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Abstract

The paper studies operating system adoption decisions of competing sellers

of hardware products such as smart-phones, computers, or videogame consoles.

Each seller can either develop a new operating system, which gives the seller con-

trol over the price at which the system’s code is licensed to application developers,

or buy the operating system from an independent platform. Adoption decisions

affect the equilibrium number of applications written for each system, and the de-

gree of differentiation between sellers. We show that even if sellers are symmetric

ex ante, in equilibrium one seller may develop its own OS while its rival adopts

the independent system. The independent platform may pay the sellers to adopt

its operating system in order to make more revenues from developers. We also

find that if users have a high value for applications, it is optimal for the platform

to commit to distribute its code to developers free of charge in order to make more

profits from sellers.
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1 Introduction

The decision which operating system (OS) to adopt is of utmost importance for pro-

ducers of smart-phones, computers, or video game consoles. The benefits consumers

can derive from the hardware and the profits that producers can reap depend on the

functionality of the operating system as well as the number and nature of applications

available for the OS. The producers normally face the problem to either buy an existing

OS or to costly develop an one own.

In the smart-phone industry, several major handset manufacturers use operating

systems developed by independent software companies. For example, Nokia and Sam-

sung use mainly the Symbian OS,1 or HTC Corporation and Asus, two leading smart-

phone producers in Asia, adopted Windows Mobile OS. However, other producers

developed their own OS although they also had the possibility to adopt existing ones.

Examples are RIM who developed the BlackBerry OS, or recently Apple Inc. who

developed the iPhone OS. Operating system adoption decisions thus differ between

companies, although one may argue that some of the smart-phone producers initial

market positions and adoption incentives were quite similar.

A prevalent feature in these industries, is that for a smart-phone, video game con-

sole, or PC producer to be successful, it needs to attract "two sides", namely users and

developers. The latter write applications (games in the case of video game consoles)

for the adopted OS. Each group exerts positive indirect network externalities on the

other. If a producer attracts many users, application developers face a larger market

base, which makes the OS that runs on the producer’s hardware more attractive for

developers. Vice versa, the more applications are available for an OS, the more attrac-

tive is any hardware using this OS for users. As a result, if a producer develops its

own OS, it acts as a two-sided platform who controls the pricing decision on the user

and the developer side. If a company chooses the buy the operating system, on the

other hand, then it sets the price for users but the independent platform sets the fees

to developers, i.e. royalties and the fee to license its code. At the same time, if several

hardware producers decide to adopt the same OS, then they all benefit from the fact

that the OS’s larger market base is likely to induce more applications.

Several questions arise. First, when is it optimal for a hardware producer to buy

the OS from an independent platform instead of developing its own OS? In particular,

how does competition between producers affect their OS adoption decision? Second,

what is the optimal pricing strategy of an independent OS developer?

The existing literature on indirect network externalities, which we will summarize

1In 2008, Nokia acquired Symbian Ltd. and transferred it into the Symbian Foundation, an organiza-
tion that is nevertheless still independent of Nokia.
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below, only considers the case in which platforms control both user and developer

prices. It has therefore neglected the case that the two sides of the market, application

developers and users, do not necessarily buy from the same firm, as is the case in

the industries described above. Instead, the OS owner, who sets licensing fees for

application developers, may be distinct from the firm that sells to users.

In this paper we develop a model that accounts for this possibility, allows such a

market structure to arise endogenously and provides conditions under which differ-

ent market structures occur. In addition, we show how the independent platform can

influence the chosen structure by its pricing policy. We thereby provide an answer to

the questions proposed above. In particular, the framework is chosen so as to capture

the key features of the smart-phone industry and other markets with similar character-

istics. We consider a model with two producers who independently choose between

developing an OS or buying an independent OS. The utility of final users is increasing

in the number of available applications, and application developers earn more if they

can sell to a larger number of users. Developing an OS is costly, but allows a producer

to differentiate from its rival, and to internalize indirect network externalities by ad-

justing prices on both sides of the market. If both producers adopt the independent OS,

this (endogenously) leads to more applications being developed for the OS because the

user base for this OS is larger. We also study the implications of freeware, whereby the

independent OS owner commits not to charge application developers, as is commonly

observed.2

We show that the producers’ equilibrium OS adoption decisions depend on their

OS development costs and the degree of differentiation if the producers adopt dif-

ferent OS. The independent platform attracts both producers whenever the degree of

differentiation between different operating systems is small, even if the development

costs are negligible. The effect of higher indirect network externalities if both produc-

ers adopt the same OS is crucial in this case, and dominates the gains from coordinated

pricing decisions and from differentiation that a producer could achieve by developing

its own OS. This may contribute to the explanation why in the market for smart-phones

the independent OS of Symbian has by far the largest market share globally.3

The outcome is different if the degree of differentiation between the OS of a pro-

ducer and the independent platform is relatively large. Three different scenarios can

occur in equilibrium, depending on the size of the development costs. If development

2For example, Windows Mobile does not charge developers for getting access to the development
tools but only a certification fee of $99 to sell their applications. Recently Niklas Savander, Executive
Vice President Services at Nokia said: "Our goal is ... to make it effortless for our partners to create highly
appealing, context-relevant applications." This also includes to charge developers no or only small fees
for access to the software.

3For example, in the second quarter of 2009 this market share was 50.3% followed by RIM’s Black-
Berry OS with 20.9% and Apples’s iPhone OS with 13.9%.
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costs are small, both producers develop their own OS. If costs are intermediate, an

asymmetric market structure arises, in which one producer creates its own OS while

the other buys the existing one. If costs are high, both producers buy the independent

OS. The asymmetric market structure is the most interesting. A producer who creates

its own OS induces differentiation from its rival and gets revenues from both users and

developers but has to incur development costs. By contrast, the producer who buys the

existing OS saves the development cost and free-rides on the differentiation effect. Al-

though this producer earns revenue only from users, its profit is often larger than that

of its rival who developed its own OS. Intuitively, this producer obtains differentiation

for free. Each producer therefore wants to create a new OS to differentiate only if its

rival does not do so. Thus, there are two asymmetric equilibria dependent on which

producer develops its own OS and which one buys from the independent platform.

Turning to the pricing policy of the independent platform, we show that it can

be optimal for the platform to pay producers to adopt its OS. The reason is that the

platform can recoup losses on the producer side from application developers. Such

negative fees are optimal if one or both producers are sufficiently close to being indif-

ferent between adopting the OS from the platform or developing their own. A slight

change in the parameters may induce a large reaction in the platforms pricing policy.

For example, if development costs for producers increase slightly, the platform may

find optimal to attract both producers instead of just one, and will do so by setting

large negative fees. If the independent platform aims to attract only one producer, on

the other hand, it will set a positive fee.

We also analyze under which conditions the independent platform can gain from

committing to let application developers access its code free of charge. We find that

such a strategy is profitable if the indirect network externality from developers to users

is large, that is, if users value applications highly. In this case commitment to zero li-

censing fees allows the platform to attract one or both producers for a larger range

of parameters. Additionally, the commitment to freeware increases the independent

platform’s profits even if the market structure remains unchanged. The intuition is

twofold. First, more developers create applications for the independent OS if it can

commit to freeware. Therefore, producers receive higher revenues from users and are

willing to pay more for the OS. The second effect is more subtle. Without freeware,

if a producer attracts more users by lowering its price, developers gain as well. But

the independent platform has an incentive to keep part of this gain by charging higher

licensing fees to developers, which deters producers from reducing their prices. This

lowers producers’ profits. By committing to freeware the independent platform com-

mits to refrain from such behavior, and can therefore charge higher fees to producers

in the first place. Overall, the analysis shows that the possibility to commit to free soft-
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ware can reverse the revenue source of the independent OS. Without commitment, the

independent platform may pay producers to adopt its software and make money from

developers only. With commitment, the platform foregoes any profits from developers,

but can charge large producer fees.

