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1. INTRODUCTION

Since the introduction of competition in telecommunications, network inter-

connection has been one of the most controversial issues of telecoms regulation.

The need for interconnection stems from the fact that networks need to connect

their subscribers with those on other networks; indeed it is one of the keys, but

not the only, to achieving e¤ective competition in the market. This involves "two-

way" access agreements whereby networks provide call origination, transit and

termination services to each other. It then raises the non-trivial question of how

accepting tra¢ c from or delivering tra¢ c to other networks should be priced.

"One-way" access refers to the case where an incumbent monopolizes the

local network and must provide a bottleneck input to new entrants that compete

with it in a downstream market. Since the incumbent could use the bottleneck to

expel competitors from the market, there is a wide consensus in the literature that

regulation is socially desirable. In the case of two-way access, however, networks

operate at the same level of network hierarchy, that is, they do not only compete

for subscribers in the retail market but do depend on each other to supply the

retail service. Thus one may at �rst sight be induced to think that regulation

is unnecessary. In practice, access charges are frequently set cooperatively, while

cooperation over retail prices is in general considered to be illegal. Some might

wonder whether networks could not agree on setting a speci�c access charge that

softens competition in the retail market.

In order to develop an optimal policy it is key to determine whether uncon-

strained interconnection negotiations over access charges can undermine retail

competition or on the contrary are socially optimal, in which case no regula-

tion is needed. Indeed, this question has been studied by the seminal papers of

Armstrong (1998) and La¤ont, Rey and Tirole (1998a,b). Assuming symmetric

networks, reciprocal access charges and linear retail pricing these papers show

that competition in the retail market can be undermined by collusion over the

access charge. This result stems from the fact that if a network lowers its retail

price, then its subscribers will make more calls, which provokes an access de�cit

whenever the access charge is above the cost. Then, by agreeing to high access

charges, networks reduce the incentive to undercut each other. More surprisingly,

La¤ont, Rey and Tirole (1998a) show that in the same setting but under two-

part pricing, the collusive power of the access charge vanishes, that is, networks�

equilibrium pro�ts do not depend on the level of the access charge. This result

comes about because of an intense waterbed e¤ect. Intuitively, an increase in

the access charge leads to an increase in the usage price, which makes it more

desirable for networks to build market share. In the linear pricing case, networks

cannot build market share without incurring an access de�cit, but under two-part

tari¤s they can by lowering their �xed fees while keeping usage prices constant.
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This waterbed e¤ect occurs in the limit where networks �nd it worthwhile to

spend the full revenue from access fees in order to attract subscribers. That

is, higher usage prices are o¤set by lower �xed fees such that networks�pro�ts

remain independent of the reciprocal access charge.

This striking result has become the focus of much research,2 and also has been

proved to hold when customers are heterogeneous.3 Indeed, this neutrality result

depends crucially on three assumptions: full-participation, no termination-based

price discrimination and symmetry.4 Carter and Wright (2003) allow asymmet-

ric networks by providing for brand loyalty and show that the incumbent strictly

prefers the access charge to be set at marginal cost, and that both networks

prefer cost-based access charges when there is a su¢ cient degree of asymme-

try. Intuitively, the larger network or incumbent faces a higher proportion of

intra-network calls, whereas the smaller network faces a higher proportion of

inter-network calls. Then, since networks price calls at the perceived marginal

cost, a reciprocal access charge above cost increases the perceived marginal cost of

the smaller network (because of most of its calls are inter-network) and hence its

call price also increases. This, consequently, implies that the larger network will

face a net out�ow of calls with an above-cost access charge and hence a de�cit

in the wholesale market. We show below how this last result partially explains

our non-neutrality result in a dynamic model of competition even though net-

works are symmetric. To sum up, established telecoms networks under nonlinear

pricing and no termination-based price discrimination cannot use reciprocal ac-

cess charges as an instrument of collusion as long as there is full participation

or an exogenous participation rate, and thereby unconstrained interconnection

negotiations over reciprocal access charges might be a socially optimal policy.

So far we have only considered the literature that studies competition in a

static model. What about dynamic competition? Does it alter our conclusion?

De Bijl and Peitz (2000, 2002) study dynamic network competition but focusing

only on myopic behaviour or, in other words, on the per-period pro�t maximizing

equilibria. They study the asymmetric case and �nd in the short term a similar

result to that of Carter and Wright (2003), and in the long term a result that

is very close to neutrality.5 Our previous work (López, 2005) however depicts
2See Armstrong (2002) and Vogelsang (2003) for a survey of this literature.
3Dessein (2003) and Hahn (2004) introduce heterogeneity in volume demand and shows that

equilibrium pro�ts are still independent of the reciprocal access charge under second-degree price
discrimination. De Bijl and Peitz (2000, chpt. 7) allow for third-degree price discrimination
and still �nd the same result.

4Firstly, Poletti and Wright (2004) by allowing customers� participation constraint to be
binding in equilibrium show that access charges above cost can play a collusive role. In addition,
Schi¤ (2002) show that under partial consumer participation and some other assumptions, as
for instance an exogenous participation rate, networks prefer the access charge equal to the
marginal cost, but when these assumptions are relaxed, networks instead prefer either cost-
based or below-cost access prices depending on the case that is under consideration. Secondly,
Gans and King (2001) show that networks prefer access charges below cost when they can price
discriminate.

5 It is worth to remark, however, that they make numerical analyses of a wide range of
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the competition between two di¤erentiated networks in a two-period model and

under the subgame-perfect equilibrium concept. We show that even symmetric

networks with full participation can use reciprocal access charges to soften com-

petition when they compete in a dynamic setting. In particular, the networks�

overall pro�ts are neutral with respect to the �rst-period access charge but in-

crease when the second-period access charge departs away from the marginal

cost. A robust economic argument supports this result: in the second period the

pro�ts of the larger �rm decrease when the access charge departs away from the

marginal cost, which in turn decreases the incentives to �ght for market share in

the �rst period. This result holds both when consumer expectations are naive and

when they are rational. Thus regulation might be needed in order to prevent an-

ticompetitive behaviour since cost-based access charges maximize the full-period

welfare surplus. Price controls of course is a draconian policy that regulators

normally avoid if others alternatives are available, in particular because it is not

clear whether regulation costs are lower than the potential bene�ts derived from

price controls. A possible solution that avoids direct intervention in the market

is moving towards a Receiver Party Pays system.

The Receiver Pays Principle (RPP) is already applied to mobile call pricing

in U.S and some Asian countries, and it has also been widely adopted in interna-

tional roaming, although in both cases for non-economic reasons.6 An important

economic argument that may support its implementation is the existence of call

externalities, which occur because both callers and receivers may bene�t from

a phone call. In practice, RPP has been recently invoked as an instrument to

reduce mobile termination charges.7 Despite the spectacular growth of mobile

telephony in recent years, mobile termination charges have remained high in Eu-

rope, where the Caller Pays Principle (CPP) applies. These high termination

rates are from �xed to mobile calls, and have become a serious concern in most

European countries; they do not only a¤ect negatively the consumer welfare but

are also perceived to be damaging the �xed telecoms sector�s ability to innovate

and invest in new technologies.8 In this respect, some observers see RPP as a

good alternative to price controls and predict that its implementation in the tele-

coms industry would exert downward pressure on mobile termination charges.9

interesting scenarios that are not considered here, as for instance the non-reciprocal access
price case and the process of entry (De Bijl and Peitz, 2004.)

6 In the former case it has been so mainly because of technological reasons: the access codes
of the mobile service providers are not distinct to those of the �xed network.

7Those charges that mobile operators levy on each other and on �xed network operators for
terminating calls on their networks.

8 In France, Germany and the UK, the total transfer of funds for �xed to mobile calls (com-
puting the excess of termination charges paid over costs and including a normal return on capital
employed) from �xed networks to the mobile sector is estimated to be e19 billion between 1998
and 2002 (see Cave et al. 2003.)

9 Intuitively, under the receiver pays regime, if a mobile network sets high termination charges
it will decrease the utility of its own subscribers and so its attraction. Consequently, competition
in reception charges should result in lower termination charges.
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We are primarily interested in determining whether future reciprocal access

charges can still soften �rst-period competition when networks compete in �xed

fees, call prices and reception charges. Obviously, adopting RPP will signi�cantly

change the networks� incentives. This in turn makes important to develop a

conceptual framework in which the resulting industry can be analyzed. We build

on previous literature to propose such a framework, and aim to investigate how

networks�pricing strategies react to the adoption of the receiver pays regime when

they compete in a multi-period setting. Our starting point is that callers and call

receivers derive utility from making and receiving calls. Moreover, networks are

allowed to charge customers for receiving calls. The analysis faces the problem of

sovereignty: who decides to end the call? It will be argued that in a deterministic

framework allowing receivers to hang up makes the model discontinuous. We thus

generalize this setup by assuming that both the caller�s and receiver�s utilities are

subject to a random noise, the purpose of this is to smooth the demand, in fact

this makes the model even more realistic.

The receiver pays principle has been studied under di¤erent settings (all of

them focusing on static competition) by Berger (2001), Fabrizi (2005), Hermalin

and Katz (2001, 2005), Kim and Lim (2001), Jeon, La¤ont and Tirole (2004) and

La¤ont et al. (2003).10 Nevertheless, the most related papers to the problem

we study are the last two papers. La¤ont et al. analyze Internet backbone

competition. In their framework there are two types of customers: senders or

websites and receivers or consumers. In our model however every consumers

both send and receive tra¢ c, and get surplus from and are charged for making

and receiving calls. On the other hand, Jeon, La¤ont and Tirole (2004) and our

paper analyze three-part tari¤ competition in a telecommunications environment

where the volume of tra¢ c between each caller and receiver is endogenously

determined by one of them though subject to a random noise. More speci�cally,

Jeon, La¤ont and Tirole assume that only the receiver�s utility is subject to a

noise and a certain proportionality between the receiver�s and the caller�s utilities.

Our setup however generalizes their work by allowing a random noise in both

the callers and receivers�utilities, and by removing the assumption of a given

proportionality between the utility functions. Yet, the main contributions of our

paper are that in this general setup we easily show that the o¤-net-cost pricing

principle is a candidate equilibrium, and more importantly we prove that under

general conditions the o¤-net-cost pricing equilibrium exists and is the unique

possible equilibrium. Instead, Jeon, La¤ont and Tirole (2004) establish only the

existence (and not uniqueness) of the o¤-net-cost pricing equilibrium in a very

speci�c case that will be commented later. Finally, we extend our results to a

multi-period setting. In concrete, our main insights are as follows:

10For an overview of this literature see Jeon, La¤ont and Tirole (2004).
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Existence. Under linear demands, low enough substitutability between net-

works and a random noise with a wide enough support, there exists a unique

equilibrium, which is interior and where networks choose the same call and re-

ception prices over the time.

Pricing. In equilibrium, networks price calls at their o¤-net cost, whatever

the sizes of the installed bases. Fixed fees and full-period pro�ts are neutral with

respect to the level of the per-period access markup.

