, Tjl}

and π(s, y) = max{0,min{s, y}}. The functions δj,k : R+ × R × {1, 2, 3} × X→(0,∞), and

δj,kl : R+ × R2 × {1, 2, 3} × X→(0,∞) are measurable, ii) the quantities

Υj,k(t|s,Nk, χj) :=

∫ t

max{0,s}
λ̃(ω, χj(ω))δj,k(ω|s,Nk, χj(ω))dω,

∆j,k(t|s,Nk, χj) :=

∫ t

0

δj,k(ω|s,Nk, χj(ω))dω,

Υj,kl(t|s, y,Nkl, χj) :=

∫ t

π(s,y)

λ̃(ω, χj(ω))δj,q(ω|min{s, y},Nq, χj(ω))δj,kl(ω|s, y,Nkl, χj(ω))dω,

and ∆j,kl(t|s, y,Nkl, χj) :=

∫ t

0

δj,kl(ω|s, y,Nkl, χj(ω))dω

exist and are finite, and iii) ∆j,k(t|s,Nk, χj) and ∆j,kl(t|s, y,Nkl, χj) are either cadlag or

caglad in s and in (s, y), respectively.

Assumption B.1 deals with measurability and finiteness conditions of the (integrated)

generalized baseline hazard. Assumption B.2 ensures that there exist two different covariate

paths which agree on an open interval. Note that the latter can be satisfied by just considering

a single covariate which will meet the condition of Assumption B.2. In contrast to Assumption

A.3, Assumption B.3 does not impose any conditions on the first moment of the unobserved

terms. This is due to the presence of time-varying covariates (Heckman and Taber 1994;

Brinch, 2008). Finally, Assumption B.4 is similar to Assumption A.4 and is concerned with

finiteness conditions of the underlying functions.

Proposition 3 Let d1 = 0, (d2, d3) ∈ {R̄2
+ : d3 ≥ d2}. Under Assumptions B.1-B.4, the set of

functions {Λ̃,∆j,k,∆j,kl : j, k, l = 1, 2, 3, k 6= j 6= l, k < l} and G in Model B are identified

from the joint distribution of {T1, T2, T3}|{d, x}.

Note that, in contrast to Model A, the finiteness of the first moment of the unobserved

terms is not necessary due to the presence of time-varying covariates (Heckman and Taber

1994; Brinch, 2008).

As in the case with different entry dates, we can relax the proportionality assumption in

the setting with common entry dates as well. In particular, we introduce the covariate process
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ζj : R+ → Z ⊆ Rµ̄ which is obtained as follows ζj(t) := (x
′
j(t) x

′
g(t))

′
, and the family of

such processes Pζ⊂R+ × Z. Note that µ̄ < µ as the process ζj(t), in contrast to the process

χj(t), does not include the characteristics of members other than j. Consider the following

assumptions.

Assumption B*.5 It holds λ̃(t, χj) = λ̃(t, ζj) for all t > 0, χj ∈ Pχ, ζj ∈ Pζ , j = 1, 2, 3. 17

Assumption B*.6 The vector-valued mapping (Λ̃(t, ζ1), Λ̃(t, ζ2), Λ̃(t, ζ3); ζ1, ζ2, ζ3 ∈ Pζ , t ∈

R+) contains a nonempty open subset of R3
+.

Assumption B*.5. implies that the generalized baseline hazard for each member does not

depend on the individual characteristics of the other group members. Moreover, Assumption

B*.6 imposes the condition that the three integrated generalized baseline hazard can inde-

pendently of each other vary on R3
+. A sufficient condition for this statement to be true is the

existence of a certain member-specific characteristic which affects only the member directly

but not the other group members.

Proposition 4 Let d1 = 0, d2 = 0, d3 = 0. Under Assumptions B.1,- B.4, B∗.4,- B∗.6, the

set of functions {Λ̃,∆j,k,∆j,kl : j, k, l = 1, 2, 3, k 6= j 6= l, k < l} and G in Model B are

identified from the joint distribution of {T1, T2, T3}|{d, x}.

3 Empirical Application

In the following we present our empirical Application. First, we introduce our data set, then

we discuss the estimation method and finally present our results.

3.1 Data

In our empirical study we use data from the National Longitudinal Survey of Youth 1979 (see

The NLSY79, 2005 for an introduction). The NLSY79 survey was established in an effort

17To keep the notation simple we have chosen to abuse a bit the notation. Specifically, we keep on using the
same notation for the extended baseline hazard, λ̃, even if this does not depend on the individual characteristics
of the other members as it happens with the case of non-common entruy dates.
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to generate a representative sample of young men and women aged 14 to 21 living in the

United States. Respondents are drawn from cohorts 1957 to 1964 and for each respondent,

all individuals aged 14 to 21 living in the same household at the time of the first round in 1979,

were also included in the survey.18 12,686 respondents were included this way living in 7,490

unique households. We restrict attention to single-respondent households and households

with more than one respondent where the respondents are siblings (blood-related and not

blood-related) and grew up together in their parents home.19 We observe 8,684 respondents

in 5,810 unique households satisfying these criteria, of which 1,549 comprise two, 516 three

and 153 four to six siblings.