The paper contributes to the literature on competition between two-sided plat-

forms, initiated by Caillaud and Jullien (2003), Rochet and Tirole (2003, 2006) and Arm-

strong (2006). Among many other things, this literature points out that the price set to a

group of customers crucially depends on whether this group can join only one platform

(so-called single-homing) or several platforms (multi-homing). The single-homing side

is treated favorable because platforms need to compete fiercely for these buyers while

the multi-homing side is usually exploited. In our model end users single-home, which

is a realistic assumption when considering smart-phones or game consoles; our mod-

elling of the developers side permits both a single-homing and a multi-homing inter-

pretation. The main difference to our model is that we allow for the case that the OS

is different from the hardware producer which implies that the company that prices

to users is different from the one that prices to developers. In addition, the existing

papers deal with the case in which the hardware of each producer uses a different OS,

which implies that the applications that run on the OS of one producer are incompati-

ble with that of any other producer. In our framework, both producers may decide to

license the same OS from an independent platform. We thus allow for compatibility

between applications to arise endogenously.

Casadesus-Masanell and Ruiz-Aliseda (2009) examine compatibility issues in a

model of platform competition with indirect network externalities. They compare the

case in which the applications developed for one platform are compatible with the

other platform to the case in which they are incompatible.4 They find, for example,

that under incompatibility, but not under compatibility, an asymmetric equilibrium in

which only one platform is active can arise. As Casadesus-Masanell and Ruiz-Aliseda

(2009), we allow applications to be compatible. In contrast to their paper, however,

compatibility arises only if both producers use the same independent OS, instead of

investing into development. The equilibrium market structure is therefore endoge-

nously determined by the producers’ decisions, whereas it is exogenous in Casadesus-

Masanell and Ruiz-Aliseda (2009). In addition, we extend the analysis to incorporate

commitment to freeware.5

4The question about compatibility and competition was pioneered by Katz and Shapiro (1985) who
consider direct network effects. For further discussions on this issues see, among other papers, Katz and
Shapiro (1994), Crémer, Rey and Tirole (2000) or Doganoglu and Wright (2006).

5The developer side in Casadesus-Masanell and Ruiz-Aliseda (2009) is modelled in a more elabo-
rate way than in our model. In particular they allow the developer price to depend on the platforms’
developer fees. As will become clear later, we abstract from this by supposing that the optimal price
a developer charges is independent of the platform fees. We make this sacrifice to focus on our main
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Hagiu (2006a) considers a situation where developers enter the market before users,

and analyzes whether the platform can gain from committing to a user price at the time

developers enter. He finds that platforms benefit from this commitment possibility

if developers can multi-home, while under single-homing the option to commitment

leaves profits unaffected. Our analysis complements the study by Hagiu (2006a) in

two respects. First, we consider the reverse sequence of events, namely users entering

before developers, a more realistic assumption in the smart-phone industry. Second,

when analyzing the case of freeware, we allow the independent platform to commit

to zero prices. Thus, is our case commitment is possible before the market structure is

determined. As in the papers above, the market structure is exogenous and there is no

independent platform in Hagiu (2006a).

Our analysis of commitment to freeware is also related to studies of mixed oligopoly

in which one firm distributes its product for free while another charges a positive

price. The most prominent analyses concern competition between an open source and

a proprietary platform, see e.g. Economides and Katsamamkas (2006), or Casadesus-

Masanell and Ghemawat (2006).6 The proprietary platform follows a profit-maximizing

strategy while the open-source platform charges zero prices both to users and develop-

ers. Economides and Katsamamkas (2006, Section 6) provide conditions under which

industry profits in case of a proprietary system are larger than in case of an open-source

system. Casadesus-Masanell and Ghemawat (2006) consider a dynamic model of com-

petition between a proprietary and an open-source platform. They find that although

demand-side learning is larger for the open-source platform, both platforms obtain

positive market shares in the long-run. In contrast to these papers, we do not consider

open-source but (partially) free software: although platform charges a zero fee to de-

velopers, it still makes revenues from producers. Moreover, in the above mentioned

papers the industry structure is exogenously given, while we provide conditions under

which it is indeed optimal to commit to free software.

The rest of the paper is organized as follows. The next section sets out the basic

model. Section 3 derives the equilibrium and analyzes under which conditions pro-

ducer fees are negative. Section 4 considers the case of commitment to free software

and Section 5 concludes. All proofs are relegated to the Appendix

questions.
6For further studies, see also Hagiu (2006b) and Ormen (2008).
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2 The Model

Industry Structure There are two ex ante symmetric hardware (e.g., smart-phone)

producers, denoted by i ∈ {1, 2}, that sell directly to final users.7 Prior to selling,

each producer installs an OS on its hardware, which allows end users to fully exploit

the hardware and to add applications later on. There are two possible sources of OS

for each producer: either the producer develops its own OS, or it uses the OS of an

independent platform denoted by I . We exclude the possibility that several producers

share an OS developed by one of them. All large smart-phone producers indeed either

use their own OS (Apple uses MAC OS X , RIM its own Blackberry OS) or buy from an

independent company like Symbian, which is used by several producers like Nokia,

Sony-Ericsson and Samsung. There are applications developers who write applications

that each run on a specific OS. Applications developers spend time and money on

developing software for these applications and sell them to end users.

Timing In the first stage, the independent platform I sets a price hI for its OS that

can either be positive or negative. The producers then simultaneously decide whether

to adopt the OS from I , or to incur cost C > 0 to develop a new OS. The OS choice

of i = 1, 2 is denoted by si ∈ {I, o}, where o stands for own OS. In the second stage,

each producer sets the price pi it charges to final users for its "system", the bundle of

its hardware with the adopted OS. Each potential user decides which system to buy

if any. We denote the number of users who choose to buy the system from producer

i by qi. In the third stage, OS owners (I and potentially 1 and/or 2) set fees charged

to developers. We denote by fI the fee set by I , and by fi the fee set by i if it has its

own OS. For simplicity, we suppose that this fee to developers is a fixed charge. At

the beginning of Section 3 we show that our analysis remains unchanged if this fee is

instead a royalty—that is, OS owners charge a price for each application that runs on

their OS—because profits of OS owners and developers are the same in both scenarios.8

Finally, in the fourth stage developers learn their development costs for all potential

applications, decide which applications to write for which operating system(s), and

set the price at which they sell their applications to end users. End users decide which

applications to buy. All past decisions are public information. Table 1 gives a graphical

representation of the time line:

7In some countries, such as the US, the majority of consumers buy their cell phones from their ser-
vice provider bundled with a contract rather than directly from the producer. We abstract from this
additional station in the supply channel to focus on the OS adoption decision.

8As will become evident there, even if both fees are possible, the profits an therefore the results are
the same.
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Stage 1 Stage 2 Stage 3 Stage 4

I sets hI Producers set pi OS owners Dev. join OS

Producers set si ∈ {I, o} Users decide to buy set fI (and fi) and set prices

Table 1

Two remarks on our time structure are in order: First, we suppose that the inde-

pendent platform has already developed an OS and therefore does not have to incur

costs to do so. This is a realistic description in many industries. Consider for exam-

ple the smart-phone industry. In this industry, Symbian OS was a successor of the OS

EPOC that was developed in the 1980’s by Psion Plc. for electronic organizers. Only

in 1998 Nokia, Motorala and Ericsson adopted this OS under the name Symbian for

use in their smartphones. To the contrary, RIM developed its BlackBerry OS only in

the late 1990’s. This feature that an independent firm has developed an OS some time

in advance—perhaps for some other purpose—is also present in other industries. Sec-

ond, we suppose that users decide which hardware to buy in advance of developers’

decisions for which OS to write applications. This assumption can be observed in the

smart-phone industry, where the development of an application does not take much

time and so developers can switch between systems at relatively little costs. Therefore,

developers can wait to observe users’ choices before investing in application develop-

ment, while users buy their phones also to enjoy basic services, namely making phone

calls or sending text messages.

Applications market We assume that a user’s willingness to pay for an application

that runs on his system is equal to vH > 1 with probability ρ and equal to 1 with

probability 1−ρ, where 1 > ρvH . This reflects the idea that most users have a relatively

low valuation for many applications but each user has a high reservation price for the

few applications that interest him most. Total demand at any price up to 1 is therefore

qi if an application runs only on i’s system, and q1 + q2 if an application runs on both

systems, where qi denotes the number of users who previously purchased system i.