Role of access charges. Should one ban unconstrained interconnection nego-

tiations over reciprocal access charges? The o¤-net-cost pricing equilibrium neu-

tralizes the potential anticompetitive role that future reciprocal access charges

could play. In other words, under RPP networks cannot use access charges as an

instrument to soften retail competition, whereas under CPP they can increase

pro�ts and decrease consumers surplus by setting future reciprocal access charges

di¤erent from marginal costs.

Welfare. Should one set cost-bases access charges? As already noted, full-

period pro�ts do not depend on the level of the access markups, nevertheless an

increase in the access markup raises the call price and decreases the reception

charge. These two e¤ects introduce a clear distortion in the consumer welfare.

Given we have assumed a random noise in the utility functions, we look for

the level of the access markup that maximizes the expected social welfare. We

conclude that the optimal value of the access markup depends on the charac-

teristics of each market in particular. Although, we can demonstrate that if the

caller�s and receiver�s utility functions are identical, then starting from zero ac-

cess markup, a decrease in the access charge raises the expected social welfare.

Indeed, we show that �bill and keep�might be optimal in this situation.

The article is organized as follows. Section 2 presents the main insights of our

previous work. Section 3 describes the model and makes the main assumptions.

Section 4 analyzes the two-period game, characterizes the equilibrium, studies the

role of the access charge and extends the basic model to a multi-period setting.

Section 5 investigates how the access charge a¤ects the social welfare and studies

its optimal level. Section 6 summarizes the main insights.

2. HOW TO SOFTEN NETWORK COMPETITION UNDER THE CPP

To provide a motivation for our analysis, it is convenient to introduce brie�y

the main insights of our previous work, where CPP is assumed throughout. In

particular, we show below that under CPP networks can soften retail competition

by setting access charges di¤erent from marginal costs. To that end, let b�i2
denote the equilibrium second-period pro�ts, which depends on the second-period

access markupm2; and the network i0s �rst-period market share �i1 provided that
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switching costs exist. In the second period the model is similar to the traditional

static model in which the symmetric equilibrium pro�ts are neutral with respect

to the access markup11 . Moreover, the equilibrium second-period call price pi2 is

equal to the cost of an average call originating on network i; that is,

pi2 = c+ �
j
2m2;

where c is the industry�s marginal cost of a call. Recall that in the �rst period,

each network sets prices taking into account its �rst-period pro�tability, but also

the e¤ect that its �rst-period market share will have on its second-period pro�ts.

In particular, network i chooses the �rst-period call price pi1 and the �rst-period

�xed fee F i1 so as to maximize its total discounted pro�ts, taking network j
0s

�rst-period call price and �xed fee as given. As already pointed out in La¤ont et

al. (1998a), it is analytically convenient to view network competition as one in

which the networks pick usage fees and net surpluses rather than usage fees and

�xed fees, so that market shares are determined directly by net surpluses. The net

surplus that a network i0s subscriber derives in the �rst period is: wi1 � v(pi1)�F i1;
where v(pi1) is the subscriber�s indirect utility function who faces a call price of

pi1: Thus network i solves:

max
pi1;w

i
1

� � �i1(pi1; p
j
1; w

i
1; w

j
1) + �b�i2(m2; �

i
1(w

i
1; w

j
1));

where �i1 denotes the network i
0s �rst-period pro�ts and � the discount factor.

The �rst-order condition with respect to pi1 yields p
i
1 = c+�

j
1m1; that is, networks

choose their call prices in the same way as they do in the second period. Further,

the �rst-order condition with respect to wi1 is

0 =
@�i1
@wi1

+ �
@b�i2
@�i1

(m2; �
i
1)
@�i1
@wi1

: (1)

That is, the equilibrium �rst-period �xed fees are given as a function of m2

through the term @b�i2=@�i1: In addition, we can show that in a symmetric equi-
librium the full-period pro�ts are equal to

�(m2) =
1 + �

4�
� �

2

@b�i2
@�i1

(m2; 1=2);

where � is the degree of substitutability between the two networks. Moreover,

@b�i2=@�i1(0; 1=2) > 0; thus so as to satisfy (1) it must hold that @�i1=@w
i
1 < 0;

that is, in the neighborhood of m2 = 0; networks compete more aggressively in

the �rst period than they would do in a market without switching costs. More

11 Indeed, the symmetric equilibrium pro�ts are equal to the pro�ts that networks would
obtain under unit demands.
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importantly,

@b�i2
@m2@�i1

(0; 1=2) = 0;
@

@m2

 
@b�i2

@m2@�i1
(0; 1=2)

!
< 0:

That is, slightly moving m2 away from zero reduces the value of having a higher

market share in the second period: @b�i2=@m2@�
i
1; this in turn softens competition

for market share in the �rst period and increases full-period pro�ts. An expla-

nation for this result can be found in the Proposition 1 of Carter and Wright

(2003), which proves that the pro�ts of the larger network decrease when the ac-

cess charge departs away from the marginal cost. Intuitively, as higher or lower

is the second-period access markup with respect to the marginal costs, lower

the second-period pro�ts for the larger �rm will be, and consequently the com-

petition for �rst-period market share is disincentived. Notice that equilibrium

�rst-period pro�ts are independent of the reciprocal access charges, thus m1 does

not have to be di¤erent from m2 to undermine network competition, that is,

m1 = m2 = m 6= c0 will also increase networks pro�ts and decrease consumer

welfare. The analysis below shows that under RPP networks can no longer in-

crease full-period pro�ts by colluding over the level of the future reciprocal access

charges. Indeed, under RPP: @b�i2=@m2@�
i
1 = 0 8m2; �

i
1; in e¤ect, competition

in call prices, �xed fees and reception prices neutralizes the e¤ects that access

charges have on equilibrium full-period pro�ts.

3. THE MODEL

There are two networks indexed by i and j: Each has its own full coverage

network and competes for a consumer set of measure 1. It is assumed that

every consumer joins one of the networks, that is, there is full participation. In

addition, networks are assumed to be interconnected, therefore a consumer who

subscribes to one network can call any other consumer on either network. The

usual balanced-tra¢ c assumption is maintained throughout the analysis, which

implies that the percentage of calls originating on a network and completed on

the same network is equal to the market share of this network. Networks compete

in nonlinear prices, and o¤er a three-part tari¤: fF i; pi; rig; where F i denotes
network i0s �xed fee, and pi and ri represent respectively the per-unit call and

reception charge. For o¤-net calls, the originating network must pay a reciprocal

access charge a per unit of termination to the terminating network.12 Moreover,

networks are not allowed to price discriminate between calls that terminate on-

and o¤-net.

Cost structure. Symmetric costs are assumed for simplicity. The cost of
12Reciprocity means that a network pays as much for termination of a call on the rival network

as it receives for completing a call originated on the rival network.
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serving a customer is f � 0; which re�ects the cost of connecting the customer�s
home to the network and of billing and servicing the customer. The marginal

cost of terminating or originating a call is denoted by c0; and the marginal trunk

cost of a call by c1: The total cost is c: The access mark-up is thus

m � a� c0:

Demand structure. Networks sell a di¤erentiated but substitutable prod-
uct, they are di¤erentiated à la Hotelling. Consumers are uniformly located on

the segment [0; 1] and the two networks are located at the two ends of the inter-

val. Thus, consumers�tastes for networks are represented by their position on

the segment and taken into account through the transportation costs � : Given

income y a consumer located at x and joining network i has utility

y + v0 � � jx� xij+ wi;

where v0 represents a �xed surplus from being connected to either network,13

� jx� xij is the cost of subscribing to a network located at xi; and wi is the
net surplus of a network i subscriber from making and receiving calls on that

network.

Timing. We consider three stages. In the �rst stage or period zero, reciprocal
access charges are set by a regulator or negotiated between carriers; a �exible

regulation is allowed, so that access charges may di¤er over time. In the �rst

and second periods, which are indexed by t 2 f1; 2g; networks compete in retail
prices, taking as given the access charges.

Dynamics. Every customer incurs a cost s > 0 when switching networks.14

Note that if s > � every consumer remains with the same network in a symmetric

equilibrium. We assume instead that s < �; so that at least some consumers

switch. In addition, we shall make the following two assumptions:

A.1. Preferences are independent across periods.

A.2. Consumers have naive expectations.

The �rst assumption only says that preferences may change over time.15 On

the other hand, A.2. imposes a strong condition on the consumers� behavior.

13y and v0 are assumend to be large enough such that the full participation assumption is
satis�ed.
14Quite obviously, in the absence of switching costs, networks are per-period pro�t maximiz-

ing. There is however much evidence suggesting that switching costs are signi�cant (see for
instance De Bijl and Peitz, 2000)
15This case might also arise when the customers are di¤erent in di¤erent periods and second-

period customers are exposed to the choice of �rst-period customers. Actually, asumming
constant preferences over time introduces technical problems when the Hotelling model is used:
for some variations in prices, market shares remain constant.
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It will however be argued that rational consumer expectations would not a¤ect

the main insights of the paper. From now on and without any loss of generality

assume network i is located at the beginning of the segment [0; 1] and network j

at the end. Then, a consumer located at x = �1 is indi¤erent between the two

networks in the �rst period if and only if

wi1 � ��1 = w
j
1 � �(1� �1):

Therefore, the network i0s market share is

�i1 =
1

2
+ �

�
wi1 � w

j
1

�
;

where � = 1=2� is the index of substitutability between the two networks.