In the 1984 survey three separate questions were asked addressing first-time marijuana

use. The respondents were asked in which year and which month they started using mari-

juana/hashish for the first time in their life. 5578 respondents report month and year and

3,723 have never used up to the interview date in 1984. Based on this and using information

on birth dates of the respondents, we can construct the durations until first time drug use

after passing the threshold age of 7 for each household member. For the respondents who have

never used, the durations are censored at the time of the interview date. For 178 respondents

no transition times are reported (174 respondents answer the question with ”Don’t know”

and 4 were not interviewed or refused to respond) In addition to the question on first-time

drug use, a monthly time-line of marijuana use for the past 4,5 years was established in July

1984. Furthermore, in surveys 1988, 1990, 1992, and 1994-2008 respondents are asked how

old they were when they first used marijuana. Combining the information of these three ques-

tions provides a detailed retrospective picture on drug-use behavior. From this we construct

an index measuring the degree of uncertainty in the responses due to inconsistencies in the

answers. This index may be used in a sensitivity analysis.

We combine the detailed information on monthly marijuana-use from Jan 1979 to July

1984 with annual information on the amount and frequency for all relevant survey years.

18This way the households are not complete, in the sense that only the siblings from cohorts 1957 to 1964
are included as respondents in the survey. We will refer to these incomplete groups as households from now
on.

19In the majority of all households selected this way, the siblings grew up living with both biological parents.
We can observe the time when individuals leave their parents home and the reason for this move (e.g. divorce
of the parents). In the analysis of social interaction effects we account for this by not allowing interaction
effects at calendar dates where the members do not live in the same household.
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Based on this, we can select the cases where a first-time transition is followed by a long-term

change in drug-use behavior.
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Figure 2: Pooled over all household members: (left) Distribution of age at transition; (right)
Distribution of the month of transition.

The resulting distribution of transition times pooled over all household members is pre-

sented in Figure 2. The left figure shows the distribution of age at transition. Before the age

of seven, only very few transitions occur. We drop those cases from the sample20 and choose

the age of seven as the threshold age after which siblings become at risk of using drugs. The

majority of transitions occurs between the age of 14 and 18. The right figure depicts the

distribution of the month at transition. There is a strong peak over the summer months June

and July in which American teenagers often go to summer camp and/or spend a lot of time

outside. In September the number of transitions increase again. At this time teenagers enter

a new year in high school and are exposed to many new influences. In our empirical analysis

we control for the different effects by adding time-varying dummies for each month to the

vector of covariates.

Figure 3 shows the estimated transition (baseline) hazards from a single spell Cox propor-

tional hazard model. There is a substantial difference between the first marijuana use times

of oldest and youngest siblings in the households. Younger siblings transition at an earlier age

compared to their older siblings. This effect could be driven by observable or unobservable

20These cases are most likely a result of the measurement error caused by the retrospective nature of the
fist-time drug use question.
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Figure 3: Estimated baseline hazards of a single spell Cox proportional hazards model using
data from the NLSY79 cohorts 1957-64 of households with at least three siblings on first-time
marijuana use of the youngest (dashed) and oldest (solid) sibling in the household.

characteristics such as the cohort or character traits which are different for the oldest com-

pared to the youngest siblings. An alternative explanation is the existence of positive social

interaction effects. Younger siblings experience the transitions of their older siblings making

them more likely to transition at an early age.

3.2 Maximum Likelihood Estimation

Model A provides a general framework of a multiple-spell model with interaction effects

which allows to specify a variety of models fitting different applications. In order to estimate

a model using data on first-time marijuana use, we specify the functional forms of λj, φj,

δj and G. This way the semi-parametric form of Model A is reduced to a model with a

finite set of parameters. The resulting parametric model can be estimated using standard

maximum likelihood methods.

Figure 4 (dashed line) shows the estimated baseline hazard of a Cox proportional hazard

model with a shared frailty term on the household level and a basic set of covariates. We use

the log-logistic density function to approximate this shape in the estimation of our full model.
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Figure 4: Estimated baseline hazard functions using data from the NLSY79 cohorts 1957-64
on first-time marijuana use: (dashed) Cox proportional hazard model; (solid) Parametric
proportional hazard model using a Log-logistic probability density function for the baseline
hazard. Both models are estimated with a basic set of covariates a shared frailty term on the
household level.

This function has a positive range and is able to approximate the shape of the baseline hazard

estimated by the more flexible Cox model (see Figure 4). In the main model specification

we assume proportionality of the covariate effects (Model A). This leads to the following

baseline and regression component function and the corresponding integral of this function

for sibling j in household i at duration t (counted in months)

λj(t) φj(xij(t)) =
α2,j

α1,j

(
t

α1,j

)α2,j−1(1 + (
t

α1,j

)α2,j)−2 eβ0,j+β
′
xij(t)

Λ̃j(t, xij(t)) =
t∑

τ=1

[(1 + (
τ

α1,j

)−α2,j)−1 − (1 + (
τ − 1

α1,j

)−α2,j)−1] eβ0,j+β
′
xij(τ−1)

with αq,j = αq,oldest for j = 1 and αq,j = αq,young for j > 1, q = 1, 2.