The cost of developing any given application is a random draw from the uniform

distribution with support [0, c]. For any available OS, there is a continuum of potential

applications of measure 1. Once developed, the marginal cost of producing an ap-

plication is zero. The intellectual property rights of any potential application belong

to a single developer, so that successful developers can charge the profit-maximizing

price, which is 1 (recall that 1 > ρvH). The expected gain for an end user from every

application that runs on the system he buys is then equal to

x ≡ ρ(vH − 1). (1)
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Given all applications are priced at 1, it is profitable for a developer with cost real-

ization c to write an application for an OS only whenever

c ≤ qj − fj,

with j ∈ {I, 1, 2}. In particular, if the two producers both adopt OS I , then all appli-

cations with costs c below (q1 + q2) − fI are profitable to develop, and the number of

applications for the OS of I is

Ni =
(q1 + q2)− fI

c
. (2)

On the other hand, if producer i develops its own OS, the number of applications for

this OS is

Ni =
qi − fi

c
, (3)

independent of the rival’s decision to develop an own OS or not. Finally, if producer i

adopts I’s OS, while the rival creates an own one, the number of applications for the

OS adopted by i can be written as

Ni =
qi − fI

c
. (4)

To avoid having to deal with corner solutions, we assume in the remainder of the

analysis that c is so high that it is always unprofitable to develop applications at this

cost.

In both (2) and (3) the number of profitable applications for an OS increases with

the number of users of the OS. In other words, positive indirect network externalities from

end users to application developers affect the supply of applications. This suggests that

an important advantage of both producers’ adopting the same OS is that the resulting

scale will lead to a larger number of applications, which in turn renders the hardware

plus OS bundles more attractive for consumers.

Systems market Producers sell hardware plus OS bundles, also called systems, to

end users. A key feature of the market for systems is that positive indirect network

externalities arise from application developers on end users. A system becomes more

attractive the more applications users anticipate will run on the system, because users

derive an expected value of x as defined in (1) from every application. At the time users

buy systems, they cannot yet observe the numbers of applications. Strictly speaking,

their demands hence depend on anticipated numbers of applications. Since users’ ex-

pectations are accurate in equilibrium, however, we take a short-cut by directly writing

8



demands as functions of the numbers of applications.

If s1 = s2 = I , the inverse demand for system i, i 6= −i ∈ {1, 2}, is

pII
i = K + xNi − qi − δq−i, i ∈ {1, 2}, (5)

where (p1, p2) are the prices of the two systems.9 K > 0 is the gross utility users de-

rive from the system without any applications. The parameter δ < 1 measures the

substitutability between two systems that employ the same OS. Since both producers

adopt the same OS, users know that N1 = N2. Inverting the demand system (5), using

N1 = N2 and solving for the direct demand of firm i 6= −i ∈ {1, 2} gives

qII
i (pi, p−i, Ni) =

(K + xNi)(1− δ)− pi + δp−i

1− δ2
, i ∈ {1, 2}. (6)

If si 6= s−i, i.e. producers do not adopt the same system, the inverse demand

function is given by

p
sis−i

i = K + xNi − qi − γq−i, i ∈ {1, 2}.

Inverting this demand system and recognizing that the number of applications for each

of the two systems may differ since si 6= s−i yields a direct demand system of

q
sis−i

i (pi, p−i, Ni, N−i) =
K(1− γ) + x(Ni − γN−i)− pi + γp−i

1− γ2
, i ∈ {1, 2}. (7)

It follows that in this case the demand of a producer increases in the number of appli-

cations for its OS but falls in the number of applications for the rival’s OS.

An important assumption is that

γ < δ.

This assumption captures the fact that OS typically differ along dimensions other than

the available applications. Some consumers may simply prefer one OS’s interface over

that of another, or there exist different applications for for the two systems. Systems

that run on different operating systems are therefore less good substitutes than two sys-

9This demand can be derived for example by a population of users each with unit demand who
differ in their willingness to pay θ for the hardware component of each producer where θ uniformly
distributed on [0,K]. It can also be generated by a representative consumer with utility function.

U = (K + xNi)qi + (K + xN−i)q−i −
1
2
(q2

i + q2
−i + 2βqiq−i)− piqi − p−iq−i + M,

where M is the utility from income. Differentiating this utility function with respect to qi and q−i again
yields the inverse demand system above.
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tems that both employ the same OS, even if the two distinct OS offer the same number

of applications. Note that for simplicity we assume that the degree of differentiation is

γ whenever the two systems use different OS, irrespectively of whether one of the OS

is I or not.

The producers’ marginal costs of producing hardware are assumed to be constant

and normalized to zero.

To guarantee interior solutions, we assume that

8c̄(c̄− x− c̄δ2) + 2x2 − x− c̄ > 0.

This assumption guarantees that the indirect network externality from developers on

users is not too large (x not too close to 1), and that the two producers are not too

close rivals (δ not too close to 1); otherwise, one producer would corner the market in

equilibrium and the other would be inactive.

Finally, we assume that C is small relative to the profit producers earn in the mar-

ket. This is just a simplification to avoid that producers are deterred from developing

their own OS because they would earn negative profits by doing so. As will become

clear later, all our results would be qualitatively the same without this assumption but

the analysis is more cumbersome since there are more cases to differentiate.

Equilibrium concept We analyze the subgame-perfect equilibria of the sequential

game described above, but exclude any equilibria that rely on coordination failure. In

particular, this rules out situations in which both producers adopt the OS of I although

they would both be better off in another equilibrium where each develops its own OS,

or vice versa.

3 Equilibrium Operating System Adoption Decisions

We solve the game backwards. In stage four developers decide how many applications

to write for each system. We determined the outcome of this stage in the last section,

i.e. dependent on the adoption decisions of producers the number of applications for a

system is given by (2), (3) and (4), respectively. We can therefore move directly to the

determination of the developer licensing fees and the user prices.

User prices and application developer licensing fees In stages two and three, when

systems first set end user prices and OS owners then set licensing fees, we have to dis-

tinguish between three different cases: either both producers adopt OS I , one producer

developed its own OS while the other adopted OS I , or both producers developed their
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own OS.

(i) Both producers adopt the OS I

If all systems adopted OS I , the number of applications as a function of how many

users the systems have, is given in (2). The profit I earns from licensing its code to

application developers at a fee of fI is(
q1 + q2 − fI

c̄

)
fI .

Maximizing this profit with respect to fi yields

fI =
1

2
(q1 + q2) and Ni =

1

2c̄
(q1 + q2) for both i, (8)

which gives a profit to I of ΠI = (q1 + q2)
2/(4c̄).

We can easily check that if the platform could charge a royalties in addition to the

fixed fee, it would get the same profit. To see this we can first write the platform’s profit

as ΠI = ((q1 + q2)(1− rI)− fI) (fI + (q1 + q2)rI)/c̄. Maximizing with respect to fI and

rI yields that fI = 1/2(q1 + q2)− (q1 + q2)rI while rI is left undefined.10 Independently

of the exact amount of fI , I’s profit is ΠI = (q1 +q2)
2/(4c̄), which is the same as without

royalties.

Now we turn to the third stage when producers set user prices. If both producers

use OS I , the demand functions are given by qII
i (pi, p−i, Ni, N−i) in (6) while Ni, i ∈

{1, 2} is derived in (8). Inserting (8) into (6) and solving the system of equations for qi

yields

qi =
2Kc̄(1− δ)− pi(2c̄− x) + p−i(2δc̄− x)

2(c̄(1 + δ)− x)(1− δ)
, i ∈ {1, 2}.

Since production costs are zero, the profit producer i earns from selling to end users is

simply piq
II
i (pi, p−i, Ni, N−i). Maximizing profits with respect to pi to derive reaction

functions and solving for the equilibrium prices yields

pi =
2Kc̄(1− δ)

4c̄− 2c̄δ − x

and equilibrium profits of

ΠII =
2K2c̄(1− δ)(2c̄− x)

(4c̄− 2c̄δ − x)2(1 + δ − x)
.