At the beginning of the second period there is a fraction �i1 of consumers initially

attached to network i: For these and given A.1 and A.2, a consumer located at

x 2 [0; 1] will remain associated with network i if wi2� �x � w
j
2� �(1�x)� s: A

consumer initially attached to network j; say x; will instead switch to network i

if wi2 � �x� s � w
j
2 � �(1� x): Therefore, the network i0s second-period market

share is

�i2 = �i1

�
1

2
+ �

�
wi2 � w

j
2 + s

��
+ �j1

�
1

2
+ �

�
wi2 � w

j
2 � s

��
(2)

=
1

2
+ (2�i1 � 1)�s+ �

�
wi2 � w

j
2

�
:

Finally, networks have rational expectations and discount second-period rev-

enues and costs by a factor �:

Demand for tra¢ c. Subscribers derive a surplus from making and re-

ceiving calls. The utility from placing q calls is denoted by �(q); whereas the

utility from receiving eq calls is denoted by e�(eq); we assume that these utility
functions are twice continuously di¤erentiable, with �0 > 0; �00 < 0; e�0 > 0; ande�00 < 0:16 The analysis faces the problem of sovereignty: who decides to end

the call? The receiver�s demand function eq(r) is given by e�0(eq) = r; whereas

the caller�s demand function q(p) is given by �0(q) = p; When receivers are al-

lowed to hang up the volume of calls from network i to network j is thus given

by Q(pi; rj) = minfq(pi); eq(rj)g; In a deterministic framework, this makes the
model discontinuous and complicates its analysis.17 In order to get around this

16Throughout this paper the apostrophe symbol means the �rst derivative of the considered
function with respect to its argument. In this case for instance �0 = d�=dq and �00 = d2�=(dq)2:
17When reception charges are regulated or contractually determined before networks compete

in retail tari¤s, an assumption that simpli�es much the analysis is that the caller determines
the volume of calls. However, when reception charges are set by the networks at the same time
they chose call prices and �xed fees, this assumption introduces a potential problem in the
analysis due to the multiplicity of equilibria: from the viewpoint of networks and subscribers,
only the sum fF i + rieqg matters, not its composition; hence di¤erent combinations of F i and
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problem we assume that both the caller�s and receiver�s utilities are subject to

a random noise, which smooths the demand. To that end, let " and e" denote,
respectively, the random term of the caller�s and receiver�s utilities, and assume

that: i) they follow respectively the distribution functions F (�) and eF (�) with
supports ["; "] and [e";e"] where "� " > 0 and e"�e" > 0; and strictly positive den-
sity functions f(�) and ef(�); ii) they are identically and independently distributed
for each caller-receiver pair. We then make the following assumption:

A.3. The caller�s utility is given by: u = �(q) + "q; whereas the receiver�s

utility is given by: eu = e�(eq) + e"eq:
Assumption A.3. allows the willingness to stay on the phone to be state-

contingent for both callers and receivers. In addition, demands q and eq are
assumed to be bounded, hence for a given " 2 ["; "] there exist price levels p and
p such that if p � p then q = q; where 0 < q < 1; and if p � p then q = 0:

Similarly, for a given e" 2 [e";e"] there exist price levels r and r such that if r � r
then eq = eq; where 0 < eq < 1; and if r � r then eq = 0: Therefore, pi 2 [p; p];
ri 2 [r; r]; and since �i 2 [0; 1] the networks�pro�t functions are also bounded.

4. ANALYSIS

Under A.3., and for a given pair of prices (pit; r
j
t ); the expected volume of calls

from a network i subscriber to a network j subscriber at period t is given by:18

Q(pit; r
j
t ) =

Z "

"

Z e"
e" [q(p

i
t; ")=if q(pit;")�eq(rjt ;e")

+eq(rjt ;e")=if q(pit;")>eq(rjt ;e")]f(") ef(e")d"de":
Further, the expected utility that a network i subscriber derives from calling a

network j subscriber at period t is

U(pit; r
j
t ) =

Z "

"

Z e"
e" [u(q(p

i
t; "))=if q(pit;")�eq(rjt ;e")

+u(eq(rjt ;e"))=if q(pit;")>eq(rjt ;e")]f(") ef(e")d"de";
ri are feasible equilibria but nonequivalent since each combination may a¤ect di¤erently the
rival network.
18Throughout the analysis the symbol =if means that the double integral of the term that

is located at its left side is de�ned if and only if the condition that is located at its right side
is satis�ed.
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while the expected utility that a subscriber from network j derives from receiving

calls from a network i subscriber at period t is given by:

eU(pit; rjt ) =

Z "

"

Z e"
e"r [eu(q(pit; "))=if q(pit;")�eq(rjt ;e")

+eu(eq(rjt ;e"))=if q(pit;")>eq(rjt ;e")]f(") ef(e")d"de":
Therefore, the volume of tra¢ c from network i to network j depends on two

usage prices and is sometimes determined by the caller and at other times by the

receiver. In this framework we still �nd the following standard results:

@Q(pit; r
j
t )

@pit
=

Z e"
e"
Z "

"

@q(pit � ")
@pit

=if q(pit;")�eq(rjt ;e")f(") ef(e")d"de";
@U(pit; r

j
t )

@pit
= pit

@Q(pit; r
j
t )

@pit
; (3)

where we have used @u(q(pit � "))=@q = �0(�0�1(pit � ")) + " = pit: And,

@Q(pjt ; r
i
t)

@rit
=

Z e"
e"
Z "

"

@eq(rit � e")
@rit

=if q(pjt ;")�eq(rit;e")f(") ef(e")de"d";
@ eU(pjt ; rit)
@rit

= rit
@Q(pjt ; r

i
t)

@rit
; (4)

where we have used @eu(eq(rit�e"))=@eq = e�0(e�0�1(rit�e"))+e" = rit: For the sake of the
presentation, we will write Qijt = Q(p

j
t ; r

j
t ); U

ij
t = U(pit; r

j
t ) and eU ijt = eU(pit; rjt )

8i; j: Recall that network i0s second-period market share is

�i2 =
1

2
+ (2�i1 � 1)�s+ �(wi2 � w

j
2); (5)

where the expected net surplus of a network i consumer at period t is de�ned as

wit = �
i
t � F it ; (6)

with

�it(�
i
t; p

i
t; p

j
t ; r

i
t; r

j
t ) = �itU

ii
t + �

j
tU

ij
t + �

i
t
eU iit + �jt eU jit (7)

�pit
�
�itQ

ii
t + �

j
tQ

ij
t

�
� rit

�
�itQ

ii
t + �

j
tQ

ji
t

�
:
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4.1. THE SECOND-PERIOD CASE

In the second period networks maximize pro�ts with respect to call prices,

reception charges and �xed fees; thus, any network i solves:

max
pi2;r

i
2;F

i
2

�i2 � �i2f�i2(pi2 � c)Qii2 + �
j
2(p

i
2 � c�m2)Q

ij
2 + �

j
2m2Q

ji
2 (8)

+ri2(�
i
2Q

ii
2 + �

j
2Q

ji
2 ) + F

i
2 � fg:

We can solve (8) by maximizing it with respect to pi2 and r
i
2 for a given �

i
2;

adapting �xed fees so that market shares remain constant. For this to hold, net

surpluses must satisfy wi2�w
j
2 = (1=�)(�

i
2�1=2)�(2�i1�1)s; using (6) it follows

that the �xed fee must be equal to

F i2 = �
i
2 � �

j
2 + F

j
2 �

1

�

�
�i2 �

1

2

�
+ (2�i1 � 1)s:

By substituting this last expression into the pro�t function we have:

�i2(p
i
2; r

i
2) = �i2f�i2(pi2 � c)Qii2 + �

j
2(p

i
2 � c�m2)Q

ij
2 + �

j
2m2Q

ji
2 (9)

+ri2(�
i
2Q

ii
2 + �

j
2Q

ji
2 ) + �

i
2 � �

j
2 + F

j
2 �

1

�

�
�i2 �

1

2

�
+(2�i1 � 1)s� fg:

For given ri2 = rj2 = r2 and p
j
2; the call price p

i
2 determines the volume of calls

generated by network i when callers are sovereign on average, network i incurs

a unit cost c + �j2m2 from delivering these calls to network i and network j:

However, since the call price a¤ects subscribers�net surplus as well, �xed fees

must be adapted in order to maintain markets shares constant; more precisely, a

decrease in the call price pi2 :

� a¤ects network i0s revenue, but at the expense of consumers; hence to keep
market shares constant �xed fees must be adapted so as to neutralize this

transfer.

� allows network i to increase its �xed fee by U(pi2; r2); which is the utility
that network i0s subscribers obtain from making calls (call prices also a¤ect

the utility from receiving calls but they a¤ect both networks�consumers in

the same way, so that �xed fees do not need to be adapted to maintain

market shares.)

� a¤ects the quantity of money that network j0s subscribers pay for calls
received from network i : this e¤ect is called pecuniary externality in Jeon

et al. (2004), and allows network i to increase its �xed fee by r2�i2 and

keep market shares constant.

We can summarize in the following expression the terms that are a¤ected

13



by the level of the network i0s call price, when adjusting the �xed fee so as to

maintain market shares constant:

�i2f[�(c+ �
j
2m2) + r2�

i
2]Q(p

i
2; r2) + U(p

i
2; r2)g: (10)

For given pi2 = p
j
2 = p2 and r

j
2; setting the reception charge r

i
2 similarly determines

the volume of calls generated by network i when receivers are sovereign. For this

volume of calls, network i incurs a cost �i2c; but earns �
j
2m2 again from o¤-

net calls. The reception charge ri2 also a¤ects subscribers�net surpluses, which

requires �xed fees to be adapted so as to maintain market shares constant:

� First, network i gains revenue from reception charges, but its �xed fee must
be altered by the same amount to keep market shares constant.

� Keeping market shares constant, network i can increase its �xed fee to
re�ect the utility obtained from receiving calls: eU(p2; ri2) (reception charges
a¤ect similarly both networks�subscribers for the calls they place to network

i0s subscribers: �i2U(p2; r
i
2); this therefore does not require �xed fees to be

adapted).

� Finally, we �nd a new sort of pecuniary externality: the reception charge
ri2 determines how much network j0s consumers must pay for the calls

they make to network i0s consumers. This externality allows network i to

increase its �xed fee by p2�i2 while keeping market shares constant.

The following expression summarizes the terms that are a¤ected by the level

of network i0s reception charge, when adjusting the �xed fee so as to maintain

market shares constant:

�i2f[��i2c+ �
j
2m2 + p2�

i
2]Q(p2; r

i
2) + eU(p2; ri2)g: (11)

By di¤erentiating (10) with respect to pi2 and (11) with respect to r
i
2; and using

(3) and (4) we obtain the �rst-order conditions:

pi2 = c+ �
j
2m2 � �i2r2; (12)

ri2 = �
i
2c� �

j
2m2 � �i2p2: (13)

Essentially, we see that networks price calls and call receptions at their strategic

marginal cost:19 network i0s equilibrium call prices are equal to the average unit

cost of a call originating on network i; minus the pecuniary externality imposed

on network j0s subscribers; likewise, network i0s equilibrium reception charges

are equal to the average cost of receiving calls on network i; minus the pecuniary

externality imposed on network j0s consumers. Using pi2 = p2 and ri2 = r2; we

19Using the terminology of Jeon et al. (2004).
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obtain the equilibrium call and reception prices:

p2 = c+m2; (14)

r2 = �m2: (15)

We shall emphasize that this symmetric solution is valid for any given level of

market shares: hence (14) and (15) characterize the equilibrium second-period

usage prices, which are symmetric whatever the sizes of customer installed bases.

Now, setting call and reception prices at the equilibrium level, we can rewrite

network i0s second-period pro�ts as follows:

�i2 =

�
1

2
+ (2�i1 � 1)�s� �(F i2 � F

j
2 )

�
(F i2 � f): (16)

By di¤erentiating this last expression with respect to F i2 we obtain the following

�rst-order condition:

F i2 =
1

2

�
f +

1

2�
+ (2�i1 � 1)s+ F

j
2

�
: (17)

Similarly, we can obtain network j0s �rst-order condition with respect to its �xed

fee, and by solving that system of two equations we obtain the equilibrium

second-period �xed fees as a function of the �rst-period market shares:

bF i2(�i1) = f + 1

2�
+
(2�i1 � 1)s

3
: (18)

By substituting bF i2 and bF j2 into (16), we then obtain the equilibrium second-

period pro�ts as a function of �rst-period market shares:

b�i2(�i1) = 1

4�
+ (2�i1 � 1)

s

3
+ (2�i1 � 1)2

�s2

9
: (19)

Notice that equilibrium second-period pro�ts do not depend on m2: Moreover,

note from (19) that if �i1 = 1=2 the equilibrium second-period pro�ts are equal

to the pro�ts that networks would obtain under unit demands, that is, �i2(1=2) =

1=4�: In order to prove the existence and uniqueness of this equilibrium we will

have to be more speci�c about the noise and the caller�s and receiver�s demand.