Further we specify the interaction effect δj with several multiplicative terms, each repre-

senting the influence of an experienced transition of a sibling. Further an additional multi-

plicative term accounts for the number of transitions experienced within the household up to

this point. For a sibling j living in a household i with Ji members at time t this yields

δj(t|Ti,−j, xij(t)) =
∏
k∈−j

δj,k(t|Ti,jk, xij(t))I(t>Ti,jk) eγcount
∑

l∈−j I(t>Ti,jl)
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with δj,k(t|Ti,jk, xij(t)) = exp( γk + γ
′

xxij(t) + γ
′

xint
(xij(t)× xik(t) )

with Ti,−j := {Ti,jk : k ∈ −j} and −j := {k ∈ Ji : k 6= j} and γk = γoldest for j = 1 and

γk = γyoung for k > 1.

We capture unobserved heterogeneity in the transition hazards by two additive compo-

nents. The term Vj of sibling j of household i is given by

Vij = V sh
i + V ind

ij

Here, the random terms V sh
i and V ind

ij are independently drawn from distributions Gsh and

Gind with the mean of Vij normalized to 1. The former term captures unobserved heterogeneity

of the hazard rates across households whereas the latter reflects unobserved heterogeneity

within households across different members. We assume that V sh
i can attain two values msh

1

and msh
2 with P (V sh

i = msh
1 ) = psh, representing households with high or low susceptibility

to drug use. Similarly, V ind
ij can attain two values mind

1 and mind
2 with P (V ind

i = mind
1 ) = pind.

This way the distribution of Vij, which is the sum of V sh
i and V ind

ij , has four mass-points.

Note that the term V sh
i which is shared across members of the same household generates a

correlation between terms Vij and Vik ρi,jk =
σ2
sh

σ2
sh+σ2

ind
, where σ2

sh = V ar(V sh) and σ2
ind =

V ar(V ind).

From this we can construct the hazard rate and survival function of each household member

j ∈ Ji given the transition times of the other members k ∈ −j

θj(t|{Ti,−j}, xij(t), Vij)

=

α2,j

α1,j
( t
α1,j

)α2,j−1

(1 + ( t
α1,j

)α2,j)2
eβ0,j+β

′
xij(t)

∏
k∈−j

δj,k(t|Ti,jk, xij(t))I(t>Ti,jk) eγcount
∑

l∈−j I(t>Ti,jl) Vij (4)

Sj(t|{Ti,−j}, xij(t), Vij)

= exp(−
∑
l∈−j

I(Ti,jk > 0)[Λ̃j(Ti,jl, xij(t))− Λ̃j(max
k∈−jl
{0, Ti,jk}, xij(t))] δj(Ti,jl|{Ti,−j}, xij(t)) Vij )

(5)

with {−jl} := {k ∈ Ji : k 6= j ∧ Ti,jk < Ti,jl}.

In the following we denote the transition durations of each household i by the vector of

random variables Ti = (Ti1 ... TiJi) and their realizations by ti = (ti1 ... tiJi). The durations
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within each household are observed only up to a common calendar time at which the interview

is conducted in 1984. We denote the resulting vector of censoring points as ci = (ci1 ... ciJi).
21

With this information we can construct the likelihood contribution of a household i with Ji

members.

 L(ti, ci, xi;α, β, γ,m, p)

=

∞∫
0

(
∏
j∈J

∞∫
0

θj(tij|{Ti,−j}, xij(t), Vij)I(cj=0)Sj(tij|{Ti,−j}, xij(t), Vij)dGind )dGsh

=
2∑
q=1

2∑
q1=1

...
2∑

qJi=1

∏
j∈Ji

θj(tij|{Ti,−j}, xij(t),msh
q +mind

qj
)I(cj=0)Sj(tij|{Ti,−j}, xij(t),msh

q +mind
qj

).

(6)

3.3 Results

We estimate our model of first time use of marijuana based on the likelihood function presented

in (4) - (6) at the end of Section 3.2. In our analysis we use data on 669 households with at

least three siblings growing up together. The results of three different model specifications

are reported in Table 1. Model I represents a simple model with covariates and a basic

specification of social interaction effects but without accounting for unobserved characteristics

(no Correlated Effects: σ2
sh = σ2

ind = 0). Two parameter estimates for the social interaction

effect functions γoldest and γyounger are reported (γx = γxint
= 0). The parameter γoldest

represents how the transition hazard of a sibling is affected if he/she experiences that the

oldest sibling in the household starts using marijuana. γyounger measures the effect if one

of the younger siblings starts using drugs. In this simple model, we find highly significant

and strongly positive estimates of these parameters. However, Model II reveals that the

estimates in Model I pick up a dependence between group members generated by unobserved

characteristics (Correlated effects). When we account for Correlated Effects in Model II, we

still find a highly significant positive effect of a transition of the oldest sibling in the household

but do not find a significant effect for the transition of a younger sibling. In Model III we

allow for additionally flexibility of the social interaction effect functions. We find that females