One can easily check that Πgg is increasing in x and K and decreasing in δ. The corre-

10Armstrong (2006) obtains a similar result in a model of two-sided platform competition when con-
sidering membership fees in addition to per-transaction fees.
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sponding profit of platform g from licensing its code to developers is

ΠII
I =

K2c̄(2c̄− x)2

(4c̄− 2c̄δ − x)2(c̄(1 + δ)− x)2
. (9)

(ii) Producer i develops its own OS, producer −i buys from I

The number of developers system i attracts is now given by (3) while the number of

developers that system −i attracts is given by (4). In the same way as in case (i) we can

calculate the profit-maximizing licensing fees, which yields fI = q−i/2 and fi = qi/2.

The corresponding numbers of applications are Ni = qi/(2c̄) and N−i = q−i/(2c̄). The

resulting profits of OS owners are (qi)
2/(4c̄) for producer i and (q−i)

2/(4c̄) for OS I .11

Inserting Ni = qi/(2c̄) and NI = q−i/(2c̄) in the demand functions in (7) gives

qi =
2c̄(K(2c̄(1− γ)− x)− pi(2c̄− x) + 2γc̄p−i)

(2c̄(1 + γ)− x)(2c̄(1− γ)− x)
, i ∈ {1, 2}.

The continuation profit of firm i in stage 3 includes the future revenue from licensing to

application developers, and is hence equal to piqi + q2
i /(4c̄), while −i’s profit is simply

its immediate revenue p−iq−i. Solving for the equilibrium prices yields

pi =
K(2c̄ + 2γc̄− x)(2c̄− 2γc̄− x)(4c̄2(1− γ2) + x(1 + x)− 2c̄(1 + 2x))

σ

and

p−i =
K(8(c̄− x)− 4c̄2γ(1 + γ) + 2(x2 − c̄ + γc̄x))(2c̄ + 2γc̄− x)(2c̄− 2γc̄− x)

2σ
,

where

σ = 8c̄4(4+γ4−5γ2)−4c̄3(2+16x−γ2−10xγ2)+2c̄2x(6+24x−γ2−5xγ2)−2c̄x2(3+8x)+x3(2x+1).

Inserting prices back into profits yields the following profit for producer i who devel-

ops its own OS:

ΠoI =
K2c̄(2c̄− x)(8c̄(c̄− x + c̄γ2) + 2(x2 − c̄) + x)(2c̄ + 2γc̄− x)2(2c̄− 2γc̄− x)2

ρ2
.

Producer −i’s profit can be written as

ΠIo =
K2c̄(2c̄− x)(8(c̄− x)− 4c̄2γ(1 + γ) + 2(x2 − c̄ + γc̄x))2(2c̄ + 2γc̄− x)(2c̄− 2γc̄− x)

2ρ2
.

11As in case (i) if the firms could charge royalties in addition to developers fees, this would not change
profits.
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The profit of OS g from licensing its code to application developers is given by

ΠIo
I =

K2c̄(2c̄− x)2(8(c̄− x)− 4c̄2γ(1 + γ) + 2(x2 − c̄ + γc̄x))2(2c̄ + 2γc̄− x)2

4ρ2
. (10)

(iii) Both producers develop their own OS

If both producers develop their own software, then by the same logic as above we

get that fi = qi/2 and Ni = qi/(2c̄), i ∈ {1, 2}. User demand function are the same as

in case (ii). When setting user prices, both producers’ profit functions include future

licensing revenues equal to (qi/2)2 /c̄ in addition to revenues from selling systems to

end users. Calculating the equilibrium prices in the third stage in the same way as

above yields

pi =
K(2c̄2 + x2 − 3xc̄− 4γ2c̄2)

(6c̄2 + 2x2 − 7xc̄− 2γxc̄ + 4γc̄2(1− γ))
,

which yields an equilibrium profit for each firm of

Πoo =
K2c̄(2c̄− x)(8c̄(c̄− x− c̄γ2) + x(2x− 1)− 2c̄)

(8c̄(c̄− x) + x(2x + 1) + 2c̄γ(2c̄(1− γ)− γx)− 2c̄)2 .

The profit of I is zero since no producer adopted its OS.

OS adoption decisions In stage one, each producer decides if it wants to build its

own OS or accept the offer from the independent OS I . Clearly, if a producer in the

first stage accepted to use the OS of I , it does not develop it own OS because this costs

C > 0 but the producer cannot use it due to the contracting requirement. The profit of

the producer who accepts is therefore ΠII −hI if the rival also uses OS I and ΠIo−hI if

the rival develops its own OS. If producer i refuses to buy the OS of I in the first stage,

its profit from developing its own OS also depends on the decision of its rival −i. In

particular, if the rival develops its own OS, then the profit of producer i is Πoo − C

while if −i uses the OS from I , then i’s profit ΠoI
i − C. By our assumption that market

profits are large relative to C, these profits are positive. This gives the following pay-off

matrix in stage 2:

1\2 o I

o (Πoo − C, Πoo − C) (ΠoI − C, ΠIo − hI )

I (ΠIo − hI , Πoo − C) (ΠII − hI , ΠII − hI )

Pay-off matrix in stage 2

The subgame has an equilibrium in which both producers adopt the OS of I if and

only if no producer has an incentive to unilaterally deviate to developing its own OS:

ΠII − hI ≥ ΠoI − C. (11)
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The subgame has an equilibrium in which each producer develops its own OS if and

only if

Πoo − C ≥ ΠIo − hI . (12)

Finally, an equilibrium of the subgame in which the two producers make different

choices exists if and only if the following two conditions hold:

ΠoI − C > ΠII − hI

ΠIo − hI ≥ Πoo − C

or

hI > ΠII − ΠoI + C (13)

hI ≤ ΠIo − Πoo + C (14)

are both satisfied. For (13) and (14) to be satisfied simultaneously for some hI , it is

necessary that

ΠoI − ΠII ≥ Πoo − ΠIo. (15)

In words, a producer’s change in profit from developing an own OS instead of adopt-

ing the one from I must be higher if the rival adopts I’s OS than if the rival also devel-

ops its own. If (15) holds, then there exist two asymmetric equilibria for the range of

offers hI that fulfill ΠII − PioI + C < hI ≤ ΠIo −Πoo + C, and no symmetric equilibria.

On the other hand, if (15) is violated, any equilibrium must be symmetric.

The proof of Proposition 1 shows that (15) is violated if δ is close to γ but holds if δ

is sufficiently above γ. In other words, an asymmetric equilibrium can exist only if the

adoption of different operating systems increases system differentiation sufficiently.

If (15) is violated, then conditions (11) and (12) are satisfied simultaneously for

some hI . For this range of hI , it is optimal for a producer to develop its own OS if and

only if the rival is also doing so. Without further equilibrium selection, both symmetric

equilibria co-exist in this case. As mentioned, we use a simple and natural selection

criterion that producers can coordinate on the equilibrium that yields larger profits (to

each of them). As we show in the proof of Proposition 1, even at the highest price that

g can charge such that (11) still holds the producers earn more if they both adopt OS

I than if both develop their own OS. We will therefore assume that both producers

accept I’s offer in this case.

We can now determine the optimal fee that I can charge to induce one or the other

equilibrium. The highest fee hI to induce an equilibrium in which both producers
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adopt OS I is such that (11) hold with equality. In this case the overall profit of I is

2(ΠII − ΠoI + C) + ΠII
I ,

where ΠII
I is the future profit from licensing to application developers, as given in (9).

Similarly, the highest price that I can charge in an asymmetric equilibrium in which

only one producer adopts the OS of I is such that (14) holds with equality, and I’s

overall profits in this case is

ΠIo − Πoo + C + ΠIo
I ,

where ΠIo
I is as given in (10).

The equilibrium outcome depends on the interplay between the developing costs

and the degree of differentiation. To simplify the exposition we define

y ≡ δ/γ,

with 1 ≤ y ≤ 1/γ. A higher y means that there is a larger difference, in terms of the

degree of substitutability, between the situation where both producers use the same OS

and situation where they use different operating systems. The following Proposition

summarizes the equilibrium adoption decision as a function of y and C.