We then make the following assumption:

A.4. �(q) = aq � (b=2)q2 and e�(eq) = deq � (e=2)eq2; where a; b; d; e > 0:

Moreover, ";e" 2 ["; "]; where " < 0 < "; E(") = E(e") = 0; and both random

terms follow a uniform distribution with density function: f(") = ef(e") = 1=�;

where � = "� ":

Notice that A.3. and A.4. implies linear demand functions: q = (a� p+ ")=b
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and eq = (d� r + e")=e: Then we have the following proposition:
Proposition 1. (Existence and Uniqueness) Under A.1, A.2, A.3 and A.4,

for a small enough � and a large enough � there exists a unique second-period

equilibrium, which is interior and where networks choose:

pi2 = c+m2;

ri2 = �m2;

F i2 = f +
1

2�
+
(2�i1 � 1)s

3
:

Proof. See Appendix.

In summary, networks price calls at their o¤-net cost, that is, each network

sets prices for making and receiving calls equal to the marginal cost that it could

incur if all other subscribers belonged to the rival network. The o¤-net-cost

pricing principle dates back to La¤ont et al. (2003), which found this pricing

rule in a framework for Internet backbone competition. In contrast, Jeon, Laf-

font and Tirole (2004) and our paper analyze three-part tari¤ competition in a

telecommunications environment. At the expense of assuming linear demands,

our setup however generalizes their work by allowing a random noise in both the

callers and receivers�utilities, and by removing the assumption of a given propor-

tionality between the utility functions. Moreover, Jeon, La¤ont and Tirole only

establish the existence of the o¤-net-cost pricing equilibrium when the noise on

the receiver side converges to zero, so that the volume is determined by callers

with probability converging to one. Instead, we have showed that the o¤-net-cost

pricing equilibrium exists and is unique for a small enough � and a large enough

�: Indeed, a small (enough) � (i.e., networks are relatively poor substitutes) is

a standard assumption in the "two-way" access literature; and a large (enough)

� is not a too restrictive assumption since extreme situations might happen in

reality. For example, there exist many situations in which a person may not want

to receive or make a call even though it is free. Finally, it is worth to remark

that in the second period networks do not have incentives to corner the market

by choosing a strategy di¤erent to that of the o¤-net-cost pricing one.

4.2. THE FIRST PERIOD

Recall that networks are assumed to be initially symmetric; thus, �rst-period

market shares are given by

�i1 =
1

2
+ �(wi1 � w

j
1);
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where wi1 = �i1 � F i1: In the �rst period, network i chooses �rst-period usage
price, reception charge and net surplus in order to maximize its total discounted

pro�ts:

�i(pi1; r
i
1; F

i
1) = �

i
1(p

i
1; r

i
1; F

i
1) + �b�i2(�i1(pi1; ri1; F i1)); (20)

with �i1 = �i1f�i1(pi1 � c)Qii1 + �
j
1

�
pi1 � c�m1

�
Qij1 + �

j
1m1Q

ji
1

+ri1

h
�i1Q

ii
1 + �

j
1Q

ji
1

i
+ F i1 � fg;

and where b�i2 is given by (19). As above, we can maximize �rst �i with respect
to pi1 and r

i
1 for a given �

i
1; adjusting �xed fees so as to keep �

i
1 constant. Then,

@�i=@pi1 = @�i1=@p
i
1 and @�

i=@ri1 = @�i1=@r
i
1; therefore, networks choose their

retail prices and reception charges in the same way as they do in the second

period, that is, pi1 = c +m1 and ri1 = �m1: Now, we may proceed similarly to

the analysis of the previous section, assume that �rst-period call and reception

prices are at the equilibrium level, and rewrite the full-period pro�ts as follows:

�i =

�
1

2
� �(F i1 � F

j
1 )

��
F i1 � f

	
+ �b�i2(�i1(F i1; F j1 )): (21)

By di¤erentiating this last expression with respect to F i1 we obtain the following

�rst-order condition:

0 = ��fF i1 � fg+
�
1

2
� �(F i1 � F

j
1 )

�
� �� db�i2(�i1)

d�i1
: (22)

From (19) we have that db�i2(�i1)=d�i1 = (2s=3) + (4=9)(�i1 � �j1)�s2; therefore:
F i1 =

f

2
+
1

4�
+
F j1
2
� �s
3
� 4�

2s2�

9
(F j1 � F i1): (23)

Given the symmetry of the game in the �rst period, we may look for a symmetric

solution where F i1 = F j1 ; then it is easy to see from (23) that in equilibrium

network i chooses:

F i1 = f +
1

2�
� 2�s

3
: (24)

The following proposition gives the conditions for the existence and uniqueness

of the �rst-period equilibrium:

Proposition 2. Under A.1, A.2, A.3, and A.4, for a small enough � and

a large enough � : i) there exists a unique interior equilibrium where networks

choose their �rst-period call and reception prices in the same way as they do in

the second period:

p1 = c+m1; r1 = �m1;

ii) the equilibrium �rst-period �xed fees and full-period pro�ts do not depend on
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the level of the �rst or second-period access markup:

F1 = f +
1

2�
� 2s�

3
; � =

1 + �

4�
� s�
3
;

iii) there exists no "cornered-market" equilibrium if switching costs are small

enough.

Proof. See Appendix.

We may then conclude that networks can no longer use future reciprocal

access charges as an instrument to soften �rst-period competition. Notice that

as long as @b�i2=@�i1 > 0 networks compete more aggressively in the �rst period,
so as to build market share that is pro�table in the second period. From López

(2005) we know that when networks only compete in call prices and �xed fees,

@b�i2=@�i1 depends on both �i1 and m2; and in a symmetric equilibrium slightly

moving m2 away from zero can reduce the value of having a higher market share

in the second-period, @b�i2=@�i1 is strictly concave in m2 at m2 = 0; and therefore

increase their full-period pro�ts by softening �rst-period competition for market

share. In contrast, when networks compete also in reception charges, b�i2 depends
only on �rst-period market shares, implying that @2b�i2=@m2@�

i
1 = 0 8m2; �

i
1;

hence, �rst-period competition does not depend on m2; and neither do the full-

period pro�ts. In the rational consumer expectations case the expressions for

the second-period equilibrium are the same as with naive expectations: (14),

(15) and (18). In the �rst period, however, consumers recognize that a network

with higher market share will charge higher prices in the second-period whenever

switching costs are positive. Nevertheless, since the value of having a higher

second-period market share is neutral with respect to the level of m2; �rst-period

prices are also neutral, and hence m2 does not a¤ect the subscribers��rst-period

net surpluses. In summary, with both naive and rational consumers expectations,

networks cannot increase their full-period pro�ts by departingm2 away from zero

when competition is in call prices, �xed fees and reception charges.

4.3. THE MULTI-PERIOD CASE

Assume networks compete in (�nite) T discrete periods of time. Our setup is

as follows: in each period t = 1:::T; networks can condition their play at time t on

the history of play until that date ht�1 (closed-loop or feedback strategies). Let

V it (�) denote the value function for network i at time t; with V iT+1 = 0: We will
provide su¢ cient conditions under which there exists a unique subgame-perfect

equilibrium.

CLAIM 1: Suppose networks compete in �nite T > 1 discrete periods of time,

and assume A.1, A.2, A.3 and A.4 holds, then for a small enough � and a large

enough � there exists an interior subgame-perfect equilibrium such that in any
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continuation equilibria (even o¤ the equilibrium path): (i) networks price calls

at their o¤-net cost, (ii) the �xed fees and per-period pro�ts depend on ht only

through �it�1; and moreover (iii) do not depend on the access markup levels.

The proof of Claim 1 will proceed in several steps. First of all, note that

the analysis of the game in period T is the same as in the two-period case, thus

from proposition 1 we know that in period T; under A.1, A.2, A.3 and A.4, for

a small enough � and a large enough � there exists a unique equilibrium, which

is interior and where networks price calls at the o¤-net cost. Moreover, we know

that V iT exists, depends on hT�1 only through �
i
T�1; and is quadratic. Consider

now period T � 1 where �iT�2 is given, network i knows hT�2; and solves:

max
piT�1;r

i
T�1;F

i
T�1

�iT�1 � �iT�1(p
i
T�1; r

i
T�1; F

i
T�1; p

j
T�1; r

j
T�1; F

j
T�1; �

i
T�2)

+�V iT (�
i
T�1);

where �iT�1 is given by (8) and

�iT�1 = 1=2 + (2�iT�2 � 1)�s+ �(�iT�1(piT�1; riT�1; p
j
T�1; r

j
T�1; �

i
T�1)

��jT�1(p
j
T�1; r

j
T�1; p

i
T�1; r

i
T�1; �

i
T�1) + F

j
T�1 � F

i
T�1):

The analysis can again be simpli�ed by invoking the one-to-one relationship be-

tween F it and �
i
t : network i choosing a tari¤ (p

i; ri; F i) given network j0s tari¤

(pj ; rj ; F j); is equivalent to choosing (pi; ri; �i): We can thus rewrite network i0s

problem as follows:

max
piT�1;r

i
T�1;�

i
T�1

�
i

T�1 � �iT�1(p
i
T�1; r

i
T�1; �

i
T�1; p

j
T�1; r

j
T�1; F

j
T�1; �

i
T�2)

+�V iT (�
i
T�1);

where �iT�1 is given by (9). It then follows that @�
i

T�1=@p
i
T�1 = @�

i
T�1=@p

i
T�1

and @�
i

T�1=@r
i
T�1 = @�

i
T�1=@r

i
T�1; thus a candidate solution for the four �rst-

order equilibrium conditions with respect to usage prices in period T � 1 is
pi �T�1 = p

j �
T�1 = c +mT�1 and ri �T�1 = r

j �
T�1 = �mT�1: Replacing these expres-

sions into �
i

T�1; we can derive the corresponding candidate equilibrium �xed fees

F i �T�1; which solve

max
F i
T�1

�iT�1
�
F iT�1 � f

	
+ �V iT (�

i
T�1); (25)

subject to

�iT�1 = (1=2) + (2�
i
T�2 � 1)�s� �(F iT�1 � F

j
T�1):