21Note that, household members are censored at the same calendar time. The resulting censoring durations
ci1, ..., ciJi may differ due to different entry dates of the members (age difference between siblings).
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are more strongly influences by a transition of their fellow siblings than males. Furthermore,

we do not find evidence for an effect of family net income on the strength of social interactions

within households. The last two parameters reported for Social Interaction Effects reflect the

estimated effects of a dummy which has value one if the sibling who starts using drugs and

the sibling how is affected by this transition are both female (or both male). We do not find

a significant effect for the same gender.

The estimated probabilities and mass points described in Section 3.2 imply variances σ2
sh,

σ2
ind of the two distributions Gsh, Gind and correlation ρjk between the unobserved hetero-

geneity terms of two group members Vij and Vik. The parameters are reported in the section

Correlated Effects in Table 1. We find evidence for unobserved heterogeneity across groups

(σ2
sh ≈ 0.1) but not within groups (σ2

ind ≈ 0.01) in Models II and III. This implies a high

correlation of Vij and Vik between two group members.

In this empirical section we find evidence for the fact that the oldest sibling in a household

influences his younger siblings in terms of his marijuana use. We however do not find evidence

for an effect of a transition of a younger sibling. Females are more strongly influenced by the

drug use behavior of their siblings than males. Furthermore, besides observable characteristics

and social interaction effects, unobserved characteristics shared among siblings explain part

of the dependence in the drug use behavior.

21



Model I Model II Model III

Variable estimate st.error estimate st.error estimate st.error

Covariates:

Oldest sibling .281*** (.089) .237*** (.098) .266*** (.099)
Female -.543*** (.064) -.619*** (.071) -.736*** (.09)
Birth year -.015 (.019) .008 (.023) .037 (.031)
Number Siblings -.384*** (.122) -.457*** (.147) -.225 (.194)
Family net income -.019 (.036) -.028 (.044) -.009 (.045)
Father employed -.129** (.064) -.122 (.081) -.211* (.109)
Poverty -.04 (.076) -.036 (.095) -.037 (.093)
Both parents in HH .433*** (.157) .475*** (.186) .516*** (.183)
School attendance .004 (.007) -.002 (.008) -.001 (.008)
White .289*** (.063) .386*** (.082) .376*** (.081)
Urban .225*** (.073) .238*** (.091) .252*** (.089)

Social Interaction Effects:

Sibling transitioning:

Oldest sibling γoldest .634*** (.08) .347*** (.113) .252* (.146)
Younger sibling γyoung .386*** (.056) .132 (.085) -.019 (.128)

Sibling affected:
Female - - - - .208** (.104)
Birth year - - - - -.033* (.02)
Number Siblings - - - - -.254 (.156)
Family net income - - - - .005 (.028)

Same characteristics:
Female - - - - .119 (.091)
Male - - - - .021 (.095)

Correlated Effects:

Shared term σ2
sh - - .118 . .105 .

Indiv. term σ2
ind - - .010 . .008 .

Correlation ρjk - - .914 . .921 .

Month dummies YES YES YES
Households ≥ 3 sib 669 669 669
Time periods 325 325 325
LogLikelihood -10179.3 -7381.5 -7372.4

Table 1: Estimation of the specification of Model A described in Section 3.2 using data
from the NLSY79 on first time drug use of siblings in 669 American households in which at
least three siblings grew up together. Estimates with *, ** or *** reflect a 0.1, 0.05 or 0.01
significance level.
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4 Conclusion

Our empirical results suggest that the oldest sibling has a distinct social role in the household

i.e. his behavior has a strong influence on the younger siblings, but not vice versa. This

reveals there can be strong asymmetries across different group members in terms of their

potential influence on others. Our approach can be used to identify such key members within

a group, and can predict the development of social multiplier effects over time. This allows

predicting the impact of public policies, depending on which members are initially targeted.

Our approach provides an alternative to interdependent utility equilibrium models in

studying social interactions from transition data. We argue that in applications such as sub-

stance use of teenagers, a transition of a peer can have the characteristic of an unanticipated

shock and may directly alter the behavior of other group members. Our approach exploits

the information on the exact timing of actions within a group, whereas standard approaches

do not make use of this information. This may be driven by the limitation of yearly survey

data, which is primarily used in studies of social interactions. However, administrative data

and data on interactions online constitute an increasingly important data source, providing

very detailed information on the timing of actions. Being able to exploit this information

may become increasingly valuable.
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Appendix

Notation

Before proceeding, we will introduce some notation and conventions which will be used

throughout the Appendices. The symbol G with some (double) subscript will refer to the

corresponding marginal or bivariate distribution. For instance, G12 denotes the bivariate dis-

tribution of (V1 V2)
′
. No superscript at G denotes, as already adopted in the main text, the

full trivariate distribution of (V1 V2 V3)
′
. Also, we will use the generic symbol L to denote the