Proposition 1

There exists a unique y∗ such that the following holds:

For all y ≤ y∗ both producers adopt the OS of I if C ≥ Ĉ(y), and no producer adopts

the OS of I if C < Ĉ(y). Ĉ(y) = 0 for y ≤ y and is strictly increasing in y for y ≥ y.

For all y > y∗ both producers adopt the OS of I if C ≥ Č(y), only one producer adopts

the OS of I if Č(y) ≤ C < C̃(y), and no producer adopts the OS of I if C < C̃(y).

Finally, Č(y) is strictly increasing in y while C̃(y) is constant in y.

Figure 1 displays equilibrium adoption decisions.

-

6

y

C

Č
Ĉ(y)

C̃(y)

Both buy from I

One buys from I

Noone buys from I

y y∗

Figure 1: Equilibrium Configuration
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The equilibrium configuration has two interesting features. First, even for C close

to zero both producers adopt I’s OS if the degree of differentiation between different

operating systems is relatively small. This result is driven by the indirect network ef-

fect from developers on users, which are larger if both producers use the same OS.

If the incentive to differentiate is weak (δ is close to γ), platform I optimally attracts

both producers by charging negative fees. It recoups the resulting losses later on, since

developers are willing to pay higher licensing fees for an OS that is used by both pro-

ducers and, hence, will attract many end users.

Second, if the difference between δ and γ is large enough and the costs C are inter-

mediate, an asymmetric equilibrium emerges in which one producer develops its own

OS while the other buys the OS from I . The benefit from developing an OS depends on

the rival’s adoption decision. If the rival uses the OS of I , the decision to develop a new

OS induces differentiation and thereby reduces competitive pressure. If the rival de-

velops its own OS, the two producers are already differentiated, so this effect vanishes.

In this case it is therefore optimal to use the independent platform’s OS if development

costs are sizable. There are parameter constellations such that the producer that buys

from I earns more than its rival that develops its own OS, i.e. the first producer free-

rides on the differentiation induced by its rival’s investment decision. The producers

thus face a coordination problem: out of the two asymmetric equilibria that exist, each

producer prefers the one in which its rival develops its own OS.

Finally, if development costs C are sufficiently low, it is optimal for both producers

to develop their own OS so as to control pricing not only on the user but also on the

developer side.

The exact location of the curves in the y-C-diagram depends on the parameters

of the model, i.e. x—the measure of the positive externality from application devel-

opers on users defined in (1)—c̄ and K. When x rises, the curves for Ĉ and C̃ shift

downwards while the Č-curve shifts upwards. Hence, the outcome that both produc-

ers adopt I’s OS becomes more likely, while the asymmetric equilibrium occurs only

for a smaller set of parameters. This is intuitive: A higher x reflects the case where

the indirect network externality from application developers on users is larger. Thus,

I can attract both producers more easily since the number of applications is larger if

both producers adopt the same OS.

An interesting result that we already alluded to is that the independent platform

may find it profitable to pay producers to use its OS. If I attracts more producers,

it can make higher profits from developers. The following proposition gives a more

systematic statement on when hI will be negative:

Proposition 2

(i) In any equilibrium in which just one producer adopts the OS from I and C is close
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to Č, we have hI < 0.

(ii) In any equilibrium in which both producers adopt the OS from I and C is close to

Ĉ or C̃, we have hI < 0.

(iii) In any equilibrium in which both producers adopt the OS from I there exists a

unique threshold value for y, so that hI < 0 for all y larger than this threshold.

The fee hI is negative at the lower borders of each equilibrium region in Figure 1.

This is the case because, say, at C̃ both producers are indifferent between accepting

the offer of I or creating an own OS. Thus, the platform must pay a producer to adopt

its OS. The results in Proposition 2 also imply that there is a downward jump of the

platform fee at C = C̃. If C is slightly above C̃, the platform finds it optimal to attract

both producers. But to do so the fee must be negative. However if C is slightly below

C̃, the platform earns a larger profit by attracting only one producer. In this case, the

platform fee is likely to be positive. Thus, a small increase in C induces the platform to

lower its fee discretely to attract both producers. Nevertheless, the platform’s profit is

continuously increasing in C but displays a kink at C = C̃.

4 Commitment to Freeware

We now turn to the case where the independent platform I can choose to commit to

distribute its code to developers free of charge. In terms of our model, this means that

at the beginning of the game I can commit to freeware, i.e., to set fI = 0, later on.12 We

are especially interested in comparing the case of freeware with the previous analysis

where I could not commit on fI .

Suppose I indeed commits to set fI = 0 in stage three. The model is the same as

described in Section 2 otherwise. To guarantee interior solutions we have to modify

the assumption on x and δ by assuming that (1 + δ)c̄− 2x > 0 and 4c̄2(1− γ2) + x(2 +

x)− 6c̄(x + 1) > 0. This again guarantees that in equilibrium we do not have a corner

solution in which only one firm is active.13

We start by examining the difference with respect to the analysis in the last section

in the third and fourth stage. Let us first consider the case in which both producers

adopt the OS from I . Since fI = 0 we get that in the fourth stage NI = (q1 + q2)/c̄.

Calculating the equilibrium price that the producers set in stage three in the same way

12This modelling structure is similar to Church and Gandal (1993) who analyze a model with two
incompatible platforms that can only charge users. In contrast to our model, Church and Gandal (1993),
as the previous literature, do not consider the case of an independent platform that can sell its OS to
producers.

13The conditions are slightly tighter than the one in the last section. The reason is that the externality
is larger in this case because via committing to fI = 0 more developers are attracted.
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as above gives

pi =
Kc̄(1− δ)

((2− δ)c̄− x)
, i ∈ {1, 2},

and equilibrium profits of

Π̃II =
K2c̄2(1− δ)(c̄− x)

((2− δ)c̄− x)2((1 + δ)c̄− 2x)
.

In the asymmetric case in which firm i is independent while firm −i buys the OS

from I we now get Ni = qi/(2c̄) while N−i = q−i/c̄. The equilibrium prices in this case

are

pi =
K (2c̄2(1− γ2)− c̄(1 + 3x) + x(1 + x)) (2c̄2(2− γ − γ2)− c̄x(6− γ) + 2x2)

2ξ
.

and

p−i =
K (2c̄2(1− γ2)− 3c̄x) + x2) (2c̄2(2− γ − γ2)− c̄(6x + 1− 2xγ) + 2x2 + x)

2ξ
,

with

ξ =
(
2c̄4(4 + γ4 − 5γ2)− c̄3(2− γ2(1 + 15x) + 24x)+

+c̄2x(5 + 26x− γ2(1 + 5x))− 4c̄x2(1 + 3x) + x3(1 + 2x)
)
.

The equilibrium profits are then given by

Π̃oI =
K2c̄(2c̄− x) (2c̄2(2− γ − γ2)− c̄x(6− γ) + 2x2)

2
(4c̄(1− γ2)− c̄(6x + 1) + x(2x + 1))

4ξ2

for firm i and by

Π̃Io =
K2c̄(c̄− x) (2c̄2(2− γ − γ2)− c̄x(6− γ) + 2x2)

2
(4c̄(1− γ2)− c̄(6x + 1) + x(2x + 1))

4ξ2

for firm −i.

Clearly, the profits in the case in which both producers develop their own OS are

the same as in the last section. For all cases, Π̃I = 0 since the independent platform

does not receive revenues from the developer side.

The analysis of the first stage is the same as the one in the last section but with the

adjusted profit functions. In the same way as in the proof of Proposition 1 we can show

that the equilibrium with commitment looks qualitatively similar to the one without

commitment. This means if y is below a certain threshold both producer use the OS

of I if C is large but abstain if C is small, while if y is above this threshold, the three

different regions as in the last section emerge.
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We can now determine how the boundaries between the different regions differ in

the case with commitment compared to the case without. Here we obtain the following

result:

Proposition 3

There exists a unique x denoted by x̂∗ such that Ĉ in case of commitment is above Ĉ in

case without commitment for all x < x̂∗ and below for all x > x̂∗.

Also, there exists a unique x denoted by x̌∗ (respectively x̃∗) such that Č (resp. C̃) in

case of commitment is above Č (resp. C̃) in case without commitment for all x < x̌∗

(resp. x < x̃∗) and below for all x > x̌∗ (resp. x > x̃∗).