Note that (25) is a quadratic optimization problem, which implies that F i �T�1
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is a linear function of �iT�2; and hence

eV iT�1 � �iT�1(pi �T�1; pi �T�1; F i �T�1; pj �T�1; rj �T�1; F j �T�1; �
i
T�2)

is a quadratic function of �iT�2: Consequently, if V
i
T exists, depends on hT�1

only through �iT�1; and is quadratic, there exists in period T � 1 a candidate
equilibrium where networks price calls at the o¤-net cost and where �xed fees

depend on hT�2 only through �iT�2; and do so linearly, so that for this candi-

date equilibrium the valuation function eV iT�1 is also quadratic and depends on
hT�2 only through �iT�2: Therefore, by mathematical induction we can derive a

sequence of candidate equilibria for all t where networks price calls at the o¤-net

cost and F i �t depends on ht�1 only through �it�1; and so a sequence of candi-

date valuation functions eV it that are quadratic and depends on ht�1 only through
�it�1:

Since we exhibit a candidate equilibrium by solving the �rst-order conditions,

this candidate equilibrium is indeed an equilibrium if the Hessian of �
i

T�1 is

de�nite negative since in that case second-order conditions are satis�ed. That

is, if the Hessian of �
i

T�1 � �iT�1 + �V
i
T (�

i
T�1) is de�nite negative, then our

candidate equilibrium is an equilibrium from t = T � 1 onwards and eV iT�1 is
well de�ned and the valuation function. It then follows that if the Hessian of

�
i

T�2 � �iT�2 + �eV iT�1 is also de�nite negative, our candidate equilibrium is an

equilibrium from t = T�2 onwards and eV iT�2 is also well de�ned and the valuation
function, and so on. Before providing conditions under which this is so we �rst

derive the sequence of candidate equilibrium �xed fees and valuation functions. In

each period, the two networks each solve a linear-quadratic dynamic programming

problem, and thus the candidate value functions eV it (�it�1) are quadratic and
characterized by coupled Ricatti equations that can be solved recursively. Let

us de�ne yt = (F 1t ; F
2
t ; �

1
t ; 1)

0 and xt = (F 1t ; F
2
t )
0; the optimization problem for

networks 1 and 2 in period t can be formulated, respectively, as follows:

max
F 1
t

1

2
y0tIyt + �

eV 1t+1(yt);
max
F 2
t

1

2
y0tJyt + �eV 2t+1(yt);

subject to yt = Ayt�1 +Bxt; where

I =

266664
0 0 1 0

0 0 0 0

1 0 0 �f
0 0 �f 0

377775 ; J =
266664
0 0 0 0

0 0 �1 1

0 �1 0 f

0 1 f �2f

377775 ;
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A =

266664
0 0 0 0

0 0 0 0

0 0 2�s 1=2� �s
0 0 0 1

377775 ; and B =
266664

1 0

0 1

�� �

0 0

377775 :
Moreover, since eV it (yt�1) is quadratic for any t < T we can write

eV it (yt�1) = 1

2
y0t�1S

i
tyt�1: (26)

The matrix Sit can be obtained as follows
20 : de�ne B = [b1; b2]; let

�t =

"
b01�

1
t

b02�
2
t

#
;

where

�1t = I + �S
1
t+1;

�2t = J + �S
2
t+1:

Note that network 1 and 2 solve, respectively,

max
F 1
t

�
1

2
(Ayt�1 + b1F

1
t + b2F

2
t )
0�1t (Ayt�1 + b1F

1
t + b2F

2
t )

�

max
F 2
t

�
1

2
(Ayt�1 + b1F

1
t + b2F

2
t )
0�2t (Ayt�1 + b1F

1
t + b2F

2
t )

�
Consequently, the couple of �rst-order conditions are

b01�
1
t (Ayt�1 + b1F

1
t + b2F

2
t ) = 0;

b02�
2
t (Ayt�1 + b1F

1
t + b2F

2
t ) = 0:

Finally, by solving this system of two linear equations we might �nd the rule for

the candidate equilibrium �xed fees, given by

xt = Etyt�1; (27)

where Et = �(�tB)�1�tAyt�1: In addition, S1t and S2t are determined by

S1t = (A+BEt)
0(I + �S1t+1)(A+BEt);

S2t = (A+BEt)
0(J + �S2t+1)(A+BEt):

20We follow here the same procedure as in Kydland (1975), although we use the trick of
including the constant 1 in the list of state variables so as to express networks� pro�ts in a
simple quadratic form.
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By iterating the above process one can compute the candidate value function

for both networks at any t 2 [1; T � 1]: In fact, we can compute recursively the
unique solution in �xed fees for any period t and hence guarantee the existence

of a well-de�ned eV 1t (yt�1) only if j�tBj 6= 0 for t = 1; :::T; which is satis�ed here
since networks compete for market share. That is, we would have j�tBj = 0

only if reaction functions had the same slope, in which case there would be

in�nitely many solutions, or no solution (see Kydland, 1975.) Note that botheV 1t and F 1 �t � x(1) do not depend on mt: Recall that if the Hessians of �
1

t

and �
2

t are de�nite negative in own strategies for all t; our candidate equilibrium

will be a subgame-perfect equilibrium. Let Hi
t denote the Hessian matrix of �

i

t

under the candidate equilibrium, and let (Hi
t)k denote the k� th principal minor

of the Hessian matrix Hi
t : To prove Claim 1, it su¢ ces to apply the following

proposition,

Proposition 3. Under A.1, A.2, A.3 and A.4, for a small enough � and a

large enough �;
���Hi

t

�
1

�� < 0; ���Hi
t

�
2

�� > 0; and ���Hi
t

�
3

�� < 0 8t:
Proof. See Appendix.

A couple of remarks are in order:

Remark 1. (Uniqueness) To prove uniqueness we can follow a similar reason-

ing to that of proof of proposition 2: by assuming a large enough � we can

reduce the set of candidate equilibria in usage prices to a singleton where usage

prices are set at their o¤-net cost: pi �t = pj �t = c +mt and ri �t = rj �t = �mt:

Moreover, at this level we have that [F i �t (�it�1); F
j �
t (�it�1)] are uniquely deter-

mined and given by (27). Finally we know from above that this unique candidate

equilibrium is indeed an equilibrium for a (positive) small enough �:

Remark 2. (Corner Equilibrium) We now show that no cornered-market equi-

librium exists when switching costs are not too high. Suppose there exists

an equilibrium where network i corners the market in any period t by set-

ting (pi �t ; r
i �
t ; F

i �
t ) given that network j sets (pj �t ; rj �t ; F j �t ): Then, �j �t = 0

and �j �t = �V jt+1(0): And �
i �
t = �i �t + �V it+1(1); where �

i �
t = (pi �t � c +

ri �t )Q(pi �t ; ri �t ): But in order to corner the market network i must sacri�ce

present pro�ts so as to attract consumers. It means that �i �t is lower than

the static equilibrium pro�ts, which is always interior. Moreover, as switching

costs decrease, the link between the present and the future vanishes, that is,

lims!0 V
i
t+1(1) = V it+1(1=2): Therefore, lims!0�

i �
t < lims!0

b�it = b�it(�it�1) +
�V it+1(1=2); where as before b�it(�it�1) denote the equilibrium pro�ts of network i

in period t as a function of �it�1: Thus, a (positive) small enough s is a su¢ cient

condition under which no "cornered-market" equilibrium exists.
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5. SOCIAL OPTIMUM

Jeon et al. (2004) already pointed out that e¢ ciency cannot be achieved in

the presence of noise since marginal utilities have a random term, which in turn

requires price instruments to be contingent on the realization of this term. We

address this problem in a di¤erent way, and we look for the level of the access

markup that maximizes the expected social welfare.

We begin by considering symmetric networks, that is, �i1 = �j1 = 1=2: It

follows from proposition 1 that the symmetric equilibrium is the unique possible

one so the market is again equally divided in the second period. This symmetric

solution minimizes the average consumer�s disutility from not being able to join

to his preferred network, and hence allow us to rule out this social cost from the

analysis for the moment. Since payments are only transfers from one agent to an-

other, from a social-welfare viewpoint what matters is the utility that consumers

derive from making and receiving calls, and the costs of these calls. Consider a

call from a network i consumer to a network j consumer, its length is given by

Qij ; and the total utility derived by both the caller and the receiver from this

call is: U ij + eU ij : Let W (mt) denote the expected welfare arising from this call,

in equilibrium

W (mt) = U(c+mt;�mt) + eU(c+mt;�mt)� cQ(c+mt;�mt): (28)

The �rst-order condition is

dW

dmt
(mt) =

�
@U

@pt
(mt)�

@U

@rt
(mt)

�
+

 
@ eU
@pt

(mt)�
@ eU
@rt

(mt)

!
(29)

�c
�
@Q

@pt
(mt)�

@Q

@rt
(mt)

�
= 0:

A small increase in mt implies two opposite e¤ects: it increases pit but also

decreases rit: Moreover, a small increase in p
i
t reduces the callers�willingness to

stay on the phone, and consequently it decreases both the callers�utility @U=@pit
and the receivers� utility @ eU=@rit: On the other hand, a small decrease in rit
increases the receivers�willingness to stay on the phone, which in turn increases

the utility of both callers and receivers: �(@U=@rt+@ eU=@rt): Thus, on one hand,
it decreases the volume of tra¢ c in which callers are sovereign and hence the costs

incurred in these calls; this social gain is given by: �c(@Q=@pt): At the same time,
however, it increases the volume of tra¢ c in which receivers are sovereign, which

implies a social cost equal to c(@Q=@r): Using (3) and (4) yields, in equilibrium,

@U=@pt = (c+mt)(@Q=@pt) and @ eU=@rt = �mt(@Q=@rt); so equation (29) boils
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down to:

dW

dmt
(mt) = mt

�
@Q

@pt
(mt) +

@Q

@rt
(mt)

�
+ c

@Q

@rt
(mt) (30)

+

 
@ eU
@pt

(mt)�
@U

@rt
(mt)

!
= 0:

Moreover, under the existence and uniqueness conditions of proposition 1:

d2W=(dmt)
2 ' �(1=2)(1=b+ 1=e+ e=b2 + b=e2) < 0:

Letting m�
t denote the optimal access markup we thus have that any m

�
t such

that (dW=dmt)(m
�
t ) = 0 is socially optimal. In order to be more precise let us

state the following proposition,

Proposition 4. Under A.1, A.2, A.3, A.4, for a small enough � and a large

enough �; in equilibrium:

@ eU
@p
(mt) ' �

�
1

b

��
e

2b
(c+mt � a) +

d

2
+
�

8

�
e

b
+
b

3e

��
;

@U

@r
(mt) ' �

�
1

e

��
� b

2e
(mt + d) +

a

2
+
�

8

�
b

e
+
e

3b

��
:

Proof. See Appendix.