Laplace Transform of some probability measure. The (double) superscript at L will indicate

the corresponding (mixed) partial derivative. To give an example, L(23)
G denotes the mixed

partial derivative with respect to the second and third argument of the Laplace Transform of

G. Finally, let D̄ := {d1 = 0, (d2, d3) ∈ R̄2
+ : d3 ≥ d2}, D := {d1 = 0, (d2, d3) ∈ R2

+ : d3 ≥ d2},

D∞ := {d1 = 0, d2 ∈ R+, d3 =∞}, and D2∞ := {d1 = 0, d2 =∞, d3 =∞}.

For the proof of the propositions we will utilize certain subsurvival functions. More pre-

cisely, for t > 0, x ∈ X, d ∈ D̄, and j = 1, 2, 3,

QTj(t|d, x) := P(Tj > t, Tj + dj < min
k∈{1,2,3}6=j

(Tk + dk)|d, x).

In addition, for t1, t > 0, x ∈ X, and j = 2, 3,

QT1(t1, t|d, x) :=

{
P(T1 > t1, T2 > t, T1 < T2 + d2|d, x)

P(T1 > t1, T2 > t+ d3 − d2, T3 > t, T1 < mink∈{2,3}(Tk + dk)|d, x)

if d ∈ D∞,

if d ∈ D.
QT1,Tj(t1, t|d, x) := P(T1 > t1, T2 > t+ d3 − d2, T3 > t, T1 < Tj + dj < Tk + dk|d, x) if d ∈ D.

Finally, for t1, tj, tk > 0, x ∈ X, and j, k = 2, 3 such that j 6= k,

QT1,Tj ,Tk(t1, tj, tk|d, x) := P(T1 > t1, Tj > tj, Tk > tk, T1 < Tj + dj < Tk + dk|d, x) if d ∈ D.

24



Proof of Proposition 1

The proof of Proposition 1 consists of three main steps. The first step describes the identifica-

tion of the integrated baseline hazards, the regressor functions, and the distribution function

of the unobserved heterogeneity terms. The second step deals with the identification of the

interaction effects caused by the first exit. Finally, the third step is concerned with the iden-

tification of the interaction effects caused by the second exit.

Identification of the set of functions {Λj, φj : j = 1, 2, 3} and G. For all t > 0, x ∈ X,

and d ∈ D2∞, we have

P [T1 > t|d, x] =LG1(φ1(x)Λ1(t)). (A.1)

Following analogous steps to Elbers and Ridder (1982), we achieve identification of φ1, G1,

and Λ1.

Next, we identify φ2 and Λ2. For almost any t > 0, x ∈ X, and d ∈ D∞, we obtain

∂

∂t
QT2(t|d, x) = φ2(x)λ2(t)L(2)

G12
(φ1(x)Λ1(t+ d2), φ2(x)Λ2(t)), (A.2)

It is straightforward, by Assumption B.3, to check that

lim
t→0,d2→0

[
∂

∂t
QT2(t|d, x)

/ ∂

∂t
QT2(t|d, x∗)

]
= φ2(x), (A.3)

which leads to identification of φ2. For any t > 0, x ∈ X, and d ∈ D∞,

P

[
2⋂
j=1

(Tj + dj > t+ d2)
∣∣∣d, x]=LG12(φ1(x)Λ1(t+ d2), φ2(x)Λ2(t)). (A.4)

We let t = t∗ and thus we can trace out LG12 on an open subset of R2
+ by varying appropriately

d2 and x. Given that LG12 is real analytic function (Abbring and Van den Berg, 2003a),

we identify LG12 (and consequently G12) on R2
+. Then, employing the relation (A.4), we

identify Λ2. The identification of φ3,Λ3, and G follows the same line of argument as that in

identification of φ2,Λ2, and G12, and is consequently omitted.

For the second and third step note that for t > 0

∆j,k(t|.) =

∫ t

0

∂Υj,k(ω|.)
∂ω

[λj(ω)]−1 dω,
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and

∆j,kl(t|.) =

∫ t

0

∂Υj,kl(ω|.)
∂ω

[λj(ω)]−1 δj,kl(ω|.)dω.

Hence, to identify ∆j,k and ∆j,kl it is sufficient to identify Υj,k and Υj,kl, respectively.

Identification of the set of functions {∆j,k : j, k = 1, 2, 3, j 6= k}. We begin with

the identification of ∆2,1 and ∆3,1. Three different cases are possible: i) 0 < T1 ≤ d2, ii)

d2 < T1 ≤ d3, and iii) T1 > d3. The identification methodology can be summarized as

follows. We first identify Υ2,1 for the cases i) and ii), next we identify Υ3,1 for the cases i)

and ii), and finally we jointly identify Υ2,1 and Υ3,1 for the case iii).