Proposition 3 shows that if the independent platform commits to freeware, it de-

pends crucially on x—the strength of the indirect network externality—how the equi-

librium regions change. If x is relatively large, the boundaries for all equilibrium re-

gions shift down which implies that I can now attract producers for a larger range

of parameters. Specifically, there exist parameter combinations in which no producer

buys the OS from I in case commitment to fI = 0 is impossible, but in which one or

both producers (dependent on y being above or below y∗) buy from I if such a com-

mitment is possible. This obviously implies that in this region the platform now makes

positive profits while the profit was zero without commitment. In addition, there also

exists a parameter range in which the platform attracts both producers with commit-

ment but just one without commitment.

The intuition behind the result is the following: Via committing to freeware, the

platform attracts more developers for its OS. Due to the positive externality from de-

velopers on users, this in turn attracts more users and, thus, allows producers to reap

larger profits on the user market. However, the independent platform foregoes any

profits it can get from developers and, therefore, it can no longer afford to subsidize

producers. Which of these two effects dominates depends on the strength of the indi-

rect network externality x. If x is large, a producer gains a lot by the larger number of

developers since many more users are attracted. Thus, the producer is willing to pay

a much higher fee to the platform. In addition, in case of no commitment the platform

charges larger developer fees, the more users are attracted by producers. Thus, the

platform curbs producers to lower their user prices because it keeps part of this rev-

enue via higher developer fees. The platform can avoid this by committing to freeware.

As a consequence, the equilibrium region for which the producers adopt the OS of I

gets broader if x is large. Conversely, if x is small, producers are not willing to pay a

much larger fee to g because they earn only little profits from users. Thus, the platform

cannot recoup its foregone revenues from developers, and the region in which one or

both producers adopt I’s OS shrinks.
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So far we analyzed how the equilibrium regions change with freeware. However,

we have not yet looked at the change in the profit of the independent platform. It

is evident that if x is large enough, its profit rises for the parameter range in which

the platform can attract one or both producers with freeware but none without free-

ware. The following proposition answers the question how its profit changes even if

the equilibrium region is unchanged by the use of freeware.

Proposition 4

There exists a unique x denoted by x∗II (resp. x∗Io) such that ΠII
I (resp. ΠIo

I ) in case of

commitment is higher than in case without commitment for all x > x∗II (resp. x > x∗Io)

and lower for all x < x∗II (resp. x < x∗Io).

The result shows that if x is large, not only the equilibrium regions in which the

platform can attract producers gets larger if the platform commits to freeware, but also

the platform’s profit inside a region rise. The intuition is similar to the one for the last

proposition. If x is large enough, producers are willing to pay a higher access fee for the

platform’s OS. This dominates any foregone profits of the platform on the developer’s

side and yields higher profits. The converse holds true for small values of x.

The section shows that the possibility to commit to freeware can completely reverse

the revenue source of an independent platform. In case of no commitment the platform

at times subsidize producers to make revenue from developers. By contrast, in case of

commitment the producer fees are the only source of revenue for the platform and they

are therefore relatively high. Nevertheless, producers pay this higher fees because they

in turn make larger revenues from users.

5 Conclusion

We examined hardware producers’ operating system adoption decisions in a setting

with indirect network effects where an independent platform sells access to its OS but

producers can also develop their own OS. By developing its own OS a producer can

differentiate itself from its rival, and, in addition, it gains control over setting licensing

fees to application developers. However, it also has to bear the OS development costs

and foregoes the larger network effect that arises if both producers use the same OS. We

show that this network effect can be so large that both producers adopt the OS of the

independent platform even if development costs are negligible. If adopting different

operating systems increases differentiation substantially, an asymmetric equilibrium

can occur in which one producer develops its own OS while the rival buys from the

independent platform. In this case, the rival free-rides on the differentiation created

by the producer who develops its own OS. This may explain why some smart-phone
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producers develop operating systems used exclusively for their own phones, while

others adopt independently developed operating systems used by several producers.

For the independent platform it is sometimes optimal to pay producers for using

its OS, because this allows it to make more money from licenses sold to application

developers. If it has the possibility to commit to distribute its software to developers

free of charge, however, the independent platform finds it optimal to do so as long as

users value applications sufficiently. In this case, the independent platform foregoes

all profits from developers in order to charge high access fees to producers.

The analysis restricted attention to the case of two producers, but the qualitative

insights remain valid in an oligopoly. With three producers, for instance, there can

be an asymmetric equilibrium in which exactly two producers adopt the OS sold by

independent platform. The strategic trade-off between softer competition via differ-

entiation and larger network effects is unchanged. The incentive for the independent

platform to commit to freeware is qualitatively similar as well.

The assumption that users decide which hardware to buy before developers write

applications matches the smart-phone industry, where application development takes

relatively little time. Developers can therefore afford to wait and observe users’ choices

before investing in application development. In other markets decisions are closer to

being simultaneous or even in reverse order. For example, as Hagiu (2006a) argues,

in the market for video games the development of an application is a long and costly

process that can take more than one year. Developers therefore have to make their

choices before users do. Analyzing the implications of this could be an interesting

topic for future research. We expect the main trade-offs of the present paper to persist,

but the analysis could yield additional insights concerning the relative strengths of

these forces in industries characterized by different technologies.

Another direction for further research would be to consider sequential adoption

decision of producers. Apple, for instance, decided to develop its iPhone OS in the

knowledge that other manufacturers like Nokia or Samsung were using Symbian. An

open question is whether sequential adoption decision would lead to more or less dif-

ferentiation than simultaneous decisions.
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6 Appendix

Proof of Proposition 1

From the analysis of stages 2 and 3 we know that three possible outcomes can

emerge in equilibrium and we determined the respective profits of the two producers

and of firm I in all of these three outcomes. In stage 1 we determined the conditions

on hI such that either of the three outcomes arises.

We can now check under which conditions the inequality (15), ΠoI − ΠII > Πoo −
ΠIo, which is the necessary and sufficient condition for an asymmetric equilibrium to

emerge, is fulfilled. In the following we denote the asymmetric equilibrium by (o, I).

To do so we first insert the values for the respective profits obtained in stages 2 and

3 into ΠoI − ΠII − (Πoo − ΠIo). Since we know that δ ≥ γ we can substitute δ = yγ

with 1 < y ≤ 1/γ. It is then easy to show that ΠoI − ΠII − (Πoo − ΠIo) is strictly

negative in the limit as y → 1. However, it is strictly positive at the maximum value of

y, that is given by ymax =
(√

2(2c̄− x)(1 + 2x− 4c̄)
)

/(4γc̄) > y,14 or, if this value does

not exist because c̄ is large, for any sufficiently high y.15 In addition, differentiating

ΠoI − ΠII − (Πoo − ΠIo) with respect to y yields

2K2γc̄(2c̄− x)(4c̄(1− yγ)− x(2− x) + 2yγc̄(2yγ − x))

(1 + yγ − x)2(2(2c̄− yγ)− x)3
,

which is strictly positive because yγ is between 0 and
(√

2(2c̄− x)(1 + 2x− 4c̄)
)

/(4c̄).

Thus, there exists a unique threshold of y below which only the symmetric equilibria

can exist while above which all three equilibria can exist.

We first look at the case in which y is below this threshold. We know from (11)

that if firm I sets hI ≤ ΠII − ΠoI + C, there exists a continuation equilibrium in stage

2 such that both producers the OS from I . As mentioned, it is optimal for firm I to set

hI = ΠII −ΠoI +C to extract the highest profit from producers. In this case the profit of

firm I is 2(ΠII −ΠoI + C) + ΠII
I ≡ Π2

I which is positive only if C ≥ −ΠII + ΠoI −ΠII
I /2.

Inserting the respective values for−ΠII+ΠoI−ΠII
I /2 and differentiating this expression

with respect to y gives

K2c̄γ(2c̄− x)(12c̄2(c̄− x) + x2(5c̄− 3x)− γyc̄(8c̄2 − 8γ2y2c̄2 − 4xc̄− 6x2 + 12γyxc̄))

(c̄ + γyc̄− x)3(4c̄− 2γyc̄− x)3

which is strictly positive for the range of x that fulfill 8c̄(c̄−x−cδ2)+x(2x−1)−2c̄ > 0.