Clearly, the above proposition points out that the optimal value of the access

markup depends on the characteristics of each market in particular. Consider

now a small increase in the access markup starting from mt = 0; it slightly

increases call prices and slightly decreases the reception price. More precisely,

dW

dmt
(0) =

 
c
@Q

@rt
(0) +

@ eU
@pt

(0)

!
� @U

@rt
(0): (31)

This expression is in general di¤erent from zero. Roughly speaking, mt = 0 is

(generically) never optimal. Indeed, if (dW=dmt)(0) < 0 it follows that m�
t < 0;

and conversely m�
t > 0 if (dW=dmt)(0) > 0 (see �gure below.) Assume that

u(x) = eu(x); that is, a = d and b = e: Now, making use of Proposition 4 yields:
(@ eU=@p)(0) � (@U=@r)(0) ' �c=2b < 0: Consequently, the consumers� surplus

decreases: the small decrease in rt increases the callers� utility less than the

decrease in the receivers�utility that is driven by the small increase in pt: This

social cost together with the cost incurred by the increase in the average length

of calls yield (dW=dmt)(0) ' �c=b < 0: Conversely, a small decrease in mt will

decrease pt and increase rt such that the receivers�utility increases more than

the loss in the callers�utility, moreover the average length of calls decreases since
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0)0( <
∂
∂

tm
W

mt
* mt

0)0( >
∂
∂

tm
W

mtmt
*

rt increases, which indeed decreases costs in jc@Q=@rtj : Then, it is optimal to
decreasemt; that is,m�

t < 0:Given this, we have proved the following proposition:

Proposition 5. If u(x) = eu(x); then m�
t < 0 and is given by (30) if a�t =

m�
t + c0 > 0: Otherwise, �bill and keep�is socially optimal and m

�
t = �c0:

So far we have assumed symmetric networks; let us now turn to the asymmet-

ric case. The utility that any network i0s subscriber derives from calls is �itU
ii+

�jtU
ij + �it eU ii + �jt eU ji; and the costs incurred by his calls are (�itQii + �jtQij)c:

Since there are �it consumers attached to network i and �
j
t consumers attached

to network j; the total utility that consumers derive is:

�it(�
i
tU

ii + �jtU
ij + �it eU ii + �jt eU ji) + �jt (�jtU jj + �itU ji (32)

+�jt eU jj + �it eU ij)� �it(�itQii + �jtQij)c� �jt (�jtQjj + �itQji)c:
But in equilibrium expression (32) boils down to (28). Therefore, the above

analysis remain valid in the asymmetric case. The intuition is very simple: since

usage prices are identical in both networks whatever the market shares are, we

have that in equilibrium U ii = U ij ; eU ij = eU ji and Qij = Qji; it then follows

that consumers derive from calls the same utility in both networks. Let us now

turn back to the consumer�s disutility from not being able to join to his preferred

network and the switching costs issue. Given �rst-period market shares �i1 and

�j1; the socially optimal con�guration of market shares (�
i �
2 ; �

j �
2 )minimizes both

social costs. Suppose that s = 0 and the market is initially unequal divided

between the two competitors (i.e., �i1 6= �j1); then �
i �
2 = �j �2 = 1=2 will still

minimize the average consumer�s disutility since preferences are assumed to be

independent across periods. Nevertheless, if every subscriber incurs a cost when

switching networks, then �i2 = �j2 = 1=2 is not necessarily optimal if �i1 6= �j1:
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Note however that in equilibrium �it = �
j
t ; which amounts to

wit � w
j
t = bF jt (�jt�1)� bF it (�it�1):

That is, net surpluses in the equilibrium do not depend on the access markup,

so neither do the market shares. We thus need one more instrument or a direct

regulation of �xed fees so as to achieve (�i �2 ; �
j �
2 ):

6. CONCLUSION

This article has studied the implications of adopting the receiver pays regime

when networks compete in a dynamic framework. We allowed callers and call

receivers to derive utility from making and receiving calls, and networks to price

calls and charge customers for receiving calls. Assuming the existence of a random

noise in the caller�s and receiver�s utility, we �rst showed that the o¤-net-cost

pricing principle is a candidate equilibrium.

Second, we showed that under linear demands q and eq; this candidate equilib-
rium is indeed the unique equilibrium provided that the degree of substitutability

between networks is low enough and the random noise has a wide enough sup-

port. Other insights were derived. In the region where the equilibrium exists,

an increase in the access charge raises the call price and decreases the reception

charge, but does not a¤ect the networks�full-period pro�ts. Instead, the access

charge level clearly a¤ects the consumer welfare; indeed its optimal level from the

social welfare viewpoint depends on the characteristics of each market. In the

particular case where the linear demand functions q and eq are the same, starting
from zero access markup, a small decrease in the access charge decreases the call

price and raises the reception charge. As a result, the receivers�utility increases

more than the loss in the callers�utility, and the average length of calls decreases,

which in turn decreases costs. Consequently, we �nd optimal to decrease access

charges so that either a interior solution is reached, or �bill and keep�might be

socially optimal.

Third and �nally, in our previous work (López, 2005) we showed that networks

are able to soften present competition by departing away future reciprocal access

charges from marginal costs. Under the receiver pays regime we showed however

that in a multi-period setting the o¤-net-cost pricing equilibrium neutralizes the

potential anticompetitive role that reciprocal access charges could play.

Our article is a further step in the research agenda; it has characterized the

equilibrium that arises in dynamic network competition under the receiver pays

regime, and has studied how networks operators�pricing strategies might react to

the adoption of such regime. We expect further research extending our analysis.

Three key directions are noteworthy. Firstly, as already pointed out by Jeon et

al. (2004), the "noncooperative volume setting" assumption should be extended
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to allow more cooperative behaviors, as for instance the maximization of joint

surplus over the call length. Secondly, asymmetric calling patterns should be

analyzed. It is not di¢ cult to �nd cases in which the calling pattern is unbalanced,

which might a¤ect the incentives of the networks in the industry. Thirdly, it would

be interesting to check whether the o¤-net-cost pricing principle still applies to

the case of multiple networks competing for market share.

7. APPENDIX

Lemma 1. Under A.1, A.2, A.3 and A.4:

@Q(pit; r
j
t )

@pit
= � 1

2b
� 1

�

"
d� rjt
e

+
pit � a
b

#

@Q(pjt ; r
i
t)

@rit
= � 1

2e
� 1

�

"
a� pjt
b

+
rit � d
e

#

@2U(pjt ; r
i
t)

(@rit)
2

= �
�
b

2e2

�
�
�
1

e�

��
a� b

e
(d� rit)

�
@2 eU(pit; rjt )
(@pit)

2
= �

� e

2b2

�
�
�
1

b�

�h
d� e

b
(a� pit)

i
@2U(pjt ; r

i
t)

@pjt@r
i
t

=
pjt
b�

@2 eU(pit; rit)
@rit@p

i
t

=
rit
�e

Proof. Let us construct Q(pit; r
j
t ) by means of several illustrative steps. First

of all, notice that for a given pair of prices (pit; r
j
t ) and a given pair of realized

values (";e"); the length of a call from a network i consumer to a network j

consumer is given by Q(pit; r
j
t ; ";e") = min[q(pit�"); eq(rjt�e")]; where q = �0�1(pit�

") and eq = e�0�1(rjt � e"); that is,
q =

a� (pit � ")
b

; eq = d� (rjt � e")
e

:

Step 1. Assume for the moment e" is exogenous and takes value e"0:
Step 2. Note that q(pi� ") is strictly increasing in "; which means that it will

exist an "� such that q(pit � "�) = eq(rjt � e"0); namely
"� = pit � q�1(eq(rjt � e"0)):

Moreover, if "� =2 ["; "] then f("�) = 0:
Step 3. For any " � "�; the caller will be sovereign, whereas the receiver will
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be sovereign provided that " > "�: Therefore, we can write the demand as follows:

d(pit; r
j
t ;e"0) =

Z "�(�)

"

q(pit � ")f(")d"+
Z "

"�(�)
eq(rjt � e"0)f(")d"

=

Z "�(�)

"

q(pit � ")f(")d"+ eq(rjt � e"0)[F (")� F ("�(�))];
which can be rewritten for any value of e" : d = d(pit; rjt ;e"):
Step 4. Therefore, under A.3., for a given pair of prices (pit; r

j
t ); the volume

of calls from a network i consumer to a network j consumer at period t is given

by:

Q(pit; r
j
t ) =

Z "

"

d(pit; r
j
t ;e") ef(e")de"

=

Z "

"

(

Z "�(�)

"

q(pit � ")f(")d"

+eq(rjt � e")[F (")� F ("�(�))]) ef(e")de"
Now, for a given rjt we can di¤erentiate Q(p

i
t; r

j
t ) with respect to p

i
t :

@Q(pit; r
j
t )

@pit
=

Z "

"

 Z "�(�)

"

@q(pit � ")
@pit

f(")d"

! ef(e")de"
= �

�
1

b�2

�Z "

"

("�(�)� ")de";
where "� = (b=e)(d� rjt + e") + pit � a: Then,

@Q(pit; r
j
t )

@pit
= � 1

2b
� 1

�

"
d� rjt
e

+
pit � a
b

#

In a similar way, we can assume pit as given and di¤erentiate Q(p
i
t; r

i
t) with respect

to rit: To that end, we can rewrite the demand as follows:

Q(pjt ; r
i
t) =

Z "

"

(

Z e"�(�)
"

eq(rit � e") ef(e")de"
+q(pit � ")[ eF (")� eF (e"�(�))])f(")d";

, where e"� = (e=b)(a� pjt + ") + rit � d: Then,
@Q(pjt ; r

i
t)

@rit
=

Z "

"

 Z e"�(�)
"

@eq(rit � e")
@rit

ef(e")de"! f(")d"
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�
1

e�2

�Z "

"

(e"�(�)� ")d"
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Thus,
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t)
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= � 1

2e
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"
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#
Assume a given pit and rewrite U(p

i
t; r

i
t) as follows:
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It follows that:
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For a given pit we can write eU(pit; rit) as follows:
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Z "
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"
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+
�eu(eq(rit � e")) [F (")� F ("�(�))]� ef(e")de"

29



Then,
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Lemma 2. Under A.1, A.2, A.3, A.4., and for a large enough � :
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(U iit + eU iit � U jit � eU ijt )� (U ijt + eU jit � U jjt � eU jjt ) is a bounded function.
Proof. Using the market share de�nition, we can rewrite the second-period
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pro�ts in terms of pi2; r
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2 and �
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From expression (9) we have that:
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i
t)

@pit
+ �it(�c+ pit)

@Q2(pit; r
i
t)

(@pit)
2

g

@�it
@rit

= �itf�it
�
�c+ rit

� @Q(pit; rit)
@rit

+ (�jt (mt + r
i
t) + �

i
tp
j
t )
@Q(pjt ; r

i
t)

@rit
(35)

+�it

 
@U(pit; r

i
t)

@rit
� @U(p

j
t ; r

i
t)

@rit

!
g

@2�it
(@rit)

2
= �itf�it

@Q(pit; r
i
t)

@rit
+ �it

�
�c+ rit

� @Q2(pit; rit)
(@rit)

2
+ �jt

@Q(pjt ; r
i
t)

@rit

+(�jt (mt + r
i
t) + �

i
tp
j
t )
@2Q(pjt ; r

i
t)

(@rit)
2

g

Then, using Lemma 1:

@2�it
(@pit)