For almost all t1 such that 0 < t1 ≤ d2, each t > 0, d ∈ D∞, and x ∈ X,

∂QT1(t1, t|d, x)

∂t1
= φ1(x)λ1(t1)L(1)

G12
(φ1(x)Λ1(t1), φ2(x)Υ2,1(t|t1 − d2, 1, x)). (A.5)

By the first step, all the quantities on the right hand side are known except for the term Υ2,1.

By exploiting the facts that L(1)
G12

is strictly increasing in its arguments and that Υ2,1(t|t1 −

d2, 1, x) is either cadlag or caglad in t1 − d2 (Assumption A.4), we can identify Υ2,1 for the

case i). Similarly, for almost every t1 such that d2 < t1 ≤ d3, all t > t1 − d2, d ∈ D∞, and

x ∈ X,

∂QT1(t1, t|d, x)

∂t1
= φ1(x)λ1(t1)L(1)

G12
(φ1(x)Λ1(t1), φ2(x)(Λ2(t1 − d2) + Υ2,1(t|t1 − d2, 2, x))).

(A.6)

Identical arguments to the previous case give identification of Υ2,1 for the case ii).

Next, we proceed with the identification of Υ3,1 for the first two cases. More precisely, for

almost all 0 < t1 ≤ d2, all t > 0, d ∈ D, and x ∈ X we obtain

∂QT1(t1, t|d, x)

∂t1
= φ1(x)λ1(t1)L(1)

G (φ1(x)Λ1(t1), φ2(x)Υ2,1(t+ d3 − d2|t1 − d2, 1, x),

φ3(x)Υ3,1(t|t1 − d3, 1, x)). (A.7)

Next, we note that for almost every d2 < t1 ≤ d3, all t > 0, d ∈ D̄, and x ∈ X,

∂QT1(t1, t|d, x)

∂t1
= φ1(x)λ1(t1)L(1)

G (φ1(x)Λ1(t1), φ2(x) (Λ2(t1 − d2) + Υ2,1(t+ d3 − d2|t1 − d2, 2, x)) ,

φ3(x)Υ3,1(t|t1 − d3, 2, x)). (A.8)
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Recall that Υ2,1 has been identified for the two above cases. Then, the Υ3,1 can be uniquely

determined for the corresponding cases.

Finally, we turn our attention to the case iii). Note that for almost all t > 0, d ∈ D,

x ∈ X,

λj(t+ ηj) =
∂QTj(t|d, x)

∂t

[
L(j)
G (φ1(x)Λ1(t+ d3), φ2(x)Λ2(t+ d3 − d2), φ3(x)Λ3(t))φj(x)

]−1

,

(A.9)

where j = 2, 3, η2 = d3 − d2, and η3 = 0. For almost all t1 > d3, almost each t > t1 − d3,

d ∈ D̄, x ∈ X,

λj(t+ ηj)δj,1(t+ ηj|t1 − dj, 3, x) =
[
L(1j)
G (φ1(x)Λ1(t1),

φ2(x)(Λ2(t1 − d2) + Υ2,1(t+ d3 − d2|t1 − d2, 3, x)),

φ3(x)(Λ3(t1 − d3) + Υ3,1(t|t1 − d3, 3, x)))

× φ1(x)λ1(t1)φ2(x)
]−1∂2QT1,Tj(t1, t|d, x)

∂t1∂t
. (A.10)

The rest of this part is analogous to the proof of Proposition 1 of Drepper and Effraimidis

(2012). We fix t1, x, d2, and d3. Define Hj(t) := Λj(t + ηj) and Qj(t) :=
∂QTj

(t|d,x)

∂t
for

0 ≤ t ≤ t1 − d3, and Hj(t) := Λj(t1 − dj) + Υj,1(t+ ηj|t1 − dj, x, 3) and Qj(t) :=
∂QT1,Tj

(t|d,x)

∂t1∂t

for t > t1 − d3. Finally, gj:=λ1(t1)φ1(x)φj(x) and we supress dependence of Λ1(t1) and φj(x)

on t1 and x, respectively.

The equations (A.9), (A.10), by using the definitions of the previous paragraph, imply

that we have the following system of two differential equations for almost all t > 0

d

dt
H(t) = f (t,H(t)) ,

H(τ) = γτ , for some specific τ ∈ (0, t1 − d3) (initial conditions), (A.11)

where H := (H2 H3)
′

and f := (f2 f3)
′
, with

fj (t,H) =


[
L(2)
G (φ1Λ1(t), φ2H2, φ3H3)φj

]−1

Qj(t)[
L(12)
G (φ1Λ1 , φ2H2, φ3H3)gj

]−1

Qj(t)

if 0 < t ≤ t1 − d3,

if t > t1 − dj.