Therefore, the critical C(y) such that Π2
I ≥ 0 is increasing in y. We denote this C(y) by

Ĉ(y). Routine calculations show that limy→1 Ĉ(y) < 0. Thus, if δ → γ, the profit of
14The maximum value of y stems from the condition 8c̄(c̄− x− c(yγ)2) + x(2x− 1)− 2c̄ > 0.
15We do not show the full expressions since they are rather complicated. However, determining their

sign is an easy task and this is all that is needed for our purposes.
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platform I from attracting both producers is positive even for C = 0.

However, it is possible that at hI = ΠII −ΠoI +C also condition hI > ΠIo−Πoo +C

is satisfied. This implies that in the first stage also the continuation Nash equilibrium

in which both producers develop their own OS, denoted by (o, o)-equilibrium, can

exist. If this is the case, our equilibrium selection criterion is that producers coordinate

on the equilibrium that gives them the highest profit. We now show that the profits

in the equilibrium in which both producers adopt the OS from g, denoted by (I, I)-

equilibrium, are always higher than in the (o, o)-equilibrium. In the (I, I)-equilibrium

a producer gets ΠII − hI = ΠoI − C while in the (o, o)-equilibrium a producer receives

Πoo − C. Subtracting Πoo from ΠoI yields that the sign of this difference is given by the

sign of (
8c̄(c̄− x− cδ2) + x(2x− 1)− 2c̄

)
×(

16c̄4(2 + γ)(1 + γ)(2− γ)(1− γ)− 4c̄3(4 + 2x(17− 10γ2)− γ(1 + 2γ))+

+4c̄2x(6− x(24− 5γ2) + γ(1 + γ))− c̄x2(32x + 12− γ)2x3(2x + 1)
)
.

We know from the assumption in Section 2 that the first term, 8c̄(c̄−x−cδ2)+x(2x−1)−
2c̄, is positive. It is easy to check that the second term is decreasing in x for any γ. Now

inserting the largest possible value of x which is x = 2c̄ − 1/4
(
1 +

√
1 + 64(c̄yγ)2

)
, in

this second term yields(
16c̄4γ4(1 + 4y4 − 5y2) + c̄2γ2(2y2 + 4c̄γy2 − 3/2) + 1/8γc̄+

+1/8
√

1 + 64c̄2y2γ2c̄γ(16c̄y2γ + 1− 12c̄2γ)
)
.

This expression is 0 for γ = 0 but positive for all γ > 0. Therefore, the second

term is positive which implies that ΠoI > ΠII . As a consequence, the (I, I)-equilibrium

gives producers larger profits than the (o, o)-equilibrium and, thus, they coordinate on

the former.

Now let us turn to the case in which y is above the threshold and so (15) is satisfied.

In this case, via setting hI firm I in the first stage can induce different equilibria in the

continuation game at stage 2. If hI ≤ ΠII − ΠoI + C, the (I, I)-equilibrium emerges,

if ΠII − ΠoI + C < hI ≤ ΠIo − Πoo + C, the (o, I)-equilibrium emerges and if hI >

ΠIo − Πoo + C, the (o, o)-equilibrium emerges. To extract most profits it is optimal for

I to set hI = ΠII − ΠoI + C in the first case and hI = ΠIo − Πoo + C in the second

case. Therefore, in the first case firm I gets a profit of Π2
I , in the second case it gets

ΠIo −Πoo + C + ΠIo
I ≡ Π1

I and in the third case it gets zero. We can now compare these

three profits with each other.

Above, we already determined that Π2
I ≥ 0 if and only if C ≥ Ĉ(y). Turning to Π1

I
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we obtain that Π1
I ≥ 0 if C ≥ Πoo − ΠIo − ΠIo

I . We denote this critical C by Č. Since

none of the terms in Πoo −ΠIo −ΠIo
I depends on δ and therefore on y, Č is constant for

all y. In addition, it is easy to check that Č > 0 for all admissible x-γ-c̄-combinations.

We can now compare Π1
I and Π2

I . Doing so reveals that Π2
I ≥ Π1

I if C ≥ 2(ΠoI −
ΠII) − (Πoo − ΠIo) − ΠII

I + ΠIo
I . This inequality defines a third critical C(y) that we

denote by C̃(y). Above C̃(y) the profit of I from attracting both producers is larger

than from attracting just one. Inserting the respective profits for 2(ΠoI − ΠII)− (Πoo −
ΠIo)− ΠII

I + ΠIo
I and differentiating this expression with respect to y yields now

2
K2c̄γ(2c̄− x)(12c̄2(c̄− x) + x2(5c̄− 3x)− γyc̄(8c̄2 − 8γ2y2c̄2 − 4xc̄− 6x2 + 12γyxc̄))

(c̄ + γyc̄− x)3(4c̄− 2γyc̄− x)3

which is exactly two times the slope of Ĉ(y).

From the above we know that Ĉ(y) is increasing in y while Č is constant. In addi-

tion, at y = 1 we have Č > Ĉ(y). One can easily check, that if y is large enough we

obtain Č < Ĉ(y). But since Ĉ(y) is strictly increasing in y, we know that there exists a

unique y such that Č = Ĉ(y). In the following, we denote this y by y∗. We know that at

Π1
I = 0 and Π2

I = 0 at this y∗. Since C̃(y) is defined as the C at which Π1
I = Π2

I , we have

that Č = Ĉ(y∗) = C̃(y∗).

Both Ĉ(y) and C̃(y) are increasing in y but the slope of C̃(y) is steeper than the one

of Ĉ(y). Since all three critical values are the same at y = y∗, it follows that C̃(y∗) <

Ĉ(y∗) < Č for all y < y∗ and C̃(y∗) > Ĉ(y∗) > Č for all y > y∗. This gives Figure 2.

-

6

y

k

Č

Ĉ(y)

C̃(y)

Figure 2: Display of Ĉ(y), Č and C̃(y)

We know that it is optimal for I to attract both producers if C ≥ max{Ĉ(y), C̃(y)}. It

therefore follows that both producers buy from I if C ≥ Ĉ(y) ∀ y ≤ y∗ and if C ≥ C̃(y)

∀ y > y∗. Furthermore, it is optimal for I to attract only one producer if Č ≤ C < C̃(y).
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We know that such a region only exists for y > y∗. Thus, the result follows. Finally,

it does not pay off for I to attract any producer if C < min{Ĉ(y), Č}. This proves the

result for the different adoption regions.

The results concerning the slopes of the functions has been established above. �

Proof of Proposition 2

(i) If just one producer adopts the OS from I , we have hI = ΠIo − Πoo + C. We

know that Č is defined as Č ≡ Πoo − ΠIo − ΠIo
I . As a consequence, if C = Č we have

hI = −ΠIo
I < 0. Therefore, also for C that are slightly above Č, hI is strictly negative.

(ii) If both producers adopt the OS from I , we have hI = ΠII − ΠoI + C. We know

that C̃ is defined as Č ≡ 2(ΠoI −ΠII)− (Πoo−ΠIo)−ΠII
I +ΠIo

I . Thus, at C = C̃ we have

hI = (ΠoI − ΠII) − (Πoo − ΠIo) − ΠII
I + ΠIo

I . From the proof of Proposition 1 we know

that there exists a C close to C̃ for which the (I, I)-equilibrium occurs only if y ≥ y∗.

So let us first determine hI at y∗. At y∗ we have that Π1
I = Π2

I = 0 which implies that

ΠIo − Πoo + C + ΠIo
I = 0 and ΠII − ΠoI + C + ΠII

I = 0. But from that it follows that

−Πoo + ΠIo + ΠIo
I = −C and ΠoI − ΠII − ΠII

I = C. This implies that hg = 0 at y = y∗.