2
= �itf�

j
t

@Q(pit; r
j
t )

@pit
+ �it

@Q(pit; r
i
t)

@pit
�
�
1

�b

�
(pit � c� �

j
tmt + �

i
tr
j
t )g

@2�it
(@rit)

2
= �itf�it

@Q(pit; r
i
t)

@rit
+ �jt

@Q(pjt ; r
i
t)

@rit
�
�
1

�e

�
(rit � �itc+ �

j
tmt + �

i
tp
j
t )g
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Moreover,

@2�it
@rit@p

i
t

= �itf�it
�
�c+ pit

� @Q2(pit; rit)
@rit@p

i
t

+ �it
@2 eU(pit; rit)
@rit@p

i
t

g

=
(�it)

2

�e
(pit + r

i
t � c)

@2�it

@rjt@p
i
t

= �itf�it
@Q(pit; r

j
t )

@pit
+ (��jt (c+mt) + �

j
tp
i
t + �

i
tr
j
t )
@Q(pit; r

j
t )

@rjt@p
i
t

��it
@ eU(pit; rjt )
@rjt@p

i
t

g

= �itf�it
@Q(pit; r

j
t )

@pit
+
(��jt (c+mt) + �

j
tp
i
t)

�e
g

@2�it
@pit@r

i
t

= �itf�it
�
�c+ rit

� @2Q(pit; rit)
@pit@r

i
t

+ �it
@2U(pit; r

i
t)

@pit@r
i
t

g

=
(�it)

2

�b
(pit + r

i
t � c)

@2�it

@pjt@r
i
t

= �itf�it
@Q(pjt ; r

i
t)

@rit
+ (�jt (mt + r

i
t) + �

i
tp
j
t )
@Q(pjt ; r

i
t)

@pjt@r
i
t

��it
@U(pjt ; r

i
t)

@pjt@r
i
t

g

= �itf�it
@Q(pjt ; r

i
t)

@rit
+
�jt (mt + r

i
t)

�b
g

On the other hand,

@�it
@�it

=
�it
�it
+ �itf��;t(pit; rit; p

j
t ; r

j
t )�

1

�
g;

where

��;t = �cQiit + (c+mt)Q
ij
t �mtQ

ji
t + p

j
t (�Q

jj
t +Q

ji
t ) + r

j
t (�Q

jj
t +Q

ij
t )

+(U iit + eU iit � U jit � eU ijt )� (U ijt + eU jit � U jjt � eU jjt )
And,

@2�it
(@�it)

2
= 2��;t(p

i
t; r

i
t; p

j
t ; r

j
t ; �

i
t)� 2=�;
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Moreover,

@�it
@pit@�

i
t

= 2(pit � c)�it
@Q(pit; r

i
t)

@pit
+ ((pit � c�mt)(�

j
t � �it) + 2�itr

j
t )
@Q(pit; r

j
t )

@pit

+2�it

 
@ eU(pit; rit)
@pit

� @
eU(pit; rjt )
@pit

!

@�it
@rit@�

i
t

= 2�it(r
i
t � c)

@Q(pit; r
i
t)

@rit
+ ((�jt � �it)(rit +mt) + 2p

j
t�

i
t)
@Q(pjt ; r

i
t)

@rit

+2�it

 
@U(pit; r

i
t)

@rit
� @U(p

j
t ; r

i
t)

@rit

!
;

where:  
@ eU(pit; rjt )
@pit

� @
eU(pit; rit)
@pit

!
=

1

2e�
[(rjt )

2 � (rit)2] (36)

 
@U(pit; r

j
t )

@rit
� @U(p

i
t; r

i
t)

@rit

!
=

1

2b�
[(pjt )

2 � (pit)2] (37)

Thus, for a large enough � and using Lemma 1 it follows the stated results.

Proof. Proposition 1.

We �rst focus on network i0s best response to given prices of the rival: pjt ; r
j
t

and F jt : Note �rst that, for given p
i
t and r

i
t; ��t � �it��

j
t : [0; 1]! R is an a¢ ne

function of the market share at period t : ��t(�
i
t) = ��

i
t + y; where � and y are

real numbers. Note further that relevant �xed fees are bounded: given the pair

(pi2; r
i
2) there exists an upper bound F such that �it(F ) = 0 and thus F it > F

cannot be a best response; similarly there exists a lower bound F such that

�it(F ) = 1 and hence for any F
i
t < F we still have that �

i
t = 1 but lower network

i0s pro�ts, thus F it < F cannot be a best response. Therefore, the F
i
t that can be

a best response to the triple (pjt ; r
j
t ; F

j
t ); for given (p

i
t; r

i
t); belongs to the interval

[F ; F ] (see �gure below.) Accordingly, for given (pit; r
i
t); �

i
t : [F ; F ] �! [0; 1] is

one-to-one or injective in F it i¤ � 6= 1=� :

�it =
1

1� ��

�
1

2
+ (2�i1 � 1)�s+ �(F

j
t � F it + y)

�
;

that is, �it is well-de�ned and monotonically increasing or monotonically decreas-

ing in F it i¤ � 6= 1=�: The degenerate case where � = 1=� could exist for given
usage prices and �; however as long as q and eq are bounded, which is assumed,
there will always be a small enough � such that this degenerate case cannot oc-

cur. Consequently, for a small enough �; �it is well-de�ned and injective, and thus

invertible on its domain; its inverse �i�1t = F
i

t is then uniquely de�ned.

Each network i maximizes �i2 with respect to p
i
2; r

i
2 and F

i
2; for given p

j
2; r

j
2
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and F j2 ; subject to �
i
2 = (1=2) + (2�

i
1 � 1)�s+ �(�i2 � F i2 � �

j
2 + F

j
2 ); where �

i
2

is given by (8) and �i2 is given by (7). Using the market share de�nition, we

can rewrite the second-period pro�ts in terms of pi2; r
i
2 and �

i
2 : �

i
2(p

i
2; r

i
2; �

i
2);

which is given in (33). Moreover, since for any (pit; r
i
t) �

i
2 is one-to-one, for

given pj2; r
j
2 and F

j
2 ; maximizing �

i
2 with respect to p

i
2; r

i
2 and F

i
2 is equivalent

to maximizing �i2 with respect to p
i
2; r

i
2 and �

i
2; that is, there exists a one-to-

one correspondence between both best response correspondences (pi2; r
i
2; F

i
2) and

(pi2; r
i
2; �

i
2); to a given triple (p

j
2; r

j
2; F

j
2 ): Now, we check whether such a best

response correspondence (pi2; r
i
2; �

i
2) is well-de�ned, in other words whether the

Hessian of the network i0s pro�t function �i2 is negative de�nite:

Hi =

2664
@2�i2
(@pi2)

2

@2�i2
@ri2@p

i
2

@2�i2
@�i2@p

i
2

@2�i2
@pi2@r

i
2

@2�i2
(@ri2)

2

@2�i2
@�i2@r

i
2

@2�i2
@pi2@�

i
2

@2�i2
@ri2@�

i
2

@2�i2
(@�i2)

2

3775

Let Hi
k denote the k � th principal minor of the Hessian matrix Hi: Using

Lemma 2, for a large enough �; we have that
��Hi

1

�� ' ��i2=2b and
��Hi

2

�� '
(�i2)

2=4be; moreover

��Hi
3

�� ' ��;2 (�i2)2
2be

� 1

�

(�i2)
2

2be
+
�i2
2e
(�pi;2)

2 +
�i2
2b

�
�ri;2

�2
Then, for any �i2 2 (0; 1] and a large enough � :

��Hi
1

�� < 0 and ��Hi
2

�� > 0; moreover
since demands are bounded by assumption, ��; �pi and �ri are also bounded

functions, and hence there exists a small enough � such that
��Hi

3

�� < 0: Let us now
show that no cornered-market equilibrium exists. Suppose that network i corners

the market by setting (pi �2 ; r
i �
2 ; F

i �
2 ): Then, �j2 = 0 and using (8): �

i �
2 = [(pi �2 �

c+ri �2 )Q(p
i �
2 ; r

i �
2 )+F

i �
2 �f ]; with �i �2 � 0; otherwise cornering the market would

not be an optimal strategy. But network j could charge pj �2 = pi �2 ; r
j �
2 = ri �2
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and F j �2 = F i �2 + �; where � > 0: It follows that �j �2 = (1=2)+ (2�j1� 1)�s���;
and if �j1 = 0 we have that �

j �
2 = (1=2)(1� s=�)� ��; then since s < � it exists

a small enough and positive � such that �j �2 > 0 for any �j1 2 [0; 1]: It follows
that for such a small enough � and using (8), the network j0s pro�ts would then

be

�j2 = �j �2 [(pj �2 � c+ rj �2 )Q(pj �2 ; rj �2 ) + F j �2 � f ]

= �j �2 (�i �2 + �) � �j �2 � > 0;

a contradiction. In summary, for a large enough � there exists a small enough �

such that pro�t functions are strictly concave whatever the rival prices are, which

means that the network i0s best response is a continuos function. Therefore, any

candidate equilibrium must satisfy the �rst-order conditions, and any solution

that satisfy the �rst-order conditions is an equilibrium. The set of �rst-order

conditions can be written as follows:

@�i2
@pi2
(pi2; r

i
2; �

i
2; r

j
2) = 0 (C:1);

@�j2
@pj2
(pj2; r

j
2; �

j
2; r

i
2) = 0 (C:3);

@�i2
@ri2
(pi2; r

i
2; �

i
2; p

j
2) = 0 (C:2);

@�j2
@rj2
(pj2; r

j
2; �

j
2; p

i
2) = 0 (C:4);

@�i2
@�i2

(pi2; r
i
2; �

i
2; p

j
2; r

j
2; F

j
2 ) = 0;

@�j2
@�j2

(pj2; r
j
2; �

j
2; p

i
2; r

i
2; F

i
2) = 0:

Together with the market share de�nitions, we have 8 equations and 8 un-

known variables. Consider the �rst four �rst-order conditions derived from max-

imizing pro�ts with respect to usage prices (C.1-C.4), notice that �xed fees do

not enter these conditions (as can been seen from (34) and (35).) Using lemma

1 and expressions (36) and (37) we can write:

@�i2
@pi2

= ��i2
�
1

2b
�ip(p

i
2; r

j
2) +

1

�
!ip(p

i
2; r

i
2; r

j
2)

�
;

@�i2
@ri2

= ��i2
�
1

2e
�ir(r

i
2; p

j
2) +

1

�
!ir(r

i
2; p

i
2; p

j
2)

�
;

@�j2
@pj2

= ��j2
�
1

2b
�jp(p

j
2; r

i
2) +

1

�
!jp(p

j
2; r

j
2; r

i
2)

�
;

@�j2
@rj2

= ��j2
�
1

2e
�jr(r

j
2; p

i
2) +

1

�
!jr(r

j
2; p

j
2; p

i
2)