It is straightforward to verify that all the requirements of Lemma 1 of Drepper and Ef-

fraimidis (2012) are satisfied. Hence, H1 and H2 are uniquely determined on R+ (using also
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the fact that H1(0) = H2(0) = 0). By definition, identification of Υj,1(t|t1 − dj, 3, x) follows

for each t > d3 − d2 with t1, x, d2, and d3 be fixed. Since Υj,1(t|t1 − dj, 3, x) is either cadlag

or caglad with respect to t1 − dj, identification of Υj,1 for the case t1 > d3 is obtained. By

utilizing all the results of the previous paragraphs we derive identification of Υj,1 for the cases

0 ≤ T1 ≤ d2, d2 ≤ T1 ≤ d3, and T1 > d3.

For the identification of the remaining interaction effect functions, we briefly discuss the

necessary steps which are similar to the preceding paragraphs. Regarding the identification of

∆1,2 and ∆3,2, there are two possible scenarios: i) d2 < T2 ≤ d3−d2, ii) T2 > d3−d2. We first

identify ∆1,2 and ∆3,2 for the case i). In particular, we let d ∈ D∞ and we identify ∆1,2. Based

on this result, we can also directly identify ∆1,3 by considering d ∈ D. To jointly identify

∆1,2 and ∆3,2 for the the case ii), we let d ∈ D and by making use of Lemma 1, we achieve

identification. Finally, to jointly identify ∆2,3 and ∆1,3, we let d ∈ D and working analogously

to the previous paragraphs as well as utilizing Lemma 1, we get the desired result.

Identification of the set of functions {∆j,kl : j, k, l = 1, 2, 3, k 6= j 6= l, k < l}. We will

restrict our attention to Υ3,12; the arguments for the identification of the other combinations

of j, k, l are similar and thus we will omit the proof for the corresponding combinations. Two

scenarios are possible: i) T1 ≤ T2 + d2 < T3 + d3 and ii) T2 ≤ T1 + d1 < T3 + d3.

We will analyze the case i) as the proof for the case ii) is completely analogous. We can

write for all t > 0, almost all 0 < t1 < d2, almost all t2 ≤ d3 − d2, d ∈ D, and x ∈ X,

∂2QT1,T2,T3(t1, t2, t|x)

∂t1∂t2
= L(12)

G (φ1(x)Λ1(t1), φ2(x)Υ2,1(t2|t1 − d2, 1, x),

φ3(x)Υ3,12(t|t1 − d3, t2 + d2 − d3, 2, x))

× λ1(t1)φ1(x)λ2(t2)φ2(x)δ2,1(t2|t1 − d2, 1, x), (A.12)

Likewise, for all t > 0, almost all 0 < t1 < d2, almost every t2 > d3 − d2, d ∈ D, and x ∈ X,

∂2QT1,T2,T3(t1, t2, t|x)

∂t1∂t2
= L(12)

G (φ1(x)Λ1(t1), φ2(x)Υ2,1(t2|t1 − d2, 1, x),

φ3(x)Υ3,12(t|t1 − d3, t2 + d2 − d3, 3, x))

× λ1(t1)φ1(x)λ2(t2)φ2(x)δ2,1(t2|t1 − d2, 1, x). (A.13)

The left hand side of the above equation is observed from the data. By Propositions 1 and
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2, all the quantities on the right-hand side are known except for Υ3,12. Given that L(23)
G

is strictly decreasing in its arguments, the identification of Υ3,12 follows by using also the

fact that Υ3,12(t|t1 − d3, t2 + d2 − d3,N12, x) is either cadlag or caglad in (t1 − d3, t2 + d2 −

d3). If d2 < t1 < d3, the steps are almost identical by replacing φ2(x)Υ2,1(t2|t1 − d2, 1, x)

with φ2(x) (Λ2(t1 − d2) + Υ2,1(t2|t1 − d2, 2, x)) and δ2,1(t2|t1−d2, 1, x) with δ2,1(t2|t1−d2, 2, x).

Similarly, if t1 > d3 we are encountered with a single subcase and we replace φ2(x)Υ2,1(t2|t1−

d2, 2, x) with φ2(x) (Λ2(t1 − d2) + Υ2,1(t2|t1 − d2, 3, x)) and δ2,1(t2|t1−d2, 1, x) with δ2,1(t2|t1−

d2, 3, x).

Proof of Proposition 2

The identification strategy we follow is the same as in the proof of Proposition 1. Note that,

by construction, we always have Nk = Nkl = 3 and consequently, we will omit for notational

simplicity this information.

Identification of the set of functions {Λj, φj : j = 1, 2, 3} and G. The result is directly

obtained by making use of the distribution of {minj∈{1,2,3}(T1, T2, T3), arg minj∈{1,2,3}(T1, T2, T3)}|{x}

and the identification result of Abbring and van den Berg (2003a).