Differentiating hI = (ΠoI − ΠII)− (Πoo − ΠIo)− ΠII
I + ΠIo

I with respect to y yields

−2K2c̄γ
( c̄(2c̄− x)2(2c̄(1− 2yγ)− x)

(c̄(1 + yγ)− x)3(2c̄(2− yγ)− x)3
+

+
(2c̄− x)(4c̄(1− yγ) + x(x− 2) + 2c̄yγ(2yγ − x))

(1− x + yγ)2(2c̄(2− yγ)− x)3

)
.

One can easily check that this expression is negative for all admissible combinations of

c̄, x and yγ. It follows that hI < 0 for all y > y∗ if C is slightly above C̃.

Now suppose that C is close to Ĉ which is defined as Ĉ ≡ ΠoI −ΠII −ΠII
I /2. Since

hI = ΠII −ΠoI + C in the case in which both producer use the OS from I , we have that

at C = Ĉ, hI = −ΠII
I /2 < 0. Therefore, hI is strictly negative also for C that are slightly

above Ĉ.

(iii) Since both producers adopt the OS from I , we have hI = ΠII −ΠoI + C. Differ-

entiating the right-hand side with respect to y yields

−2K2c̄γ
c̄(2c̄− x)2(2c̄(1− 2yγ)− x)

(c̄(1 + yγ)− x)3(2c̄(2− yγ)− x)3
< 0.

We also ΠII − ΠoI at y = 1 can either be positive or negative while ΠII < ΠoI for large

y. It follows that if C is close to zero, hI < 0 if ΠoI > ΠII . However, if C is large and/or

ΠII > ΠoI , we have that there is a unique threshold of y such that for all y above this

threshold hI > 0, since, by our assumption, the profits from the market ΠoI and ΠII are

larger than the development costs C. �
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Proof of Proposition 3

Inserting the respective profits in the equation that determines C̃ yields in the case

of no commitment

C̃nc = 2
(K2c̄(2c̄− x)(8c̄(c̄− x + c̄γ2) + 2(x2 − c̄) + x)(2c̄ + 2γc̄− x)2(2c̄− 2γc̄− x)2

ρ2
−

− 2K2c̄(1− δ)(2c̄− x)

(4c̄− 2c̄δ − x)2(1 + δ − x)
− K2c̄(2c̄− x)(8c̄(c̄− x− c̄γ2) + x(2x− 1)− 2c̄)

(8c̄(c̄− x) + x(2x + 1) + 2c̄γ(2c̄(1− γ)− γx)− 2c̄)2 +

+
K2c̄(2c̄− x)2(8(c̄− x)− 4c̄2γ(1 + γ) + 2(x2 − c̄ + γc̄x))2(2c̄ + 2γc̄− x)2

4ρ2

)
−

− K2c̄(2c̄− x)2

(4c̄− 2c̄δ − x)2(c̄(1 + δ)− x)2
+

+
K2c̄(2c̄− x)2(8(c̄− x)− 4c̄2γ(1 + γ) + 2(x2 − c̄ + γc̄x))2(2c̄ + 2γc̄− x)2

4ρ2
,

while for the case of commitment we get

C̃c = 2
(K2c̄(2c̄− x) (2c̄2(2− γ − γ2)− c̄x(6− γ) + 2x2)

2
(4c̄(1− γ2)− c̄(6x + 1) + x(2x + 1))

4ξ2
−

K2c̄(2c̄− x)(8c̄(c̄− x− c̄γ2) + x(2x− 1)− 2c̄)

(8c̄(c̄− x) + x(2x + 1) + 2c̄γ(2c̄(1− γ)− γx)− 2c̄)2 −
K2c̄2(1− δ)(c̄− x)

((2− δ)c̄− x)2((1 + δ)c̄− 2x)
+

+
K2c̄(c̄− x) (2c̄2(2− γ − γ2)− c̄x(6− γ) + 2x2)

2
(4c̄(1− γ2)− c̄(6x + 1) + x(2x + 1))

4ξ2

)
.

We then calculate C̃nc − C̃c. First, setting x = 0 we get

(
C̃nc − C̃c

)
x=0

= − K2

4c̄(1 + δ)2(2− δ)2(8c̄− 2− γ2 − 2c̄γ2(5− γ2))2
×

×(2c̄(2 + γ)(1− γ)(2 + 2γ(1− γ) + δ(1− δ))− 2(1− γ2) + δ(1− δ))×

×(2c̄(2 + γ)(1− γ)(6 + 2γ(1− γ) + δ(1− δ)) + 2(3− γ2) + δ(1− δ)).

One can easily check that this expression is negative in the admissible range of γ and

δ.

On the other hand, the largest admissible value of x is given by x = (1 + δ)c̄/2.

Inserting x = (1 + δ)c̄/2 into Čnc − Čc yields that the sign of this difference is given by

the sign of

sign
{(

C̃nc − C̃c

)
x=(1+δ)c̄/2

}
=

sign
{
−(1 + δ)2(1− δ)2(7− 5δ)2

(
c̄δ4 − δ3(12c̄− 1) + δ2(54c̄ + 9c̄γ2 − 20)+
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+δ(120c̄γ2+27−8γ2+108c̄)+c̄(81−180γ+64γ4)−27+24γ2)
)2(

c̄δ4−δ3(8c̄−1)+δ2(22c̄−10c̄γ2−5)+

+δ(40c̄γ2 + 7− 4γ2 − 24c̄) + c̄(9 + 16γ − 3064γ4)− 3 + 4γ2)
)2}

,

which is clearly negative.

Finally, tedious but routine calculations show that Čnc − Čc is strictly decreasing in

x which proves the result. The proof for Ĉ and C̃ proceeds in exactly the same way

and is therefore omitted. �

Proof of Proposition 4

We first calculate Π2
I for the case of no commitment and for the case of commitment.

For the case of no commitment we get Π2
I = 2(ΠII − ΠoI + C) + ΠII

I . Inserting the

respective expression derived in Section 3 we get

Π2
I = 2

( 2K2c̄(1− δ)(2c̄− x)

(4c̄− 2c̄δ − x)2(1 + δ − x)
− (16)

−K2c̄(2c̄− x)(8c̄(c̄− x + c̄γ2) + 2(x2 − c̄) + x)(2c̄ + 2γc̄− x)2(2c̄− 2γc̄− x)2

ρ2
+ C

)
+

+
K2c̄(2c̄− x)2

(4c̄− 2c̄δ − x)2(c̄(1 + δ)− x)2
.

For the case of commitment we get Π2
I = 2(ΠII − ΠoI + C). Inserting the respective

expression derived in Section 4 we get

Π2
I = 2

( K2c̄2(1− δ)(c̄− x)

((2− δ)c̄− x)2((1 + δ)c̄− 2x)
− (17)

−K2c̄(2c̄− x) (2c̄2(2− γ − γ2)− c̄x(6− γ) + 2x2)
2
(4c̄(1− γ2)− c̄(6x + 1) + x(2x + 1))

4ξ2
+C

)
.

Subtracting the right-hand side of (17) from the right-hand side of (16) and setting

x = 0 we get (
Π2

I(nc)− Π2
g(c)

)
x=0

=
K2

c̄(1 + δ)2(2− δ)2
> 0.

Taking the other extreme, i.e. setting x = (1 + δ)/2 yields that the sign of Π2
I(nc)−

Π2
I(c) is given by the sign of

sign
{(

Π2
I(nc)− Π2

I(c)
)

x=(1+δ)/2

}
=

sign
{
−(1 + δ)2(1− δ)2(7− 5δ)2

(
c̄δ4 − δ3(12c̄− 1) + δ2(54c̄ + 9c̄γ2 − 20)+

+δ(120c̄γ2+27−8γ2+108c̄)+c̄(81−180γ+64γ4)−27+24γ2)
)2(

c̄δ4−δ3(8c̄−1)+δ2(22c̄−10c̄γ2−5)+
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+δ(40c̄γ2 + 7− 4γ2 − 24c̄) + c̄(9 + 16γ − 3064γ4)− 3 + 4γ2)
)2}

,

which is negative.

As in the proof of Proposition 2 routine calculations show that Π2
I(nc) − Π2

I(c) is

strictly increasing in x which proves the result. The proof for Π1
I(nc) − Π1

I(c) proceeds

in exactly the same way and is therefore omitted. �
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