�
;

where �ip(p
i
2; r

j
2) = �c��

j
2m2+p

i
2+�

i
2r
j
2; �

i
r(r

i
2; p

j
2) = ��i2c+�

j
2m2+ r

i
2+�

i
2p
j
2;

and !ip and !
i
r are nonlinear functions that do not depend on �: That is, each

one of these equations can be written as the sum of a linear function (�) and

a nonlinear function (!): Moreover, this system of equations have at least one

solution, which is given by pi2 = pj2 = c +m2; and ri2 = rj2 = �m2; and where
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�ip = �jp = 0; !ip = !jp = 0; �ir = �jr = 0; !ir = !jr = 0: Let � denote the set

of solutions to the system (C.1-C.4), which we already know is non-empty. Note

that by increasing � the nonlinear components of this system tend to vanish,

indeed the non-linear equations tend to be linear as � increases. Therefore, by

assuming a large enough � we can make vanish all those solutions that might

come from nonlinearities and thereby make � tend to be �nite and have at most

one element or to have in�nite elements, which is/are the solution/s that would

come from the linear system: �ip(p
i
2; r

j
2) = 0; �ir(r

i
2; p

j
2) = 0; �jp(p

j
2; r

i
2) = 0;

�jr(r
j
2; p

i
2) = 0: Indeed, we know that for a large enough � the set � is non-empty

nor in�nite but tend to a singleton since �ip(c+m2;�m2) = �
j
p(c+m2;�m2) = 0

and �ir(�m2; c+m2) = �
j
r(�m2; c+m2) = 0: Therefore, for any �i2 2 (0; 1) and a

large enough � there exists a unique equilibrium in usage prices, where networks

price calls at their o¤-net cost. Let us now return to the original formulation of

the pro�t function that is given in (8) and where the strategic variables are pi2; r
i
2

and F i2: Substituting p
i
2 = pj2 = c + m2 and ri2 = rj2 = �m2 into (8) gives us

the expression (16). By maximizing this expression with respect to the network

i0s �xed fee we obtain linear reaction functions: F i2(F
j
2 ); which are given in (17).

Moreover, dF i2=dF
j
2 = 1=2; therefore there exists a unique equilibrium in �xed

fees that is given in (18).

Proof. Proposition 2.

Following Proposition 1 and using the market share de�nition, we can rewrite

the �rst-period pro�ts in terms of pi1; r
i
1 and �

i
1: Moreover, since for a small

enough �; �i1 is one-to-one for any (p
i
1; r

i
1) and given p

j
2; r

j
2 and F

j
2 ; maximizing

�i1 with respect to p
i
1; r

i
1 and F

i
1 is equivalent to maximizing �

i
1 with respect to

pi1; r
i
1 and �

i
1; that is, there exists a one-to-one correspondence between both best

response correspondences (pi1; r
i
1; F

i
1) and (p

i
1; r

i
1; �

i
1); to a given triple (p

j
1; r

j
1; F

j
1 ):

Hence, we only need to check whether the Hessian of the network i0s full-period

pro�t function: �
i
(pi1; r

i
1; �

i
1) = �i1(p

i
1; r

i
1; �

i
1) + �b�i2(�i1); with b�i2(�i1) given by

(19), is negative de�nite. Let Hi
k denote the k� th principal minor of the Hessian

matrix. Using Lemma 2, for a large enough �; we have that
��Hi

1

�� ' ��i1=2b and��Hi
2

�� ' (�i1)2=4be; moreover
��Hi

3

�� ' ��;1 (�i1)2
2be

� 1

�

(�i1)
2

2be
+ ��

2s2
�
�i1
�2

9be
+
�i1
2e
(�pi;1)

2 +
�i1
2b

�
�ri;1

�2
Then, for any �i1 2 (0; 1] and a large enough � :

��Hi
1

�� < 0 and
��Hi

2

�� > 0; and

since ��;1; �pi;1 and �ri;1 are bounded functions, there exists a small enough �

such that
��Hi

3

�� < 0: We now show that in the �rst period no cornered-market

equilibrium exists if switching costs are small enough. Suppose that network i

corners the market by setting (pi �1 ; r
i �
1 ; F

i �
1 ); then �i � = �i �1 + �b�i2(1); whereb�i2(1) = 1=4� � s=3 � �s2=9: Note that in order to corner the market network i
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must sacri�ce present pro�ts so as to build market share. This implies that �i �1
is lower than the static equilibrium pro�ts, which is always interior. As switching

costs decrease, the link between the present and the future vanishes, that is,

lims!0 b�i2(1) = b�i2(1=2) = 1=4�: Thus, lims!0�
i � = �i �1 + �=4� < lims!0� =

1=4� + �=4�: Finally, notice that @�
i
=@pi1 = @�

i
1=@p

i
1 and @�

i
=@ri1 = @�

i
1=@r

i
1;

therefore we can construct a system of equations similar to the system C:1�C:4
given in the proof of proposition 1 with the unique di¤erence that the time index

subscript takes now value 1: Then, following a similar reasoning to that used in

the proof of proposition 1, one can show that for a large enough � there exists

a unique equilibrium in usage prices, which is given by pi1 = pj1 = c + m1 and

ri1 = rj1 = �m1; and hence do not depend on the level of the market shares.

Given this, we can return to the original formulation of the full-period pro�t

function that is given in (20) and where the strategic variables are pi1; r
i
1 and F

i
1:

By substituting the equilibrium usage prices into (20) we obtain the expression

(21). Finally, maximizing this expression with respect to the network i0s �xed

fee yields linear reaction functions F i1(F
j
1 ) that are given in (23) and have got a

unique intersection point that is given in (24).

Proof. Proposition 3.

Let sit+1(m;n) denote the (m;n):th entry of the matrix S
i
t+1: The following

lemma will be needed:

Lemma 3. lim�!0 s
i
t(3; 3) = 0 and lim�!0 s

j
t (3; 3) = 0 8t:

Proof. By matrix computation we can show that

if Sit+1 =

266664
0 0 0 0

0 0 0 0

0 0 sit+1(3; 3) sit+1(3; 4)

0 0 sit+1(4; 3) sit+1(4; 4)

377775 then Sit =

266664
0 0 0 0

0 0 0 0

0 0 sit(3; 3) sit(3; 4)

0 0 sit(4; 3) sit(4; 4)

377775 ;

where

sit(3; 3) =
�4�s2

�
�2 + ��sit+1(3; 3)

�h
�3 + ��(sjt+1(3; 3) + sit+1(3; 3))

i2 :
Thus if lim�!0 s

i
t+1(3; 3) = 0 then lim�!0 s

i
t(3; 3) = 0:Now, noting that s

i
T (3; 3) =

(8=9)�s2 the lemma is proved by mathematical induction.

Our candidate equilibrium is pi �t = pj �t = c +mt; r
i �
t = rj �t = �mt; and

(F i �t ; F j �t ); which are given by (27) if j�tBj 6= 0 for t = 1; :::T; which is satis�ed
since reaction functions have di¤erent slopes. Thus there exists a unique closed-

loop sequence of candidate equilibria, and hence F i �t (�it�1) � x(1); which is

given by (27), is uniquely determined and de�ne eV it (�it�1); which is given by
(26). Therefore, deV it+1=d�it = sit+1(3; 3)�

i
t + s

i
t+1(3; 4): The proposition will be
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proved by mathematical induction. First, assume there exists an equilibrium in

any period t+1; so that eVt+1 is a true valuation function, using lemma 2 and for
a large enough �; we have that

���Hi
t

�
1

�� ' ��it=2b; ���Hi
t

�
2

�� ' (�it)2=4be; and
���Hi

t

�
3

�� ' ��;t
(�it)

2

2be
� 1

�

(�it)
2

2be
+ �

(�it)
2

4be

d2 eV it+1
(d�it)

2

+
�it
2e
(�pi;t)

2 +
�iT�1
2b

�
�ri;t

�2
;

where d2 eV it+1=(d�it)2 = sit+1(3; 3): Thus for any �
i
t 2 (0; 1] and a large enough

� :
���Hi

t

�
1

�� < 0 and
���Hi

t

�
2

�� > 0; and since ��;t; �pi;t and �ri;t are bounded

functions, and by lemma 3 lim�!0 s
i
t+1(3; 3) = 0; there exists a (positive) small

enough � such that
���Hi

t

�
3

�� < 0: In short, given that there exists an interior

equilibrium in period t+ 1; we can construct the Hessian matrix of the network

i0s pro�t function in period t; and by assuming i) a large enough � obtain that

for any �it 2 (0; 1] :
��(Hi

t)1
�� < 0; ��(Hi

t)2
�� > 0; and ii) a (positive) small enough

� obtain that
���Hi

t

�
3

�� < 0 since ��;t; �pi;t and �ri;t are bounded functions, and
lim�!0 s

i
t+1(3; 3) = 0: Therefore, the existence of this candidate equilibrium can

be proved by mathematical induction as long as we prove its existence in the

last period of the game. In this respect, using proposition 1 we have that for a

(positive) small enough � and a large enough � there exists a unique equilibrium

in period T; which is interior.

Proof. Proposition 4.

Making use of the proof of Lemma 2 we can write:

@ eU ij
@pit

= �
�
1

b�2

�Z "

"

[

Z "�(�)

"

d� e
�
a� pit + "

b

�
+ e"d"]de";

where "� = (b=e)(d� rjt + e") + pit � a: Note that,Z "

"

Z "�(�)

"

e"d"de" =

Z "

"

e"("� � ")de"
=

Z "

"

e" �( b
e
)(d� rjt + e") + pit � a� "� de"

=

Z "

"

b

e
e"2 + e" �( b

e
)(d� rjt + e") + pit � a� "� de"

=
b

e

"3 � "3
3

=
2b

24e
�3
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On the other hand,

� �
Z "

"

[

Z "�(�)

"

d� e
�
a� pit + "

b

�
d"]de"

=

Z "

"

�
d� e

b
(a� pit)

�
("� � ")� e

b

("�)2 � "2
2

de"
=

Z "

"

h
d� e

b
(a� pit)�

e

2b
("� + ")

i
("� � ")de"

Replacing the de�nition of "� into last expression yields

� =

Z "

"

[y +
e

2b

�

2
� e"
2
][v +

�

2
+
b

e
e"]de";

where y = (e=2b)(pit � a) + (d+ r
j
t )=2 and v = (b=e)(d� r

j
t ) + p

i
t � a): Then,

� = yv�+
y

2
�2 +

ev

4b
�2 +

e

8b
�3 � b

24e
�3

And,
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1
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��
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�
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1
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Thus, for a large enough � we can write

@ eU ij
@pit

' �
�
1

b

��
e

2b
(pit � a) +

d

2
+
�

8

�
e

b
+
b

3e

��
In equilibrium: pit = c+mt; which proves the �rst part of the proposition. Last,

using the same steps as before one can show that for a large enough � :

@U ij

@rjt
' �

�
1

e

��
b

2e
(rjt � d) +

a

2
+
�

8

�
b

e
+
e

3b

��
;

and using that in equilibrium rjt = �mt it is proved the second part of the

proposition.
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