Identification of the set of functions {∆j,k : j, k = 1, 2, 3, j 6= k}. We will give in outline

the proof of the joint identification of Υ2,1 and Υ3,1 which, by definition, uniquely determine

the quantities ∆2,1 and ∆3,1, respectively. The (joint) identification of Υ1,2,Υ3,2 and also

Υ1,3,Υ2,3 can be derived in a similar manner and as consequence, we will not discuss here

these two cases.
Now, for any x ∈ X and almost all t > 0, we have

λj(t) =
[
L(j)
G (φ1(x)Λ1(t), φ2(x)Λ2(t), φ3(x)Λ3(t))φj(x)

]−1 ∂QTj(t|x)

∂t
. (B.1)
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Similarly, we obtain for each x ∈ X, almost all 0 < t1 < t, and j = 2, 3

λj(t)δj,1(t|t1, x) =
[
L(1j)
G (φ1(x)Λ1(t1), φ2(x) (Λ2(t1) + Υ2,1(t|t1, x)) ,

φ3(x)(Λ1(t1) + Υ3,1(t|t1, x)))φj(x)λ1(t1)φ1(x)]−1 ∂
2QT1,Tj(t1, t|x)

∂t1∂t
.

(B.2)

The equations (B.1) and (B.2) imply that we have a system of two differential equations.

Following similar arguments to the proof of Proposition 1 and employing the result of Lemma

of Drepper and Effraimidis (2012), we can solve with respect to Υ2,1(t|t1, x) and Υ3,1(t|t1, x).

Using the fact that the latter quantities are either cadlag or caglad with respect to t1, the

identification of Υ2,1 and Υ3,1 follows.

Identification of the set of functions {∆j,kl : j, k, l = 1, 2, 3, k 6= j 6= l, k < l}. We

will restrict our attention on Υ3,12 which automatically, by definition, yields identification of

∆3,12. the arguments for identification of the other combinations of j, k, l are similar and thus

we will omit the proof for these cases. There are two possible scenarios: i) T1 < T2 ≤ T3 and

ii) T1 < T3 ≤ T2.

For all t > 0 and almost all 0 < t1 < t2 < t, we have

∂2QT1,T2,T3(t1, t2, t|x)

∂t1∂t2
= L(12)

G (φ1(x)Λ1(t1), φ2(x) (Λ2(t1) + Υ2,1(t2|t1, x)) , φ3(x)Λ3(t3)

φ3(x) (Λ3(t1) + Υ3,1(t2|t1, x) + Υ3,12(t|t1, t2, x)))

× λ1(t)φ1(x)φ2(x)λ2(t2)δ2,1(t2|t1, x). (B.3)

The left-hand side of the above equation is observed from the data. By the two previous

results, all the quantities on the right-hand side are known except for Υ3,21. Given that L(23)
G

is strictly decreasing in its arguments, the identification of Υ3,12 follows (using also the fact

that Υ3,12(t|t1, t2, x) is either cadlag or caglad in (t1, t2) for any t1, t2 > 0 and x ∈ X).

Employing the statements of the two preceding results we prove the identification of ∆3,12

for the case i) The steps are very similar for the case ii)and thus are omitted. The proof is

complete.
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Proof of Proposition 3

Proof of Proposition 3. It is straightforward, by Assumption B.2, to show that for all

t ∈ (ta, tb), χ1 ∈ Pχ, and d ∈ D2∞,

P [T1 > t|d, χ1] =LG1(L−1
G1

(Λ̃(t, χ1)) + C) (C.1)

for some C 6= 0. Applying the result of Brinch (2008), identification of Λ̃ follows. Next, for

any t > 0, χ1, χ2, χ3 ∈ Pχ, and d ∈ D,

P

[
3⋂
j=1

(Tj + dj > t+ d3)
∣∣∣d, χ1, χ2, χ3

]
=LG(Λ̃(t+ d3, χ1), Λ̃(t+ d3 − d2, χ2), Λ̃(t, χ3)) (C.2)

By continuity of Λ̃(., χ) for any χ ∈ X and varying appropriately t, d2, and d3, we identify

LG which yields identification of G. The identification methodology of the functions which

capture the interaction effects is completely analogous to the proof of Proposition 1 and thus

the details are omitted.

Proof of Proposition 4

Proof of Proposition 4. Consider the scenario ζ(t) = ζ1(t) = ζ2(t) = ζ3(t) for all t > 0, that

is, all members in the group are characterized by the same realized covariate paths. Then,

for t > 0, ζ ∈ Pζ ,

P

[
3⋂
j=1

Tj > t
∣∣∣ζ] = LG(Λ̃(t, ζ), Λ̃(t, ζ), Λ̃(t, ζ))

= LG̃(Λ̃(t, ζ))

with G̃ being the distribution of the random sum V1 + V2 + V3. Applying the result of Brinch

(2008), we achieve identification of Λ̃ and G̃. Next, we have for t > 0 and ζ1, ζ2, ζ3 ∈ Pζ ,

P

[
3⋂
j=1

Tj > t
∣∣∣ζ1, ζ2, ζ3

]
= LG(Λ̃(t, ζ1), Λ̃(t, ζ2), Λ̃(t, ζ3)).

By Assumption B*.5, the arguments of the Laplace Transform attain all values in an open

subset of R3
+ which in turn, by the real analyticity property, yields identification of LG and

consequently of G. The identification strategy for the interaction effects is the same with the

proof of Proposition 2 and therefore the details are omitted.
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